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A Quasi-analytical Interpolation Method for Pricing American Options
under General Multi-dimensional Diffusion Processes

Abstract

We present a quasi-analytical method for pricing multi-dimensional American options based
on interpolating two arbitrage bounds, along the lines of Johnson (1983). Our method allows for
the close examination of the interpolation parameter on a rigorous theoretical footing instead of
empirical regression. The method can be adapted to general diffusion processes as long as quick
and accurate pricing methods exist for the corresponding European and perpetual American
options. The American option price is shown to be approximately equal to an interpolation of
two European option prices with the interpolation weight proportional to a perpetual American
option. In the Black-Scholes model, our method achieves the same efficiency as Barone-Adesi
and Whaley’s (1987) quadratic approximation with our method being generally more accurate
for out-of-the-money and long-maturity options. When applied to Heston’s stochastic volatility
model, our method is shown to be extremely efficient and fairly accurate.

JEL Classification: C02; C63; G13

Keywords: American option; Interpolation method; Quasi-analytical approximation; Critical bound-
ary; Heston’s Stochastic volatility model
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I. Introduction

The pricing of American options is one of the oldest problems in finance and its study has

attracted experts from various other fields, including mathematics, statistics, economics and

operational research. Earliest attempts include McKean (1965), Samuelson (1967), and Merton

(1973). By now, hundreds of papers have been devoted to the study of various aspects of

American options. They can be roughly divided into two groups, one focusing more on the

theoretical issues and the other on the computational issues.

Papers focusing on theoretical aspects include: the property of the price function such as

differentiability, convexity, and put-call symmetry (Bergman, Grundy and Wiener (1996), Mc-

Donald and Schroder (1998), Shroder (1999)); the property of the critical stock price bound-

ary (van Moerbeke (1976), Barles, Burdeau, Romano and Samsoen (1995), Peskir (2005), Zhu

(2006)); different formulations such as partial differential equation with free boundary (McK-

ean (1965)), optimal stopping problem and its dual formulation (Bensoussan (1984), Karatzas

(1988), Rogers (2002)), variational inequality (Jaillet, Lamberton and Lapeyre (1990)), and early

exercise premium representation (Kim (1990), Jacka (1991), Carr, Jarrow and Myneni (1992));1

convergence and other properties of numerical methods (Lamberton (1993, 1998), Amin and

Khanna (1994), Clément, Lamberton, and Protter (2002), Stentoft (2004)); and finally various

generalizations such as general diffusion processes (Detemple and Tian (2002)), multiple under-

lying assets (Detemple, Feng and Tian (2003)), and more exotic American-type derivatives (see

Detemple (2006)).

This paper belongs to the second group that looks at the issue of computing American

option prices. By now, more than a dozen well-established pricing methods exist, as well as

many others that have not been widely adopted. For a relatively recent but brief survey, see

Barone-Adesi (2005). These methods differ in dimensions such as efficiency, accuracy, generality,

robustness, portability to other derivatives or other processes, ease of implementation, etc. In

addition to offering a broader menu of pricing methods for practitioners to choose from, the

development of new methods often offers considerable additional insights on various aspects of

American options. Because of the huge variety of proposed methods, a clear and unambiguous

classification of all the different methods is difficult. Nonetheless, they can be roughly divided

into several somewhat distinctive groups. The first group is the numerical methods based on

solving the valuation partial differential equation. Those include the binomial tree method (Cox,

Ross and Rubinstein (1979), Rendleman and Barrter (1979), Curran (1995)), trinomial tree

methods and other variations (Parkinson (1977), Breen (1991), Kamrad and Ritchken (1991),
1For a survey of different mathematical formulations of the American option pricing problem, see Myneni

(1992).
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Figlewski and Gao (1999)), finite difference methods (Brennan and Schwartz (1977, 1978), Hull

and White (1990)), method of lines (Carr and Faguet (1996)), and penalty method (Khaliqa,

Vossb, and Kazmic (2005)). The second group of methods focuses more on the exercise boundary

and usually makes use of the early exercise premium representation. Papers include: Geske and

Johnson (1984), Omberg (1987), Bunch and Johnson (1992), Huang, Subramanyam and Yu

(1996), Carr (1998), Ju (1998), Bunch and Johnson (2000), Sullivan (2000), and Kim and Jang

(2008). The third group of methods looks at simulation techniques to value American options,

an idea first proposed for European options by Boyle (1977). Examples include Broadie and

Glasserman (1997), Longstaff and Schwartz (2001), Moreno and Navas (2003), and Stentoft

(2004)). Numerical techniques such as Richardson extrapolation and variance reduction are

often employed in these three groups of methods. Yet a fourth group of methods uses regression

techniques to fit analytical approximations, often based on lower and upper bounds of the

American option. These include Johnson (1983), Kim (1994), and Broadie and Detemple (1996).

The final group looks at analytical or quasi-analytical approximations of the American option

price, usually by making various approximations to the valuation partial differential equations.

These include MacMillan (1986), Barone-Adesi and Whaley (1987), and Ju and Zhong (1999).

In this paper, we develop a new quasi-analytical method which approximates the American

put option price as an interpolation of two bounds. Thus, this paper is very similar in spirit to

Johnson (1983) and Broadie and Detemple (1996). In fact, the bounds we use are identical to the

ones used in Johnson (1983), except that we formulate our approximation under the framework of

general diffusion processes while Johnson (1983) assumes Black-Scholes model with zero dividend

rate. Another important difference is that instead of using a regression procedure as in these two

papers, we work out the interpolation parameter by looking at the partial differential equation

the parameter has to satisfy, an idea fruitfully employed in MacMillan (1986), Barone-Adesi

and Whaley (1987), and Ju and Zhong (1999). Our final solution expresses the American put

option price as a linear interpolation of two European put option prices, with the interpolation

weight proportional to the price of the perpetual American option. Thus, as long as efficient

methods for pricing the European put option and perpetual American option exist, our method

can be adapted to general diffusion processes. We first specialize our analysis to the important

case of geometric Brownian motion. In this case, closed-form expressions exist for the European

call and perpetual American options. We show that our interpolation method approaches the

correct limits for many limiting cases, most interestingly, as the maturity increases to infinity.

The method is then further adapted to one of the leading multi-dimensional models for pricing

derivatives, namely, Heston’s stochastic volatility model. Our method has significant value since

the literature is still scarce in terms of pricing American options under this multi-dimensional

model.
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In our numerical study, we examine the performance of our method using both short-term,

medium-term and long-term options under the geometric Brownian motion model. We select a

broad set of parameter values for the interest rate, dividend rate, volatility, and current stock

prices. Our method gives fairly accurate approximations for the critical stock price, the inter-

polation parameter, and the option value. In particular, our approximation allows us to have

a quick look at the dependence of the interpolation parameter on various parameters, fulfilling

a task not carried out completely in Johnson (1983). In general, the interpolation parameter

increases in the interest rate, the volatility, and the time to maturity, but decreases in the div-

idend rate. By comparing our method with one of the most efficient methods, the quadratic

approximation, we see that our method achieves roughly the same efficiency as the quadratic

approximation and roughly the same order of accuracy for short-term options. However, in gen-

eral our method performs better for out-of-the-money options and long-term options. Finally,

numerical study shows that our method is also extremely efficient and accurate for Heston’s

stochastic volatility model. The mean percentage error is often well below 1% while the com-

putational time is usually 0.02 seconds for each option. The properties of the critical stock

price, the interpolation parameter, the American put option price, as well as the early exer-

cise premium as functions of parameters in the stochastic volatility model are studied in detail.

These properties are affected by the sign of the correlation between the stock price shock and

instantaneous variance shock. The early exercise premium behaves similarly to the critical stock

price for in-the-money put options but similarly to the American put option price for out-of-the-

money put options. In particular, the early exercise premium is decreasing in the instantaneous

volatility for in-the-money put options, but increasing for out-of-the-money options.

Although our new method does not necessarily dominate all the existing well-established

methods in terms of both efficiency and accuracy, our method has several attractive features.

First, our method has a good combination of efficiency and accuracy. For the Black-Scholes

case, while achieving relatively similar efficiency and accuracy to the quadratic approximation,

our method is generally more accurate than the quadratic approximation for out-of-the-money

options and long-term options. For Heston’s model, our method provides a unique new method

which is both efficient and accurate. While slightly less accurate than Medvedev and Scaillet

(2009), our method seems to be more than five times faster. Second, our method, which ex-

presses the American put prices as an interpolation of two simple European put option prices, is

conceptually and aesthetically appealing. While it is hard to quantify the approximation error

in both the quadratic approximation and the interpolation method, our method cannot be too

wrong because the final prices will always be within two arbitrage bounds. This adds consid-

erable robustness to our method, especially when one encounters extreme parameter values for
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which the performance of some other methods has not been fully tested.2 The quasi-analytical

nature of our solution also allows us to carry out a detailed and systematic study on the inter-

polation parameter. Third, our method is applicable for general diffusion processes, as long as

closed-form solutions (or even just a quick algorithm) to pricing the corresponding European

put option and perpetual American options exist. In particular, our method applies to the ge-

ometric Brownian motion model with nonzero dividend rate.3 Thus, the approximation can be

obviously applied to other American options such as options on futures, currency, etc. A unique

and very attractive feature of our method is that it can be applied to multi-dimensional models

such as stochastic volatility. Fourth, from a programmer’s perspective, our method is very easy

to implement. Indeed, the core algorithm for our interpolation method is less than 20 lines of

MATLAB code. Finally, unlike many less efficient methods, our solution is in closed form. The

current critical stock price and the value of the American put option come out simultaneously.

This allows us to compute greeks such as Delta and Gamma without much additional cost.

The paper is organized as follows. In the next section, we derive the interpolation method

from the valuation partial differential equation, first under general diffusion processes and then

specialized to the geometric Brownian motion and stochastic volatility cases. Section III per-

forms a numerical study of the interpolation method in the Black-Scholes and Heston’s stochastic

volatility models. It is shown that the interpolation method is both efficient and accurate. Sec-

tion IV concludes.

II. Derivation of the Interpolation Method

A. Derivation for put options under general diffusion processes

We assume that an American put option with strike price K and maturity time T is written on

some underlying continuous process S(t), where S(t) can be the price of some traded underlying

asset or quantities such as crude oil futures price, exchange rate, or even temperature. Assume

that the process S(t) can be modeled as a diffusion process under the risk-neutral measure Q:

dS(t) = µ(S(t), Z(t), θ)dt + σ(S(t), Z(t), θ)dW (t), (1)

where θ is a parameter vector and W (t) is a standard Brownian motion under the measure Q.

We will always refer to S(t) as the stock price process. Here Z(t) is a vector of state variables
2For example, when pricing moderately long-term American options, we have encountered situations in which

equations (22) and (23) in Bunch and Johnson (2000) have no solution so the method breaks down. Zhu and He
(2007) give an explanation for the failure of the Bunch and Johnson method to provide a good approximation in
some cases. They also provide a solution for that problem.

3It is worth pointing out that some old methods need zero dividend rate for them to work, or need to be
reworked out for the nonzero dividend case, examples including Johnson (1983), Geske and Johnson (1984) and
Omberg (1987). Even more recent papers, for example, Bunch and Johnson (2000) and Zhu (2006), work with a
zero dividend rate.
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which follows an N -dimensional diffusion process:

dZi = µi(S(t), Z(t), θ)dt + σi(S(t), Z(t), θ)dWi(t), (i = 1, · · · , N) (2)

where the Brownian motions are correlated with E[dWidWj ] = ρijdt and E[dWdWj ] = ρ0jdt

for i, j = 1, · · · , N . Notice that this specification incorporates two important cases: the Black-

Scholes model and Heston’s stochastic volatility model. In the Black-Scholes model, N = 0 and

there is no extra state variable, while in the stochastic volatility model, N = 1 and Z(t) = v(t)

is the instantaneous variance.

Let the current time be 0. Let τ = T − t denote the time to maturity. We assume that

the risk-free interest rate r is a positive constant and interpret δ(S) ≡ r − µ(S,Z, θ)/S as the

dividend. Throughout the paper, we will write Sτ for S(T−τ) and similarly for other quantities.

We assume that a smooth critical boundary S∗τ exists for τ ∈ (0, T ]. Detemple (2006) gives one

sufficient condition on µ(·) and σ(·) so that this assumption is true. In particular, the constant

elasticity of variance (CEV) process in which the diffusion function is S(t)θ/2 for some θ > 0

satisfies this assumption. See Detemple and Tian (2002). It is however, possible for the critical

boundary to have a discontinuity at τ = 0, as is the case for the American put option under the

geometric Brownian motion model when r < δ, where r and δ are the constant risk-free interest

rate and dividend rate, respectively.

In contrast to the fair amount of research done on pricing American option under the Black-

Scholes setup, relatively little work has been done for other diffusion processes, notable excep-

tions being Kim and Yu (1996) and Detemple and Tian (2002). Considering general diffusion

processes is useful for a few reasons. First, in practice American options are often written on

financial quantities other than stock prices, for example, commodity prices which often exhibit

mean-reverting behavior. Practitioners often use processes other than the geometric Brownian

motion, such as the log-OU process or the CEV process, to model these quantities. Second,

even if we assume the underlying follows a geometric Brownian motion, it is still useful for

the purpose of pricing exotic American options to consider more general diffusion processes.

For example, consider an American option with payoff function (K − f(Sτ ))+ if exercised at

t = T − τ , where f(·) is an increasing smooth function such as the logarithm and S(t) is a

geometric Brownian motion process. If we define a new process Y (t) by Y = f(S), then we

have a standard American put option written on the process Y , which is no longer necessarily a

geometric Brownian motion. Finally, considering general processes can offer additional insights

on the behavior of the American option price under the Black-Scholes setup. For example, by

considering the general CEV process, we can gain understanding on how the free parameter θ

affects the option prices and the early exercise boundary.

We will often suppress the dependence of Z and simply let p(S, τ, K, r, θ) denote the value
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of a European put option with time to maturity τ and strike price K when the current stock

price is S. Let P (S, τ, K, r, θ) denote the value of a corresponding American put option. We will

often omit some of the arguments when there is no confusion. For example, we will often write

P (S, τ), P (K), or P (S, τ, K). The fundamental valuation partial differential equation (PDE)

for the American put option is

LP (S, τ)− rP = 0, (3)

where

L ≡ − ∂

∂τ
+A, (4)

with the infinitesimal generator A given by

A = µ(S, θ)
∂

∂S
+

1
2
σ(S, θ)2

∂2

∂S2
+

N∑

i=1


µi

∂

∂Zi
+

1
2
ρijσiσj

N∑

j=1

∂2

∂Zi∂Zj
+ ρ0iσσi

∂2

∂Zi∂S


 . (5)

Here for simplicity, we have omitted the dependence of σ, µi and σi on S, Z and θ in the

above expression. The terminal boundary condition is P (S, 0) = (K − S)+. There is a far-field

boundary condition limS→∞ P (S, τ) = 0. The boundary conditions on Z should depend on the

problem. We will assume that the free boundary is nicely behaved. At the free boundary S∗τ ,

we have the value matching and high contact conditions, namely,

P (S∗τ , τ) = K − S∗τ , (6)
∂P

∂S
(S∗τ , τ) = −1. (7)

For theoretical discussions on the free boundary, see Detemple (2006).

We assume that a fast algorithm to compute the European put price p(S, τ, K) exists. The

approach we take in this paper is to interpolate the American put price by two European puts

along the lines of Johnson (1983). That is, we want to find out the function α = α(S, τ,K, θ),

such that

P (S, τ,K) = αp(S, τ,Kerτ ) + (1− α)p(S, τ, K). (8)

Another way to write the same equation is

P (S, τ,K) = p(S, τ, K) + α
(
p(S, τ, Kerτ )− p(S, τ, K)

) ≡ p(S, τ, K) + αD(S, τ,K). (9)

This equation has the interpretation that we are approximating the early exercise premium by

the term αD(S, τ, K), where D has been defined to be the price difference of the two European

put options.
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Johnson (1983) considers only the geometric Brownian motion case. Even more restrictively,

he considers only a zero dividend rate. His method of finding α is purely based on empirical

fitting. In this paper, we want to explore Johnson’s idea further and see if this method of

interpolation can be carried out further and if there could be a more systematic method of

finding the optimal α. It is also worthwhile pointing out that there are other American pricing

methods which are based on interpolation, for example, the LUBA approximation in Broadie

and Detemple (1996).

For the geometric Brownian motion case µ(S,Z, θ) = (r− δ)S with a constant dividend rate

δ > 0, by simple no-arbitrage arguments, we have p(K) ≤ P (K) ≤ p(Kerτ ), so 0 ≤ α ≤ 1

and we have an interpolation as opposed to extrapolation. For general diffusion processes, if

the process S(t) is not too pathologic so that it is always not worse off to pay one share of

stock later than earlier, then P (K) ≤ p(Kerτ ), and thus equation (8) is also an interpolation.

The reason is simple. Whenever we early exercise the American put option, we receive K and

deliver the stock. Delivering the stock earlier is not as good as delivering the stock at maturity

because we lose the dividends. Receiving K earlier on the other hand is not as good as receiving

Kerτ at maturity. In particular, we have strict interpolation for the stochastic volatility model.

Throughout the paper, we will assume this is the case. However, our method also applies if this

is not the case. For that situation, we would need to interpret the term interpolation in the

more general sense to include both “interpolation” and “extrapolation.”

Notice that when τ = 0, equation (8) is valid for any α. To find α for positive τ , we start

by plugging the interpolated price in equation (8) into the valuation PDE in equation (3). We

have

Lp(S, τ, K)− rp(S, τ,K) = 0 (10)

since p(S, τ, K) is the price of a traded asset. However, p(S, τ, Kerτ ) with τ changing is not the

price of a traded asset (the quantity p(S, τ, KerT ) for fixed T is). Instead, we have

Lp(S, τ,Kerτ )− rp(S, τ, Kerτ ) = −p′3(S, τ,Kerτ )rKerτ , (11)

where p′3(S, τ,Kerτ ) denotes the partial derivative of p(S, τ, K) with respect to the third argu-

ment, evaluated at Kerτ . With the help of the above two equations, the fundamental valuation

PDE becomes

DAα− αp′3(S, τ, Kerτ )rKerτ + ε = 0, (12)

where

ε = −D
∂α

∂τ
+ σ2(S, θ)

∂D

∂S

∂α

∂S
+

1
2

N∑

i=1

N∑

j=1

ρijσiσj
∂D

∂Zi

∂α

∂Zj
+

N∑

i=1

σiρ0i
∂D

∂S

∂α

∂Zi
. (13)
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We now make the following approximation

D = p(S, τ, Kerτ )− p(S, τ, K) ≈ p′3(S, τ,Kerτ )KerτΦ(τ, θ), (14)

for some function Φ(τ, θ) to be determined which has no S dependence. We will often simply

write Φ or Φ(τ). If one thinks of the above equation as a first-order Taylor expansion around

Kerτ , then Φ ≈ 1 − e−rτ . The nice feature of this crude approximation is that it works for

general diffusion processes. Also, in our numerical study for geometric Brownian motion case,

we find that it already gives quite accurate results. However, for any specific diffusion process,

we recommend fitting the above equation using a regression procedure to find the best functional

form for Φ. This idea of regression was also very fruitfully utilized in other well-known research

works such as Johnson (1983) and Broadie and Detemple (1996). For example, Broadie and

Detemple (1996) use a regression approach to produce an improved approximation from their

lower and upper price bounds.

Consistent with the idea of treating the S dependence in D as small, we will omit the last

term ε in equation (12). When τ is small, D is close to 0. When τ is large, the dependence

of α on τ is small. This is similar to the approximation used in the quadratic approximation

in MacMillan (1986), Barone-Adesi and Whaley (1987), and Ju and Zhong (1999). Putting all

three approximations together, we get the following differential equation for α:

Aα(S, τ)− r

Φ(τ)
α(S, τ) = 0. (15)

This is exactly the differential equation for a perpetual American option under the general

diffusion process with the only change being that r/Φ(τ) now plays the role of the interest rate.

The τ dependence of Φ should not concern us, because the above equation only involves spatial

variables in which τ is a fixed free parameter. We will assume that a closed-form solution for

the perpetual American when interest rate is r exists and denote it as P∞(S, K, r). The solution

to α can then be written as

α(S, τ) = A
P∞(S,K, r/Φ(τ))
P∞(S∗τ ,K, r/Φ(τ))

(16)

for A not depending on S. Notice that A = α(S∗τ , τ) and is a function of r, τ , K and the

parameter vector θ, but for a fixed option, it is a constant. Going back to our interpolation

equation, we have that if S ≥ S∗τ ,

P (S, τ,K) = A
P∞(S, K, r/Φ(τ))
P∞(S∗τ ,K, r/Φ(τ))

p(S, τ,Kerτ ) +
(

1−A
P∞(S,K, r/Φ(τ))
P∞(S∗τ ,K, r/Φ(τ))

)
p(S, τ, K), (17)

and

P (S, τ,K) = K − S (18)
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if S < S∗τ . Equation (17) is the main result of this paper. It expresses the American option

prices under general diffusion processes as an interpolation of two European option prices, where

interestingly the weights depend on the price of a perpetual American option. Notice that this

result holds for every model in our general diffusion framework, so no derivation is needed at

all if we consider a new model. We could go directly from equation (17). Also, notice that we

do not need closed form solutions to apply the method, but just a quick and accurate pricing

of the European put option and the perpetual American option. Hence it covers pricing by

transform analysis in affine or quadratic models, for example pricing by fast Fourier transform

in the Heston model.

Another way of writing the interpolation equation is

P (S, τ, K) = p(S, τ, K) + A
P∞(S,K, r/Φ(τ))
P∞(S∗τ ,K, r/Φ(τ))

D(S, τ,K). (19)

This equation allows one more interpretation of A and α that can help us gain some insight

on the interpolation method. The European put option with strike Kerτ is more valuable than

the American option because effectively one receives the cash amount K at time 0 and delivers

the stock at maturity. For the American option, you have to receive the cash amount K and

deliver the stock at the same time, although this exercise time is random. Thus, we can think

of D(S, τ,K) as the maximum amount of premium we can receive over the European put option

with strike K, if we were able to choose different times for receiving the cash and for delivering

the stock. The quantities α and A are then accounting for the fact that we can only receive the

cash and deliver the stock at the same time.

There are still two quantities to determine, namely, the critical stock price S∗τ , below which

the American put should be exercised immediately, and the value of A. Before we close the

system with the two smooth pasting conditions, we give the expression for the greek Delta ∆P

for the American put option first. The Delta is a very important quantity for risk management as

it is frequently used to design hedging strategies and to compute Value-at-Risk. The expression

is:

∆P (S, τ,K) = ∆p(S, τ, K) + A

(
D(S, τ, K)

P∞(S∗τ ,K, r/Φ(τ))
∂P∞
∂S

+
P∞(S,K, r/Φ(τ))
P∞(S∗τ ,K, r/Φ(τ))

∂D

∂S

)
, (20)

where ∆p(S, τ, K) = ∂p
∂S (S, τ, K) is the Delta for the corresponding European option. This

equation is obtained by differentiating the interpolation equation (17). Thus, as soon as we

compute the value of A, we can simultaneously get the price of the American option and the

option delta. This is a big advantage over some of the other non-analytical methods. For

example, in the binomial tree methods or Monte Carlo simulation methods, one would often have

to compute option prices twice in order to compute the Delta by finite difference approximation.
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We are now ready to close the system. Evaluating the Delta’s at the free boundary, we get

∆P (S∗τ , τ, K) = ∆p(S∗τ , τ,K) + A

(
D

∂ log P∞
∂S

(S∗τ ,K, r/Φ(τ)) +
∂D

∂S
(S∗τ , τ,K)

)
, (21)

The high contact condition ∆P (S∗τ , τ, K) = −1 gives

A =
1 +

∂p

∂S
(S∗τ , τ, K)

−D
∂ log P∞

∂S
(S∗τ ,K, r/Φ(τ))− ∂D

∂S
(S∗τ , τ,K)

. (22)

The value matching condition gives one more equation

P (S∗τ , τ, K) = K − S∗τ = Ap(S∗τ , τ,Kerτ ) + (1−A)p(S∗τ , τ,K). (23)

The above two equations together give an equation for S∗τ which can be solved by suitable

numerical methods. After solving S∗τ , equation (22) gives the value of A and equation (17)

gives the value of the American put option. This methodology is very similar to the quadratic

approximation used in Barone-Adesi and Whaley (1987), in which the critical stock price is also

solved with a similar equation (equation (24) in their paper).

That our method solves the critical boundary and the American option price at the same

time is an advantage of our method over some other methods. This is because the critical stock

price is almost as important as the price itself. It allows us to determine whether it is optimal

to exercise the option immediately. Also, many numerical approximation methods such as those

utilizing the early exercise premium representation rely on the accurate computation of the

critical boundary.

Another hidden attractive feature of our method is that after S∗τ is found, equation (17)

allows us to compute American options with different initial stock price S without much addi-

tional computational cost. This is in stark contrast to the Binomial tree method, which requires

a completely different tree for each value of S. One might ask that since in practice we al-

ways have a single observed current stock price, whether a closed-form expression in S such as

equation (17) is useful other than helping us understand the S dependence of the American put

option price. We can quickly think of two other instances in which such an explicit expression

is useful. One is to value compound options on an American put option (Geske (1979) consid-

ers compound options written on European options). In such a case, a closed-form expression

for the American put option price would allow one to compute the compound option price by

numerical integration. Another instance is to value American call options with different strike

prices Ki and current stock price S under the geometric Brownian motion model. By the put-

call symmetry, we can transform these call options into put options with different current stock

prices Ki and common strike price S.
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Finally, while it is hard to quantify and control the errors in both the quadratic approximation

and our method, our put option price always lies between two arbitrage bounds. This is one

advantage of the interpolation method over the quadratic approximation because the put option

price in the latter method can potentially violate the upper bound p(S, τ,Kerτ ) we have used.

A straight-forward extension of our method is to allow for explicit and deterministic time

dependence on the drift and diffusion functions of S. Our method still works as long as the

corresponding European option and perpetual American option have closed-form solutions.4

For example, if ru is a deterministic process, we could approximate the American option price

by interpolating the prices p(S, τ, K) and p
(
S, τ, K exp(

∫ T
0 rudu)

)
. However, the accuracy of the

approximation might be affected because we have omitted the time dependence of α on τ in our

derivation.

B. Specializing to geometric Brownian motion

We now specialize the above general method to the case of geometric Brownian motion. The

process for the underlying asset S(t) is modeled as

dS(t) = bS(t)dt + σS(t)dWt, (24)

where b is a constant cost of carry and σ is a constant. The cost of carry is assumed to be

smaller than or equal to the risk-free interest rate r. The European put option price p(S, τ, K)

under this model is given by the famous Black-Scholes formula (Black and Scholes, 1973)

p(S, τ,K) = Ke−rτN(−d2(S,K))− Se(b−r)τN(−d1(S, K)), (25)

where

d1(S,K) =
log(Sebτ/K)

σ
√

τ
+

1
2
σ
√

τ , d2 = d1 − σ
√

τ , (26)

and N(·) is the cumulative normal distribution function. The Delta of the European put option

is −e(b−r)τN(−d1(S, K)). The value of the perpetual American put was first worked out by

Merton (1973) as follows:

P∞(S, K, r) = CSq(b,r), (27)

if S is above a constant critical stock price, and P∞(S, K, r) = K − S otherwise. Here, C is a

constant not very interesting to us, and q(b, r) is a negative number given by

q(b, r) ≡ σ2 − 2b

2σ2
− 1

2σ2

√
(σ2 − 2b)2 + 8rσ2. (28)

4The perpetual American option price can be computed very fast using numerical methods since it satisfies an
ODE instead of a PDE. So the only really necessary requirement of our method is the existence of a closed-form
solution for the European put price.
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Notice that if r > 0, then q is always negative. One can easily check that this solution satisfies

the following ordinary differential equation

bS
∂P∞
∂S

+
1
2
σ2S2 ∂2P∞

∂S2
− rP∞ = 0. (29)

In the classical Black-Scholes setup, b = r − δ, where δ is a constant dividend rate. By the

above result for the perpetual American put option and equation (16), we see that the weight

α in our interpolation method is given by

α = A

(
S

S∗τ

)q(r−δ,r/Φ)

. (30)

Our interpolation equation for S > S∗τ now becomes

P (S, τ,K) = A

(
S

S∗τ

)q(r−δ,r/Φ)

p(S, τ, Kerτ ) +

(
1−A

(
S

S∗τ

)q(r−δ,r/Φ)
)

p(S, τ, K), (31)

and the equation for A becomes

A =
1−N(−d1(S∗τ ,K))e−δτ

[N(−d1(S∗τ ,Kerτ ))−N(−d1(S∗τ ,K))]e−δτ − q(r − δ, r/Φ)D(S, τ, K)/S∗τ
. (32)

The above equation when substituted into the value matching condition in equation (23) gives

an equation for S∗τ which needs to be solved numerically. One way to do this is to use the

method suggested in Barone-Adesi and Whaley (1987), in which they provide an initial estimate

of S∗τ and then use Newton-Raphson method to find the root of equation (23). Although our

formula looks a little bit more complicated than Barone-Adesi and Whaley (1987), the amount

of computation needed in these two methods is almost identical. To implement the Newton-

Raphson algorithm, we need the derivative of the right-hand side of (23) with respect to S∗τ .

Since A has explicit S∗τ dependence, we recommend a variant of the Newton-Raphson algorithm

in which we approximate this derivative by using the value of A from the previous iteration and

treating it as a constant in (23). Since A converges extremely fast, this method is very efficient.

In our actual implementation, we usually need very few iterations for S∗τ to converge.

From the value matching equation (23), we have 0 ≤ A ≤ 1 since for any S, τ and K, we

have

p(S, τ, K) ≤ P (S, τ, K) ≤ p(S, τ,Kerτ ). (33)

Equation (31) is then indeed an interpolation since q < 0 and S ≥ S∗τ . This is one attractive

feature of our method since the American option price is by construction confined within the

two no-arbitrage bounds. Thus, we expect that our method becomes more accurate when the

12



two bounds are close to each other, as is the case for small interest rate, large dividend rate, or

out-of-the-money put options.

We still have one stone unturned and that is Φ = Φ(τ, θ). Determining the best Φ is a

slightly tricky part of our approximation. A simple and aesthetically appealing choice would

just be the result from Taylor series approximation:

Φ(τ, θ) ≈ 1− exp(−rτ). (34)

Interestingly, our numerical study shows this crude approximation already gives fairly accurate

results. However, to further improve the accuracy, we use the idea of fitting which was also

employed in Johnson (1983) and Broadie and Detemple (1996). The starting point is equation

(14) which, when specialized to the Black-Scholes model, states that

Φ(τ, θ) ≈ D(S, τ, K)
N(−d2(S,Kerτ ))K

. (35)

However, in the actual fitting, we also take into consideration the last term in equation (12)

that we have omitted in our approximation, because now we have an explicit solution for α. We

postulate the following simple parametric form of Φ:

Φ(τ, θ) ≈ 1− exp(−|k1rτ + k2δτ + k3σ
√

τ |). (36)

The absolute value sign is to guarantee that Φ is positive. The left-hand side of equation (14) is

then simulated for different values of S, r, δ and σ while fixing K = 100 since it is homogeneous

of degree 1 in K. The optimal values of k1, k2 and k3 are obtained by minimizing the maximum

error of the fit. In the end, we recommend the following values:

k1 = 1.239; k2 = −0.264; k3 = 0.0215. (37)

One can improve the accuracy of the interpolation method by proposing a more complicated

parametric form for Φ in equation (34), for example, by including terms such as τ , (rτ)2, and

S∗τ , or even putting back some S dependence into Φ. One particular parametric form that was

adopted in Li (2009) is the following:

Φ(τ, θ) ≈ 1− exp(−|λ1rτ + λ2δτ + λ3σ
√

τ + λ4 min(r, δ)τ |), (38)

with

λ1 = 1.386; λ2 = −0.125; λ3 = 0.00542; λ4 = −0.255. (39)

This choice tries to capture more dependence of the American option price on the interplay

between the interest rate and the dividend rate.
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Alternatively, one could fit Φ separately for different regions of the parameter values. For

example, one could fit short-term and long-term options separately. However, all the above

possible approaches require a large number of true American put option prices and a large scale

calibration exercise. In this paper, we decide not to do this and be content with the simple

parametric form in equation (34).

Equation (31) together with our choice of parametric form of Φ in equation (34) has some

nice asymptotic properties. First, if we let r goes to 0 while fixing other parameters, p(S, τ, Kerτ )

and p(S, τ, K) approach the same limiting European put option price. In turn, the American put

option value in equation (31) approaches that of the European option. This agrees with early

findings and our intuition that if there is no benefit of receiving cash earlier, then we should

never exercise the American put option early. Second, as K goes to 0, or S goes to infinity,

our interpolation method gives the correct limiting value for the American put option, which is

zero. Third, when τ goes to 0, the interpolated price goes to the correct limit (K − S0)+. The

final and probably the most attractive asymptotic property of our interpolation method is the

behavior when τ goes to infinity. In this case, we have p(S, τ, K) → 0, p(S, τ, Kerτ ) → K, and

Φ(τ) → 1. These together show that P (S, τ,K) approaches the perpetual American put option

price.

In the next section, we take a close look at the numerical performance of the interpolation

method under the geometric Brownian motion model. We only need to consider put options

because of the extremely simple put-call symmetry in this model:

C(S, τ,K, r, δ, σ) = P (K, τ, S, δ, r, σ). (40)

That is, to find the price of an American call option, we can just switch the roles of S and K

and the roles of r and δ, and then pretend that we have an American put option. The critical

stock price functions S∗τ,Call(K, r, δ, σ) and S∗τ,Put(K, r, δ, σ) are also nicely related by

S∗τ,Call(K, r, δ, σ) =
K2

S∗τ,Put(K, δ, r, σ)
. (41)

Because of the above two equations, American call options in the geometric Brownian motion

model can be reduced completely to put options.

C. Specializing to Heston’s stochastic volatility model

There now exist quite a number of different methods for pricing American options under the

Black-Scholes model. However, such pricing methods for general diffusion processes are still

fairly scarce, with the vast majority of them completely numerical in nature. A few examples

of multi-dimensional models include Finucane and Tomas (1996), Chung (2000), Zhylyevskyy
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(2009), and Medvedev and Scaillet (2009). One of the most attractive features of our quasi-

analytical method is that it can be adapted to multi-dimensional models since the interpolation

approximate in equation (17) is derived under a very general setup. The numerical study for the

stochastic volatility model in the next section shows that the method can be both very efficient

and accurate even for general diffusion processes.

To introduce the notation, Heston’s stochastic volatility model is specified as follows (see

Heston (1993))

dS(t) = (r − δ)S(t)dt +
√

v(t)S(t)dWS(t), (42)

dv(t) = κv(v(t)− θv)dt + σv

√
v(t)dWv(t). (43)

Here v(t) is the instantaneous variance process, κv the mean-reverting strength, θv the long-run

mean instantaneous variance, and σv the volatility of variance coefficient. The two Brownian

motions WS(t) and Wv(t) have a constant correlation ρ.

To use our interpolation method, we just need to use the interpolation approximation in

equation (17). We need a few things. First, we need the European option price. Second, we

need the perpetual American option price. Finally, in the high contact condition we need several

partial derivatives with respect to S.

The European option prices can be done easily through an inverse Fourier transformation

using the characteristic function of log S(T )/S. Specifically, a European call option with strike

price K maturing at time T = t+τ is computed by numerical integration as (see Li and Pearson

(2009))

c(S, τ,K) =
Se−rτ

π
Re

∫ +∞+iImu

0+iImu
e−iu log K

S · φsτ (u− i)
iu(iu + 1)

du (Imu < 0), (44)

where Re and Im denote the real and imaginary parts of a complex quantity, respectively, and

the integration path is a half-line parallel to the x-axis in the complex plane. The price of the

European put option can be obtained through the put-call parity

c(S, τ,K)− p(S, τ,K) = Se−δτ −Ke−rτ . (45)

Let vt denote the current instantaneous variance. The characteristic function for sτ ≡ log S(T )/S

is given by (see Li and Pearson (2009))

φsτ (u) = eiu(r−δ)τ exp
(
− a(τ)vt − b(τ)

)
, (46)

where

a(τ) =
2λ(1− e−ξτ )

2ξ − (ξ − κ∗)(1− e−ξτ )
; (47)

b(τ) =
κvθv

σ2
v

(
2 log

(
1− ξ − k∗

2ξ
(1− e−ξτ )

)
+ (ξ − κ∗)τ

)
, (48)
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with λ = (iu + u2)/2, κ∗ = κv − iuσvρ, and ξ =
√

κ∗2 + 2σ2
vλ.

The partial derivatives needed can be computed numerically or analytically once we have

the European and perpetual American option prices. No analytical approximations for the

perpetual American option exists in the literature as far as we know. Therefore, it need to be

solved numerically or by using a volatility of variance σv-expansion similar to the one in Lewis

(2000). If one is willing to sacrifice some accuracy, we can perform a zeroth order σv-expansion

for the perpetual American option price in the following sense. This amounts to set σv = 0 in

the v(t) process. In this case, the variance process v(t) is still time-dependent, but no longer

stochastic. Indeed, we can solve the process dv(t) = κv(v(t)− θv)dt to give

v(t) = θv + (vt − θv)e−κvt. (49)

If t = 0, then v(t) = vt. If t goes to infinity, v(t) goes to the long-run mean θv. Solving the

perpetual American option price with time-varying but deterministic variance is surprisingly

difficult. Therefore, we make the following approximation. We assume that the variance process

is a constant σ̃2 for some value of σ̃. Under this approximation, the v-dependence then all drops

out in the partial differential equation for the perpetual American option to give the following

Merton-type solution

P∞(S, K, r) = CS q̃(b,r). (50)

However, now we have

q(b, r) ≡ σ̃2 − 2b

2σ̃2
− 1

2σ̃2

√
(σ̃2 − 2b)2 + 8rσ̃2, (51)

with b = r − δ. It remains a question what value of σ̃ we should use. Two simple but extreme

choices would be to use σ̃ =
√

vt or σ̃ =
√

θv. More reasonable choice would be to use something

in between these two. One choice would be to use the Black-Scholes impled volatilities from the

European put prices p(K) or p(Kerτ ).5 Another choice is to use the time-averaged risk-neutral

expected variance given by

σ̃2 =
1
τ

∫ τ

0
Ev(u)du = θv + (vt − θv)

1− e−κvτ

κvτ
. (52)

The above equation is true regardless of whether we have σv = 0 or not. By the way, the σ̃

above is identical to the mechanism behind the construction of the CBOE VIX index. Using

this last approximation tends to understate the true value of the perpetual American option.

See Theorem 2.5 in Lewis (2000) for a corresponding statement for European put options.
5On a practical note, the implied volatility function in MATLAB uses a Dekker-Brent algorithm and is not

very efficient. A rational approximation in Li (2008) or a successive over-relaxation algorithm in Li and Lee (2009)
would be useful.

16



Since our method approaches the perpetual American option price when τ goes to infinity,

this approximation tends to understate the American option prices. However, our numerical

approximation in the next section shows that this downward bias is quite small. Small advantages

of using this time-averaged volatility instead of the Black-Scholes implied volatilities is that it

has lower computational cost and we know that the computed American option prices are almost

always downward biased.

From the programmer’s perspective, the above further approximation is very attractive. It

means that we can recycle the code for the Black-Scholes case. The only two changes we need to

make is to replace σ with some σ̃, and to replace the Black-Scholes European put prices with the

ones computed from the inverse Fourier transformation. This amounts to modifying a couple

lines of code only.

D. Approximation for American call option prices

So far we have only considered American put options. The literature on American options has

largely concentrated on American put options for possibly a few reasons. First, for the Black-

Scholes model and other well-behaved constant dividend rate model, a put-call symmetry for

American options (and also for the corresponding critical boundaries) similar to equations (40)

and (41) might be established, which reduces the problem of computing American call option

prices completely to the problem of American put option prices. Second, for general diffusion

processes especially with a complicated dividend process, the pricing of American call option

is actually sometimes more difficult than for American put options for various reasons. For

example, the domain for an put option is a compact region while the domain for a call option is

unbounded. Therefore, it is worthwhile developing an interpolation method for American call

options.

Let C(S, τ, K, r, θ) and c(S, τ,K, r, θ) denote the values of an American option and a Euro-

pean option, respectively. Same as before, we will often omit variables for the sake of simplicity.

Similar to put options, we seek the following interpolation scheme:

C(S, τ, K) = α̃c(S, τ,Ke−rτ ) + (1− α̃)c(S, τ, K) ≡ c(S, τ,K) + α̃D̃(S, τ, K), (53)

where

D̃(S, τ, K) ≡ c(S, τ, Ke−rτ )− c(S, τ,K) (54)

is the price difference of the two European call options. Now unlike for put options, although α̃

is still strictly positive, it is no longer guaranteed to be smaller than 1. That is, we no longer

necessarily have C(S, τ,K) < c(S, τ, Ke−rτ ). The reason is that it might be beneficial to receive

the stock earlier to capture the dividends even though we have to pay the cash K earlier.
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For notational simplicity, below we will still use S∗τ to denote the critical stock price for the

American call option. Readers are cautioned not to confuse this with the critical stock price for

the American put option, which will have a different numerical value. With derivation extremely

similar to the put option case and thus omitted, we have the following result

C(S, τ, K) = Ã
C∞(S, K, r/Φ(τ))
C∞(S∗τ ,K, r/Φ(τ))

c(S, τ,Ke−rτ ) +
(

1− Ã
C∞(S,K, r/Φ(τ))
C∞(S∗τ ,K, r/Φ(τ))

)
c(S, τ, K),

(55)

where we use C∞(S∗τ ,K, r/Φ(τ)) to denote the price of a perpetual American call option with

interest rate r/Φ(τ). The high contact condition ∆C(S∗τ , τ,K) = 1 gives

Ã =
−1 +

∂c

∂S
(S∗τ , τ, K)

−D̃
∂ log C∞

∂S
(S∗τ ,K, r/Φ(τ))− ∂D̃

∂S
(S∗τ , τ, K)

. (56)

The above two equations together with the value matching condition C(S∗τ , τ,K) = S∗τ − K

allow us to solve for Ã and S∗τ .

Notice that the above method breaks down if r = 0. If r is close to 0, we might have to

extrapolate a lot so that the method might not be very accurate. However, it is possible to use a

strict interpolation if both the dividend rate δ > 0 and interest rate r are constants. In this case,

we will have a genuine interpolation if we use c(Seδτ , τ, K) as the upper bound. The reason is

that whenever we early exercise the American call option, we receive the stock and pay K early.

Receiving the stock earlier is not as good as receiving Seδτ at maturity. Furthermore, having to

pay K early is not as good as paying K at maturity. Therefore, no arbitrage argument gives us

C(S, τ,K) < c(Seδτ , τ, K). Similar derivation as before will give us the strict interpolation as

below:

C(S, τ,K) = Â
C∞(S, K, δ/Φ(τ))
C∞(S∗τ ,K, δ/Φ(τ))

c(Seδτ , τ, K) +
(

1− Â
C∞(S,K, δ/Φ(τ))
C∞(S∗τ ,K, δ/Φ(τ))

)
c(S, τ, K), (57)

The high contact condition ∆C(S∗τ , τ, K) = 1 gives

Â =
−1 +

∂c

∂S
(S∗τ , τ, K)

−D̂
∂ log C∞

∂S
(S∗τ ,K, δ/Φ(τ))− ∂D̂

∂S
(S∗τ , τ, K)

, (58)

with D̂ ≡ c(Seδτ , τ, K)−c(S, τ, K). If we trace the derivation, we will see that now the Φ function

should be chosen to be something close to 1− e−δτ instead of something close to 1− e−rτ as is

the case for American put options. Also notice that δ/Φ is now playing the role of the interest

rate in the perpetual American call option price.
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Same as we did before, we could specialize the above method to the important cases of

Black-Scholes model and Heston’s stochastic volatility model. For the sake of conserving space,

we omit the details here.

It is also possible to do the analysis more measure-theoretically instead of looking at the

PDE. The idea is to employ the put-call symmetry (see McDonald and Schroder (1998)). For

this, the interest rate is now no longer required to be a constant, but we require the dividend

δ ≡ r(S) − µ(S)/S to be a positive constant. We can then define a measure change using the

dividend-adjusted stock price as the numeraire. That is, define a new measure Q∗ by using the

Radon-Nikodym derivative Λt = e−
∫ t
0 ruduS(t)eδt/S(0). This would transform the call option into

a put option in the new measure. Thus the same idea above can be applied if the European put

price and the perpetual American put price are in closed form for the process S(t) under Q∗.
This is the case for the geometric Brownian motion model and Heston’s stochastic volatility

model.

III. Numerical Study

A. American option pricing in the Black-Scholes model

Fairly large number of methods for pricing American options have been proposed. They differ in

accuracy and efficiency, as well as some other important dimensions. In this paper, we are more

concerned with speed than accuracy. There are a few justifications for this. First, a quick look

at the quoted prices of equity derivatives tells us that their bid-ask spreads are still quit large

compared to stocks, which are now often penny priced. Thus, when one calibrates his model

to market data, he might not need excessive accuracy because he only has rough ranges for the

true prices. Second, when one is pricing an American derivative, he is often faced with issues

such as parameter uncertainty, market imperfection such as commissions, transactions costs,

existence of irrational investors, tax and other regulatory issues, etc. Thus he would not be

interested in whether a given method can produce an accuracy up to four digits or not. Third,

for institutional investors or hedge funds with a large number of different positions in American

options, a quick and robust estimation of the value and risk of the portfolio is much appreciated,

even though one might have to sacrifice some accuracy. The focus of this paper is to provide

a method that is able to value hundreds or even thousands of American options within one

second. Indeed, we do not claim that our method dominates all the other methods in terms

of both accuracy and efficiency. In fact, under the Black-Scholes model, there are a few other

methods that are clearly more accurate than ours, notably binomial tree methods with large

number of time steps and Broadie and Detemple (1996). Both of these two methods are not as

efficient as ours, although Broadie and Detemple (1996) is much more efficient than the binomial
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tree method. The method that is closest to our interpolation method both in terms of technique

of approximation and level of sophistication is the quadratic approximation of Barone-Adesi and

Whaley (1987). Thus, we will mostly compare our method with the quadratic approximation

of Barone-Adesi and Whaley (1987).6 In order to have a benchmark for the true option prices

and critical boundary, we also implement a binomial tree model as in Cox, Ross and Rubinstein

(1979). We use 10000 time steps most of the time. We check the accuracy of the Binomial tree

model against the put-call symmetry in equations (40) and (41). Whenever the two sides of

either equations differ by more than 0.02%, we switch to a binomial tree with 15000 time steps

(which is extremely time-consuming, especially for the purpose of searching for the critical stock

price).

We first take a look at the critical stock prices below which the put option should be exercised

immediately. Figure 1 plots the critical price S∗τ as a function of time to maturity τ for two fixed

parameter vectors (r, δ, σ). In both subplots, we set K = 100, and σ = 0.4. The top subplot is

for r = 0.04, and δ = 0.08, while the bottom subplot uses r = 0.08 and δ = 0.04. A very nice

common feature of the quadratic approximation and the interpolation method is that they both

have the correct asymptotic critical stock price as τ → 0+, which is given by

S∗0+ = min(K, rK/δ). (59)

The choices of r and δ are made such that the theoretical asymptotic critical stock prices at

τ = 0+ are different for the two subplots. For the top subplot, the theoretical value is 50, while

it is 100 for the bottom subplot. The general conclusion we can draw from this figure is that

at least for the particular parameters used in the figure, both the quadratic approximation and

interpolation method produce relatively accurate critical prices.

Table 1 presents a more thorough study by considering different parameter combinations of

r, δ, σ and τ . Three maturities are chosen, namely, 0.5, 1, and 3 years, representing short-term,

medium-term, and long-term options, respectively. The interest rates and dividend rates are

set to be either 0.02, 0.04, or 0.08. Thus the ratio r/δ ranges from small (0.25) to fairly large

(4.00). The volatilities are set to be either 0.2, 0.4 or 0.6 to represent low, medium and high

volatilities. For all the options, the strike price K is fixed at 100. Results from three methods are

presented: the Cox, Ross and Rubinstein’s binomial tree method with 10000 time steps (treated

as the true values), the quadratic approximation in Barone-Adesi and Whaley (1987), and the

interpolation method in this paper. The average absolute error (AAE) and average percentage

error (APE) for the relative columns are also presented. The average percentage error is defined

as the ratio of the absolute approximation error to the binomial tree value. A quick look tells us
6Broadie and Detemple (1996), Ju and Zhong (1999), and many others, already contain detailed analysis on

the tradeoff of efficiency and accuracy of fairly large set of established methods for pricing American options.
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that the two methods give very similar results on average. For all three maturities, the average

percentage error is about 2% for both methods. The larger errors of the interpolation method

seem to concentrate in the parameter region where δ is small.

One of the motivations of this paper, besides searching for an efficient and accurate analytical

approximation, is to take a more systematic look at the interpolation method first proposed in

Johnson (1983) and extend it beyond the simple case of zero dividend rate. The quantity of a

lot of interest in this interpolation method is the weight α. In Johnson’s paper, α is fitted by

regression using a limited number of American options from Parkinson (1977) and Rubinstein

and Cox (1982). Our closed-form expression in equation (30) allows us to take a detailed look

at α without too much computational burden. In our approximation, the S dependence of α

is captured completely in the factor Sq(r−δ,r/Φ), and the constant A has no S dependence. By

the value matching condition in equation (23), the constant A has an interpretation of being

the weight of interpolation at the critical stock price. Table 2 presents the weight A in our

interpolation method as a function of volatility σ, interest rate r, and dividend rate δ for the

same parameter combinations we used in Table 1. As the value matching condition is satisfied

in both the binomial tree model and the interpolation method, the differences in A in these two

methods are purely due to the differences in the values for S∗τ . As we see, the values of A have

a wide range as the parameters change. The smallest value of A from the binomial tree model

in the table is 0.087 while the largest is 0.686. The interpolation method gives fairly accurate

estimates of A. The average absolute errors are about 0.2 for all three maturities, while the

average percentage errors are 7% or below.

By looking more carefully the numbers in Table 2, we see that at least for all the parameter

combinations presented in the table, A is an increasing function of σ if we keep r, δ and τ

constant. However, the dependence of A on r, δ, and τ are not as simple. In general, A is

an increasing function of r, but there are a couple of exceptions, for example, when σ = 0.2,

δ = 0.08 and τ = 0.5. Also, A is generally decreasing in δ, except for the first three rows.

Finally, A is usually an increasing function of τ , the parameter combination σ = 0.2, r = 0.08

and δ = 0.02 being one exception. Figure 2 gives us a more continuous look at the dependence

of A on the parameters (σ, r, δ, τ). The subplots in the figure reinforce the rough observation we

made from Table 2 that A generally increases with r, σ and τ , but decreases with δ. That A is

increasing in r and decreasing in δ agrees with our intuition. Recall that A can be considered

a penalization for having to deliver the stock and receiving the cash at the same time. If r is

much larger than δ, then the difference of costs between delivering the stock at some random

time and delivering it at maturity decreases. On the other hand, we are more likely to early

exercise in order to receive the cash earlier. These two push the American option price closer

to p(S, τ,Kerτ ) and therefore A becomes larger. However, the behavior of A with respect to σ
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and τ is not intuitive to us. Thus, the numerical study of the interpolation parameter A adds

our understanding on the interpolation method, initially studied in Johnson (1983).

We are now ready to take a look at the pricing performance for the American put options.

Figure 3 plots the American put option prices as a function of the current stock price S (left

subplots), as well as the approximation errors for the quadratic and interpolation methods (right

subplots). In all the subplots, K = 100, σ = 0.4, and τ = 1. The pairs of interest rate r and

dividend rate δ used in the top, middle and bottom panels are (0.04, 0.04), (0.04, 0.08), and

(0.08, 0.04), respectively. As we see, both the quadratic and interpolation methods are quite

accurate. All three pricing curves seem to be on top of each other in the three left subplots. The

right subplots give us a finer look at the pricing performance. The two methods give similar

errors, with the interpolation method seems to be more accurate for out-of-the-money options.

This is to be expected, since for out-of-the-money options, the two bounds in the interpolation

get closer to each other.

Figure 4 allows us to take a quick look at the performance of the methods along a different

dimension, namely, the time to maturity τ . The left two subplots plot the option prices from the

three methods, while the right subplots plot the pricing errors of the interpolation and quadratic

approximation methods. In all the subplots, K = 100, σ = 0.4, and r = δ = 0.04. The current

stock prices used in the top and bottom subplots are S = 85 and S = 115, respectively. These

two approximately represent out-of-the-money and in-the-money options. As we see, both the

quadratic and interpolation methods are still quite accurate for τ ranging from 0.5 to 3 years.

However, at least for these parameters, the interpolation method performs better for longer-

maturity options than the quadratic approximation. This is consistent with the findings in Ju

and Zhong (1999) that the performance of the quadratic approximation deteriorates when τ

increases.

Tables 3, 4 and 5 take a more detailed look at the performance of the quadratic approximation

and interpolation methods in pricing American put options by looking at short-term, medium-

term and long-term options separately. More specifically, we fix the maturity τ in Tables 3, 4

and 5 to be 0.5, 1 and 3 years, respectively. The interest and dividend rates are set to be either

0.02, 0.04, or 0.08. The volatilities are set to be either 0.2, 0.4 or 0.6. The strike K is fixed

at 100. The current stock prices are chosen to be 85, 100, 115, representing roughly in-the-money,

near-the-money and out-of-the-money put options. Table 3 shows that the performance of the

two methods is extremely similar for short-term options, with the average percentage error for

both methods within 0.5%. Tables 4 and 5 show that the accuracy of both methods decreases

somewhat as the maturity τ increases, especially for the quadratic approximation. In all three

tables, the relatively larger errors for the interpolation method are usually associated with small

δ. This is to be expected, as the approximation in equation (14) gets better as δ increases.
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In general, the interpolation method performs better than the quadratic approximation for

long-term options and out-of-the-money options. Although not reported in the tables, we also

compute option prices for S = 130 and 145. For these stock prices, the interpolation method

clearly outperforms the quadratic approximation.

B. American option pricing in Heston’s stochastic volatility model

We now take a look at the performance of our interpolation method for Heston’s stochastic

volatility model. For simplicity, we use the zeroth-order σv-expansion which amounts to replace

σ with σ̃ in equation (52). In the first part of our numerical study, we use the same parameters as

in Ito and Toivanen (2006) and Medvedev and Scaillet (2009) in order to compare the accuracy.

That is, r = 0.1, δ = 0, κv = 5 or 2.5, θv = 0.16, σv = 0.9 or 0.45, ρ = 0.1. Time-to-maturity

is 3 months (0.25), and strike price is set at 10. Two different instantaneous volatilities are

considered: vt = 0.0625 and vt = 0.25.

Before we look at the accuracy, it is worthwhile pointing out that our method takes about 0.02

seconds to price one option under the stochastic volatility model in MATLAB. The bulk of the

computing time is spent computing the inverse Fourier transformations as each iteration would

require the computation of two European option prices. Since the approximation in Medvedev

and Scaillet (2009) takes about 0.1 seconds to compute one option, it seems that our method is

about 5 times faster (some caution has to be taken with this claim as the comparison might not

be fair due to possible different computer powers). Also, our method is not as “bulky”. The

core algorithm of our method takes less than 20 lines of MATLAB code apart from the inverse

Fourier transformation for computing the European option prices.

Table 6 reports the results for the performance of our interpolation method (coupled with

a zeroth-order σv-expansion using the time-averaged expected variance) together with other

existing methods under Heston’s stochastic volatility model. The other models include: the

numerical method in Ito and Toivanen (2006), the two 5-th order approximations in Medvedev

and Scaillet (2009), and Monte-Carlo method (taken from Medvedev and Scaillet (2009)) in

Longstaff and Schwartz (2000). These are abbreviated as Interp, IT, MS1, MS2, and MC,

respectively. Also reported are the critical stock price, two European put option prices p(K)

and p(Kerτ ) used as lower and upper bounds, and the interpolation weight α (which is not the

interpolation parameter A). The average absolute error (AAE) and average percentage error

(APE) are also presented assuming that the prices from MC are the true prices. As we see

from the table, our method is fairly accurate with an average percentage error of only 0.6%,

and slightly more accurate than the approximation 1 in Medvedev and Scaillet (2009). It is also

evident that for all the options considered, our method gives prices that are all downward biased,

a result of the zeroth-order σv-expansion. Not reported in detail here, other choices of σ̃ do not

23



change the result much. For example, using the instantaneous variance vt itself or the Black-

Scholes implied volatilities for p(K) or p(Kerτ ) in place of σ results in average percentage errors

of 0.8%, 0.7% and 0.7%, respectively. The approximation 2 in Medvedev and Scaillet (2009)

seems to be more accurate than our interpolation method. The same is true for Ito and Toivanen

(2006), although our method is faster than both of these two other methods. Also, one has to

take caution that the parameters in this table are not very typical. For example, the magnitude

of ρ and τ are fairly small. Since Medvedev and Scaillet (2009) relies on a small-τ expansion

while our method approaches the true perpetual American option price as maturity goes to

infinity, it is possible that our method will have an advantage for long-maturity options. Also,

for computational efficiency, we have coupled the interpolation approximation with a zeroth-

order σv-expansion which understates the option prices. The accuracy of the interpolation

method would be improved if we use numerical methods to compute the perpetual American

option price and its partial derivative, although at the cost of lower computational efficiency.

The availability of an efficient and accurate quasi-analytical American option pricing algo-

rithm under stochastic volatility model allows us to take a detailed look at the dependence of

various quantities such as S∗τ , A, and C(S, τ,K) on parameters of interest such as vt, σv, κv, ρ,

θv, etc. This has considerable value as a detailed understanding of these dependence properties

is still lacking in the literature.

Figure 5 plots the critical stock prices for American put options under Heston’s stochastic

volatility model as a function of the instantaneous variance vt, the volatility of variance σv, the

mean-reverting strength κv, and the long-run mean instantaneous variance θv. Three different

values of shock correlation ρ are plotted on each of the four subplots: −0.6 (the curves marked

with ∗), 0 (the curves with no markers), and 0.6 (the curves marked with +). The base parameter

values are: K = 10, r = 0.1, δ = 0, vt = 0.25, σv = 0.7, κv = 3, and θv = 0.10. The subplots

have no dependence on the current stock price S since the critical stock price is not a function

of the current stock price. On each of the four subplots, one parameter (the x-axis) is relaxed

to vary in a fixed region as shown in the subplots. For example, the instantaneous variance is

allowed to vary from 0.01 to 0.49 (corresponding to instantaneous volatility going from 10% to

70%). Notice that the regions are chosen to be quite wide in order to have a complete view.

As we see in the figure, regardless of the sign of the correlation coefficient ρ, the critical stock

price S∗τ is always decreasing in the instantaneous variance vt and the long-run mean θv. In

particular, S∗τ is quite sensitive in vt. This agrees with our intuition that when the volatility

gets higher, holders of American put options become more reluctant to exercise the option and

the stock price has to drop much lower in order to induce him to exercise the option early.

Consistent with established results such as those in Lewis (2000), when ρ = 0, the volatility

of variance parameter σv and mean-reverting strength κv have little effect on S∗τ . However,
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when ρ is large in magnitude, Sτ is increasing in both σv and κv if ρ < 0, and decreasing in

both σv and κv if ρ > 0. This runs somewhat against our intuition that the effect of σv and

κv should be opposite to each other, as one parameter tends to amplify the effect of stochastic

volatility while the other tends to diminish it. Nonetheless in extensive numerical analysis we

find that S∗τ behaves similarly as σv and κv change is a very robust property. For example,

changing the relative magnitude of θv and vt does not affect this property at all. Finally, in all

four subplots, the critical stock price S∗τ is smaller when ρ > 0 than when ρ < 0. This agrees

with our intuition. The reasoning goes as follows. Suppose ρ > 0. Then when the stock price

S drops, the option tends to be more valuable. However, because of the positive correlation,

there is a larger possibility that the instantaneous variance vt would also drop, which reduces

the option option. The situation is different when ρ < 0, where the effect of a drop in S is

reinforced by an increase in vt. This is the origin of the volatility skew in Heston’s stochastic

volatility model. Therefore, when ρ < 0, an American put option holder would tend to exercise

more than if ρ > 0, resulting in a larger S∗τ for ρ < 0.

Figure 6 plots the interpolation parameter A for American put options under Heston’s

stochastic volatility model as a function of the instantaneous variance vt, the volatility of vari-

ance σv, the mean-reverting strength κv, and the long-run mean instantaneous variance θv. The

parameter values are the same as those in Figure 5. Recall that A is the interpolation weight

α if S = S∗τ and is not a function of the current stock price S. As we see, the interpolation

parameter A is not very sensitive to all the parameters, especially when ρ = 0. This probably

can explain partially why our interpolation method is so accurate given its simplicity. Again,

the interpolation parameter is larger when ρ < 0 than when ρ > 0 on all four subplots. The

interpolation parameter A is always increasing in vt in order to produce higher early exercise

premium when volatility gets larger. The dependence of A on θv is not very strong. Also, if

ρ < 0, A is increasing in σv and κv. The situation is opposite when ρ > 0.

Figures 7 and 8 further plot the interpolation parameter A for American put options under

Heston’s stochastic volatility model as a function of the instantaneous variance vt, the volatility

of variance σv, the mean-reverting strength κv, and the long-run mean instantaneous variance

θv. The difference is that in Figure 7 we set S = 9 so that the options are “in-the-money”, while

in Figure 8 we set S = 11 so that the options are “out-of-the-money”. Comparing these two

graphs, we see that the effect of ρ is completely opposite for in-the-money and out-of-the-money

options. A negative ρ tends to increase the price of an out-of-the-money American put option

while decrease the price of an in-the-money put option, a result well-known for the European put

option case. See the original paper of Heston (1993) or page 70 of Lewis (2000). The American

put option price on both graphs is increasing in vt and and θv, which agrees well with our

intuition. A larger κ always result in smaller American put option value regardless of the signs
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of ρ and moneyness. On the other hand, for in-the-money options, the American put option

price is increasing in σv if for larger values of positive ρ and decreasing in σv if ρ < 0. The effect

is opposite for out-of-the-money options. Numerical study not shown here reveals that these

dependence properties of American put option prices on the stochastic volatility parameters

are exactly the same as those of the corresponding European put options. Thus, none of these

properties constitute a surprise.

It is very useful to look at the dependence of the early exercise premium (EEP ) on the

parameters of the stochastic volatility model. Here we define the EEP to be the difference

between the American put option price and its corresponding European option price. Figure

9 plots the early exercise premium as a function of various parameters for the in-the-money

case with S = 9. A short way to summarize this graph is that the monotonicity dependence

of the early exercise premium for in-the-money put option on various parameters is exactly the

same as the dependence of the critical stock price on these parameters (compare Figure 9 with

Figure 5). This rule of thumb should be very useful in practice. Another very notable property

is that EEP decreases with the instantaneous variance vt if the option is in the money. With

lower current volatility, the American feature of being able to exercise the option early becomes

more valuable if the American option is in the money. However, the behavior of the EEP for

out-of-the-money American puts is quite different, as shown in Figure 10. In this case, the

dependence of the EEP on various parameters is exactly the same as the dependence of P on

these parameters. In particular, the early exercise premium is now an increasing function of vt.

That the EEP is increasing in vt if the put option is out-of-the-money and decreasing in vt if

in-the-money agrees with our intuition.7

IV. Conclusion

The pricing of American option is one of the oldest problems faced by financial economists and

practitioners. In this paper, we present a new quasi-analytical method for pricing American

options based on interpolating two European option prices that under usual situations serve as

the lower and upper bounds for the American option. The weight of the interpolation is derived

analytically using a method similar to the quadratic approximation in Barone-Adesi and Whaley

(1987) and is found to be approximately proportional to the perpetual American option price.

The interpolation method achieves similar efficiency as Barone-Adesi and Whaley’s quadratic

approximation, and is thus much faster than most other methods. In our numerical study on

the Black-Scholes setup, we demonstrate that the above two methods also have about the same
7Some caution also has to be taken since the early exercise premiums for out-of-the-money options are fairly

small and sometimes comparable to the accuracy of our interpolation method. However, the monotonicity prop-
erties should still be quite reliable.
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accuracy in many cases. However, our extensive numerical study shows that our method is

generally more accurate for out-of-the-money and long-maturity options.

We also take a look at the dependence of the interpolation weight on various parameters, thus

fulfilling a task not carried out completely in Johnson (1983). We found that the interpolation

generally puts more weight on the upper bound as the interest rate, or the volatility, or time to

maturity increases, but less weight as the dividend rate increases.

Finally, we carry out a numerical study for the stochastic volatility model. Our interpolation

method coupled with a zeroth-order volatility of variance expansion gives very accuracy results

and is faster than other methods such as Ito and Toivanen (2006) and Medvedev and Scaillet

(2009).

Our method at its current form has some shortcomings, notably the inability to handle

stochastic interest rates because in this case it is not clear how to choose a good upper bound.

However, our method has quite a few distinctive and attractive features other than a good

combination of efficiency and accuracy. The method is not as “bulky” as some other methods

and the core algorithm requires less than 20 lines of code. There is really not much room for

even a mediocre programmer to make mistakes with so few lines. Unlike many other methods,

our method can be adapted to general diffusion processes as long as efficient pricing algorithms

exist for the corresponding European and perpetual American options. The final approximated

American price always lies within two arbitrage bounds and has some nice asymptotic properties

which adds considerable robustness to our method. The method also allows us to compute the

greeks and critical stock prices at the same time.

There are a few directions one can take to further the study we have done. Since we have

examined only geometric Brownian motion and Heston’s stochastic volatility models in our

numerical study, it would be useful to look at other diffusion processes in future research,

for example, the CEV process. Also, the accuracy of our method might be improved. One

possibility is to search for a better parametric form for Φ. However, this runs the risk of

overfitting and might not perform well out of the sample. The second approach is to reexamine

our approximation of the valuation PDE and make it more accurate. Finally, it might be useful

if one can come out with bounds which are tighter than the ones we used. If the forms are

still simple and analytically tractable, then it might be possible to design a new approximation

which is more accurate by mimicking the approach we have taken.
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Table 1
Critical Stock Prices of American Puts in the Black-Scholes Model

This table presents the critical stock prices as a function of volatility σ, interest rate r, dividend
rate δ, and time to maturity τ in the Black-Scholes model. Three maturities are chosen, namely,
0.5, 1, and 3 years. The interest and dividend rates are set to be either 0.02, 0.04, or 0.08. The
volatilities are set to be either 0.2, 0.4 or 0.6. The strike K is fixed at 100. Results from three
methods are presented: the binomial tree method with 10000 time steps (treated as the true
values), the quadratic approximation in Barone-Adesi and Whaley (1987), and the interpolation
method in this paper. The average absolute error (AAE) and average percentage error (APE)
are also presented.

τ = 0.5 τ = 1 τ = 3

(σ, r, δ) Binom Quad Interp Binom Quad Interp Binom Quad Interp

0.2, 0.02, 0.02 72.35 73.34 72.97 66.31 67.33 67.05 56.21 56.96 57.00
0.2, 0.02, 0.04 45.86 45.26 45.23 44.32 43.46 43.72 40.39 39.10 40.03
0.2, 0.02, 0.08 23.06 22.62 23.50 22.42 21.72 23.28 21.16 19.71 23.21
0.2, 0.04, 0.02 79.79 80.75 80.67 75.48 76.44 76.53 68.51 69.16 69.78
0.2, 0.04, 0.04 74.78 75.59 75.48 69.60 70.35 70.38 61.34 61.57 62.03
0.2, 0.04, 0.08 45.99 45.27 45.65 44.60 43.50 44.22 41.53 39.53 41.06
0.2, 0.08, 0.02 85.24 85.86 86.16 82.72 83.28 83.91 79.25 79.56 81.03
0.2, 0.08, 0.04 83.40 84.09 84.31 80.36 80.97 81.46 75.96 76.19 77.40
0.2, 0.08, 0.08 77.38 77.98 78.06 73.16 73.57 73.84 66.94 66.58 67.32

0.4, 0.02, 0.02 52.42 53.84 52.68 44.11 45.44 44.45 31.98 32.73 32.18
0.4, 0.02, 0.04 41.07 40.50 39.39 35.80 35.60 35.09 26.36 26.13 26.49
0.4, 0.02, 0.08 21.10 20.51 21.02 19.78 18.95 20.32 16.87 15.65 18.92
0.4, 0.04, 0.02 60.08 61.62 60.95 52.79 54.20 53.68 42.07 42.75 42.66
0.4, 0.04, 0.04 55.98 57.19 56.62 48.57 49.59 49.23 37.98 38.18 38.34
0.4, 0.04, 0.08 41.63 40.79 40.73 37.42 36.70 37.11 29.73 28.70 29.99
0.4, 0.08, 0.02 67.28 68.54 68.39 61.72 62.78 62.94 53.93 54.19 55.15
0.4, 0.08, 0.04 65.20 66.43 66.28 59.31 60.30 60.42 51.10 51.17 52.01
0.4, 0.08, 0.08 59.94 60.85 60.73 53.64 54.22 54.38 45.12 44.58 45.41

0.6, 0.02, 0.02 38.07 39.60 37.73 29.52 30.80 29.24 18.61 19.13 18.17
0.6, 0.02, 0.04 32.53 32.86 31.08 25.49 25.91 24.83 16.21 16.25 16.09
0.6, 0.02, 0.08 19.28 18.58 18.31 17.07 16.32 16.97 12.14 11.49 13.65
0.6, 0.04, 0.02 44.94 46.64 45.41 36.76 38.15 37.10 26.06 26.47 25.81
0.6, 0.04, 0.04 42.00 43.33 42.26 34.07 35.09 34.28 23.93 24.02 23.74
0.6, 0.04, 0.08 34.46 34.38 33.79 28.24 28.20 28.17 20.00 19.42 20.26
0.6, 0.08, 0.02 52.29 53.82 53.18 45.26 46.42 46.00 36.13 36.15 36.26
0.6, 0.08, 0.04 50.52 51.94 51.35 43.41 44.42 44.07 34.32 34.15 34.33
0.6, 0.08, 0.08 46.51 47.54 47.12 39.50 40.08 39.96 30.81 30.19 30.67

AAE 0.95 0.74 0.84 0.65 0.57 0.68
APE 0.02 0.02 0.02 0.01 0.02 0.02
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Table 2
The Interpolation Parameter A in the Black-Scholes Model

This table presents the weight A in our interpolation method as a function of volatility σ,
interest rate r, and dividend rate δ in the Black-Scholes model. The interest rates and dividend
rates are set to be either 0.02, 0.04, or 0.08. The volatilities are set to be either 0.2, 0.4 or 0.6.
Three times to maturities, 0.5, 1 and 3 years, are presented. For all the options, the strike price
K is fixed at 100. Results from the binomial tree method with 10000 time steps are treated
as the true values. The average absolute error (AAE) and average percentage error (APE) are
also presented.

τ = 0.5 τ = 1 τ = 3

(σ, r, δ) Binom Interp Binom Interp Binom Interp

0.2, 0.02, 0.02 0.233 0.218 0.282 0.265 0.365 0.348
0.2, 0.02, 0.04 0.087 0.100 0.122 0.134 0.213 0.220
0.2, 0.02, 0.08 0.091 0.074 0.129 0.096 0.225 0.150
0.2, 0.04, 0.02 0.447 0.410 0.457 0.421 0.473 0.443
0.2, 0.04, 0.04 0.211 0.195 0.253 0.237 0.324 0.312
0.2, 0.04, 0.08 0.089 0.096 0.125 0.133 0.216 0.225
0.2, 0.08, 0.02 0.538 0.489 0.528 0.480 0.505 0.457
0.2, 0.08, 0.04 0.414 0.377 0.416 0.381 0.416 0.384
0.2, 0.08, 0.08 0.188 0.175 0.224 0.211 0.281 0.275

0.4, 0.02, 0.02 0.401 0.394 0.467 0.459 0.566 0.561
0.4, 0.02, 0.04 0.179 0.214 0.276 0.292 0.448 0.444
0.4, 0.02, 0.08 0.169 0.172 0.232 0.211 0.380 0.302
0.4, 0.04, 0.02 0.544 0.517 0.568 0.543 0.606 0.593
0.4, 0.04, 0.04 0.368 0.353 0.428 0.413 0.519 0.512
0.4, 0.04, 0.08 0.174 0.192 0.257 0.264 0.415 0.409
0.4, 0.08, 0.02 0.605 0.568 0.607 0.574 0.611 0.587
0.4, 0.08, 0.04 0.508 0.476 0.526 0.499 0.555 0.538
0.4, 0.08, 0.08 0.334 0.316 0.387 0.372 0.469 0.464

0.6, 0.02, 0.02 0.522 0.532 0.590 0.598 0.678 0.691
0.6, 0.02, 0.04 0.326 0.363 0.446 0.466 0.608 0.612
0.6, 0.02, 0.08 0.240 0.278 0.334 0.338 0.533 0.468
0.6, 0.04, 0.02 0.615 0.602 0.644 0.635 0.686 0.692
0.6, 0.04, 0.04 0.485 0.478 0.548 0.543 0.637 0.641
0.6, 0.04, 0.08 0.298 0.315 0.410 0.412 0.568 0.561
0.6, 0.08, 0.02 0.653 0.627 0.660 0.642 0.675 0.673
0.6, 0.08, 0.04 0.578 0.556 0.603 0.587 0.642 0.642
0.6, 0.08, 0.08 0.445 0.431 0.504 0.494 0.590 0.592

AAE 0.021 0.018 0.017
APE 0.07 0.05 0.05
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Table 3
Short-term American Put Option Prices in the Black-Scholes Model (τ = 0.5)

This table presents the American put option prices as a function of volatility σ, interest rate r,
dividend rate δ, and current stock price S in the Black-Scholes model. The interest rates and
dividend rates are set to be either 0.02, 0.04, or 0.08. The volatilities are set to be either 0.2,
0.4 or 0.6. For all the options, the strike price K is fixed at 100 and time to maturity 0.5 year.
Results from three methods are presented: the binomial tree method with 10000 time steps
(treated as the true values), the quadratic approximation in Barone-Adesi and Whaley (1987),
and the interpolation method in this paper. The average absolute error (AAE) and average
percentage error (APE) are also presented.

S = 85 S = 100 S = 115

(σ, r, δ) Binom Quad Interp Binom Quad Interp Binom Quad Interp

0.2, 0.02, 0.02 15.71 15.70 15.71 5.59 5.59 5.59 1.28 1.28 1.28
0.2, 0.02, 0.04 16.38 16.38 16.38 6.06 6.06 6.06 1.45 1.45 1.45
0.2, 0.02, 0.08 17.84 17.84 17.84 7.08 7.08 7.08 1.85 1.85 1.85
0.2, 0.04, 0.02 15.29 15.24 15.23 5.17 5.16 5.14 1.12 1.13 1.12
0.2, 0.04, 0.04 15.63 15.62 15.62 5.55 5.55 5.54 1.27 1.27 1.27
0.2, 0.04, 0.08 16.94 16.94 16.94 6.50 6.50 6.50 1.63 1.63 1.63
0.2, 0.08, 0.02 15.00 15.00 15.00 4.47 4.47 4.37 0.87 0.89 0.84
0.2, 0.08, 0.04 15.05 15.02 15.01 4.77 4.77 4.70 0.98 1.00 0.96
0.2, 0.08, 0.08 15.50 15.48 15.47 5.46 5.48 5.46 1.24 1.26 1.24

0.4, 0.02, 0.02 19.41 19.41 19.42 11.15 11.16 11.16 5.97 5.98 5.97
0.4, 0.02, 0.04 19.93 19.94 19.94 11.58 11.58 11.58 6.27 6.27 6.27
0.4, 0.02, 0.08 21.07 21.07 21.07 12.49 12.49 12.49 6.91 6.91 6.91
0.4, 0.04, 0.02 18.86 18.83 18.83 10.69 10.69 10.68 5.66 5.67 5.65
0.4, 0.04, 0.04 19.28 19.28 19.28 11.06 11.08 11.07 5.92 5.93 5.92
0.4, 0.04, 0.08 20.30 20.31 20.31 11.91 11.92 11.92 6.52 6.52 6.52
0.4, 0.08, 0.02 17.95 17.89 17.84 9.88 9.89 9.81 5.09 5.12 5.05
0.4, 0.08, 0.04 18.29 18.25 18.20 10.20 10.22 10.15 5.32 5.35 5.29
0.4, 0.08, 0.08 19.04 19.05 19.02 10.90 10.93 10.89 5.82 5.85 5.82

0.6, 0.02, 0.02 23.96 23.96 23.98 16.66 16.66 16.68 11.42 11.42 11.43
0.6, 0.02, 0.04 24.39 24.41 24.42 17.05 17.06 17.06 11.74 11.75 11.75
0.6, 0.02, 0.08 25.35 25.36 25.36 17.89 17.89 17.89 12.43 12.43 12.43
0.6, 0.04, 0.02 23.40 23.38 23.40 16.18 16.18 16.18 11.02 11.03 11.02
0.6, 0.04, 0.04 23.79 23.79 23.80 16.53 16.55 16.54 11.32 11.34 11.33
0.6, 0.04, 0.08 24.63 24.67 24.66 17.30 17.32 17.32 11.96 11.98 11.97
0.6, 0.08, 0.02 22.42 22.38 22.36 15.29 15.31 15.25 10.30 10.34 10.27
0.6, 0.08, 0.04 22.76 22.74 22.71 15.61 15.64 15.58 10.57 10.61 10.55
0.6, 0.08, 0.08 23.47 23.50 23.47 16.28 16.33 16.28 11.14 11.19 11.14

AAE 0.02 0.02 0.01 0.02 0.01 0.01
APE 0.001 0.001 0.001 0.003 0.004 0.003
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Table 4
Medium-term American Put Option Prices in the Black-Scholes Model (τ = 1)

This table presents the American put option prices as a function of volatility σ, interest rate r,
dividend rate δ, and current stock price S in the Black-Scholes model. The interest rates and
dividend rates are set to be either 0.02, 0.04, or 0.08. The volatilities are set to be either 0.2,
0.4 or 0.6. For all the options, the strike price K is fixed at 100 and time to maturity 1 year.
Results from three methods are presented: the binomial tree method with 10000 time steps
(treated as the true values), the quadratic approximation in Barone-Adesi and Whaley (1987),
and the interpolation method in this paper. The average absolute error (AAE) and average
percentage error (APE) are also presented.

S = 85 S = 100 S = 115

(σ, r, δ) Binom Quad Interp Binom Quad Interp Binom Quad Interp

0.2, 0.02, 0.02 16.94 16.93 16.93 7.84 7.84 7.83 3.01 3.02 3.01
0.2, 0.02, 0.04 18.10 18.11 18.11 8.74 8.74 8.74 3.51 3.51 3.51
0.2, 0.02, 0.08 20.73 20.73 20.73 10.77 10.77 10.77 4.70 4.70 4.70
0.2, 0.04, 0.02 16.04 15.98 15.94 7.02 7.02 6.96 2.56 2.58 2.53
0.2, 0.04, 0.04 16.75 16.75 16.72 7.72 7.74 7.71 2.96 2.98 2.95
0.2, 0.04, 0.08 19.02 19.03 19.03 9.54 9.54 9.54 3.99 3.99 3.99
0.2, 0.08, 0.02 15.13 15.08 15.03 5.74 5.76 5.55 1.85 1.92 1.78
0.2, 0.08, 0.04 15.40 15.34 15.27 6.26 6.29 6.13 2.14 2.20 2.09
0.2, 0.08, 0.08 16.43 16.45 16.39 7.50 7.56 7.49 2.86 2.91 2.86

0.4, 0.02, 0.02 22.99 23.00 23.00 15.60 15.61 15.61 10.38 10.39 10.38
0.4, 0.02, 0.04 23.86 23.89 23.89 16.38 16.40 16.39 11.02 11.03 11.03
0.4, 0.02, 0.08 25.84 25.85 25.84 18.11 18.11 18.11 12.43 12.43 12.43
0.4, 0.04, 0.02 21.97 21.95 21.91 14.69 14.71 14.65 9.65 9.69 9.62
0.4, 0.04, 0.04 22.69 22.71 22.68 15.36 15.41 15.36 10.21 10.25 10.21
0.4, 0.04, 0.08 24.37 24.44 24.41 16.90 16.95 16.92 11.48 11.52 11.50
0.4, 0.08, 0.02 20.30 20.27 20.11 13.14 13.19 12.99 8.39 8.49 8.29
0.4, 0.08, 0.04 20.87 20.87 20.73 13.70 13.77 13.60 8.86 8.96 8.79
0.4, 0.08, 0.08 22.14 22.22 22.11 14.93 15.04 14.92 9.90 10.01 9.89

0.6, 0.02, 0.02 29.63 29.64 29.67 23.20 23.23 23.24 18.21 18.23 18.24
0.6, 0.02, 0.04 30.35 30.40 30.40 23.89 23.94 23.94 18.84 18.88 18.87
0.6, 0.02, 0.08 31.96 31.99 31.97 25.41 25.43 25.42 20.21 20.23 20.22
0.6, 0.04, 0.02 28.57 28.58 28.58 22.23 22.27 22.24 17.34 17.40 17.35
0.6, 0.04, 0.04 29.21 29.27 29.25 22.86 22.92 22.89 17.92 17.99 17.94
0.6, 0.04, 0.08 30.61 30.72 30.67 24.20 24.30 24.25 19.16 19.24 19.20
0.6, 0.08, 0.02 26.75 26.78 26.66 20.51 20.61 20.44 15.81 15.94 15.75
0.6, 0.08, 0.04 27.30 27.37 27.25 21.06 21.18 21.02 16.32 16.46 16.28
0.6, 0.08, 0.08 28.47 28.61 28.48 22.21 22.38 22.23 17.39 17.55 17.40

AAE 0.04 0.05 0.05 0.04 0.05 0.02
APE 0.002 0.002 0.003 0.004 0.007 0.004
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Table 5
Long-term American Put Option Prices in the Black-Scholes Model (τ = 3)

This table presents the American put option prices as a function of volatility σ, interest rate r,
dividend rate δ, and current stock price S in the Black-Scholes model. The interest rates and
dividend rates are set to be either 0.02, 0.04, or 0.08. The volatilities are set to be either 0.2,
0.4 or 0.6. For all the options, the strike price K is fixed at 100 and time to maturity 3 years.
Results from three methods are presented: the binomial tree method with 10000 time steps
(treated as the true values), the quadratic approximation in Barone-Adesi and Whaley (1987),
and the interpolation method in this paper. The average absolute error (AAE) and average
percentage error (APE) are also presented.

S = 85 S = 100 S = 115

(σ, r, δ) Binom Quad Interp Binom Quad Interp Binom Quad Interp

0.2, 0.02, 0.02 20.73 20.77 20.71 13.13 13.20 13.12 8.05 8.11 8.04
0.2, 0.02, 0.04 23.37 23.45 23.41 15.51 15.57 15.53 9.93 9.97 9.94
0.2, 0.02, 0.08 29.63 29.67 29.63 21.19 21.21 21.19 14.64 14.65 14.64
0.2, 0.04, 0.02 18.36 18.36 18.14 10.89 11.00 10.72 6.30 6.44 6.19
0.2, 0.04, 0.04 20.06 20.18 20.02 12.60 12.76 12.59 7.69 7.84 7.67
0.2, 0.04, 0.08 24.98 25.22 25.10 17.21 17.38 17.28 11.46 11.57 11.50
0.2, 0.08, 0.02 15.80 15.75 15.43 7.86 7.95 7.35 3.94 4.11 3.62
0.2, 0.08, 0.04 16.57 16.58 16.24 8.94 9.11 8.60 4.80 5.02 4.58
0.2, 0.08, 0.08 19.00 19.24 18.98 11.70 12.03 11.71 7.05 7.36 7.06

0.4, 0.02, 0.02 31.83 31.94 31.88 25.89 26.02 25.93 21.16 21.30 21.20
0.4, 0.02, 0.04 33.71 33.92 33.80 27.74 27.94 27.82 22.93 23.11 22.99
0.4, 0.02, 0.08 37.99 38.20 38.00 31.95 32.12 31.95 26.92 27.07 26.93
0.4, 0.04, 0.02 29.13 29.30 29.06 23.30 23.53 23.24 18.77 19.04 18.73
0.4, 0.04, 0.04 30.67 30.95 30.70 24.85 25.17 24.89 20.26 20.59 20.29
0.4, 0.04, 0.08 34.14 34.62 34.29 28.33 28.79 28.47 23.61 24.02 23.72
0.4, 0.08, 0.02 25.07 25.32 24.70 19.27 19.64 18.93 15.02 15.46 14.72
0.4, 0.08, 0.04 26.22 26.56 25.99 20.47 20.92 20.26 16.17 16.67 15.99
0.4, 0.08, 0.08 28.76 29.33 28.79 23.09 23.73 23.14 18.70 19.36 18.75

0.6, 0.02, 0.02 42.71 42.90 42.90 37.92 38.12 38.09 33.88 34.09 34.04
0.6, 0.02, 0.04 44.19 44.47 44.36 39.43 39.71 39.58 35.39 35.67 35.53
0.6, 0.02, 0.08 47.35 47.72 47.35 42.65 43.00 42.66 38.62 38.94 38.63
0.6, 0.04, 0.02 39.84 40.16 40.00 35.09 35.47 35.25 31.15 31.55 31.29
0.6, 0.04, 0.04 41.13 41.56 41.33 36.42 36.89 36.61 32.48 32.97 32.66
0.6, 0.04, 0.08 43.84 44.47 44.03 39.21 39.86 39.40 35.29 35.93 35.47
0.6, 0.08, 0.02 35.24 35.78 35.23 30.49 31.13 30.48 26.66 27.36 26.65
0.6, 0.08, 0.04 36.30 36.94 36.37 31.59 32.32 31.67 27.77 28.55 27.84
0.6, 0.08, 0.08 38.49 39.35 38.71 33.88 34.81 34.10 30.08 31.05 30.29

AAE 0.29 0.13 0.32 0.12 0.34 0.10
APE 0.009 0.005 0.013 0.008 0.019 0.009
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Table 6
Performance of the Interpolation Method under Stochastic Volatility Model

This table presents the performance of the interpolation method (coupled with a zeroth-order
σv-expansion) in this paper together with other existing methods under Heston’s stochastic
volatility model. The other models include: the numerical method in Ito and Toivanen (2006),
the two 5-th order approximations in Medvedev and Scaillet (2009), and Monte-Carlo method
(taken from Medvedev and Scaillet (2009)) in Longstaff and Schwartz (2000). These are
abbreviated as Interp, IT, MS1, MS2, and MC, respectively. Also reported are the critical
stock price, two European put option prices p(K) and p(Kerτ ), and the interpolation weight α.
We use the same parameters as in Ito and Toivanen (2006) and Medvedev and Scaillet (2009).
That is, r = 0.1, δ = 0, κv = 5 or 2.5, θv = 0.16, σv = 0.9 or 0.45, ρ = 0.1. Time-to-maturity
is 3 months (0.25), and strike price is set at 10. Two different instantaneous volatilities are
considered: vt = 0.0625 (L) and vt = 0.25 (H). The average absolute error (AAE) and average
percentage error (APE) are also presented assuming that the prices from MC are the true prices.

Methods

(vt, σv, κv, S) S∗τ p(K) p(Kerτ ) α Interp MS1 MS2 IT MC

L, 0.90, 5.0, 9 8.170 1.048 1.236 0.290 1.103 1.081 1.111 1.108 1.107
L, 0.45, 2.5, 9 8.371 1.009 1.198 0.333 1.072 1.072 1.077 1.077 1.075
H, 0.90, 5.0, 9 7.236 1.280 1.455 0.209 1.321 1.349 1.333 1.333 1.334
H, 0.45, 2.5, 9 7.147 1.315 1.487 0.212 1.353 1.365 1.362 1.364 1.363

L, 0.90, 5.0, 10 8.170 0.502 0.627 0.127 0.517 0.534 0.521 0.520 0.521
L, 0.45, 2.5, 10 8.371 0.459 0.582 0.132 0.475 0.475 0.478 0.479 0.478
H, 0.90, 5.0, 10 7.236 0.770 0.900 0.121 0.786 0.811 0.796 0.796 0.793
H, 0.45, 2.5, 10 7.147 0.812 0.943 0.126 0.829 0.838 0.836 0.837 0.837

L, 0.90, 5.0, 11 8.170 0.208 0.274 0.060 0.212 0.208 0.214 0.214 0.214
L, 0.45, 2.5, 11 8.371 0.173 0.235 0.057 0.177 0.174 0.178 0.178 0.177
H, 0.90, 5.0, 11 7.236 0.436 0.524 0.074 0.443 0.463 0.448 0.448 0.451
H, 0.45, 2.5, 11 7.147 0.475 0.566 0.079 0.482 0.488 0.487 0.487 0.488

AAE 0.005 0.008 0.001 0.001
APE 0.006 0.014 0.002 0.002
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Figure 1. The critical stock price S∗τ for American put options as a function of τ in
the Black-Scholes model. In both subplots, we set K = 100, and σ = 0.4. The top subplot is
for r = 0.04, and δ = 0.08, while the bottom subplot uses r = 0.08 and δ = 0.04. The horizontal
axis is measured in years. The results from three methods are plotted: the binomial tree model
with 10000 time steps which is treated as the true value, the interpolation method proposed in
this paper, and the quadratic approximation used in Barone-Adesi and Whaley (1987) and Ju
and Zhong (1999).
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Figure 2. The interpolation weight A as a function of σ, r, δ and τ in the Black-
Scholes model. In all six subplots, the interpolation weight from the interpolation method is
plotted. The benchmark parameter vector is σ = 0.4, r = δ = 0.04 and τ = 1. In each of the
six subplots, two parameters are relaxed while fixing the other two parameters. The relaxed
parameters are drawn in the subplots as x-axis and y-axis.
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Figure 3. The American put option prices and absolute approximation errors as
functions of the current stock price S in the Black-Scholes model. In all the subplots,
K = 100, σ = 0.4, and τ = 1. The pairs of interest rate r and dividend rate δ used in the
top, middle and bottom panels are (0.04, 0.04), (0.04, 0.08), and (0.08, 0.04), respectively. Three
methods are used: the binomial tree model with 10000 time steps which is treated as the true
value, the interpolation method proposed in this paper, and the quadratic approximation used
in Barone-Adesi and Whaley (1987). The left three subplots plot the option prices from the
three methods, while the right subplots plot the pricing errors of the last two methods.
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Figure 4. The American put option prices and absolute approximation errors as
functions of the time to maturity τ in the Black-Scholes model. In all the subplots,
K = 100, σ = 0.4, r = 0.04 and δ = 0.04. The current stock prices used in the top and bottom
subplots are S = 85 and S = 115, respectively. These two approximately represent out-of-the-
money and in-the-money options, respectively. Three methods are used: the binomial tree model
with 10000 time steps which is treated as the true value, the interpolation method proposed in
this paper, and the quadratic approximation used in Barone-Adesi and Whaley (1987). The left
three subplots plot the option prices from the three methods, while the right subplots plot the
pricing errors of the last two methods.
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Figure 5. The critical stock price in Heston’s stochastic volatility model. The critical
stock prices for American put options under Heston’s stochastic volatility model are plotted as
a function of the instantaneous variance vt, the volatility of variance σv, the mean-reverting
strength κv, and the long-run mean instantaneous variance θv. Three different values of shock
correlation ρ are plotted on each of the four subplots: −0.6 (the curves marked with ∗), 0 (the
curves with no markers), and 0.6 (the curves marked with +). The base parameter values are:
K = 10, r = 0.1, δ = 0, vt = 0.25, σv = 0.7, κv = 3, and θv = 0.10. The subplots have no
dependence on the current stock price S. On each of the four subplots, one parameter (the
x-axis) is relaxed to vary in a fixed region.
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Figure 6. The interpolation parameter in Heston’s stochastic volatility model. The
interpolation parameter A in our interpolation method for American put options under Heston’s
stochastic volatility model are plotted as a function of the instantaneous variance vt, the volatility
of variance σv, the mean-reverting strength κv, and the long-run mean instantaneous variance θv.
Three different values of shock correlation ρ are plotted on each of the four subplots: −0.6 (the
curves marked with ∗), 0 (the curves with no markers), and 0.6 (the curves marked with +). The
base parameter values are: K = 10, r = 0.1, δ = 0, vt = 0.25, σv = 0.7, κv = 3, and θv = 0.10.
Since A is the interpolation weight exactly when S = S∗τ , the subplots have no dependence on
the current stock price S. On each of the four subplots, one parameter (the x-axis) is relaxed
to vary in a fixed region.
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Figure 7. The American put option price in Heston’s stochastic volatility model
when S < K (in-the-money). The American put option price P from our interpolation
method under Heston’s stochastic volatility model are plotted as a function of the instantaneous
variance vt, the volatility of variance σv, the mean-reverting strength κv, and the long-run mean
instantaneous variance θv. Three different values of shock correlation ρ are plotted on each of
the four subplots: −0.6 (the curves marked with ∗), 0 (the curves with no markers), and 0.6
(the curves marked with +). The base parameter values are: K = 10, r = 0.1, δ = 0, vt = 0.25,
σv = 0.7, κv = 3, and θv = 0.10. The current stock price is fixed at S = 9 so the options are
“in-the-money”. On each of the four subplots, one parameter (the x-axis) is relaxed to vary in
a fixed region.
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Figure 8. The American put option price in Heston’s stochastic volatility model
when S > K (out-of-the-money). The American put option price P from our interpolation
method under Heston’s stochastic volatility model are plotted as a function of the instantaneous
variance vt, the volatility of variance σv, the mean-reverting strength κv, and the long-run mean
instantaneous variance θv. Three different values of shock correlation ρ are plotted on each of
the four subplots: −0.6 (the curves marked with ∗), 0 (the curves with no markers), and 0.6
(the curves marked with +). The base parameter values are: K = 10, r = 0.1, δ = 0, vt = 0.25,
σv = 0.7, κv = 3, and θv = 0.10. The current stock price is fixed at S = 11 so the options are
“out-of-the-money”. On each of the four subplots, one parameter (the x-axis) is relaxed to vary
in a fixed region.
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Figure 9. The early exercise premium in Heston’s stochastic volatility model when
S < K (in-the-money). The early exercise premiums from our interpolation method under
Heston’s stochastic volatility model are plotted as a function of the instantaneous variance vt, the
volatility of variance σv, the mean-reverting strength κv, and the long-run mean instantaneous
variance θv. Three different values of shock correlation ρ are plotted on each of the four subplots:
−0.6 (the curves marked with ∗), 0 (the curves with no markers), and 0.6 (the curves marked
with +). The base parameter values are: K = 10, r = 0.1, δ = 0, vt = 0.25, σv = 0.7, κv = 3,
and θv = 0.10. The current stock price is fixed at S = 9 so the options are “in-the-money”. On
each of the four subplots, one parameter (the x-axis) is relaxed to vary in a fixed region.
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Figure 10. The early exercise premiums in Heston’s stochastic volatility model
when S > K (out-of-the-money). The early exercise premiums EEP from our interpolation
method under Heston’s stochastic volatility model are plotted as a function of the instantaneous
variance vt, the volatility of variance σv, the mean-reverting strength κv, and the long-run mean
instantaneous variance θv. Three different values of shock correlation ρ are plotted on each of
the four subplots: −0.6 (the curves marked with ∗), 0 (the curves with no markers), and 0.6
(the curves marked with +). The base parameter values are: K = 10, r = 0.1, δ = 0, vt = 0.25,
σv = 0.7, κv = 3, and θv = 0.10. The current stock price is fixed at S = 11 so the options are
“out-of-the-money”. On each of the four subplots, one parameter (the x-axis) is relaxed to vary
in a fixed region.
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