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Abstract

This paper suggests operational procedures to construct similar tests for
the autoregressive parameter for both the dynamic regression model and
the linear regression model with autocorrelated errors. For both models,
we characterize similar tests for the null hypothesis that the autoregressive
parameter is unity, and construct “optimal” tests in cases where uniformly
most powerful similar tests do not exist. We thus show that classical
statistical principles can be successfully used even in areas of econometrics
and statistics where they have seldom been applied before (i.e. time series
models). Moreover, we derive saddlepoint approximations for the density
and distribution functions of some of the tests statistics derived, and thus
provide an alternative to numerical or asymptotic methods. By focusing
upon the finite sample, rather than asymptotic, properties, key features of
the testing problem become much more apparent.
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1 Introduction

Testing for a unit root in time series has become the focus of attention for much of
applied and theoretical econometrics. The problem has its own intrinsic interest
to theorists due to the various asymptotic implications on the properties of esti-
mators and tests. More importantly, for applied work establishing the presence
of unit roots remains the cornerstone of the analysis of possibly cointegrated sys-
tems: first as a preliminary tool to test for integration in the variables of interest,
and second as a test for cointegration itself.

In this paper we develop an optimality theory for tests for a unit root in finite
samples. This is achieved upon application of classical testing procedures in the
presence of nuisance parameters (the construction of similar tests), and of the
Neyman-Pearson lemma. These ideas have been successfully applied elsewhere,
but not yet fully in time series analysis. Heuristically, what we seek is a procedure
which provides control over the size of the test, and delivers large power under
the alternative.

Two commonly used models are the dynamic linear regression model, and the
regression model with autocorrelated errors. The former, considered by amongst
others, Dickey and Fuller (1979) and (1981), Evans and Savin (1981) and (1984),
Phillips and Perron (1988), Faust (1996) and Dufour and Kiviet (1998), takes the

form

Y = z;ﬁ+pym+€i
i = 1

where, z; is a k X 1 vector of explanatory variables and the &; are usually
NID(0,0?). For asymptotic treatments of the problem the g; may follow some
more general process, as in Phillips and Perron (1988). The hypothesis of in-
terest is p = 1, often with the restriction 8 = F, (usually 0). Tests for this
hypothesis have generally been asymptotically motivated. Monte Carlo studies
(for instance Dickey and Fuller (1981)) have shown that they retain reasonable
power properties even in small samples (although often this is because the sim-

ulated models have far more simple structure, than the model under which the



tests were developed). However, Faust (1996) has shown that the size of certain
testing procedures in this model may tend to one, if the number of nuisance pa-
rameters grows asymptotically. Recently, the finite sample properties of tests in
dynamic models have been investigated by Dufour and Kiviet (1998). However,
their analysis was limited to the demonstration that a particular test statistic has
distribution free of nuisance parameters under the null hypothesis. No attempt
to characterize the class of similar tests was made, nor to choose an ‘optimal’ test
from within this class.

Regressions with autocorrelated errors, considered by Sargan and Bhargava
(1983), Dufour and King (1991) and Elliott, Rothenberg and Stock (1996), can

be written as

yi = 4B+

v = puUi1 t &,

with the same specifications as above. The null hypothesis is again, p = 1. Notice
that this model may be written as a dynamic regression model with restrictions
on the coefficients of the explanatory variables (see Dejong et al (1992)). In this
case small sample procedures have been established, generally following those of
Sargan and Bhargava (1983), but rely upon approximating the process {v};, by
a circular autoregression (the ‘Anderson (1948) approximation’). For this model,
Dufour and King (1991) derive locally best invariant and point-optimal invariant
tests. Alternatively, Elliott, Rothenberg and Stock (1996), develop asymptotic
optimality criteria for this class of models, and suggest tests having asymptotic
power close to the asymptotic power envelope. However, there is no guarantee
that the tests they propose retain their ‘optimal’ properties in finite samples.

A recent development in the theory of testing for a unit root is due to
Ploberger (1999). There, under the assumption of a locally quadratic likelihood,
a “complete class” of tests is characterised, i.e. those tests not having power
functions dominated by any other test. Unfortunately, as yet, it has not been es-
tablished whether any of the standard unit root tests, in particular the likelihood

ratio, are members of this class.



In broad outline our strategy is as follows. Utilising the results of Cox and
Hinkley (1974) and Hillier (1987) we characterise the class of similar tests for
the unit root hypothesis. Since, as is well known, there are no uniformly most
powerful (UMP) tests we weaken the optimality criteria in two distinct ways.
Firstly, we consider the construction of point optimal (PO) tests and locally most
powerful (LMP) tests, and secondly, suggest approximating the criterion for the
UMP tests. This latter class of tests satisfies weaker, sufficient conditions for the
power to be large, rather than the stringent necessary and sufficient conditions
required for UMP tests. Monte Carlo simulations show that these alternative tests
have power very close to the power envelope across a range of parameter values.
Many of the tests we propose have a very simple structure in terms of the data,
and often coincide with previously suggested tests. Moreover, the simple structure
of the test statistics facilitates the construction of analytic approximations to their
finite sample distributions via the saddlepoint algorithm. Thus, we provide an
alternative to numerical techniques used elsewhere. The analysis of the null and
alternative distributions of a test yields some insight into the statistical nature
of the problem itself.

The plan of the paper is as follows. The next section summarises the con-
struction of similar tests, and reviews the optimality criteria which will be applied
later. Section 3 derives optimal similar tests for a unit root for the linear regres-
sion model with autocorrelated errors. Section 4 deals with analogous tests for
the dynamic regression model. Two cases are considered according to the coef-
ficients of the exogenous variables being unrestricted (Section 4.1) or restricted
under the null (4.2). Section 5 gives a saddlepoint approximation for the densities
and distributions of some of the tests statistics proposed. Monte Carlo simula-
tions directed to assess the performance of the tests and of the approximations

are contained in Section 6. Finally Section 7 concludes.



2 Test criteria

This section summarises the concept of similarity (exact inference) and discusses
the optimality criteria which will be of use later. In the Neyman-Pearson ap-
proach we need to find procedures for which the size of the test is known (or at
least it is bounded by a constant) and power is large. This involves two distinct

stages which are described below.

2.1 Test criteria under the null hypothesis

In order to control the size of a test, the criterion of similarity will be used (for
further exposition see, for instance, Cox and Hinkley (1974) or Hillier (1987)).

Let f(y;01,0,) denote the joint density of some N x 1 vector of observations y,
depending upon the parameters ¢, and s, k1 X 1 and ky X 1 vectors, respectively.
We wish to test the hypothesis Hy : 0, = 09 against H, : 0, # 00, for a fixed
vector 8(1). In this setup 6, is a nuisance parameter, and, in general the size of a
test (critical region) for Hy will depend upon 6. Any critical region w with size
independent of 0, is called a similar critical region.

A critical region w has Neyman structure if under Hy there exists a sufficient
statistic ¢ for 0y such that Pr(y € w|t;07,0,) = « is constant for all t. Thus w is
composed of a fraction a of the probability content of each contour of constant
t. If a critical region of size o has Neyman structure it must be similar. How-
ever, for a similar critical region to have Neyman structure, ¢ must be boundedly
complete. That is for every bounded function h(t), not depending on the param-
eters, F/(h(t)) = 0 implies that h(f) = 0 everywhere, except possibly on sets of
zero measure. Consequently, if under Hy, ¢ is sufficient for 6, and is boundedly
complete, then every similar critical region has Neyman structure.

If complete sufficient statistics for the nuisance parameters exist under the
null, the problem of selecting a most powerful test is reduced considerably by
restricting our attention to similar regions. For a given testing situation, there
might be a nonsimilar test, having size (dependent on the nuisance parameters)

no larger than a fixed value «, which is uniformly more powerful than any similar



test of size & (Lehmann and Stein (1948)). In practice, though, this criticism is
not very persuasive, because this result is usually achieved by restricting the class
of alternatives, and seldom is there enough prior information to specify such a
restrictive alternative hypothesis. Moreover, even if prior information is available,
it might still be difficult to find such a test.

Many interesting econometric models are in the class of (curved) exponential

models (see van Garderen (1998)), with joint density

J0) =exp { D" tm;(0) = Kn(n(0)) +h(»)

where 0 = (07,0,)" is the ki + ko X 1 vector of natural parameters, the t; are
the p canonical (minimal sufficient) statistics, and the 1,(0) are the canonical pa-
rameters; Ky(n(0)) is the cumulant function and h(y) is a normalising constant.
For curved exponential models p > ki + k9. When p = ky + ko, we have a full
exponential model. For exponential models similar tests can be characterised as

follows.

Theorem 1 Let f(y;01,0s) denote a curved exponential model. If

(1) under Hy : 01 = 00 there exists a sufficient statistic t for 0y, of dimension k;
and

(i1) there is a one-to-one transformation y — (t,v) such that under Hy, v is
independent of t;

then a critical region w is similar of size a if and only if it has size a in the

distribution of v.

Proof. An immediate consequence of Theorem 1, p.142 of Lehmann (1986), is
that (i) guarantees bounded completeness, and then Theorem 2.1 of Hillier (1987)
establishes the result.

2.2 Test criteria under the alternative hypothesis

Although Theorem 1 characterises the class of similar tests for Hy, it is of no
help in choosing an optimal test. Ideally, this will be the one having greatest
(unconditional) power, P, for every (01,05). In general though, P, will depend

6



upon both the nuisance parameters and the value of the interest parameter under
the alternative. Hence no UMP test exists. The unit root hypothesis turns out
to be such a case. In these cases weaker criteria of optimality must be used. For
instance Cox and Hinkley (1974) suggest to maximise the power against a ‘typical’
alternative (giving point oplimal tests), or to maximize a weighted average of the
power, or finally to construct LMP tests (which maximise the slope of the power
function in a neighbourhood of the null hypothesis).

In this paper we suggest two alternative criteria which approximate the most
powerful test criterion. Our method may be best illustrated by the following
simple example. Consider the problem of testing Hp : y ~ N(0,02Q(6p)) against
Hy :y ~ N(0,0%Q(0)), 0 # 0o, where y is an n.x 1 random vector and 0 is a scalar
parameter. Upon application of the Neyman-Pearson lemma, the most powerful
similar test takes the form: reject Hy if

yQ ' (0)y
y Q1 (0o)y

where k, is chosen so that the size is «. Since the numerator depends upon the

< ko, (1)

value of ¢ under the alternative, no uniformly most powerful test exists.

A PO test is constructed by choosing a ‘representative’ value of 6 under the
alternative and substituting it in (1). The PO test is the most powerful test only
if the representative value chosen coincides with the true value of the unknown
parameter. The power envelope (PE) is the function describing the power of the
PO test when the value of the parameter appearing in the numerator happens to
be the true parameter . In the absence of uniformly most powerful tests, there
is no test having power equal to the power envelope for all values of §. Therefore,
we need to find criteria for the construction of tests having power close to the
power envelope for a whole range of 6. In what follows we suggest two alternative

criteria.

Bounded Norm Minimising Tests

Suppose that
y' QU (0)y < 10)T(y)I(0), (2)

where [(0) is a vector depending only upon ¢, and ¥(y) is a positive definite matrix

7



depending only upon y. If such an inequality holds, then we can approximate
the most powerful critical region with the set in which ¥U(y) is ‘small’ (in some
sense to be defined later) for all 6.

Define a norm, |||, on the space of positive definite matrices in the usual
way, 1.e. as a mapping ||.|| : S — R, satisfying (i) |M]] > 0 for all M € S and
| M| = 0if and only if M =0, (i) |aM|| = |a| |M] for all « € R and M € S,
and (ill) ||My + Ms|| < || M| + || M2|, My, My € S. Thus a sufficient condition

for

1(0) W (y)I(0)
| v (0)y o )
) w(y)

y'Q1(0o)y <5

for a suitable choice of k. That is, for any such norm we may find a k such that (3)
holds. Thus, any norm of the matrix ¥ (y)/y'Q 1 (0o)y delivers a norm minimising
(NM) test, when (2) holds with equality, or a bounded norm minimising (BNM)

test otherwise.

Bounded Estimated Point Optimal Tests

Another option we have is that of considering estimated point optimal (EPO)
tests. For point optimal (PO) tests 6 is taken as known under the alternative.
In general, # under the alternative is unknown, however, we can estimate it with
the value of 0* which minimises 1(0)' ¥ (y)I(0)/ [/ 1(0o)y| for a fixed y. Then,
supposing (2) holds with equality, the EPO test consists in rejecting Hy if

10" 2 )10")
s oy

where k is chosen so that the size of the test is c. Alternatively, we have the test:

reject Hy if |0" — 0p| < k, where again k is chosen so that the size is « (if the
alternative is in a particular direction this last criterion is modified accordingly).
Bounded estimated point optimal (BEPO) tests are defined similarly, but apply
when (2) does not hold with equality.

For the models under consideration these criteria yield tests with powers close
to the power envelope. In general, though, their power properties will have to be

checked on a case by case basis.



3 Testing for unit roots in the errors

The first situation we consider is that of testing for a unit root in the errors in a
linear regression model,

y=27zp8+v, (4)
where (3 is a k X 1 vector of parameters, Z an N x k full rank matrix containing

observations on the exogenous variables, v = (vy,..,uy) and
v o= priatE (5)
E; o~ N(O, 0'2),

for i =1,..,N, and vg = 0. We consider the sample size as fixed, and make no

assumption on the asymptotic behaviour of the regressors. Given (4) and (5),

N(Z3,0°%n(p)), where

Sn (p) = T,T, (6)
and
1 0 0
—p e el
T, = . . ' (7)
0 00
0 0 —p 1
In this setup the unit root hypothesis, Hy : p = 1 against H; : p # 1, may be
written as
Ho:y ~ N(Z8,0°S(1)) )
against
Hy sy~ N(Z8,0%5 (0)). )

In order to simplify the notation, we transform the model so that x = T}y, and,
letting W = T1Z, Ho : x ~ N(WB,0%Ix) and Hy : x ~ N(Wg3,0* 115N (p)T}).
Note that for this model only the covariance, not the mean, depends upon the
parameter of interest.

In order to characterise the class of similar tests for Hy we follow Hillier (1987,
Section 4). Note that under Hyp the statistics
B = WW) ' W

2 = o' My,

9



where My, = Iy — W(W'W) W are jointly sufficient for the nuisance parame-
ters (3, 0%), and that the conditions of Theorem 1 are met. Therefore, all similar
critical regions of size a are a fraction « of the surface (B, 32) = constant. To
characterise the class of similar regions for Hy we need to find a transformation of

y to (U, B, 32), such that v is independent of (B, 32) under the null hypothesis.

First we transform z to (B, wl), where wy = C'z and C is a left-orthogonal ma-
trix of dimension N x N —k and CC" = My . Note that B and wy are independent,

and

B~ N(ﬁ,oQ (W’W)*lw’leN(p)T{W(W’W)*l)

wy ~ N(o,UQG’leN(p)T{C).

Then, we let wy = (32)1/21}, s = wiw, and v = w, /(w,w,)/? (the Jacobian

is %(32)¥*1) so that the joint density of (U,B, 32) is

f(v,ﬁ, stpot B) = f (B;p,JQ,ﬂ) %(2%02)¥ <32)771
2

_ S _
RSN ITC] e { - (TN ITIO) )

Therefore, (N — k) vector

C/le
= 11
U= T TP (1

characterises the class of similar tests for Hy. Since, under Hy, v has uniform
distribution over the unit (N — k)-sphere {U eRNF vy = 1}, every similar
critical region w of size a, will consist of the fraction « of the surface of the unit
(N — k)-sphere. Notice also that v characterises the class of similar tests for Hy
against every alternative.

Within the class of similar tests, we now must identify those having optimal

power properties. The unconditional power of any similar critical region w, for

H(), 18

Bo= [ (Bt ) st ot By dsta )

10



= // f(U,SQ;p,UQ,ﬂ) d82(d1})
w J§2>0

N-k

(&= N N >
- L ienssomer [ [venssenoy o] T @)

272 w

where (dv) denotes the un-normalised measure on the unit (N —k)-sphere. Hence,

the most powerful similar test of size « takes the form

/ / e y/Tl/C (C/T12N<p)T1/C)71 C/le
v (C'TYEN(p)TC) v = T M Try < kq. (12)

The optimal similar critical region defined by (12) depends upon the value of p
under the alternative, and so no UMP test exists. Note that (12) yields a PO
test for any fixed value of p under the alternative.

To obtain tests having power against a range of alternatives we must weaken
the optimality criterion. The first option is to construct the LMP test, as given

in the following theorem.

Theorem 2 Suppose the linear regression model (4) has errors with autocorrela-
tion structure given by (5), then the LM P test for Hy : p =1 against Hy : p < 1,
is: reject Hy if

(e}valuy

———— > ka, (13)
u'u
where w = My'Tyy , ex is the unit vector in RN and k., is chosen so thal the size
of the test is a. Analogously, the LMP test of Hy : p =1 against Hy : p > 1 is:
reject Hy if

(e}valu)Q

u'u

<K, (14)

where k!, is chosen analogously to k.

Proof. Set p=1—+, where v > 0 for Hy: p <1, and v <0 for Hy:p > 1, and
differentiating (11) with respect to v we obtain

0P,

. N—k [0 (C"TiZNn(p)TIC) o)
sign(7) —

2 Oy ’

7=0

= d(N, k) +

7=0

11



where d(N, k) does not depend upon v. Moreover, since

8 (v (C'Ti=n(p)TIC) " v) ]

o = V' C(T; YeneyT; *Co

, 2
= (eNTf le) ,
then noting the definition of v in (12) proves the first part of the theorem. The

second part is proved analogously.

As mentioned in the previous section, maximising the slope of the power in a
neighbourhood of the null is not the only criterion which may be used. We thus
implement the BNM and BEPO test criteria as suggested in Section 2.2. Before

proceeding, however, we will require the following lemma.

Lemma 3 The matriz
-1
Q = OTisn(p)TIC — (C'(ThSn (o)1) ' C)
is posilive semi-definite, where the quantities C, Ty and Xy (p) are defined above.

Proof. Let A ="T1Yn(p)1] and H = (C : J), where J is any N x K matrix
such that H is an N x N orthogonal matrix. Then from
H'AVH = (H'AH)

and applying the inverse of a partitioned matrix (conformably with C and .J),
we have
C'A'C = (C'AC — C'AJ(JAT) 1T AC) .
Thus
C'A'C > (C'AC) T
with equality if and only if C is orthogonal. Taking the inverse establishes the

lemma.

As a consequence of Lemma 1 we may construct BNM and BEPO tests, whose

derivations are contained in the following two theorems.

12



Theorem 4 Let .|| denote a norm on the space of 2x 2 positive definite matrices,

and let

1 [ dEN(Du u' (T VY LTy M
\IJ(U') - wu < u’(Tfl)’LNTflu u/(Tfl)/LNLSVTflu ) (15)

where Ly = Iy —"T7 is the first-order lag operator matriz, with one’s on the upper
off-diagonal and zero’s elsewhere, and uw = MwT1y. Then a BNM test is: reject
Hy:p=114f

()| < ko, (16)

where the k. are chosen such that the size of the test is .

Proof. We rewrite (12) as

y'T]C(C"AC) C'" Ty
y/Tl/Mley

< kaq,

with A =T1Xxn(p)T]. Hence from Lemma 3,

YTIC(CTAC) 'Oy _ (1Y S (o)1 M
YT Mw'Tyy - w'u ’

where u is defined above, thus (12) is bounded above by the ratio of quadratic

forms in u. Moreover, from
Sy (p) = In — p(Ln + L)' + p* L Ly,

it follows that

(TSN ()T e ] . u'Sn(1)u o (T VY LyTy ' 1
TR W' (Ty Y Ly Ly Ty

u'u u'u

- v (). a7)

So a sufficient, but not necessary condition for (12) to hold is that the positive def-
inite matrix ¥(u) is small with respect to some norm. Denoting all such norms by
| @ (w)||, then for each ||¥(u)|| we may find a k,, such that Pr {||¥(u)|| < k.|Ho} =
Q.

13



Theorem 5 BEPO tests for Hy : p =1 against Hy : p # 1, are given by either
of the following rules

i) reject Hy if
o' (T LTy M
w' (T VY Ly LT '

— 1| < ka, (18)
it) reject Hy if

(/S (D) (' (T3 ) Ly Ly Ty ) — (o (T3 ) LTy )

5 <k,

(u'u)

where in both case k., is such that the size of the test is o, and u = Mw/T1y.

Proof. Using Lemma 1 as in the proof of Theorem 3, we obtain (17), which, as

function of p, is a parabola. This has a minimum at
p* = (u(I7 Y LTy M) [ (W (T Ly DT M)

So using the BEPO criterion part 1) of the theorem is proved. To prove ii), replace
p* in (17) and rearrange the terms.

Theorem 3 generates a class of BNM tests, depending upon the particular
norm chosen. Since ¥(u) does not vary over the whole space of 2 x 2 positive

definite matrices, but over a subspace defined by the inequalities

WEy(Du > u(T )LNL’T U
(SN (V) (Ty Y Ly LTy u) > (W/(T ) Ly Ty u) : (19)

a norm yielding a simple BNM test statistic is

u'En(1)u
o

19 (W)l = (20)

Equally, fully exploiting the inequalities in (19), the BEPO test statistic in
part ii) of Theorem 4, becomes

u'(En(1) — (Tfl)/LNTfl)u

u'u

(21)

I

although application of (19) may entail throwing away some information con-

tained in the sample.

14



4 Dynamic regression models

The dynamic regression model has the form,

v = pyi1+208+ss (22)
g ~ N(0,0%),9=0i=1,.N,

where the z; are k x 1 vectors of exogenous variables and 3 is a k x 1 vector
of parameters. The assumption that y, = 0 simplifies the derivations later on,
without constraining the behaviour of the time series {y;} in a significant way
since we may initialise the series with any starting value via appropriate choice
of z1. Indeed we may condition upon previous values of {y;};<; and include those
as regressors in 2j.

In order to simplify the notation, we define y and Z as before, and we wish to
test the null hypothesis Hy : p = 1 against Hy : p # 1. The model in (22) implies
testing

Ho:y~ N (I7'Z8,0°Sn(1)) (23)
against

Hy:y~N(T,'Z8,0°Sn(p)) (24)

with T}, and Xy (p) defined in (6) and (7). An intrinsic difficulty of constructing
tests for (23), rather than (8), is that the mean of y is also a function of p. As
a consequence, two different null hypotheses must be considered, one in which
[ is unknown, and is thus a nuisance parameter, and one in which 3 is known.
We will consider these two cases separately. For either case, and as before, the
transformation

z =Ty~ N(WT,' 78,0 T\Sn(p)T7),

will simplify the notation.

4.1 No restrictions upon 3 under the null

When (3 is not restricted the null and alternative hypotheses take the form
Ho : x~N(Z3,0°Sy(1))
Hl o x~N <T1Tp71Zﬂ,O'22N(p)> s

15



and so under Hy, we have a linear regression, analogous to (8). Again, under H,

the model is full exponential and the statistics

3 = (42 Y

2 = 2'Myx,

where My =1 — Z(Z'7Z)"' 7', are jointly sufficient for the nuisance parameters /3
and 02, and the conditions of Theorem 1 are met. As before we transform = —
(ﬁ,wl) with wy = 'z, with now CC" = Mz. Again B and w; are independent
under both the null and the alternative, and
B~ N ((Z’Z)*1 2T, 28,07 (7 7) " 2Ty Sy (p)T) 2 (Z’Z)*l)
w; ~ N (C”TlTpleﬂ, UQC’leN(p)Tl’C') )

Following the previous section we transform to polar coordinates, w; —

(v,5%), where v = w;/(wjw1)"?, so that v'v = 1 (with Jacobian %(s%#’l),

The joint density of (U,B, 32) is
N N 1 _ N_k
F.8,8%p,0%8) = (B0, 8)5(emo?) 7 (27

exp {-%5/ (O EN(p)T10) 5}

o2

52 i (32)1/2
exp —ﬁv’ (C'TEN(p)TIC) "v+ v'E

where £ = (C’leN(p)Tl’C)fl C’TlTpleﬂ, and so, under Hy, v is uniformly dis-
tributed over the surface of the unit (N — k)-sphere. Therefore every similar test
is characterised by the vector
C'Ty
(yTiMzTiy)Y?

In this case, however, the unconditional power of every similar critical region w

Pw = / f(U,SQ;p7ﬂ7O'2)d82(dU)
w Js2>0

depends not only upon the value of p under the alternative, but also upon the
unknown [, and there exists no UMP test. Since 3 is unknown under the al-

ternative, it is natural to maximise some weighted average of the power (Wald
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(1943), Hillier (1987) and Andrews and Ploberger (1994)). To do this, we note
that the (N — k) x 1 vector £ is zero under Hy, and that, under Hy, it spans a
k-dimensional subspace of RY™* as 3 varies in R* and p is fixed. However, as
pvaries, this subspace also varies in RY %, It is thus natural to choose a weight-
ing function which takes into account of all these possibilities. A possible choice
is
1

2c0?

u(E) = (2meo®) T B2 S (o) TIC) exp {— s’c’mw)T{Gs} ()

where ¢ > 0 is an arbitrary constant scaling the magnitude of the changes in &
for which we want the test to be powerful. Note that the weighting function is
defined over the whole of RY % and thus averages not only over £ but also over
all possible subspaces in which it may lie.

The weighting function (25) is chosen for its simplicity and flexibility. By
choosing a Gaussian weight we retain the ability to derive tractable solutions.
However, the particular choice allows flexibility in that it describes any interme-
diate case between no prior information on the location of 3 under the alternative
(i.e. ¢ — oo implies almost uniform weight) and certainty (i.e. ¢ — 0 implies
Dirac weight on a singleton).

The (unconditional) weighted power of any similar region w is thus

Pw:// / fv, 8% p, 0% p(€) deds®(dv).
wJ82>0 JEcRT -k

Evaluating the integrals over s2 > 0 and £ € RT"%, P, can be written as

P, = ﬂNTii) (14 C)f¥ / (U/ (C/T1EN(/))T1/C)711}) & (dv). (26)

Qw2

Therefore, the weighted most powerful similar test for Hy is given by small
values of the statistic

v (O SN (p)TIC) o, (27)

and does not depend on c¢. However, since (27) depends upon the value of p under
the alternative, no UMP exists, even in terms of the weighted power P,. Weighted
point optimal tests are directly obtainable from (27) by substituting fixed values
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of p under the alternative. In order, though, to obtain tests independent of the
alternative, we must weaken the optimality criteria further. Since (27) is directly
analogous to (12), excepting the change of definition for C, the following theorems
follow directly from Theorems 2, 3 and 4.

Theorem 6 For the dynamic regression model (22) the weighted LMP test for
Ho:p=1 against Hy : p < 1, given the weighting function (25), is: reject Hy if

’ 2
exTitu
(enTiu). - ) > ke, (28)

u'u
where now u = MzTy and k, is chosen so that the size of the test is a. Anal-
ogously, the weighted LMP test of Hy : p = 1 against Hy : p > 1 is obtained by

reversing the inequality in (28).

Theorem 7 Let |.| denote some measure on the space of 2 x 2 positive definite

matrices, and let

1 W ENDu ' (T Y Iy M
\IJ(U') - m < u’(Tfl)’LNTflu u/(Tfl)/LNLSVTflu ) (29)

where w = MzTyy. Then weighted BNM tests for Hy : p =1 against Hy : p # 1,
given the weighting function (25), are: reject Hy if

() < ka,

where the k. is chosen so that the size of the test is a.

Theorem 8 Weighted BEPO tests for Hy : p = 1 against Hy : p # 1 given the
weighting function (25), are either:
i) reject Hy if
o' (T LTy M
' (T Y Ly LTy tu

— 1| < k,
it) reject Hy if

(u'Sn (V) (' (T ) Ly Ty Ty M) — (o (1) LTy )
(w'u)?

< kg
where in both case k., is such that the size of the test is o, and v = MzT1y.
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Note that weighted LMP, BNM and BEPO tests for the dynamic regression
model differ from the corresponding tests for the linear regression with auto-
correlation, only for the use of M, rather than My,. Consequently, again fully
exploiting the inequalities in (19), which hold for any vector u, we find that for

the dynamic regression model (22), when we do not restrict 5 under Hy that the

BNM and BEPO tests coincide, giving
u'En(1)u

u'u

BNM = BEPO = (30)

4.2 Restricting 5 under the null

Instead of letting 3 vary freely in (22), we may wish to restrict  under the null.
For example, suppose we wish to test that y follows a simple random walk against
alternatives such as trend stationary models (Dickey and Fuller (1981)). For this

case we want to test

Hy : z~N(0,0°Iy), (31)
Hl o x~N <T1Tp71Zﬂ,O'2T12N(p>T1/> s ’p’ < 1.

We need to find a transformation y — (v, s?), with v independent of s?. Trans-

forming to polar coordinates through s* = 2’z (which is sufficient for the scalar

nuisance parameter 02) and v = x(z'x)” "2, v'v = 1 (with Jacobian %(82)%*1)’

the joint density of s? and v is
f(v,s%p,0%8) = 1(2%02)7]\7/2 (sQ)%flexp —Lﬂ’Z’Zﬂ
? ? ? ? 2 20_2

(32)1/2

2
exp {_%U/(Tll)/le (P)T1 o + ) ﬂ/Z/TpTllv} :

Thus, under Hy, v is uniformly distributed, on the surface of the unit /N-sphere,
and is independent of s2. Therefore, every similar critical region of size a for Hy

is characterised by the vector

T
=t (32)

YIS (Ly
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There is no UMP test and since (3 is unknown under the alternative, we average

the power over all directions of 3 according to the weighting function

1

) = (2meo®) 122 P { — 5t (223, (3)

with ¢ > 0 scaling the magnitude of changes in [ for which we want the test
to be powerful. Once again, the choice of the weighting function is chosen to
simplify the derivations and to guarantee enough flexibility (see the discussion
under equation (25)).

The weighted power of any similar critical similar region w is

— 2 /
Bo= [ [ et it i e

2

= = N/2(1+c) 5/[ (T TIMGT, T o) 2 (dw),

where Mg = Iy + 1—1””Z(Z’Z)71Z’. Therefore, the most powerful similar test for
Hy : p =1, takes the form

o' (T YT MGT T ' < kg, (35)

with k. chosen as before. Of course no UMP exists, even in terms of the weighted
power, and so we apply the LMP, BNM and BEPO criteria. The proof of the

following theorems can be established from the proof of Theorems 2, 3 and 4.

Theorem 9 For the dynamic regression model (22) the weighted LMP test for

Hy:p=1,08=0 against Hy : p < 1,8 # 0 which mazximizes the slope of the

weighted power (34) at p =1, given the weighting function (33), is: reject Hy if
Y LMz Ly —y' Ly Mgy

L+ =y T Z(2'2) 1 2ry) 3+

ko, (36)

where ko is chosen so that the size of the test is .. Analogously, the weighted
LMP test of Hy : p =1 against Hy : p > 1 is obtained by reversing the inequality
in (36).

20



Theorem 10 Let ||.| denote some measure on the space of 2 x 2 positive definite

matrices, and let
1+e¢ N "ME 'MET)
qj(y> = (,771) < y/Mgi/ y/L ZM]\C[%/ > (37>
Y3y (Dy \ yMzLyy yLnMzliyy
u = Mz;Tyy. Then weighted BNM tests for Hy : p = 1 against Hy : p # 1, given
the weighting function (33), are: reject Hy if

I < Ka,

where the k. is chosen so that the size of the test is a.

Theorem 11 Weighted BEPO tests for Hy : p = 1 against Hy : p # 1, given the
weightling function (33), are either:

i) reject Hy if
/MC L/
_YMzENY 1| < kg (38)
y Ly Mo Ly
it) reject Hy if

(y Mgy) (f Ly M5 Liyy) — (y M5 Liyy)?
(w'u)?

< k,
where in both case k., is such that the size of the test is c.

Noting the inequalities amongst the entries of ¥(y), corresponding to those
given in (19),
yMyy > y'LyMyLyy
W' Mzy)(y Ly Mz Lyyy) > (y' LMz Lyy)?,
then a candidate BNM test for this case is

y' My

BNM¢ = (1+c)N 222
(1+¢) yIy (L)y

< ke (39)
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4.3 Some remarks

(i) We have considered the unit root hypothesis in three different situations de-
scribed in Sections 3, 4.1, and 4.2. The class of similar tests in each case, is
characterised by a vector reflecting the appropriate transformation of the data
in order to gain distributions free of the nuisance parameters under the null hy-
pothesis. The one difference between the cases is the use of weighting functions

for the dynamic regression cases.

(ii) When ¢ =0, and = 0 under H;, model (22) simplifies to

Yi = PYi1 T &5,

and we test Hy : p = 1 against Iy : |p| < 1. This case is of its own intrinsic
interest, see Dickey and Fuller (1979) or Evans and Savin (1981), and both the
LMP, BNM and BEPO tests simplify considerably. The LMP test, after some

manipulation, becomes: reject Hy if

Ya

S — yin)?

the NM (the bound is now an equality) test is: reject Hy if

< kaq,

N 2
. . 1
= Zz:l yz — < k;a (40)
E :izl(yi - yz‘fl)Q DW

where DW denotes the Durbin-Watson statistic and the EPO test is

EN Yilfi—1

)— 1St ~

17N172 =p < l{?a, (41)
D i1 Yia

where p is the maximum likelihood estimate for p and the critical values are

chosen as before.

(iii) The other obvious limit is when ¢ — oo, implying almost uniform weight on

any value of § under the alternative. Hence, after normalisation, the LMP test

statistic is
y/LNMZLSVy —y' Ly My

(1 —yT|Z(2'2) " 2Tyy) *

the BNM test statistic is
Y Mzy
yXt(l)y
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and the BEPO test statistic is
y' MzLyy

Y Ly MzLyy
where My, = I + Z(Z'Z)"'Z, and we reject for small values of the statistic
compared with the corresponding critical values.
(iv) Consider, for example, for a finite ¢ > 0, the BNM test statistic is

y' Mgy

ySt()y
which is simply a weighted sum of a distance in the y direction and a distance
in the direction of the projection of ¥ on the column space orthogonal to those
of Z, where the weight is determined by how far from null in the § direction we
want to have large power against. This clearly seems a desirable property for an

optimal test in our set up.

5 Approximate distributions for the test statis-
tics

The BNM and BEPO tests derived in the previous sections generally have the
form of, or are a simple function of, a ratio of quadratic forms in normal variables,
Q = y Ay/y' By, where A and B are symmetric, B positive semi-definite and
y~ N (p,X(p)), and p is a function of 7, 3 and in some cases p and the weighting
function parameter ¢. The exact density of quadratic forms is known in only a
few cases (see Hillier (1999)). However, in general the density of a quadratic form
needs to be calculated either by numerical methods, for example Imhof’s (1961)
procedure (Sargan and Bhargava (1983)), or by appealing to asymptotic results
(Phillips (1987)).

In this section we provide a saddlepoint approximation for the density and
distribution of ratios of quadratic forms (see also Daniels (1954), Phillips (1978),
Lieberman (1994) and Marsh (1998)). Applied to the statistics derived in this
paper, it serves as a convenient analytic alternative to numerical methods or

crude asymptotic results.
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The procedure is simplified if we transform vy so that the covariance matrix
becomes the identity. This is achieved through transforming y to 7,y, although,
to simplify notation, we will still write @ = ¢/ Ay/yBy. The density and the
cumulative density function of () at a point ¢ can be obtained using Gurland’s

(1948) inversion formulae

fae) = 5 [ ew PO} QO (42
Flgc) — 1—% T%mwcw, (43)

where
P(Q) = —% <TT[G71MM/] —ln ’GD : Q(e) — TT[GilB(Gill,L/J/ + ])]’

and

Note that G = G(0) is a function of the parameter 6, although we will suppress
this dependence in the notation.

Although (42) and (43) characterise the density and distribution, no closed
form or convergent series representation has as yet been found for these inte-
grals. The saddlepoint technique allows us to find an approximate solution to
these integrals by expanding exp {P(#)} and Q(#) around the saddlepoint, i.e.
the arg. max. of P(f). The resulting series is then transformed to a series of
Gaussian integrals, evaluated term by term. The leading term of the expansion
is the saddlepoint approximation. Although the technique is an asymptotic one,
delivering an order of error of (at least) O(/N '), the numerical accuracy in finite
samples is sufficient for most purposes.

The following theorem presents the general forms of the approximations,
which were obtained by Marsh (1998) by a direct application of the Daniels
(1954) technique to ratios of quadratic forms.
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Theorem 12 The Saddlepoint approzimations for inversions (42) and (43) at a

point q are, respectively,

(44)

).

B o e
‘G‘\/élﬂ (; —qB) (2G1M’M+I)H
Flg) = <1—exp{ 7}>—|—exp{—ﬂ—2u}@<p—%logl

sz’gn(é)\/

v (G (A= gB)2G upt + 1)

"3

tr[G-1p/p] — In

3>
I

20

3>
I

I

and 0 solves the saddlepoint defining equation
tr (G (A—qB) (G 'y +1)) =0.

Note that there exists a unique saddlepoint 0 e ( VW ) where the Ay and
An are the smallest and the largest eigenvalues of the matrix A — ¢B, and that
the approximation is analytic and continuous in ¢ (Daniels (1954)). Theorem 11
also allows us to approximate the distribution of any ratio of quadratic form in
normal variables having the properties described earlier on. In some special cases

Theorem 12 can be simplified considerably, as in the following corollaries.

Corollary 13 For the dynamic regression model, under the null hypothesis Hy :
p=1and 8 =0, the saddlepoint approzimations for the density and distribution
of the BEPO test (41) at a point q are

fla) = (HL [1 _ 2%4 )1/2 i [1 _ 2%’“} 1, (46)

\/47r SN [)\ (1 - 28)\k) ]

Fg) = 1—@<}5—%1n<§>>, (47)
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L N .
p = szgn(&)\/‘zkl In (1 — 297’k)
L 7’ N 2 ) -2
7 _iw¢b:k3%@ zmg

and the saddlepoint 0 solves

=1\ (1= 20)) ’ 2An " 20 )7

where \y < Xy < ... < Ay are the ordered eigenvalues of A — qB.

2

I

Corollary 14 For the dynamic regression model and the regression with auto-
correlated errors model, under the null hypothesis, Hy : p = 1 and 8 = 0, the
saddlepoint approximations for the density and distribution of the BNM test (40)
al a poinl q are

N i 2 2 6 2 -
A 2 (I 1= S (s ) —4a)] ) 300 [1 = 5 (esc? ) — 4a)|
f(q ’HO) = 5 )

%ﬁﬁykwﬂm—@f(—%@WKa~@)]

) 1
F@mwzzl—@<—5

where
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(25 — 1)

S = 202N + 1)’

and the saddlepoint 0 solves
ZN csc” [6,] — 4q _0
B\ 2 = 0 (ese? [€] — 4q) ’

withée( 2 2 )

- 4g—csc?[€ ] 7 esc?[€4]—4q

The accuracy of these approximations will be analysed in the following section.
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6 Numerical analysis

In this Section we assess numerically the power of the procedures suggested by
comparing them to both competing tests and the finite sample power envelope.
We also show that the saddlepoint approximations derived give an adequate char-
acterisation of the finite sample distributions of the tests statistics proposed in

Sections 3 and 4.

6.1 Evaluation of the power properties

This simulation will focus on tests for a unit root against a stationary alternative.
In appendix A, Tables 1 through 4 contain a comparative power study, obtained
through Monte Carlo simulation of the models with 50000 replications. Tables 1

and 2 concern the regression models with autocorrelated errors: for Table 1

0
y = 0.5+5<1—N’>+u,- (48)
U; = pui—1 + &,

and for Table 2

271 1
 — «in 222 — , 4

Ys sm<N>—|-N+Uz (49)
U = PUi1 + &

In particular we compare the LMP, BNM and BEPO tests given respectively by
(13), (20) and (18) and labelled LM, BN and BE, with the Sargan and Bhargava
(1983) test, labelled SB and the power envelope, labelled PE, obtained from
equation (12).

The BNM and the BEPO tests yield approximately the same power for all
alternatives across the different specifications, and seem to yield a small but con-
sistent advantage in terms of power over the Sargan and Bhargava test. Moreover
the power of these tests lies within 1% of the power envelope everywhere. The
LMP test performs poorly in comparison.

Tables 3 and 4 consider the dynamic regression models: for Table 3
21
y; = 0.1 <0.3+5 <1 - N>> + pYi-1 + £, (50)
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and for Table 4

. (2w i
y; = 0.1 <Sln <W> + N) + PYt—1 + & (51)

The value of 3 = 0.1 is chosen so that there is no ‘jump’ in power for the
alternative ‘closest’ to the null hypothesis. Here we compare the LMP, BNM and
BEPO tests (with two choices of ¢, 1 and .01), with the (studentised) Dickey-
Fuller (1979) test, labelled DF. In this case values for the power envelope would
be misleading, since in our framework the power envelope depends upon the value
of ¢. However, the results suggest that, at least in these models, the choice of ¢
has little impact upon power.

As in the previous case both the BNM and BEPO tests deliver a small, consis-
tent power gain over the established test, although equally the BNM test seems to
perform best of all. The tables also suggest that tests in the dynamic regression
framework have more power, this we would of course expect, since the mean of

the process also depends upon p in this case.

6.2 Evaluation of the saddlepoint approximation.

In order to assess the accuracy of the saddlepoint approximations derived in Sec-
tion 5 for the models in (48), (49), (50) and (51) we use the following procedure:
1) the cumulative density function for the BNM and the BEPO tests is simulated
for the model described in the previous Section using 50000 replications. Let
F'(q) be such a simulated distribution.
2) The values of g, for which F'(g,) = a are found for some specific values of a.
3) Finally the cumulative density function at the value g, is approximated by
the saddlepoint approximation, F (ga) of Theorem 11. If the approximation is
accurate we would then expect F (qa) ~

Tables 5, 6, 7, and 8 in Appendix B compare a and F(qa) for p = 1 and
p = .9 for the models in (48), (49), (50) and (51). These tables (as well as other
simulations not reported) show that the saddlepoint approximation is very close

to the true distribution, for all values of « and p and for all tests considered.
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If we accept that it forms an adequate approximation, the saddlepoint ap-
proximation can be used to plot the density of the tests statistic of interest under
both the null and the alternative hypothesis. For example Figures 1 and 2 in
Appendix C graph the densities of the BNM statistic (with ¢ = 1), under the
null hypothesis, p = 1 and 8 = 0 (corresponding to the solid line), and the al-
ternatives, p = 0.95, 0.9, 0.85 and 3 = 1 (the length of the ‘dash’ increases as p

decreases) for two sample sizes, N = 15, 30 for the model
Yy, = 0058+ py;1 +e4, 1=1,2,... N. (52)
The vertical solid line marks the critical value in each case, specifically

cv = 0.85:N =15
cv = 144 : N = 30.

The power of the test is then the area under each graph to the left of the critical
value. Some features are worth noting. First, comparing the two graphs it is
apparent that the density is more sensitive to changes in the sample size under
the null than under corresponding alternatives. This is, of course, precisely what
we would expect, since convergence (actually in this case divergence, as we do
not standardise) occurs at a faster rate under a unit root. Consequently, most
of the power, as N increases, comes from changes in the null distribution, not
the alternative. This asymmetry is a feature of the general problem of tests
on the covariance structure of random samples, indeed if the alternative were
explosive we would expect the reverse (i.e. faster divergence under the explosive

alternative).

7 Conclusions

This paper has analysed tests for a unit root in both current formulations of the
problem: dynamic linear regressions and linear regressions with autocorrelated
errors. An optimality theory, valid for any sample size, has been developed, based

on explicit use of classical statistical principles for both formulations. The main
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aim of the paper has been to show that analytic small sample inference for a
problem that has, by and large, been analysed only asymptotically, is not only
possible, but also applicable. Note that the analysis can be extended to testing
any value of the autoregressive parameters and not just a unit root.

While we also construct locally most powerful tests, analogous to the feasible
tests of Dufour and King (1991), it is the new criteria that we suggest may yield
practical benefits. The essence of the criterion, that of replacing the search for the
conditions for power to be maximised with sufficient ones, should prove applicable
for other statistical and econometric problems. For the unit root problem, a
Monte Carlo study has demonstrated that the procedure may lead to small but
consistent power gains over other, well established tests. Although our numerical
analysis is far from exhaustive, the tests which seem to perform consistently well
are those based on the BNM criterion. Therefore, we would suggest the use of
these tests, namely (20) for the autocorrelated errors and (30) for the dynamic
regression model, although further detailed study of, for example, their robustness
properties, would be needed.

A secondary aim of the paper has been to provide a distribution theory for
the tests. Although approximate in nature, the saddlepoint technique, does seem
to yield an adequate characterisation even in very small samples. In particu-
lar, enumeration of the approximation is exceptionally swift in comparison with
other techniques. Moreover, since the functional form of the approximation is
unchanged under both the null and alternative (unlike asymptotic treatments),

the analysis of the problem is considerably simplified.
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Appendix A

This appendix contains four tables reporting the power of the tests, as detailed

in section 6.1. The reported entries were obtained from a Monte Carlo study

based on 50000 replications

N=30 N=50
p | LM BN BE SB PE | LM BN BE SB PE
80 | .056 .143 .141 136 .145|.058 .321 .317 .292 .327
82 1.055 125 124 119 125 | .058 .272 .269 .240 .277
84 1.054 111 111 106 .111 | .056 .225 .220 .201 .225
.86 |.054 .098 .098 .094 .100|.055 .188 .186 .167 .188
881.053 .085 .083 .082 .086|.054 .150 .149 .134 .150
90].052 075 076 .074 .075|.052 .119 .118 .109 .119
921.051 .065 .063 .065 .066 | .052 .097 .096 .091 .097
94 1.050 .059 .057 .060 .061|.051 .076 .076 .073 .076
96| .050 .053 .054 .053 .053|.050 .061 .061 .061 .061
98 1.050 .050 .050 .050 .050 | .050 .056 .056 .056 .056

Table 1. Power of the LMP (LM), the BNM (BN), the BEPO (BE), the

Sargan-Bhargava (SB) tests and the power envelope (PE) for the model (48).

N=30 N=50
p | LM BN BE SB PE | LM BN BE SB PE
80 [ .054 122 120 120 .122 | .057 .243 .237 .233 .247
82 .054 .106 .109 107 .108 | .055 .207 .203 .202 .210
841.053 .095 .094 .094 .095|.055 .172 170 .167 .172
86 | .052 .086 .084 .083 .087 |.054 .147 .146 .144 .147
88 .052 .078 .077 077 .079 | .053 .124 124 121 .124
90].051 .070 .070 .069 .070|.052 .103 .102 .102 .103
921.050 .064 .063 .064 .066 | .051 .087 .086 .085 .087
94 1.050 .057 .056 .056 .057 |.050 .073 .072 .073 .073
96| .050 .053 .054 .054 .054|.050 .061 .061 .059 .061
981.050 .051 .051 .052 .052|.050 .053 .052 .052 .053

Table 2. Power of the LMP (LM), the BNM (BN), the BEPO, the
Sargan-Bhargava tests and the power envelope (PE) for the model (49).
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N=30 N=50

p | LM BN! BE! BN BE® DF |LM BN! BE! BN® BE% DF
80108 371 343 367 341 331 | 112 681  .631 687  .640  .599
.82 1.108 .301 281  .302 279 271 | 112 593 524 .595 539 521
.84 1.094 246 229 238 226 2251 .096 492 443 495 461 .430
.86 1.091 211 .201  .204 201 190 | .084 411 .371 410 377 354
.88 | .087 .166 .157 .166 158 152 1 .076  .302  .265 305 279 261
90| .085 133 .125 .131 250 123 1 .070  .240 215 .245 220 .207
92 1.079 .101 .096 .100 099 .096 | .067 .171 .154 Jd74 0 158 148
94| .071 083 .078 .079 079 078 | .066 .119 .106 Jd24 0109 109
96 | .063 .065 .061 .065 .062 .064 |.062 .074 .065 .078 .067 .071
98 | .055 .051 .050 .051 053  .052 | .056 .051 .050 .051 .050 .050
Table 3. Power of the LMP (LM), the BNM (BN¢) and the BEPO (BE°) tests

with ¢ =1, ¢ = 0.01 and the Dickey-Fuller test (DF) for the model (50).
N=30 N=50

p | LM BN! BE! BN® BE® DF |LM BN! BE!' BN® BE% DF
80172 394 352 398 3564 356 | 218 728 .650  .751 674 693
.82 1.168 .356  .318 364 322 318 | 211 .650 .B87 687 B97 622
.84 | .159 .292  .267 .299 262 .268 | 199 571 .504  .603 510 b44
.86 | 147 238 213 .240 210 .226 | 184 472 415 507 A21 457
88| .142 204 185 .205 A81 183 | 173 392 340 412 353 .364
90 | 122 158 153 .160 145 151 | 154 297 .264  .325 264 283
921 .108 135 129 .136 A24 127 1 140 231 .205 245 202 221
94 1.095 110  .102 .108 101 103 | .119 .167 .151 .174 145 155
96 | .089 .089 .084 085 .080 .081|.107 .113 .105 .126 102 119
98 | .065 .064 .064 062 062 .063|.076 .072 .071 .084 .069  .080

Table 4. Power of the LMP (LM), the BNM (BN¢) and the BEPO (BE°) tests

with ¢ =1, ¢ = 0.01 and the Dickey-Fuller test (DF) for the model (51).
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Appendix B

= =

= =

() p=1]|F(q) p=.9 F(g) p=1]F(g) p=.9
a | N=20 N=40 | N=20 N=4 a | N=20 N=40 | N=20 N=4
0.05]0.044 0.045 [ 0.042 0.047 0.05]0.041 0.046 | 0.042 0.048
0.10 | 0.091  0.089 | 0.086 0.091 0.10 | 0.099  0.103 | 0.103  0.098
0.20 | 0.184 0.187 | 0.181  0.188 0.20 | 0.214  0.207 | 0.215  0.206
0.30 | 0.278  0.283 | 0.277  0.285 0.30 | 0.321 0.312 | 0.319  0.310
0.40 | 0.374 0.384 | 0.376  0.386 040 | 0425 0414 | 0422 0412
0.50 | 0.477 0.485 | 0.478  0.490 0.50 | 0.523 0.515 | 0.518 0.511
0.60 | 0.579  0.588 | 0.580  0.591 0.60 | 0.619 0.613 | 0.619  0.610
0.70 | 0.681 0.691 | 0.683  0.695 0.70 | 0.717  0.710 | 0.715  0.709
0.80 | 0.786  0.798 | 0.788  0.799 0.80 | 0.813  0.806 | 0.814  0.807
0.90 | 0.890  0.904 | 0.892  0.904 0.90 | 0.909  0.905 | 0.907  0.903

Table 5: Saddlepoint approximations for
the p-values of the the BE PO test
(21) statistic for model (48).

Table 6: Saddlepoint approximations for
the p-values of the the BE PO test
(21) statistic for model (49).

() p=1|F(g) p=.9 F(g) p=1]F(g) p=.9
a | N=20 N=40 | N=20 N=4 a | N=20 N=40 | N=20 N=4
0.05 ] 0.053 0.051 | 0.043 0.051 0.05]0.042 0.046 | 0.040 0.045
0.10 | 0.105 0.103 | 0.089  0.102 0.10 | 0.093  0.092 | 0.085 0.091
0.20 | 0.211  0.204 | 0.184  0.204 0.20 | 0.189  0.189 | 0.184  0.189
0.30 | 0.321  0.306 | 0.279  0.307 0.30 | 0.285 0.286 | 0.283  0.286
0.40 | 0.417  0.409 | 0.378  0.405 0.40 | 0.382  0.387 | 0.387  0.384
0.50 | 0.518 0.511 | 0.482  0.505 0.50 | 0.480  0.492 | 0.486  0.486
0.60 | 0.620 0.613 | 0.585 0.605 0.60 | 0.585 0.595 | 0.588  0.590
0.70 | 0.712  0.709 | 0.686  0.702 0.70 | 0.692 0.698 | 0.690  0.691
0.80 | 0.810  0.807 | 0.788  0.801 0.80 | 0.798  0.800 | 0.797  0.796
0.90 | 0.908 0.904 | 0.895 0.901 0.90 | 0.909  0.903 | 0.908  0.900

Table 7: Saddlepoint approximations for
the p-values of the the BN M test
(30) statistic for model (50).
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Table 8: Saddlepoint approximations for
the p-values of the the BN M test
(30) statistic for model (51).



Appendix C
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Figure 1: Densities for the BNM test statistic in the model (52) with N = 15,
under the null; p =0 and 5 = 0 (solid) and alternatives; p = 0.95,0.9,0.85
(8 =1) (dotted-dashed).
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Figure 1: Figure 2: Densities for the BNM test statistic in the model (52)
with N = 30, under the null; p = 0 and # = 0 (solid) and alternatives;
p=0.950.9,0.85 (8 =1) (dotted-dashed).
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