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Abstract

Saddlepoint approximations for the finite sample density and distribution of the es-
timate of the autoregressive parameter in an AR(1) model are derived. We directly
extend the results of Phillips (1978) and Lieberman (1994), to nonstationary cases,
by allowing unit and explosive roots and the presence of deterministic components,
in particular time trends and drifts. A tractable algorithm is presented, leading to
a general form which is unchanged whether the model is stationary, non-stationary
or contains deterministic components. The accuracy of the approximation is demon-
strated, in particular in comparison with established asymptotic results.

Key Words: Autoregression, trend and difference stationarity, saddlepoint ap-

proximation.



1 Introduction

Expressions for the density and distribution, whether approximate or exact, of the
estimator of the autoregressive parameter have been extensively sought throughout
the time series literature. For example, in the simplest zero mean, stationary AR(1)
model asymptotic normality has been established and Edgeworth type corrections
to the asymptotic density presented, for example in Phillips (1977). However, in
unit root and explosive cases asymptotic densities are functionals of standard Wiener
processes (see White (1958) and Phillips (1986)). The situation is further complicated
since introducing exogenous regressors, for example a drift or time trend, into unit
root models, re-establishes asymptotic normality (see Evans and Savin (1984) or
Hamilton (1994)). As a consequence, asymptotic analysis of the properties of the
autoregressive estimator in some general dynamic regression model is somewhat of
a piecemeal process since the asymptotic distribution depends upon; i) whether the
model is stationary, and ii) if it is not stationary, whether trends and drifts are
included.

In this paper we present a simple unified approximation for the density and distri-
bution of the estimator, whose functional form is independent of whether the model
is stationary and/or if exogenous regressors are included. The approximation tech-
nique is a variant on the saddlepoint approximation introduced by Daniels (1954),
and which is becoming established as excellent approximations to the finite sample
density and distribution of various estimators and tests. The statistical applications
of the technique seem to fall into one of two categories. Approximations for likelihood

based statistics may be constructed through exponential tilting of the likelihood, for



example see Durbin (1980) or Reid’s (1988) review. Alternately, approximations may
be constructed through the exploitation of the properties of the particular statistic
itself, for example ratios of quadratic forms, as in Marsh (1998). For a comprehensive
exposition of the technique, examples and the seminal references, see Jensen (1995).

This paper presents a saddlepoint algorithm for approximating the density and
distribution of the estimate of the autoregressive parameter in simple non-stationary
time series, including both difference and trend stationary processes. This directly
generalises similar algorithms presented and investigated by Daniels (1956), Phillips
(1978), Wang (1992) and Lieberman (1994) for the simplest, stationary AR(1). Those
papers found the approximation a significant improvement on the first-order asymp-
totic result and the competing higher-order Edgeworth expansion. This paper finds
that such accuracy is preserved, even when the nature of the autoregression is more
complicated, in particular when we allow unit roots with drifts or time trends. Since
it can also be established that the estimate itself forms a basis for exact inference, i.e.
invariance with respect to nuisance parameters, any improved distribution theory, in
such widely applied models, seems worthwhile.

Moreover, since we are approximating the finite sample density and distribu-
tion, through approximation of their exact inversion formulae, the general form of
the approximation is seen to be the same for stationary and non-stationary models,
whether regressors are included or not. Of more relevance is the performance of the
approximate distribution, that is how well it approximates the distribution of the
estimator in moderate sample sizes. While asymptotic representations in the unit
root case, Abadir (1993) perform well, in stationary models with autoregressive para-

meter approaching unity and unit root models with drift, the asymptotic distribution



is inadequate in this regard. Some insight as to why this occurs is detailed in the
studies of the curvature of autoregressive models by Ravishanker, Melnick and Tsai
(1990) and van Garderen (1999). Performance of the saddlepoint approximation, in
terms of both accuracy and implementation, will be demonstrated to be far less case
sensitive than the respective limiting asymptotic approximations.

The plan for the paper is as follows. The following section details the particular
model under consideration, the estimator itself and consequently presents the main
result, the leading term saddlepoint approximation. Section 3 presents an analysis of
the approximation, in particular comparisons between the ‘exact’ density, obtained
through Monte Carlo simulation, the limiting asymptotic result, and the saddlepoint,
for particular configurations of the model. Section 4 concludes, and an appendix
details the precise form of the algorithm, implemented through the symbolic package

Mathematica, in order to make the procedure much more transparent.

2 Model and Approximations

Formally this paper is concerned with inference on the autoregressive parameter in

the following general model
yz:'zgﬁ_*—pyzfl_‘_gz ) Z:L?N ) (1)

where yo = 0, &; ~ NID(0,0%) and the z; are k x 1 vectors containing any relevant
deterministic (or exogenous) variables. Extension to the case yo # 0 is trivial on
application of the transformation in Evans and Savin (1984, Section 2). Defining the

sample vector as y = {yi,...,yn}', it is easily seen that

y~ N (T, 28,0°5(p)), (2)
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where

z1 1 0 0
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and hence the likelihood is
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Further, estimating 3 and o2, temporarily supposing p fixed, the profile likelihood is
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Hence we obtain the usual maximum likelihood estimator (MLE) for p

. YMyBy
P = Y B M,By

where My, = I—Z7(Z'Z) 7" and B is the lag-operator matrix with ones on the upper
off diagonal and zeros elsewhere.

Hypothesis tests on p may be performed, for example, either simply using the

MLE or through the profile log-likelihood ratio

w(pe) = 2(n[Lp ()] — WL (o).
In particular, invariance to parameter transforms of the form

I} a—+bs
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a,b € R, c € RT, is readily shown for both p and w(py), see for example Dufour and
Kiviet (1997). Moreover, at no stage will we place any restrictions upon the range of
p in the context of the general approximation. Now, both p and w(py) may be seen to
be ratios of quadratic forms in y. In this paper we present the approximation only for
p, in order to extend the analysis of Phillips (1978) and Lieberman (1994), although
the algorithm may easily be adapted for the density and distribution of w(po).

In order to implement the saddlepoint approximation for p, for any 3, p and o2,

we write

= I (MaB + BMAT; T o/ Au(p)o (5)
T V@ YBMBT v

where now v ~ N(Zf3,Iy). As a consequence of Gurland (1948), the density and

distribution, at any point ¢, of the estimate are

1 T+i00 8X(917 92)
. = AL A do
fp(q) 2me /T*iOO 891 0o——qb1 b
1 i x (01, —qb))
Fﬁ((]) - 27T’L /T*iOO 91 d91’ (6)

where x(61,0,) is the joint characteristic function of the quadratic forms v'A;(p)v

and v’ As(p)v. For the estimator in (5) we have

8X(91a‘92) - /ZQIZ 1 -1 e
8—9192:7(191 = e exp{2<TT[G ZpB 7' 1n|G|)}><
Tr(G As(p) (G Z2B3'Z" + 1)),
X0 —a0) = e Fep D (Tl zor 7 -G}, )

where G = G(0;) = I —26,F, and F = A;(p) — qA2(p). Upon substitution of (7) into
inversions (6), application of the saddlepoint technique of Daniels (1954) is straight-

forward.



Theorem 1 Under the conditions of the process described in (1) the leading term

saddlepoint approximations take the form

A B2 o TG 288 2N T [G Ay (p) (G2 288 7 + 1
fo = il )T G Ao J.
\G]l/Q\/éler (G-1F)(26-1 2852 + 1]

In (1—;» | (8b)

= sign(f, \/TT G-1ZpR 2" — |G,

Fyla) = u—eﬁ7%+eﬁﬂm¢@—

=Bl =

where G = G(6,),

3>

>

= 20, \/Tr 22612807 + 1]
and the saddlepoint 0, solves the saddlepoint defining equation

Tr|G'F(G 2887 +1)| = 0. (9)

The derivation of the approximations follows that of Marsh (1998), sections 3
and 4, see also Jensen (1995). In particular, note that we may write the saddlepoint

defining equation as

N Ji us _
2sm L — 201 f; (1 e 291fj>] - (10

where the f; are the ordered eigenvalues of F' and the u; are elements of u = RZf3,
where the N X N matrix R diagonalises F. The eigenvalues are continuous in ¢ and

(10) is a polynomial of degree 2N in 6, hence choosing the unique solution

1 1
he (2fN 2f1>

see Daniels (1954), ensures that first the approximations exist and second, are con-

tinuous in ¢, by the implicit function theorem.
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If 3 =0 and |p| < 1, then the approximations correspond to those given by
Phillips (1978) and Lieberman (1994), except of course that here y, is fixed. Here,
we do not focus upon the asymptotic nature of the approximation, although Marsh
(1998) demonstrates that in the far tails the order of error of the first correction to
(8a) is O(N 1) in general. Of more interest is the numerical accuracy of (8a) and
(8b), and the following section contains an analysis of the finite sample performance

of the approximations.

3 Analysis of the Approximations.

This paper is specifically concerned with inference in non-stationary time-series. In
order to assess the accuracy of the approximation we consider three specific parameter
configurations for the general model given in (1). In particular we characterise these

by

M1 : 620
My, : f#0and z =1 forall:

Ms : |p|<1,8%#0andz =i for all 7.

M; encompasses the pure stationary, random walk and explosive processes, My the
non-zero mean stationary, random walk with drift and directed explosive processes
and M3 trend nonstationary processes. The analysis can be extended to more general
models, for instance including both a constant and trend, or any other set of relevant
deterministic (or ancillary) variables, by simply including such terms in the z;.

Consider first M : y; = y;_1 + &;, the pure random walk. It is well known (White



(1959)) that the standardised MLE converges in distribution

N W(1)? -1

~

E(P— 1) —y \/gfol W2(S)d87

where W (.) denotes the standard Weiner process on [0, 1]. Moreover, Abadir! (1993)

derives an explicit closed form for the density and distribution, his equations (2.14)
and (2.15) respectively.
For model My : y; = B+y;_1 +¢; the corresponding limiting result is (see Hamilton

(1994), Chapter 17)
N3 /2

. 302
\/§ (p—l) —>dN<0,ﬁ>,

and for the sake of comparison, approximation (8a) may be transformed such that

the approximate density of xk = %(ﬁ — 1) at a point k is

) = 1,0) %2

where j = 1,3/2 for § = 0 and 3 # 0 respectively. Implementation of the saddlepoint
algorithm for the particular statistics was performed using the symbolic algebra pack-
age Mathematica. The Appendix contains the approximation generating programme
itself. Tables 1 through 6 then give the relevant quantiles obtained from 250000 Monte
Carlo replications, the saddlepoint and limiting approximations (with o2 = 1).
Some immediate points arise. Standardisation was for comparative purposes only,
however for an arbitrary AR(1) process asymptotic results for the MLE depend on
the particular parameter configurations. The form of the saddlepoint approximation
is invariant to such changes. Equally, what constitutes a ‘large’ or a ‘small’ sample

size is also dependent upon the parameter configuration. As a consequence in the

IThe author is indebted to Karim Abadir for making available the Gauss code for enumeration

of the limiting approximation.



random walk model convergence is obtained much more quickly than in the drift case
(and also stationary models). Differing sample sizes were thus taken for the basis of
comparison. The saddlepoint seems, in an absolute sense, to perform well in small
samples, and exceptionally so in a relative (to the limiting) sense.

For the case M3 : y; = (Bt + py; 1 + &, figures 1 through 4, plot the saddlepoint
and the simulated densities for the non-standardised MLE. Again 250000 replications
were performed in the Monte Carlo study. We consider cases where § = 1/4 and
p=0,1/3,1/2,2/3, for a sample size of 10 and again, the approximation performs
well in comparison with the simulated, although the performance tends to suffer when

p becomes large.



Tables

Each table contains the quantiles of the ‘exact’ distribution, obtained via simu-
lation, and the approximations from the Saddlepoint (equation (8b)) and Limiting

distributions, given by equation (11) for model M; and by equation (12) for model

M.
Table 1: M;; N =5
Quantile 1 2.5 5 10 50 90 |95 97599
Exact -5.56 | -4.69 | -3.89 | -3.03 | -0.45 | 1.07 | 1.55 | 2.08 | 2.85
Saddlepoint | -5.57 | -4.59 | -3.78 | -2.86 | -0.31 | 1.14 | 1.63 | 2.20 | 3.08
Limiting -9.67 | -7.37 | -5.67 | -4.02 | -0.62 | 0.68 | 0.93 | 1.13 | 1.43
Table 2: M;; N =10
Quantile 1 2.5 5 10 50 90 |95 97599
Exact -7.57 | -6.12 | -4.92 | -3.63 | -0.57 | 0.76 | 1.05 | 1.34 | 1.70
Saddlepoint | -8.01 | -6.46 | -5.22 | -3.83 | -0.81 | 0.81 | 0.99 | 1.20 | 1.57
Limiting -9.67 | -7.37 | -5.67 | -4.02 | -0.62 | 0.68 | 0.93 | 1.13 | 1.43
Table 3: My; =1/4& N =10
Quantile 1 2.5 5 10 50 90 95 97.5 199
Exact -26.85 | -23.70 | -20.67 | -17.28 | -6.81 | -0.17 | 1.44 | 2.94 | 4.71

Saddlepoint | -25.04 | -22.58 | -20.32 | -17.66 | -8.49 | -2.01 | -0.67 | 0.44 | 2.01

Limiting -16.12 | -13.58 | -11.40 | -8.88 | 0.00 | 8.88 | 11.40 | 13.58 | 16.12
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Table 4: My; =1/4& N =20

Quantile 1 2.5 5) 10 50 90 95 97.5 |99
Exact -44.69 | -37.76 | -32.08 | -25.97 | -8.60 | -0.05 | 1.72 | 3.26 | 4.78
Saddlepoint | -48.38 | -41.42 | -35.10 | -28.14 | -9.80 | -0.12 | 1.69 | 3.27 | 4.84
Limiting -16.12 | -13.58 | -11.40 | -8.88 | 0.00 | 8.88 | 11.40 | 13.58 | 16.12
Table 5: My; 5=1/2& N =10
Quantile 1 2.5 5) 10 50 90 95 197599
Exact -24.41 | -20.41 | -17.00 | -13.22 | -3.70 | 1.18 | 2.59 | 3.92 | 5.78
Saddlepoint | -22.58 | -20.34 | -18.33 | -15.87 | -7.37 | -1.34 | 0.44 | 1.34 | 2.90
Limiting -11.39 | -9.60 | -8.06 |-6.28 | 0.00 |6.28 | 8.06 | 9.60 | 11.39
Table 6: M,; 3=1/2& N =20
Quantile 1 2.5 5) 10 50 90 |95 [97.5]|99
Exact -32.06 | -24.10 | -18.28 | -13.42 | -3.30 | 1.92 | 3.25 | 4.48 | 6.17
Saddlepoint | -32.86 | -28.71 | -23.82 | -19.30 | -5.34 | 2.46 | 3.69 | 5.34 | 6.57
Limiting -11.39 |1 -9.60 | -8.06 |-6.28 | 0.00 | 6.28 | 8.06 | 9.60 | 11.39
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Figures
These figures plot the ‘exact’ density function of p, obtained via simulation and
represented by the solid line, while the Saddlepoint approximation, equation (8a) is

represented by the dotted line. In each case the sample size was fixed and N = 10.

1.4

Fig. 2: M3 with p=1/3

12



l.25

0.7%

Fig. 4: M3 with p =2/3

13




4 Conclusions

The saddlepoint technique appears to offer a convenient, tractable and accurate ap-
proximation to the finite sample density and distribution of many estimators and
tests. In this case an arbitrary AR(1) process was analysed and the saddlepoint
approximation for the estimate of the autoregressive parameter was derived. The nu-
merical accuracy found by Phillips (1978) and Lieberman (1994) is seen to hold even
in the nonstationary and non-central cases. Not only is the performance good with
respect to both the ‘exact” and competing limiting approximations, but computation
itself is swifter than Monte Carlo studies, and comparable to limiting representations,

such as derived in Abadir (1993).

Appendix: (Mathematica Code)

The following is the code for the implementation of the general saddlepoint ap-

proximation, written for Mathematica 3.0.

<<Statistics'ContinuousDistributions
nn = Input[’Sample Size”];
al = Input[” AR parameter”];

be = Input|’Constant/Trend coefficient”];

zz. = Table[N[be * i], {i,1,nn}|

Mx = IdentityMatrix|[nn| - Outer|Times, zz,2z]/(zz.2z);

B = Table[Switch[i-j,-1,1,0,0,1,0, ,0], {i,1,nn}, {j,1,nn};

A = Table[Switchli-j,-1,1,1/2,0,0,1/2, ,0], {i,1,nn}, {j,1,nn}];

T = Table[Switch[i-j,-1,0,0,1,1,-al, ,0], {i,1,nn}, {j,1,nn}|;

14



T1 = Inverse[T]; T2 = Transpose[T1];
B1 = Mx.B; B2 = Transpose[B].Mx.B;
Al = (T2.(B1+4Transpose|B1]).T1)/2;
A2 = T2.B2.T1,

Flq_] = Chop[Al - q A2];

S = Outer|[Times,zz,7zz] ; lambda = -zz.2z/2;

Do

{rli] , sljl} = SchurDecomposition[N[F|j]]];

u[j] = Transpose[rj]].zz;

fi[j] = Sort[Table[sj][[i,i]], {i,1,nn}]};

p[t_,j] = (1/2) * (Sumu[j][[if]~2 * (1 - 2 t fi[j][[i]])~(-1), {i,1,nn}] - Sum[Log[1 - 2
A, {i,Lnn}]);

pl[t_.j] = DIp[t.], tl;

elfj] = 1/(2 Max(fi[j]]) ; e2[j] = 1/(2 Min[fi[j]});

saplj] = FindRoot[p1[t,j], {t,1/2 * (el]j] + e2[j])}];

saplj] =t /. sapl[j]; , {j,-1,1.5, 0.01}]

Do|
pplfj] = (1/2) * (Sum[ufjj[[i]]~2 / (1 - 2 sap[j] fi[j][[i]]), {i,1,0n}] - Sum[Log[1 - 2
sap|j] filj][[i[]}; {i,1,0n}]);
| = 2% Sum|(ufj]{fi}]~2 * fi[jl[[i]}~2) / (1 - 2 sap[j] fi[j]{[i]})"3, {i,L,nn}] +
Sumlfi[j[[i}]~2 / (1 - 2 sap(j] fifj][[i]]]))~2, {i,1,nn}];
Glj] = IdentityMatrix[nn] - 2 saplj] F[j];

pp2|j

M1[j] = Inverse|G][j]].A2;

M2[j] = Inverse[G[j]].S + IdentityMatrix|nn];

15



M3[j] = MI1[j].M2]j];
qlj] = Sum[M3[j][[L,i]], {i,1,nn}];

dens|j] = (Exp[lambda] * Exp[pp1[j]] * qlj]) / (Sart|4 Pi pp2]j]]);, {j,-1,1.5,0.01}]

norm = Sum/|dens|j], {j, -1,1.5, 0.01}]]
density = Table[{j, dens[j]/(norm * 0.01), {j,-1,1.5,0.01}];

ListPlot|density, PlotJoined->True, PlotStyle->Dashing[{0.01}]]
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