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Abstract

This paper derives the exact joint distribution of the minimal sufficient
statistics in the first-order AR(1) model with Gaussian errors and zero start-
up value. The results are fundamental to an exact distribution theory for the
statistics that are typically of interest in this model.

Key words and phrases: Gaussian AR(1) model, Generalized functions,

*Address for Correspondence: Department of Economics and Related Studies, University of
York, Heslington, York YO1 5DD, UK; e-mail: gf7Q@york.ac.uk



1 Introduction
The simple Gaussian AR(1) model

Y = PYt—1+ & (1)

t = 1,2

5 g eeey

T

e ~ NID(0,0%),490=0

has attracted an enormous interest in both the statistical and econometric literature
over many years. Despite the simplicity of the model, however, and despite many
efforts, very little progress has been made on an exact (fixed T') distribution theory
for the statistics that are typically of interest in (1) (estimators of p and o2, test
statistics, etc.). Probably the best account of the results that have been won in this
context is still the book by T. W. Anderson (1971).

Recently there has been a new interest in the exact distribution theory for the
Gaussian AR(1) model. The first two moments of the maximum likelihood estimator
for p are given by Sawa (1978), Nankervis and Savin (1988) and Vinod and Shenton
(1996). Exact expressions for the statistical curvature, and the covariance matrix
of the minimal sufficient statistics are derived by van Garderen (1997). Forchini
(1998) has studied the properties of the exact density of the ordinary least squares
estimator of p in (1).

The joint density of y = (y1,...,yr) in (1) is

!

) 1
pdf (y;p,0%) = (2m0®) * exp {—@ [s1— 20p+ pQSO}} : (2)

where sg = EtT;ll Y2, s = Zthl y2, and p = Zthl Yye 1 are the minimal sufficient
statistics for the model. Since the density of y is in the (curved) exponential family,
the density of (sg, $1,p) belongs to the exponential family as well (Lehmann (1986),

Section 2.7), and has precisely the form
2 Nn—F 1 2
pdf (30,3172?3/)70 ) = (27“7 ) exp T 9,2 [31 —2pp+p 80} k (s0,81,D),
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where the function k (sg, 1, p) does not depend on the parameters (p, 0?). Note also

that the joint density of (sg, $1,p) can be written as

-z 1
pdf (s0, s1,plp,0°) = () geXp{_ﬁ<81—2pp+p280>}exp{%}

pd‘f <307317p’p = 070_2 = 1)

so that attention can be focused on the joint density of (so,s1,p) for p = 0 and
0? = 1. The functional form of pdf (sg, s1,p|p = 0,0% = 1) is not known, yet, and
an expression for it in terms of generalized functions (a summary of the theory
of generalized functions with all the results of interest is in the Appendix) will be

provided.

2 Joint density of the sufficient statistics
Our approach is based on the further decomposition

pdf (so, s1,plp = 0,02 = 1) = pdf (p|so, s1;p = 0,0% = 1)-pdf (so, s1]p = 0,0% = 1).

The density of (s, $1) is

(81— s0)

pdf (so,sllp =0,0% = 1) -

so that the conditional density of p given sy and sy, with sgs; > p? for p = 0 and
02 = 1, must to be derived. This can be done by first deriving the characteristic
function of p given (so, $1), and then inverting it. This inversion constitutes the
main problem because the characteristic function is written as an infinite series for
which a closed form cannot be found, and which cannot be inverted term by term.
However, if the characteristic function is interpreted as a generalized function, then

term by term inversion is allowed.



2.1 The characteristic function of p given (sg, s;)

In matrix notation p can be written as

1

/
= —y'A
b 2y TY

1
= —JArg+yrer 1y

2
where § = (y1,...,yr_ 1), and
01 0
1 :
4L 1o
210 . .1
00 1 0

is a T x T matrix and er_; is the T'— 1 x 1 vector er_; = (0,0,...,0,1)".

1
Setting § = vsg, so =74 >0, v = g(g’y)*%, v &€ Sy q, and yr = (51 — 30)1/2 h,
h € O (1) delivers

1 1 1
p= Qsov’AT,lv + hsg (s1 — 30)é er 10,

where O (k) denote the group of k x k orthogonal matrices, and Sy is the set of
k-dimensional vectors satisfying v'v = 1. Given p = 0 and 02 = 1, h and v are
uniformly distributed on O (k) and Sy respectively, and are mutually independent
and are also independent of sy and s;. Thus, the characteristic function of p given

sp and sy 1s

1 1
Bpi(s0,51) (L) = / / exp {——itsov’ATlv — ithsg (s1 — 30)% e’Tlv} (dv) (dh)
’ Sp_1 Jo(1) 2
(5)
where (dv) and (dh) are the normalized Haar measures on Sy and O (1) (Muirhead
(1982)).

Integrating out h,

1 1
/ exp {—itsg (s1 — 30)% e’Tflvh} (dh) = cos [tsg (s1— 30)% er |,
o(1)



yields the conditional characteristic function of p,

1

1. 1 1
Bpi(s0,51) (1) = / exp {—§@tsov’ATlv} cos [tsg (s1—s0)2 ep_yv| (dv). (7)
ST -1

The integral over Sr_; is invariant under the transformation of Ayr_ to H' Ar_H,
where H = diag(1,h,1,h,....) € O(T'—1), h € O(1) (note that we could also
choose I = diag (h,1,h,1,....)). This is the same as transforming —3itsov' Ar_jv
to —%itsov’AT,lvh, h € O(1). Therefore, averaging the exponential over O (1) as

before, it can be shown that

1
/ exp {——itSOU/ATlv} (dh) = cos [tsov" Ar_qv],
o(1) 2

therefore the conditional characteristic function (7) simplifies to

1

Bpi(s0,51) (L) = / cos [tsov' Ap_qv] cos [tsg (s1 — 30)% er_ v (dv). (8)
S

Expanding the cosines in power series and integrating term by term, the following

uniformly convergent series can be obtained

2 S 2 (s — s0) ¢ ; .
o =23 (S;!(zi);! =L (i) (9)
0

n=0 j

where
Cnj = / (V' Ap_q0)™" (efp_yv) 2 (v'dv) . (10)
Sr_1
To evaluate (10), note that v € Sp_y can be written as v = e/, H where H €

H (T — 1) has the vector v as its last column. So the integral over Sy 1 can be

interpreted as an integral over O (T'— 1), and

Cnj = / C[Qn] <€T71€/T71H/AT71H>
o(T-1)

Ciji (er-rep_H'er e H) (dH)

[2n], (7] [2n],[J]
CBI (e 1y, exsep ) O (Arv.er16) )

Clantj) (Ir-1)




where (dH) is the normalized invariant measure on the orthogonal group, Cy (+)
denotes a top order invariant polynomial (Muirhead (1982)), C[[JJL[:]] (.,.) is an in-
variant polynomial with two matrix arguments (Davis (1979), Chikuse and Davis

(1986)), and [k] indicates the top order partition of the integer k.

Since
C[[QQZL[JJ]] <€T*1€/Tfl? eTfle/T,1> =1
and
(5 ) ony;
Cianty) Ur-1) = 17W,
<§>2n+j
Cn,j iS
(3)
2 2
B 7n+30[[2:]+[;]] (Ar—1,er1€f 4). (11)

Cn.j - <T 1)
2 J2n+j

Chikuse (1987) gives methods for evaluating the top-order Davis polynomials.
Summing by diagonals, ¢, s,y (t) in (9) can be written as

o0

¢P\(50,51) Zan (50, 51) 2 ) (12)

n=0
where
n <l> 2” J 8 — g J
2)on—; 5 1~ so) [2n—24], 4]

n (30731) = — . -2
7=0 <T21>2n J(QJ) (2n — 27)! [2n—]

<AT717 €T71€/T71> : (13)

The conditional characteristic function is real and even, therefore the density of p

given sg and s; must be symmetric.

2.2 Inversion

The conditional density of p given (so, $1) is obtained by inverting the conditional

characteristic function
1 o0
pdf (p]so, si;p=0,0% = 1) =9 /Rexp {ipt} %an (50, 51) (it>2n dt (14)

—v/S051 < p < /s0s81. Term by term integration is not allowed, because the

integral i Jgexp {ipt} (it)2n dt is not convergent. However, termwise inversion can
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be justified by using the theory of generalized functions (see the Appendix for a
summary and Zemanian (1965) for more details). In other words the density of p
given sp and s; is regarded as a functional, (pdf (p|so, $1;0,1),¢) mapping from a
space of “smooth” functions ¢ (p) into the real numbers. These smooth functions
will be used to “test” the quantity pdf (p|so, s1;p = 0,02 = 1) in the sense that this
is evaluated by averaging it with respect to the testing functions in a finite interval

about p,

D= <pdf (p"SOusl; 07 1) 790> = / pdf (x’s(% 513 07 1) ¥ (aj) da:?
[a,b]

p € |a,b. Using different testing functions ¢, it can infer what the quantity
pdf (p|so, s1;0,1) looks like. The advantage of this approach is that what is “tested”
does not need to be a function at all, and that many operations which are not al-
lowed for functions are legitimate for generalized functions (Zemanian (1965)).
According to Theorem 1 in the Appendix, a series converging pointwise is con-
vergent as a generalized function, and, thus, the inverse Fourier transform can be
taken term by term, and the resulting series is convergent to a generalized function,

too (Theorem 2 in the Appendix). Therefore,

1

pdf (p|so, s1;p = 0, o = 1) = an (S0, $1) o / exp {ipt} (it)*" dt,
T Jr

M 1

an (s0,51) 6% (p)

i
o

where 6™ denotes the derivative of order m of the “delta function” (see the Ap-

pendix), —,/$150 < p < /s150, and ay, (8o, 1) 1is defined in (13).

The joint density of (p, s¢, $1) is, thus

2
pdf (P; S0, S1]p = 0,02 = 1) = T T

I

1 _ s >
(31 - 30) 28" ' exp {—51} exXp {_30} ;an (30, 31) 5em (P)



s > 80>0,

—v5S15%0 < p < 4/S15-

It is important to emphasize again, that the expression (15) for the joint density

of the sufficient statistics is not a function, but a generalized function.

Remarks.

1. Tet S(f) ={teR: f(l) # 0} be the support of f. The support of 5 (1)
is {0} for all &k > 0. However, only a finite linear combination of the delta
function and its derivatives has singular support (i.e. consisting of a point

only). Therefore, expression (15) does not have a singular support.

2. The joint density of (p, so, $1) depends on |p| because 529 (—p) = 529 (p),

and is thus symmetric in p.

3. pdf (p, so, $1) is an “ultradistribution”, i.e. a continuous linear functional on
the space of testing functions whose Fourier transforms are in the space of
complex-valued functions that have continuous derivatives of all order and

are zero outside some finite interval.

4. Tt is difficult to obtain the marginal densities of the statistics of interest from
the joint density of the minimal sufficient statistics, because it is not clear

whether integration and summation can be interchanged.

5. The technique used can be generalized to the case where 1y # 0, and possibly

to multivariate models.

6. Generalized functions might be used to simplify the derivation of asymptotic

expansions. This point is currently under investigation.



7. The idea of deriving the density of p conditional on (sg, $1) can be used to
find the density of other tests statistics. For example, the maximum likelihood

estimator of p, can be written as

1
p 1, 51 :,
==—=_VAr jv+h|——-1 T

r o 5V v <80 > €r v

N[=
N[=

and the {-test statistic as t = (r — p) (5—1 - 7"2)7 (T —2)2.

50

3 Concluding remarks

The result given in equation (3) provides the basis for an exact distribution theory
for the maximum likelihood estimators for p and o2, as well as for other statistics
that are of interest, such as test statistics for various hypotheses about p.

It seems plausible that the methods used in this paper might be capable of de-
livering analogous exact results for higher-order models, with formulae generalizing
equation (3). However, since the number of sufficient statistics in a higher-order

model is larger, the procedure might not be so straightforward in such cases.

Acknowledgements. Thanks are due to Francesco Bravo, Patrick Marsh and
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5 Appendix: Review of Some Theory of Gener-
alized Functions

There are two ways of evaluating a function. The first one is the standard one;
f (z) is evaluated at each particular point z:  — f (z). The second one requires an
averaging of f (x) with respect to another function ¢ (z), say: z — fab f)ot)dt,
x € [a,b]. The last approach leads to generalized functions.

Let D be the space of (testing functions) complex-valued functions ¢ (t) that
have continuous derivatives of all order and are zero outside some finite interval.
A generalized function (f,¢) is a functional f on the space D that satisfies (i)
(lincarity) (f,ady +0s) = a(f,dy) + B, dy) for any ¢y and ¢, in D and any
complex numbers « and (3; and (ii) (continuity) for any sequence of testing functions
{¢,},° | that converges in D to ¢ (t) the sequence of numbers {(f, ¢,) }~, converges
to (f,¢). The space of generalized functions defined on D is denoted by D'.

Example 1. Let f (t) be a locally integrable function (i.e. Lebesgue integrable
over every finite set). A regular generalized function can be generated by (f,¢) =
Jo () d(t)dt. Note that if (f, ¢) = (g,¢) then f =g a.e..

Example 2 The delta function, 6, is defined by the equation (6,¢) =
Jo0(t) o (t)dt = ¢(0). Note that the delta function is not a function. If f(t)
is a piecewise continuous function such that [; |f ()|dt < oo and [; f(t)dt =1
then xf (xt) — 6 () as ©z — oo.

The derivative [’ of a distribution f is defined by (f’, ¢} = — (f,¢'). In general
the k-th derivative is defined by <f("), ¢> = <f, (—1)" ¢(n)>.

Example 3. The first derivative of the delta function & is defined by (&', ¢) =
—(6,¢") = —¢'(0).

The delta function can be approximated by the function v, (1) = ¢ (é) / ffa ¢ (%) dx,
where ( (1) = { gxp{ 1 } i ;i; i 1 , as a — 0. The derivatives of the delta

#—1
function can be approximate by the derivative of 7, (¢).
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Definition 1 The sequence of distributions {f,}," | converges in D' if, for every ¢
in D, the sequence of numbers {(fn,¢)} .~ converges. If {f,},°, converges in D’

to the functional f, then [ is also a distribution.

Theorem 1 (Zemanian (1965), Theorem 2.3-1).Let { f,, (t)},-_, be a sequence of lo-
cally integrable functions that converges pointwise almost everywhere to the function
f (t) and let all the functions f, (t) be bounded in magnitude by a locally integrable
Junction. Then, f (1) is locally integrable and the corresponding sequence of reqular

generalized functions { f, (t)}° | converges in D’ to the reqular generalized function

f().

Note that if {f,, (¢)},", is a sequence of locally integrable functions which con-

verge uniformly on R then it converges as a generalized function.

Example 4. Tet f, (1) =>" (@' Then fut)— >0 (ot} _ exp {at}.

i=0 4! =0 4!

Let F denote the Fourier transform. Then, the Fourier transform of a generalized
function f is defined by (F (f),¢) = (f,F (¢)). Let Z be the space of testing
functions whose Fourier transforms are in D, and denote Z’ the space of continuous

linear functionals on Z (ultradistributions). Then the following result holds.

Theorem 2 (Zemanian (1965), Theorem 7.8-1). The Fourier transformation is
a continuous linear mapping of D' onto Z'. Hence if Y " g, converges in D' to
g, then F(g) = > .07 F (gv), where the last series converges in Z'. The inverse

Fourier transformation has the same properties as a mapping of Z' onto D’.
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