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Abstract

In this paper we study strategic formation of bilateral networks with

farsighted players in the classic framework of Jackson and Wolinsky (1996).

We use the largest consistent set (LCS)(Chwe (1994)) as the solution concept

for stability. We show that there exists a value function such that for every

component balanced and anonymous allocation rule, the corresponding LCS

does not contain any strongly efficient network. Using Pareto efficiency, a

weaker concept of efficiency, we get a more positive result. However, then

also, at least one environment of networks (with a component balanced and

anonymous allocation rule) exists for which the largest consistent set does

not contain any Pareto efficient network. These confirm that the well-known

problem of the incompatibility between the set of stable networks and the

set of efficient networks persists even in the environment with farsighted

players. Next we study some possibilities of resolving this incompatibility.
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1 Introduction

A network is a representation of relations among agents/players in a society or

an economy. Formally, a network is a graph which describes the structure of

association among the agents. The agents are usually represented by the nodes

of the graph and an edge between two nodes represents the existence of some

well-defined relation between the two corresponding agents. This relation can be

unilateral or bilateral. The corresponding structures of relationship are represented

by directed or non-directed networks respectively.

A network is a very powerful tool for describing and analyzing the structure

of association among agents as a rich pattern of cooperation among them can

be captured in this framework. Among the attractive features of this framework

for studying such cooperation, we can highlight that not only this framework is

capable of describing pay-off-externalities to a group owing to the formation of

other groups but also, it is capable of handling strength of association between

agents (see e.g., Bloch and Dutta, 2009; Page and Wooders, 2009). Naturally,

these attractive features have stimulated a spate of research in this area of studying

strategic network formation.2

This study is in the framework of strategic analysis of bilateral networks. A

player’s action is to form link(s) with other players or to sever existing link(s). In

this set-up, if a link is to be formed between two players, then consent from both

the players is necessary although a player can break a link unilaterally. The now

canonical model for analyses in this framework was introduced by Jackson and

Wolinsky (1996). In their model, the total pay-off to the players when a network

is formed is represented by a value function which assigns a real value to every

network. This value is distributed to the players according to some allocation

2See, e.g., the collection of papers in the book edited by Dutta and Jackson (2003) and the

survey by Jackson (2006).
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rule. For analyzing strategic formation of networks, they introduced the notion of

pairwise stability. One central result in their work showed that the set of stable

networks (with respect to the notion of pairwise stability) and the set of strongly

efficient networks, those which are socially optimal, may be disjoint if the allocation

rules are intuitively nice.

This impossibility result was followed by a number of studies further exploring

this incompatibility between socially optimal states and stable states both within

the canonical Jackson-Wolinsky framework and in more specific economic models

(see, e.g., the survey by Jackson (2004)). Two important early works within the

Jackson-Wolinsky framework where this incompatibility were sought to be resolved

are Dutta and Mutuswami (1997) and Currarini and Morelli (2000). However,

Dutta and Mutuswami studied the strong and coalition-proof Nash equilibria of a

network formation game. Therefore, either only myopic coalitional deviations or

only internal subcoalitional deviations were considered in their work. Currarini and

Morelli do not consider general coalitional moves and nor are the moves endogenous

in their model.

For sake of generalized analyses, one important issue is to study the strategic

formation of networks and the relation between stable and efficient networks in

environments where the players are farsighted, any arbitrary coalition can make a

move and such coalitional moves are endogenous. Players are said to be farsighted

if they anticipate that any action by a group of players may generate a further chain

of actions by some other groups. They take this fact into account when computing

the final pay-off resulting from their moves (in such models perfect information is

assumed). Dutta and Jackson (2003) were possibly the first to emphasize the need

for such analyses.

“Perhaps the most important issue regarding modeling the forma-

tion of network is to develop fuller models of networks forming over
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time, and in particular allowing players who are farsighted. Farsighted-

ness would imply that players’ decisions on whether to form a network

are not based solely on current pay-offs, but also where they expect

the process to go and possibly from emerging steady states or cycles in

network formation. ... It is conceivable that, at least in some contexts,

farsightedness may help in ensuring the efficiency of the stable state.”

(Dutta and Jackson in the “Introduction” of Dutta and Jackson (ed.) (2003),

emphasis in the original).

Such studies have emerged over the last few years. Dutta et al. (2005) looks at

a rich dynamic model of network formation with farsighted players. However, in

their model any arbitrary coalition is not allowed to form. In the study of Herings

et al. (2009) and Grandjean et al. (2009) only a pair of players is allowed to be

active at any stage. In a recent paper, Page and Wooders (2009), while allowing

several rules for network formation (including arbitrary coalitions to form and act),

do not look at the issue of the possible incompatibility between the socially optimal

states and the stable states in sufficient detail.

The present work is one attempt in this genre. However, we work with a solu-

tion notion already well-known and concentrate on the issue of the compatibility

between stability and efficiency.

For the present analysis we choose the largest consistent set (LCS) (Chwe

(1994)) as the set of stable networks. Several reasons drove this choice. First,

this solution concept has gained somewhat a canonical status in the literature on

coalitional behaviour with farsighted players. Not only is this set studied for specific

situations (see, e.g., Masuda, 2002; Suzuki and Muto, 2005), new solution notions

are also routinely compared with this solution (see, e.g., Herings et al., 2009). Sec-

ondly, this solution has nice analytical properties: for example, its non-emptiness

is ensured in the environment of networks. Moreover, it has been observed (and
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Chwe himself noted) that the LCS may be too inclusive. His motivation was:

“to define a weak concept, one which eliminates with confidence....If

Y is consistent and a ∈ Y, the interpretation is not that a will be stable

but that it is possible for a to be stable. If an outcome b is not con-

tained in any consistent Y, the interpretation is that b cannot possibly

be stable: there is no consistent story in which b is stable.” (Chwe

(1994), italics in the original).

Therefore, it is interesting to check whether the above-mentioned incompati-

bility between the set of stable networks and the set of efficient networks, those

which are socially optimal, still survives when the set of stable network becomes

avowedly inclusive enough.

We find that in spite of the inclusive nature of the LCS, there exists a value

function such that for every component balanced and anonymous allocation rule,

the largest consistent set (with respect to the value function and the allocation

rule) does not contain any strongly efficient network. This impossibility result pro-

vides another corroboration that the well-known incompatibility between stability

and efficiency of networks persists even when the players are farsighted. We also

show that there exists an environment of networks (with a component balanced

and anonymous allocation rule) such that the largest consistent set (with respect

to the value function and the allocation rule) does not contain any Pareto efficient

network. Next, we study some possibilities of resolving this incompatibility.

Section 2 gives the preliminary definitions. The results are collected in Section

3. The proof of one of the propositions is given in the appendix.
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2 Notation and the Preliminary Definitions

The framework and the basic tools for the present analysis were introduced by

Jackson and Wolinsky (1996). Below we recall only the essential definitions for

completeness. For an elaborate explanation of these concepts and a number of

economic examples that fit into this framework, we refer to the comprehensive

survey by Jackson (2004).

Networks

Let N be a finite set of players. Given S ⊆ N, by gS we denote the set of all

doubleton subsets of S. A bilateral network g on N is a subset of gN . The set of

all possible bilateral networks on N is denoted by Z. Given a non-empty network

g ∈ Z, an element {i, j} ∈ g (where i, j ∈ N) is a link between players i and j in

the network g. We shall often denote the link between i and j simply by ij. The

empty network (i.e., the network with no links) is denoted by ∅.

Players i and j have an indirect link between them in a network g if there exist

i0, i1, . . . , im in N such that i0 = i, im = j and for k = 0, . . . , m − 1, ikik+1 ∈ g.

Conventionally it is assumed that there is a link between each player and the player

itself. A network g induces a partition Π(g) of N where two distinct players i and

j are in the same element in the partition if and only if there exists an indirect

link between them. Given a network g and i ∈ N, by Πi(g) we denote the unique

element in Π(g) that contains the player i. The components of a network g,

C(g) = {g(S)|S ∈ Π(g)}

where g(S) = gS ∩ g.

Therefore, for any network g, g = ∪{g′| g′ is a component of g}.

Throughout this paper we denote the coalitions of players by S, T etc. and the
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networks by a, b, g, g′ etc..

Value Functions and Allocation Rules

A value function v : Z 7→ R assigns a real value to every g ∈ Z. This value is

generated by some underlying socio-economic process. We follow the standard

normalization that v(∅) = 0 and the value of a single player is also zero. The set

of all such value functions is denoted by V. Recall that given a network g, C(g)

denotes the set of the components of g. A value function is component-additive if

for every g ∈ Z,

v(g) =
∑

g′∈C(g)

v(g′).

Given a value function v ∈ V, an allocation rule Y : Z × V 7→ RN allocates the

value of a network to the players. Given a value function v ∈ V, an allocation rule

Y : Z × V 7→ RN induces a corresponding preference ordering ºi (v, Y ) for each

i ∈ N on Z given as follows:

for g, g′ ∈ Z, g ºi (v, Y )g′ iff Yi(g, v) ≥ Yi(g
′, v).

An allocation rule is component balanced if for any component additive value func-

tion v, g ∈ Z and g′ ∈ C(g),

∑

i∈P (g′)

Yi(g, v) = v(g′),

where P (g′) is the set of players linked in the component g′ of g. Given a permuta-

tion π : N 7→ N, let vπ be defined by vπ(g) = v(gπ−1

) for each g ∈ Z. An allocation

rule Y is anonymous if for every v ∈ V, g ∈ Z and permutation π,

Yπ(i)(g
π, vπ) = Yi(g, v)
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for each i ∈ N.

We recall the definitions of two allocation rules which will be useful later. An

allocation rule Y E is said to be egalitarian if for every v ∈ V and g ∈ Z, Y E
i (g, v) =

v(g)/|N |. Note that Y E is anonymous but not component balanced. Given any

component additive v ∈ V, the component-wise egalitarian allocation rule Y CE is

defined by

Y CE
i (g, v) =

v(Ci)

|Πi(g)|

where Ci is the component of g to which the player i belongs. Y CE splits the

value equally if the value function is not component additive. Note that Y CE is

component balanced as well as anonymous.

Efficient Networks

Given a value function v, a network g ∈ Z is strongly efficient if v(g) ≥ v(g′) for

all g′ ∈ Z.

A network g ∈ Z is Pareto efficient relative to a value function v and an allocation

rule Y if there does not exist g′ ∈ Z such that Yi(g
′, v) ≥ Yi(g, v) for all i ∈ N

with strict inequality for some i.

The Environment of Networks

An environment of social networks is represented by G = (N, Z, {ºi}i∈N , {→S

}S⊆N). Here ºi is the preference relation for i ∈ N on Z (induced by some under-

lying value function and allocation rule). For each i ∈ N, aºib means that player

i weakly prefers network a to network b. The strict part of ºi is denoted by ≻i .

The relation →S is the enforcement relation for S ⊆ N . For any a, b ∈ Z, a→Sb

implies that the coalition S can enforce network b from network a. Formally,
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Definition 1 (Jackson and van den Nouweland (2005)) A coalition S can enforce

a network b from a network a if and only if

(i) a link ij ∈ b \ a implies that {i, j} ⊆ S and

(ii) a link ij ∈ a \ b implies that {i, j} ∩ S 6= ∅.

For some coalition S and a, b ∈ Z, if a ≻i b for all i ∈ S then that is written

as a ≻S b.

Page and Wooders (2009) also defined such a framework.

Indirect Domination and the Largest Consistent Set (LCS)

Below we give the definitions only. For the motivation and explanation of these

concepts we refer to Chwe (1994).

Definition 2 (Chwe (1994)) For a, b ∈ Z, b indirectly dominates a, denoted as

b ≫ a, if there exist a0, a1, . . . , am in Z and coalitions S0, S1, . . . , Sm−1 such

that a0 = a and am = b and for j = 0, . . . , m − 1,

(i) aj→Sj
aj+1,

(ii) am ≻Sj
aj.

Definition 3 (Chwe (1994)) A set Y ⊆ Z is said to be consistent if Y = {a ∈

Z| ∀(S, d) ∈ (2N × Z) for which a →S d, ∃ e ∈ Y such that [e = d or e ≫ d]

and e 6≻S a}. The set L ⊆ Z is said to be the largest consistent set (LCS) if it is

consistent and it contains every consistent set.

By Proposition 2 in Chwe (1994), a non-empty LCS exists for every environment

of networks.
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3 The Results

First we show an impossibility result which may be viewed as an exact analogue of

the impossibility result of Jackson and Wolinsky (1996) in the environment with

farsighted players.

Proposition 1 There exists a value function such that for every component bal-

anced and anonymous allocation rule, the largest consistent set (with respect to

the value function and the allocation rule) does not contain any strongly efficient

network.

Proof: The proof is given in the appendix.

We discuss some implications of the result above in the form of the following

two remarks.

Remark 1 Results similar in spirit were obtained by Dutta et al. (2005) and

Herings et al. (2009) as well. Our result not only reinforce those, but also show

that even with an inclusive solution like the LCS, this incompatibility may persist.

The notions of stability used in these papers are quite different from that for the

LCS. And of course, the notion of pairwise stability, being a concept relevant for

myopic players, is quite unrelated to the LCS as well.

Remark 2 Note that if we drop component balance as a requirement, then for

every value function, every strongly efficient network is in the LCS with respect to

the egalitarian allocation rule Y E. In the next proposition we discuss the implica-

tion of dropping anonymity.
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By V̄ we denote the class of value functions defined as follows: V̄ = {v ∈

V |v(g) > 0 if and only if g is not totally disconnected}. Dutta and Mutuswami

(1997) studied this class of value functions.

Proposition 2 There exists a component balanced allocation rule such that for

every v ∈ V̄ , the largest consistent set (with respect to the value function and the

allocation rule) contains at least one strongly efficient network.

Proof: Take a component additive value function v ∈ V̄ . Fix g ∈ Z such that g

is strongly efficient with respect to v. We shall define a component balanced (but

non-anonymous) allocation rule Y such that {g} is internally consistent (see the

Lemma in the proof of Proposition 1 (in the appendix) for the definition of internal

consistency) with respect to Y. Then, by the Lemma in the appendix we are done.

Case 1: Let there exist k ∈ N such that k has no link in g with any other player.

By the definition of V̄ and component additivity, there exists at most one such k.

Take g′ ∈ Z \ {g}.

Subcase (a): If k is linked in some component hk ∈ C(g′) then Yk(g
′, v) = v(hk) and

for every other player j ∈ Πk(g
′), Yj(g

′, v) = 0. For every h ∈ C(g′) \ {hk} fix some

ih ∈ N and set Yih(g
′, v) = v(h). For every j ∈ N\({k}∪{ih ∈ N |h ∈ C(g′)\{hk}}),

Yj(g
′, v) = 0.

Subcase (b): If k is not linked with any other player in g′ then for every h ∈ C(g′)

fix some ih ∈ N and set Yih(g
′, v) = v(h). For every j ∈ N \ {ih ∈ N |h ∈ C(g′)},

Yj(g
′, v) = 0.

Case 2: Suppose g is such that every player is linked in g with at least one other

player. Take g′ ∈ Z \ {g}. For every h ∈ C(g′) fix some ih ∈ N and set Yih(g
′, v) =

v(h). For every j ∈ N \ {ih ∈ N |h ∈ C(g′)}, Yj(g
′, v) = 0.

And in both these cases, Yj(g, v) = Y CE
j (g, v). So, every player who is linked with

some other player in g gets a positive pay-off under Y.
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Now take S ⊆ N and g′ ∈ Z such that g′ 6= g and g→Sg′. Suppose we are in Case 1,

Subcase (a). Note that then S 6= {k}. Let T = N\({k}∪{ih ∈ N |h ∈ C(g′)\{hk}}).

Then g indirectly dominates g′ according to the following sequence of coalitional

moves:

g′→T∅→N\{k}g.

Now suppose we are in Case 1, Subcase (b). Then, again, S 6= {k}. Let T =

N \ ({k} ∪ {ih ∈ N |h ∈ C(g′)}. Then, again, g indirectly dominates g′ according

to the following sequence of coalitional moves:

g′→T∅→N\{k}g.

Thus, for Case 1, {g} is internally consistent.

Similarly, it can be shown that for Case 2 also, {g} is internally consistent.

An immediate and interesting question (in the spirit of Dutta and Mutuswami

(1997)) is whether Proposition 2 can be strengthened: i.e., whether we can find

a component balanced allocation rule such that every strongly efficient network is

in the largest consistent set or whether the LCS is contained in the set of strongly

efficient networks. However, the question, we believe, is still open.

Now, note that the set of Pareto efficient networks with respect to an allocation

rule is usually a superset of the set of strongly efficient networks. Even then, the

LCS and the set of Pareto efficient networks may be disjoint.

Proposition 3 There exists an environment of networks (with a component bal-

anced and anonymous allocation rule) such that the largest consistent set (with

respect to the value function and the allocation rule) does not contain any Pareto

efficient network.
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Proof: Take the following environment which is a slight modification of the one

given in the proof of Theorem 1 in Jackson and Wolinsky (1996).

N = {1, 2, 3}.

For notational convenience we partition Z into the subsets C1 to C4 such that:

C1 = {{12, 23, 13}};

C2 = {g ∈ Z| g = {ij, jk}; i, j, k ∈ N};

C3 = {g ∈ Z| g = {ij}; i, j ∈ N};

C4 = {∅}.

Take the following value function:

v({12, 23, 13}) = 0;

for every g ∈ C2, v(g) = 1 + ǫ; where 0 < ǫ < 0.5.

for every i, j ∈ N, v({ij}) = 1,

v(∅) = 0.

Fix the component balanced and anonymous allocation rule Y as follows.

Y1({12, 23, 13}, v) = Y2({12, 23, 13}, v) = Y3({12, 23, 13}, v) = 0,

for i, j, k ∈ N, Yi({ij, jk}, v) = Yk({ij, jk}, v) = 0.5, Yj({ij, jk}, v) = ǫ;

for i, j, k ∈ N, Yi({ij}, v) = Yj({ij}, v) = 0.5; Yk({ij}, v) = 0,

Yi(∅, v) = Yj(∅, v) = Yk(∅, v) = 0.

For every other value function, Y = Y CE. Note that given the value function and

the allocation rule, the set of Pareto efficient networks is C2. However, routine

calculation (see Chwe (1994)) yields that the LCS for this environment is C3.

However, with Pareto efficiency, the incompatibility between socially optimal

networks and stable networks is less severe. In the proposition below we show that

there is at least one component balanced and anonymous allocation rule, namely

the component-wise egalitarian allocation rule, that ensures that the set of Pareto

efficient networks has a non-empty intersection with the LCS.
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Proposition 4 For every value function there exists a network that is Pareto

efficient as well as an element in the LCS with respect to the component-wise egal-

itarian allocation rule Y CE.

Proof: Take some v ∈ V. If v is not component additive, then by the definition of

Y CE and Remark 1 we are done.

Now suppose v is component additive. The algorithm described below (this is

similar to an algorithm described in Jackson, 2005 (originally due to Banerjee,

1999) selects a network g that is Pareto efficient with respect to Y CE as well as

an element in the LCS. First, we introduce a few pieces of notation. For S ⊆ N,

the set of components that can be formed by taking one or more players in S is

denoted by Z(S). By a(h) denote the average value of a network h. Also, recall

that by P (h) we denote the set of players who are linked in the component h.

The Algorithm:

Step 1: Set G1 := N. Let A1 = {h ∈ Z(G1)|a(h) ≥ a(h′) for all h′ ∈ Z(G1)}. Let

C1 ⊆ A1 be a subset of networks satisfying the properties:

a. For any h, h′ ∈ C1, P (h) ∩ P (h′) = ∅;

b. For every C ′ ⊆ A1 for which it is true that for every h, h′ ∈ C ′, P (h)∩P (h′) = ∅,

| ∪h∈C1
P (h)| ≥ | ∪h∈C′ P (h)|.

That is, in words, C1 is a collection of components such that each element in C1

has the highest average value. Additionally, among all such collections of maximal-

average-valued components, the components in C1 together connect the maximum

number of players.

Step m: Set Gm := N\ (∪h∈Cj ;j∈{1,...,m−1}P (h)). Let Am = {h ∈ Z(Gm)|a(h) ≥

a(h′) for all h′ ∈ Z(Gm)}. Let Cm ⊆ Am be a subset of networks satisfying the

properties:

a. For any h, h′ ∈ Cm, P (h) ∩ P (h′) = ∅;

b. For every C ′ ⊆ Am for which it is true that for every h, h′ ∈ C ′, P (h)∩P (h′) = ∅,
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| ∪h∈Cm
P (h)| ≥ | ∪h∈C′ P (h)|.

Since N is finite, this algorithm terminates in finitely many steps. Let a resulting

set of collections of components be {C1, . . . , Ck}. For j = 1, . . . , k, let Nj = {i ∈

N |i ∈ P (h) and h ∈ Cj}. Let the network g = ∪{h|h ∈ Cj for some j ∈ {1, . . . , k}}

We show below that g is Pareto efficient with respect to Y CE and it is also in the

LCS with respect to Y CE.

Claim 1: g is Pareto efficient with respect to Y CE.

Suppose g is not Pareto efficient with respect to Y CE. This implies that there

exists g′ ∈ Z s.t. for all i ∈ N, Y CE
i (g′, v) ≥ Y CE

i (g, v) and for at least one j ∈ N,

Y CE
j (g′, v) > Y CE

j (g, v). Fix this j. First, note that Y CE
j (g′, v) must be greater than

0 (otherwise, the contradiction is immediate). Now suppose Y CE
i (g, v) = 0 for all

i ∈ N1. Then, again, the contradiction is immediate. Therefore, Y CE
i (g, v) > 0 for

all i ∈ N1. If j ∈ N1, then, again, by the definition of N1 (and the construction

of C1), the contradiction is immediate. Therefore, j /∈ N1. Next we show that

Y CE
j (g′, v) < Y CE

i (g, v) for each i ∈ N1. Suppose not. Then this contradicts the

definition of C1. Now suppose Y CE
j (g′, v) > Y CE

i (g, v) for each i ∈ N2. Then, this

violates the definition of C2. Therefore, for each i ∈ N2, Y CE
j (g′, v) ≤ Y CE

i (g, v).

However, it must be true that Y CE
j (g′, v) < Y CE

i (g, v) for each i ∈ N2. Suppose

not. Then this contradicts the definition of C2. Proceeding in this way, we arrive

at a desired contradiction. Thus, the claim is proved.

Claim 2: g is in the LCS with respect to Y CE.

Suppose not. Then, by the Proposition 2 in Chwe (1994), there must exist g′ ∈ Z

such that g′ ≫ g. We would show that this is impossible. Let, if possible, a sequence

of enforcements by which this indirect domination occurs be the following:

g(= a1) →S1
a2 →S2

. . . →Sm−1
am →Sm

g′,

where for each l ∈ {1, . . . , m}, Sl is a coalition, al is a network and a2 6= a1 without

loss of generality. Clearly, under Y CE, S1 ∩ N1 = ∅ (otherwise, by the definition
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of C1, we would get a contradiction). Then, every component of a1 (i.e., g) from

the collection C1 also remains a component in a2. But then, S2 ∩ N1 = ∅. Us-

ing an identical argument recursively, we get that N1 ∩ (S1 ∪ . . . ∪ Sm) = ∅ and

so, every component of g from the collection C1 also remains a component of g′.

Note that then, under Y CE, S1 ∩ N2 = ∅ (otherwise, by the definition of C2, we

would get a contradiction). Using the above argument recursively we find that

Nj ∩ (S1∪ . . .∪Sm) = ∅ for every j = 1, . . . , k. This leads to a contradiction. Thus,

the claim is proved.

Next, we give a sufficient condition on the value functions which ensures that

there exists an allocation rule for which a strongly efficient network is in the LCS.

Definition 4 (Jackson and van den Nouweland (2005)) A value function v ∈

V is top-convex if some efficient network also maximizes per-capita value among

individuals. Formally, let for coalition S, p(v, S) = maxg∈gSv(g)/|S|. The value

function is top-convex if p(v, N) ≥ p(v, S) for each coalition S.

We refer to Jackson and van den Nouweland (2005) for a discussion of top-

convexity.

Proposition 5 Suppose a value function v is top-convex. Then every strongly

efficient network is in the LCS with respect to the component-wise egalitarian al-

location rule Y CE.

Proof: If v is not component additive, then by the definition of Y CE and Remark

1 we are done.

Suppose v is component additive and let g be a strongly efficient non-empty net-

work. Then the per-capita value of every component of g is p(v,N) (by Jackson

and van den Nouweland (2001), section 4). Note that under Y CE the maximum
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pay-off that any i ∈ N can get in any network in Z is p(v,N). Now suppose g is

not in the LCS. Then, by Proposition 2 in Chwe (1994) there exists g′ in the LCS

such that g′ ≫ g. Also note that by top convexity, every i ∈ N is linked with some

j 6= i in g. But then there cannot exist g′ such that g′ ≫ g.

Remark 3 The model studied in Dutta et al. (2005) differs slightly from the

classical model of Jackson-Wolinsky. In the framework of Dutta et al. (2005) the

value of a component depends on the structure of the entire network and the value

of the whole network is necessarily the sum of the values of its components. How-

ever, the classical Jackson-Wolinsky model allows the value of the whole network

to differ from the sum of the values of its component. As a result, in the model of

Dutta et al., component balance has bite even if the underlying value function is

not component additive. However, as can be easily seen, our impossibility results

(Propositions 1 and 3) are valid in their framework as well.

4 Concluding Remarks

The contribution of this paper is to look at the issue of incompatibility between

stability and efficiency in the environment of networks using perhaps the most

popular solution concept incorporating farsightedness.

Of course, there still remain a few obvious open questions (about which we have

remarked in the body of the paper) that emerge from this work which still remain

unanswered.
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5 Appendix: Proof of Proposition 1

Before proceeding to the main body of the proof, for later use we note the following

fact in the form of a lemma.

Lemma Call a set Y ⊆ Z internally consistent if a ∈ Y implies the following:

∀(S, d) ∈ (2N × Z) for which a →S d, ∃ e ∈ Y such that [e = d or e ≫ d] and

e 6≻S a. If Y ⊆ Z is internally consistent then Y ⊆ L.

Proof of the lemma: (from Chwe (1994)) Let Y ⊆ Z be internally consistent.

Define Λ := ∪{X ⊆ Z| X is internally consistent}. To prove the lemma, it suffices

to show that Λ is consistent. To prove this we need to show that a ∈ Z \Λ implies

that there exists (S, d) ∈ (2N ×Z) for which a →S d and for every e ∈ Λ such that

[e = d or e ≫ d], e ≻S a. Suppose not, i.e., let there exist a ∈ Z \ Λ for which the
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following is true:

∀(S, d) ∈ (2N×Z) for which a →S d, ∃ e ∈ Λ such that [e = d or e ≫ d] and e 6 ≻Sa.

Then clearly, Λ∪{a} is internally consistent which violates the definition of Λ. So,

Y ⊆ Λ ⊆ L.

Now we proceed to the main body of the proof.

Proof of the Proposition 1: Take the following environment which is a slight

modification of the one given in the proof of Theorem 2 in Dutta, Ghosal and Ray

(2005).

N = {1, 2, 3}. For notational convenience later, we partition Z into the subsets

C1 to C4 such that:

C1 = {{12, 23, 13}};

C2 = {g ∈ Z| g = {ij, jk}; i, j, k ∈ N};

C3 = {g ∈ Z| g = {ij}; i, j ∈ N};

C4 = {∅}.

Take the following value function:

v({12, 23, 13}) = 9;

for every g ∈ C2, v(g) = 0;

for every i, j ∈ N, v({ij}) = 8,

v(∅) = 0.

Fix any component balanced and anonymous allocation rule Y. Then, by compo-

nent balance and anonymity,

Y1({12, 23, 13}, v) = Y2({12, 23, 13}, v) = Y3({12, 23, 13}, v) = 3,

for i, j, k ∈ N, Yi({ij, jk}, v) = Yk({ij, jk}, v) = c, Yj({ij, jk}, v) = −2c, where c

is some real number;

for i, j, k ∈ N, Yi({ij}, v) = Yj({ij}, v) = 4; Yk({ij}, v) = 0,
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Yi(∅, v) = Yj(∅, v) = Yk(∅, v) = 0.

Here the unique strongly efficient network is {12, 23, 13}. However, below we show

that whatever the value of c, the LCS, L = {{12}, {23}, {13}}. We consider the

following three cases.

Case 1: c ≥ 4 :

First, we show that the set C3 is internally consistent. Therefore, we are to show

that a ∈ C3 implies the following: ∀(S, d) ∈ (2N × Z) for which a →S d, ∃ e ∈ C3

such that [e = d or e ≫ d] and e 6≻S a. Take x ∈ C3 and let x = {ij}, i, j ∈ N.

Consider (S, d) ∈ (2N × Z) such that x →S d, d 6= x. Then, by Definition 1,

S ∩ {i, j} 6= ∅. If d ∈ C3, then set e = d. If d ∈ C1 ∪ C4 then consider the

enforcement d →{i,j} x and set e = x. Suppose d ∈ C2. Then d is either {lm,mk}

or {lk, km} where l, m ∈ {i, j}, l 6= m, k ∈ N \ {i, j}. In the former subcase

consider the enforcement d →{m} x and set e = x. In the latter subcase, consider

the enforcement d →{k} {lk} and set e = {lk}. Since x ºi y and x ºj y for every

y ∈ C3, we are done. Thus, we show that C3 is internally consistent and so, by

the lemma, C3 ⊆ L.

Next we prove that in fact, C3 = L. Suppose not and let some L ⊃ C3 be the

LCS. First, we claim that L∩C2 = ∅. Take some x (= {ij, jk}) ∈ C2, i, j, k ∈ N.

Consider the enforcement relation x →{j} {ij}. Then {ij}≻jx. Moreover, since

y≻jx for every y ∈ Z \{x}, it follows that there does not exist any e ∈ L such that

[e = {ij} or e ≫ {ij} and e 6≻j x]. Thus, the claim is proved. Next, consider x

from C1∪C4 and the enforcement relation x →{1,2} {12}. Note that for any (S, y)

∈ (2N × Z) such that y 6= {12}, {12} →S y implies that S ∩ {1, 2} 6= ∅. Moreover,

for every e ∈ Z \ C2, {12} º1 e and {12} º2 e. Therefore, there does not exist

e ∈ L such that e ≫ {12}. Since {12}≻{1,2}x, x /∈ L.

Case 2: −2 < c < 4 :
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Note that in this case, for i, j ∈ N, {ij}≻{i,j}g for every g ∈ Z \ C3 and also, for

any g ∈ Z, {ij} ºi g and {ij} ºj g. In this case also, C3 is internally consistent,

i.e., a ∈ C3 implies the following: ∀(S, d) ∈ (2N × Z) for which a →S d, ∃ e ∈ C3

such that [e = d or e ≫ d] and e 6≻S a. For proving this, take x ∈ C3 and let

x = {ij}, i, j ∈ N. Consider (S, d) ∈ (2N × Z) such that x →S d and d 6= x.

By Definition 1, S ∩ {i, j} 6= ∅. If d ∈ C3, then set e = d. If d ∈ Z \ C3 then

consider the enforcement d →{i,j} x and set e = x. Since x ºi y and x ºj y for

every y ∈ C3, we are done. Therefore, by the lemma, C3 ⊆ L.

In this case also, L = C3. To see this, take x ∈ Z \ C3 and consider the en-

forcement relation x →{1,2} {12}. Note that for any (S, y) ∈ (2N × Z), y 6= {12},

{12} →S y implies that S ∩{1, 2} 6= ∅. As noted above, for every e ∈ Z, {12} º1 e

and {12} º2 e. Therefore, there does not exist e ∈ L such that e ≫ {12}. Since

{12}≻{1,2}x, x /∈ L.

Case 3: c ≤ −2 :

Again, first we show that C3 is internally consistent, i.e., we show that a ∈ C3

implies the following: ∀(S, d) ∈ (2N × Z) for which a →S d, ∃ e ∈ C3 such that

[e = d or e ≫ d] and e 6≻S a. Take x ∈ C3 and let x = {ij}, i, j ∈ N. Consider

(S, d) ∈ (2N × Z) such that x →S d and d 6= x. By Definition 1, S ∩ {i, j} 6= ∅. If

d ∈ C3, then set e = d. If d ∈ C1∪C4 then consider the enforcement d →{i,j} x and

set e = x. Suppose d ∈ C2. Then, d is either {lm, mk} or {lk, km} where l,m ∈

{i, j}, l 6= m and k ∈ N \ {i, j}. In the former subcase consider the enforcement

d →{l,k} {lk} and set e = {lk}. In the latter subcase, consider the enforcement

d →{i,j} {ij} and set e = {ij}. Since x ºi y and x ºj y for every y ∈ C3, we are

done. Therefore, C3 is internally consistent and so, C3 ⊆ L.

Next we prove that once again, in this case also, L = C3. Suppose not and let

some L ⊃ C3 be the LCS. To begin with, we claim that L ∩ C2 = ∅. Take some

x (= {ij, jk}) ∈ C2, i, j, k ∈ N. Consider the enforcement relation x →{i,k} {ik}.

22



Suppose, there exists e ∈ L such that e ≫ {ik}. We show below that this is

impossible. Let, if possible, a sequence of enforcements by which this indirect

domination occurs be the following:

{ik}(= a1) →S1
a2 →S2

. . . →Sm−1
am →Sm

e,

where for each l ∈ {1, . . . , m}, Sl is a coalition, al is a network and a2 6= a1 without

loss of generality. Then, by the definition of enforcement relation, S1 ∩ {i, k} 6= ∅.

We consider two subcases. First take the subcase where c < −2. Since S1∩{i, k} 6=

∅ and e≻S1
{ik}, e must be either {ji, ik} or {jk, ki}. Therefore, by the definition

of enforcement relation, j ∈ Sl for some l ∈ {1, . . . , m} and by the definition

of indirect domination, e≻Sl
al. But this is impossible because, for every g ∈ Z,

g ºj {ji, ik} and g ºj {jk, ki}. Next, take the subcase where c = −2. Then,

{ik} ºi g and {ik} ºk g for every g ∈ Z. Therefore, for this subcase also, there

cannot exist e ∈ Z such that e ≫ {ik}. Since {ik}≻{i,k}{ij, jk}, {ij, jk} /∈ L.

Thus, the claim is proved.

Next, take any x ∈ C1∪C4 and consider the enforcement relation x →{1,2} {12}.

Note that for any (S, y) ∈ (2N × Z) such that y 6= {12}, {12} →S y implies that

S∩{1, 2} 6= ∅. By the claim above, L∩C2 = ∅ and for every e ∈ Z \C2, {12} º1 e

and {12} º2 e. Therefore, there does not exist e ∈ L such that e ≫ {12}. Since

{12}≻{1,2}x, x /∈ L.
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