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Empirical Likelihood Based Inference with

Applications to Some Econometric Models¤

Francesco Bravoy

University of York

Abstract

In this paper we analyse the higher order asymptotic properties of the em-

pirical likelihood ratio test, by means of the dual likelihood theory. It is shown

that when the econometric model is just identi¯ed, these tests are accurate to

an order o (1=n), and this accuracy can always be improved to an order O
¡
1=n2

¢

by means of a scale correction, as in standard parametric theory. To show this,

we ¯rst develop a valid Edgeworth expansion for the empirical likelihood ratio

test under a local alternative in terms of an \induced" local alternative. As

a by-product of the expansion, we ¯nd an explicit expression for the Bartlett

correction in terms of cumulants of dual likelihood derivatives which is slightly

di®erent from the standard adjustment reported in the literature on Bartlett

corrections of the empirical likelihood ratio. We then highlight the connection
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between the empirical likelihood method and the bootstrap by obtaining a valid

Edgeworth expansion for a bootstrap based empirical likelihood ratio test. The

theory is then applied to some standard econometric models and illustrated by

means of some Monte Carlo simulations.
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1 Introduction

The method of empirical likelihood is introduced in Owen (1988) as a semiparamet-

ric likelihood technique for testing hypothesis and (by inversion) building con¯dence

regions for a vector of parameters characterising a given nonparametric (i.e. distrib-

ution free) statistical model. It can be cast in the theory of least favourable family

(Stein, 1956) developed for the bootstrap by Efron (1981), who showed that nonpara-

metric inference problems can be reduced to parametric ones by applying parametric

techniques to an appropriate smooth sub-family of distributions (assumed to con-

tain the true unknown distribution F generating the data) supported on the sample.

The parametric subfamily used by the empirical likelihood is asymptotically least

favourable (i.e. the information of the resulting parametric subfamily at the true

distribution is no greater than for the original nonparametric one), being in fact a

multinomial likelihood assumed to have atoms at the observed data (see Section 2,

below). This fact implies that in terms of distributional approximation, empirical

and parametric likelihood are very similar, as it will become clear in the remainder of

the paper. By pro¯ling this multinomial likelihood with respect to certain constraints

representing the only information available about F , one gets pro¯led or implied (us-

ing Back and Brown's (1993) terminology) probabilities which can then be used to

construct a nonparametric likelihood ratio test which shares many higher order as-

ymptotics properties of its fully parametric analog, such as Bartlett correctabilty as

shown in DiCiccio, Hall and Romano (1991).

In this paper we make the following contributions: ¯rstly we develop a valid

Edgeworth expansion for the empirical likelihood ratio test under a local alternative in

terms of an \induced" local alternative. As a by-product of this expansion, we ¯nd an

explicit expression for the Bartlett correction under the null hypothesis. Secondly, we

emphasise the connection between the empirical likelihood method and the bootstrap

by obtaining a valid Edgeworth expansion for a bootstrap based empirical likelihood
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ratio. The approach we follow is based on an arti¯cial likelihood1 characterisation of

the empirical likelihood ratio which allows to fully exploit the higher order asymptotic

machinery developed for regular parametric models.

The class of econometric models that can be cast into the empirical likelihood

framework, is quite wide: as it will become clear in the next sections, the method

of empirical likelihood is in fact theoretically justi¯able provided that a set of (arbi-

trary) estimating equations can be speci¯ed. We shall refer to this set of estimating

equations as a generalised score function: moment based estimates, least squares,

and more generally M and Z type estimators are examples of generalised scores, GS

henceforth.

It should be noted that our arguments are valid for exactly identi¯ed models

(i.e. the dimension of the GS equals the dimension of the unknown parameter); the

introduction of nuisance parameters or considering overidenti¯ed models do change

the higher order asymptotics quite dramatically as recently shown by Lazar and

Mykland (1999) and Bravo (1999), respectively.

The remainder of the paper is organised as follows: in the next section, after a brief

review of the basic empirical likelihood method, we emphasise its interpretation as an

arti¯cial likelihood by using Mykland's (1995) dual likelihood theory and develop the

necessary stochastic expansions for analysing the higher order asymptotic properties

of the empirical likelihood ratio test. The coverage and power properties are then

derived via standard Edgeworth expansion theory, as shown in Section 3. In Section

4 we develop the bootstrap approach to empirical likelihood inference and show the

e®ectiveness of the proposed higher order asymptotics corrections with some Monte

Carlo experiments. Section 5 is a conclusion.

Our arguments are based on the assumption that the data come in the form of

an i.i.d. random sample. We can relax this assumption by allowing the data to

be sampled conditionally on some ¯nite k £ 1 vector of weakly exogenous variables,
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say wi =
·
wi1 ::: wik

¸T
(with T denoting transpose), by considering empirical

likelihood ratios for triangular arrays. All the following results are still valid under

some additional moments conditions.

Notice that throughout the rest of the paper we use (unless otherwise stated)

tensor notation and the summation convention (i.e. for any two repeated indices,

their sum is understood). All the indices r; s; ::: run from 1 to q, and the sum
P
is

always intended as
Pn
i=1 unless otherwise stated.

2 The Relationship between Empirical and Dual

Likelihood

Suppose that fzigni=1 is a sequence of independent m £ 1 random vectors from an

unknown distribution Fµ depending on an unknown parameter vector µ 2 £ µ Rq.

Let Pµ; Pn be the probability measures associated with Fµ and Fn (where Fn = 1=n

is the empirical distribution function), and assume that Pµ ¿ Pn.

The information about Fµ is available in the form

EFµfr (zi; µ) = 0;

for some speci¯ed value µ0 of µ, with the GS fr (zi; µ) : R
q £ £ ! Rq, q £ 1 vector

of known measurable functions. Assume that the following conditions hold with

probability 1 (w.p.1 henceforth):

GS1 EFµfr (zi; µ) = 0 for a unique µ
¤ 2 int f£g,

GS2 i) EFµ0fr (zi; µ0) fs (zi; µ0) is positive de¯nite and ii) EFµ@fr (zi; µ) =@µ
s is of full

column rank q:

Assumptions GS1 and GS2 are standard; in particular,GS2ii) is made in order to

assure (local) identi¯ability for the underlying parameter of interest µ.
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The problem of testing the hypothesis H0 : µ = µ0 can be formulated in terms of

¯nding a probability measure Pµ which is consistent with the constrainEPµ0fr (zi; µ0) =

0 and is closest, as measured by the Kullback-Liebler divergence, to the empirical

measure Pn. This is essentially what the empirical likelihood technique does. By the

restriction Pµ ¿ Pn, it turns out that the original constrained estimation of Pµ can

be expressed as a simple maximisation of a multinomial likelihood supported on the

data over the empirical counterpart of the constraint EFµfr (zi; µ0) = 0.

Let pi denote the ith element of the unit simplex in R
n and bpi = Fn be the

nonparametric maximum likelihood estimator for pi. The empirical likelihood ratio

function for testing the hypothesis H0 : µ = µ0 is then given by solving the following

program:

LR (µ0) =2 =sup
pi

nX
lognpi j pi ¸ 0;

X
pifr (zi; µ0) = 0;

X
pi = 1

o
: (1)

Let ch fSg denote the convex hull for the set S µ Rq and k¢k be the Euclidean norm;
assume now that w.p.1:

E1 0 2 ch
½
fr (z1; µ0) ::: fr (zn; µ0)

¾
for n su±ciently large,

E2 EF kfr (z1; µ)k 3 <1;

it then follows (from E1) that LR (µ0) exists and it is positive2 (hence the dis-

tribution Fµ0 attaining the supremum is unique). The required implied probabilities

satisfying (1) can be found by a standard Lagrange multiplier argument, and are

given by:

pi (¸
r (µ0)) = 1= (1 + ¸

r (µ0) fr (zi; µ0))n

where ¸r (µ0) is a q£ 1 vector of Lagrange multipliers. Moreover, by assumption E2,
following Owen's (1990), we can show that LR (µ0) =2

d! Â2 (q) + o (1) that it is a

nonparametric version of Wilks' theorem. For notational simplicity, let ¸r (µ0) = ¸
r.

An empirical likelihood ratio test for the hypothesis H0 : µ = µ0 is based on

Wµ0 (¸) =2 = ¡
X
lognpi =

X
log (1 + ¸rfr (zi; µ0)) (2)
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which depends only on the Lagrange multipliers ¸r which become therefore the pa-

rameters of interest. This last observation is the starting point of the dual likelihood

approach to empirical likelihood inference. Testing the hypothesis H0 : µ = µ0 can be

thought of as testing the dual hypothesis H¤
0 : ¸ = 0; such a test can be formulated

as in standard parametric inference with a dual likelihood ratio type test:

max
¸
Wµ0 (¸) =2 =

³
Wµ0 (0)¡Wµ0

³b̧´´
=2 =Wµ0=2:

Indeed, following Mykland's (1995) approach, we can consider the empirical log-

likelihood function Wµ (¸) as an arti¯cial log-likelihood: it is in fact a dual likelihood

in ¸. It is easy to see that, subject to integrability conditions, EF¸ expWµ0 (¸) = 1

(more generally for ¸ # 0, EF¸ expWµ0 (¸) ! 1), and Bartlett type identities as

developed by Mykland (1994) hold for ¸ to ¯rst order. Let us introduce some notation:

let URv denote the vth mixed derivative array with respect to the dual parameter ¸:

URv =
@vWµ0 (¸)

@¸r1@¸r2 :::@¸rv

with Wµ0 (¸) de¯ned as in (2), for any set of indices 1 · r1; r2; :::; rv · q in the set

Rv. Evaluating the resulting derivatives at the null dual hypothesis H¤
0 : ¸ = 0, it is

straightforward to see that:

Ur1r2:::rv j¸=0= (¡1)v¡1 (v ¡ 1)!
X
fr1 (zi; µ) :::frv (zi; µ) . (3)

One of the most interesting feature of the dual likelihood approach to empirical

likelihood theory is given by the existence of Bartlett type identities for the dual

parameter ¸ which relate, as in parametric likelihood theory, linear combinations of

expectations of the URv arrays de¯ned in (3). Speci¯cally, under the appropriate

regularity conditions (see assumption D3 below), for any set Rv of indices, we have

that:
X

R
EURviURvj :::URvk = 0 (4)
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where the sum is over all partitions Rvj j ::: j Rvk of the set Rv. As shown in the
next section, this is an important result, because one way of proving the Bartlett

correctability of the statistic (2) can be based on the Bartlett type identities in (4).

Let ·Rv = EURv , ·Rvr ;Rvs = EURvr ;URvs etc. denote the joint moments and

cumulants of the UR's, all assumed to be O (n). For example, consider the (usual)

third Bartlett identity

·rst + [3]·r;st + ·r;s;t = 0;

where [3]·r;st = ·r;st + ·s;rt + ·t;rs and in general the symbol [k] indicates the sum

over k similar terms obtained by suitable permutation of indices; using (4) one gets

E
³X

fr (zi; µ)
X
fs (zi; µ)

X
ft (zi; µ)

´
= [3]E

³X
fr (zi; µ)

X
fs (zi; µ) ft (zi; µ)

´
¡

2E
³X

fr (zi; µ) fs (zi; µ) ft (zi; µ)
´

i.e. a third order Bartlett type identity for the dual likelihood (2).

In order to deal simultaneously with accuracy (i.e. size and coverage probabilities)

and power properties of the empirical likelihood ratio test, we consider local analysis

by specifying a Pitman alternative Hn : µn = µ0 + eµ=n1=2 ( eµ is a non random

q £ 1 vector such that: 0 < eµT eµ < 1). The alternative hypothesis Hn induces a

(local) dual alternative of the form H¤
n : ¸n =

ȩ=n1=2, hence in order to examine

the local power of an empirical likelihood ratio test we should be considering the

augmented hypothesis Ha
n : ±n = ±0 + ±

0
=n1=2 with the 2p£ 1 vector ±n =

·
eµ ¸

0
¸T
.

However, given the particular functional form of the dual likelihood (and hence of its

derivatives), following Chesher and Smith's (1997, p.636) argument (see also Mykland

(1995, p. 411)), it is easy to see that we can focus on the following local alternative

H¤
n : ¸

r
n = ·rs

f̧s=n1=2. (It should be noted that we are implicitly assuming that the

density of the empirical likelihood test under the alternative is in the same parametric

subfamily of the density under the null hypothesis).

We now derive a stochastic expansion for the empirical likelihood ratio test under

the sequence of dual local alternatives H¤
n. Note that all the following inequalities
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should be intended as componentwise.

Let ¡¿ := ¡ (0; ¿ ) be an open sphere on A¸ with radius ¿ > 0, f (z1; µ0) =·
Ur Urs Urst Urstu

¸
be a vector in Rk with k =

4P
a=1

³
q+a¡1
a

´
and ° a positive

constant; assume that the following regularity conditions hold on some compact set

A¸ of the sample space for which assumptions GS1, GS2 and E1 hold w.p.1:

D1 Interchanging di®erentiation with respect to ¸ and integration with respect to

z is allowed in Wµ0 (¸), and sup
¸2¡¿

E jf (z1; µ0)j4+° < 1

D2 sup
¸2¡¿

sup
k¸¤k·¿

j@®Wµ0 (¸
¤) =@¸r1:::@¸rv j5+° < 1; jr1 + :::rvj = ® = 5;

D3 E
¯̄
¯URviURvj :::URvk

¯̄
¯ < 1 for any partition Rvj j ::: j Rvk of the set Rv (see (4)).

Assumptions D1 and D2 are standard in higher order asymptotics, ensuring that

the various error bounds of the asymptotic expansions given in the next section are

uniform over compact subsets of A¸. First notice that under D1 and D2, we have for

® = 1; 2; 3 and 0 < ¯ < 3=8

P¸
³
j@®Wµ0 (¸) =@¸

r1:::@¸rv ¡E (@®Wµ (¸) =@¸
r1:::@¸rv)j =n1=2 > ±n¯

´
= o (1=n) ; ± > 0

for jr1 + :::rvj = ®, uniformly in A¸. It then follows by Chebyshev' s inequality that

P¸
³
j@®Wµ0 (¸) =@¸

r1:::@¸rv ¡E (@®Wµ (¸) =@¸
r1:::@¸rv)j =n1=2 > ±0n¯

´
= o (1=n) ; ±0 > 0

P
¸

³
jRnj > j¸rj4 ±00n¯

´
= o (1=n) ; ±00 > 0

for

jRnj · j¸rj4 sup
k¸¤¡¸k·k¸k

¯̄
¯@4Wµ0 (¸

¤) =@¸r1 :::@¸rv
¯̄
¯ =24n; jr1 + :::+ rvj = 4.

Then, following Bhattacharya and Ghosh's (1978) approach, it is possible to show

that on the set A¸, the maximum dual likelihood estimator b̧
MDL satis¯es the dual

likelihood equations @Wµ0 (¸) =@¸
r = 0 with PA¸ probability 1¡o (1=n) (by von Bahr's
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inequality). Also notice that the resulting maximiser is unique given the concavity of

the objective function in ¸:

Finally, assumption D3 implies that the Bartlett type identities hold to ¯rst order.

As we are dealing with asymptotic expansions under a local alternative, it is con-

venient to express the dual likelihood derivatives (3) in terms of nomalised derivatives

at µn; let

Zr = (Ur ¡ n·r) =n1=2; Zrs = (Urs ¡ n·rs) =n1=2; Zrst = (Urst ¡ n·rst) =n1=2; :::

(5)

be a sequence of Op (1) centered random arrays, under D1 and D2.

Some straightforward algebra shows that b̧
MDL admits the following stochastic

expansion:

¸r = ¡·rsZs + f̧r +
³
·rs·tuZstZu ¡ ·uvw·ru·sv·twZsZt=2

´
=n1=2 + (6)

³
¡·rs·tu·vwZstZuvZw + ·uvw·ru·sv·twZsZtuZv¡

·rs·tu·vwZsuwZtZv=2¡ ·rs·tw·uz·vz·wzzZstZuZv=2 +

·vwzz·
rv·sw·tz·uzZsZtZu=6¡

·r0s0 t0·u0v0w0·
rr0·ss

0
·t

0u0·vv
0
·ww

0
ZsZvZw=2

´
=n+ ³=n3=2;

= ¤+ ³=n3=2

where ¸r = n1=2çrMDL and ·
r;s is the matrix inverse of ·r;s and the remainder ³

satis¯es P¸
³
j³j > »nn1=2

´
= o (1=n) for some sequence »n ! 0; »nn1=2 ! 1 as n !

1. We can then use Çibisov's (1972) general result to show that the Edgeworth

expansion for ¸ (up to the order o (1=n)) is equal to that for ¤ on the set B de¯ned

in Appendix B.

To derive now an asymptotic expansion for W , we Taylor expand the empirical

likelihood ratio about b̧
MDL, obtaining (after a further Taylor expansion about the

normalised deviation n1=2´r = f́r =
³
¸r ¡ f̧r

´
),

W=2 = ¡·rs¸r¸s=2¡
³
Zrs + ·rst ét + ·rst¸t=3

´
¸r¸s=

³
2n1=2

´
¡

³
Zrst ét¡
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Zrst¸
t=3 + ·rstu étf́u=2¡ ·rstu¸tf́u=3 + ·rstu¸t¸u=12

´
¸r¸s= (2n) + op (1=n) :

Plugging the stochastic expansion for the maximum dual likelihood estimator (cf. 6)

into this last expansion, we obtain the required stochastic expansion for the empirical

likelihood ratio under a local alternative:

W = ¡
³
Zr ¡ ·rr0 f̧r0

´ ³
Zs ¡ ·ss0 f̧s0

´
·rs +

³
¡·rst·ru·sv·twZuZvZw=3+ (7)

·rt·suZrsZtZu ¡ Zrsf̧rf̧s + ·rstf̧rf̧sf̧t=3
´
=n1=2 +

³
¡

³
·tuZrtZu + ·rtu·

tt0·uu
0
Zt0Zu0=2

´ ³
·vwZsvZw + ·svw·

vv0·ww
0
Zv0Zw0=2

´
·rs+

·rstu·
rr0·ss

0
·tt

0
·uu

0
Zr0Zs0Zt0Zu0=12¡ ·ru·sv·twZrstZuZvZw=3 +

Zrstf̧rf̧sf̧t=3¡ ·rstuf̧rf̧sf̧t f̧u=12
´
=n+ op (1=n)

In order to characterise the higher order asymptotic behaviour of W , we consider its

(signed) square root version Wr: working with Wr is in fact extremely convenient

for the justi¯cation of Bartlett corrections. As ·rs = ¡ P
fr (zi; µ) fs (zi; µ) we can

replace ¡·rs with ·r;s, whence we can ¯nd a q £ 1 vector Wr

Wr = Zr0
³
·r

0;r
´1=2

+ f̧r0·1=2
r
0
;r
+

³
Zr0sZ

s=2 + ·r0 stZ
sZt=6¡ (8)

Zr0s
f̧s=2¡ ·r0stZsf̧t=6 + ·r0stf̧sf̧t=6

´ ³
·r

0;r
´1=2

=n1=2 +
³
Zr0 stZ

sZt=6 + 3Zr0 sZuv·
s;u·t;vZt=8+

³
·r0stu=8 + ·r0st0·u0tu·

t0;u0=3
´
ZsZtZu=3 +

5·s;t·tuvZr0sZ
uZv=12¡ ·s;u·t;v·uvwZr0Zst f̧w=4¡

·s;tZr0Zstu
f̧u=6¡ ·s;tZr0sZtu f̧u=8¡

³
·r0stu=2 + ·

v;v0·r0sv·v0tu
´
ZsZt f̧u=12 + Zr0stf̧sf̧t=6 +

³
·s;t·stuv + ·

s;t·t
0;u0·stt0·u0uv

´ f̧uf̧vZr0=24 + ·
s;t·tuvZr0s

f̧uf̧v=12¡
³
·r0stu + ·

s0;t0·r0 ss0·t0tu=3
´ f̧sf̧t f̧u=24

´ ³
·r

0;r
´1=2

=n+ op (1=n) ;

with Zr = ·r;sZs and (·
r;s)1=2 is the matrix square root of the inverse symmetric

matrix ·r;s, such that W =WrWs±
rs + op (1=n).
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It is interesting to note that the signed square root of the empirical likelihood

ratio test belongs to the general class of (parametric) tests described in Chandra and

Joshi (1983).

In the next section we analyse the higher order properties of W . By ¯nding a

valid Edgeworth expansion, we show that an ® level coverage error for the con¯dence

region R® = fµ0 :W · c®g with the constant c® : Pr (Â2 (q) < c®) = ® is o (1=n); we
then show that this rate can be improved, by means of a Bartlett correction, to an

order O (1=n2).

3 Higher Order Asymptotics for the Empirical Like-

lihood Ratio Test

Our higher order asymptotic analysis begins with evaluating the ¯rst four cumulants

of Wr, from which the cumulants of W are readily obtained. Since the signed square

root is approximated by simple functions of the random arrays ZRv , we need to

evaluate their asymptotic moments in order to obtain an asymptotic expansion of

Wr. Similarly to Lawley (1956), it is not di±cult to see that under our assumptions,

the following holds (up to o (1=n)):

E (ZRvZRw) = ·Rv ;Rw ; E (ZRvZRwZRx) = ·Rv ;Rw;Rx=n
1=2;

E
³
ZRvZRwZRxZRy

´
= [3]·Rv;Rw·Rz ;Ry + ·Rv ;Rw;Rx;Ry=n;

E
³
ZRv1:::ZRvk

´
= O

³
1=n(k¡2)=2

´
for k ¸ 5

After lengthy algebra, using the relations between moments and cumulants, (see

for example McCullagh (1987, p. 31)), and the Bartlett type identities as de¯ned in

(4) to simplify where possible, we obtain the following approximate cumulants:

kr = f̧r0·1=2r0;r +
³
k2r0=n

1=2 + k3r0=n
´ ³
·r

0;r
´1=2

+ o (1=n) ; (9)

kr;s = ±rs +
³
k2r0;s0=n

1=2 + k3r0;s0=n
´ ³
·r

0;r
´1=2 ³

·s
0;s

´1=2
+ o (1=n) ;
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kr;s;t = k3r0;s0;t0
³
·r

0;r
´1=2 ³

·s
0;s

´1=2 ³
·r

0;r
´1=2

=n + o (1=n) ;

kr1;:::;rv = o (1=n) v ¸ 4;

where kr = E (Wr), kr;s = COV (Wr;Ws), etc. with

k2r0 = ¡·r0;s;t·s;t=6 + ·r0stf̧sf̧t=3; k3r0 =
³
¡·s;u·t;v·r0;s;t·u;v;w f̧w=6¡ ·s;t·r;s;t;u f̧u=24+

³
¡·r0stu=4 + ·s

0;t0·r0ss0·t0tu=18
´ f̧sf̧t f̧u

´
; k2r;s = ·r0;s0;t

f̧t=3;

k3r0;s0 =
³
(¡·r0;s0;t;u=6 + ·r0t;s0u=2¡ 4·r0;s0;tu=3)·t;u ¡ (10·r0tv·s0uw=3¡

4·r0;t;v·s0uw=3 + ·r0;t;v·s0;u;w=36)·
t;u·v;w + 5·r0;s0;t·uvw·

t;u·v;w=3 +

¡ (5·r0;s0;t;u=6 + 2·r0;s0;tu=3¡ ·r0;s0tu=3) f̧t f̧u ¡ 2·r0;t;u·s0vw·t;uf̧v f̧w=9

¡·r0;s0;t·uvw·t;uf̧v f̧w=3
´
;

k3r0;s0;t0 = ¡·r0;s0;t0;u f̧u=2 + ·r0;s0;t0·uvw·
u;v f̧w=12 + ·r0;s0;u·t0vw·u;v f̧w=2:

Notice that the order of magnitude of the higher order cumulants kr1;:::;rv for v ¸ 5

is deduced by applying the general formulae of James and Mayne (1962). Also, the

third and fourth cumulants are 0 up to o
³
1=n1=2

´
and o (1=n) respectively, as in

standard parametric theory.

Having characterised the order of magnitude of the ¯rst four cumulants of the

signed square root of empirical likelihood ratio test, we can derive its Edgeworth

expansion. The expansion for the distribution of the empirical likelihood ratio test

under a local alternative is then obtained from Wr by using the transformation Â :

Wr !WrWs±
r;s.

Let gq;¿ (x) and Gq;¿ (x) denote the density and the distribution function of a

noncentral chi-square random variate with q degrees of freedom and non centrality

parameter ¿ . Also, letrkgq;¿ (x) be the kth (double) di®erence operator applied to the

density gq;¿ (x) (i.e. rkgq;¿ (x) =
Pk
j=0 (¡1)j

³
k
j

´
gq+2(k¡j);¿ (x). The following lemma

will be used in Theorem 2 below; essentially, it expresses the density of noncentral

\generalised" quadratic forms in normal vectors in terms of linear combinations of

noncentral chi-square random variates and it is of its own interest:

13



Lemma 1 Let Áq (°
r; ±rs) be the multivariate normal distribution with mean vector

°r =
·
°1 ::: °q

¸
and identity covariance matrix ±rs, and bRv be a qv dimensional

array of constants not depending on n (i.e. br; brs; :::), v = 1; :::4. Also let hRv be the

vth order Hermite tensor de¯ned by (¡1)v @r1:::@rvÁq (°r; ±rs) (where @rv = @=@wrv),
whose structure is reported in the Appendix for completeness. Assume that

L1 the dominance condition
R
sup
t2N

j@ºÁq (°r; ±rs) exp (wr±rsts)j dx < 1 holds w.p.1.

on an set N of t = 0.

Then the following holds:

brhrÁ (°r; ±rs) = br°rrgq;¿ (x) ; (10)

brshrsÁ (°r; ±rs) = brrrgq;¿ (x) + brs°r°sr2gq;¿ (x) ;

brsthrstÁ (°r; ±rs) = [3] brss°rr2gq;¿ (x) + b
rst°r°s°tr3gq;¿ (x) ;

brstuhrstuÁ (°r; ±rs) = [3] brrssr2gq;¿ (x) + [6] b
rrst°s°tr3gq;¿ (x) +

brstu°r°s°s°ur4gq;¿ (x) ;

where ¿ = °r°r and [k] indicates sum over k terms obtained by permuting the indices.

Proof. See Appendix A.

Let

Br;s = (¡·r;s;t;u=6 + ·rt;su=2¡ 4·r;s;tu=3¡ 20·rtv·suw·v;w=3+ (11)

8·r;t;v·suw·
v;w=3 + 10·r;s;t·uvw·

v;w=3) ·t;u:

We can now prove the following theorem.

Theorem 2 Let ¶2 = ¡1; assume that the vector f (x1; µn) de¯ned in Section 2 sat-
is¯es the following Cram¶er's condition:

lim sup
ktk!1

¯̄
¯E exp

³
¶tT f (x1; µn)

´¯̄
¯ < 1

14



Then, there exist constants ªjk (not depending on n), such that the following holds

(uniformly over compact subsets of ȩ):

sup
u2R+

¯̄
¯̄
¯̄P¸n (W · u)¡

2X

j=0

4X

k=0

³
1=nj=2

´
ªjk

uZ

¡1
gq+2k;¿ (x) dx

¯̄
¯̄
¯̄ = o (1=n) (12)

where ¿ = °r°s·r;s, and

ª00 = 1; ª10 = ¡ (·r;s;t + 2·rst) f̧rf̧sf̧t=6; ª11 = (¡·r;s;t + ·rst) f̧rf̧sf̧t=3;

ª12 = ·r;s;tf̧rf̧sf̧t=6; ª20 = (·r;t;v·s;u;w + 5·rtv·suw) f̧rf̧sf̧t f̧uf̧v f̧w=72 +

(¡·r;t;v·s;u;w=18¡ 5·r;s;t·uvw=72 + ·r;t;v·suw=12)·r;sf̧t f̧uf̧v f̧w +

(¡·r;s;t;u=2 + ·rstu=4 + ·r;s;tu=3¡ ·r;stu=6) f̧rf̧sf̧t f̧u + (5·r;s;t·u;v;w=24+

5·r;t;v·suw=12 + 5·r;s;t·uvw=24)·
r;s·t;uf̧v f̧w + (11·r;s;t;u=24+

+·r;s;tu=3¡ ·r;stu=6)·r;sf̧t f̧u +Br;sf̧rf̧s=2¡Br;s·r;s=2

ª21 = ¡ (·r;s;v·t;u;w + 2·rtu·svw) f̧rf̧sf̧t f̧uf̧v f̧w=18 + (7·r;s;t·u;v;w=4+

+·r;s;t·uvw=3 + ·r;t;v·s;u;w=18 + 2·r;t;v·suv=9 + ·rtv·suw=9)·
r;sf̧t f̧uf̧v f̧w +

(5·r;s;t;u=6 + ·rstu=4 + 2·r;s;tu=3¡ ·r;stu=3) f̧rf̧sf̧t f̧u + (¡11·r;s;t;u=24¡

¡·r;s;tu=3 + ·r;stu=6¡ ·r;s;t·uvw·t;u=3¡ 2·r;t;v·suw·t;u=3
´
·r;sf̧t f̧u ¡

Br;sf̧rf̧s +Br;s·r;s=2;

ª22 = (·r;s;v·t;u;w=12 + ·rtu·svw=18) f̧rf̧sf̧t f̧u f̧v f̧w + (¡5·r;s;v·t;u;w=24+

+·r;t;v·s;u;w=12)·
r;sf̧t f̧uf̧v f̧w + (¡5·r;s;v·tuw=12¡ 7·r;t;u·s;v;w=18)·u;wf̧rf̧sf̧t f̧u ¡

¡
³
·r;s;t;uf̧rf̧s=6 + ·r;s;tuf̧rf̧s=3¡ ·r;stuf̧rf̧s=6 + ·r;s;t;u·r;s=3¡ ·rt;su·r;s=4

+2·r;s;tu·
r;s=3) f̧t f̧u +

³
¡5·rtv·suw·t;u·v;w=3¡ 7·r;t;v·s;u;w·t;u·v;w=72+

7·r;t;u·svw·
t;v·u;w=72 + 7·r;s;t·uvw·

t;u·v;w=8
´ f̧rf̧s;

ª23 =
³
¡·r;s;v·t;u;w f̧v f̧w=18 + 5·r;s;t·uvw·v;w=72 + ·r;s;v·tuw·v;w=12¡ ·r;s;t;u=12

´ f̧rf̧sf̧t f̧u;

ª24 = ·r;s;v·t;u;w f̧rf̧sf̧t f̧uf̧v f̧w=72

Proof. See Appendix B.
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Theorem 3.2 above gives a valid (in Bhattacharya and Ghosh's (1978) sense)

second order Edgeworth expansion for the empirical likelihood ratio test under a

contiguous alternative. Let Tz® = IfW > z®g denote the z® level empirical likelihood
ratio test (where the constant z® is such that Pr

³
Â2q (¢) > z®

´
= ®, and If¢g is the

indicator function); it then follows that the local power ¼W of Tz® is given by: ¼W =

Pr (Tz® = 1 j H¤
n : ¸ = ¸n). In the next corollary we give a second order asymptotic

expansion for ¼W .

Corollary 3 (Local Power Function for W ) Assume that the condition set forth

in Theorem 3.2 holds. Then the second order power function for the empirical likeli-

hood ratio test is:

¼W = 1¡Gq;¿ (z®) + C1 (z®) =n1=2 + C2 (z®) =n++o (1=n) (13)

with the constants C1 (z®) and P2 (z®)

C1 (z®) = ª10

1Z

z®

gq;¿ (x) dx+ª11

1Z

z®

gq+2;¿ (x) dx+ª12

1Z

z®

gq+4;¿ (x) dx;

C2 (z®) = ª20

1Z

z®

gq;¿ (x) dx+ª21

1Z

z®

gq+2;¿ (x) dx+ª22

1Z

z®

gq+4;¿ (x) dx+

ª23

1Z

z®

gq+6;¿ (x) dx+ª24

1Z

z®

gq+8;¿ (x) dx

and the various ªjk are as in Theorem 2.

Proof. Immediate, since (11) is a direct consequence of expansion (12), and

Z

wrwr¸z®
Áq (w

r; °r) dw = 1¡Gq;¿ (z®) :

It is interesting to note that the power function depends (to second order) also on

the constant Br;s·r;s de¯ned in (11). As it will become clear in the next theorem and
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its corollary, this constant can be used to improve the order of the approximation

of the distribution of the empirical likelihood ratio through to O (1=n2) . Hence

according to the sign and magnitude of this constant, we should expect that the

uncorrected test statistic could perform better in terms of power that the corrected

one. However, no general conclusion can be drawn from our analysis.

We now focus on the higher order asymptotic behaviour of the empirical likeli-

hood ratio test under the null (dual) hypothesis H¤
0 : ¸

r = 0. First note from (9)

that the third and fourth order cumulants of the signed square root Wr of W are

O
³
1=n3=2

´
and O (1=n2), respectively. This order of magnitude of the (higher or-

der) cumulants of Wr is the crucial feature of the empirical likelihood method, as

the Bartlett correctability for the density of its square depends essentially on the

higher order cumulants; in the next theorem, we give an asymptotic expansion for

the empirical likelihood ratio test under the null hypothesis.

Theorem 4 Let ¶2 = ¡1; assume that the vector f (x1; µ0) de¯ned in D2 satis¯es the
following Cram¶er's condition:

lim sup
ktk!1

¯̄
¯E exp

³
¶tT f (x1; µ0)

´¯̄
¯ < 1

Then there exists constants ª0jk (not depending on n) such that the following holds:

sup
u2R+

¯̄
¯̄
¯̄P0 (W · u)¡

1X

j=0

2X

k=0

³
1=nj

´
ª0jk

uZ

¡1
gq+2j (x) dx

¯̄
¯̄
¯̄ = o (1=n) (14)

where

ª000 = 1; ª011 = ¡Br;s·r;s=2; ª012 = B
r;s·r;s=2:

Proof. The proof is similar to Theorem 2; the only di®erence is that under the null

hypothesis, we can exploit the symmetry of the standard normal distribution together

with the orthogonality property of the Hermite tensors to infer that the O
³
1=n1=2

´

term vanishes, as well as the integral
R
Rq h

rs (w)Áq (w) dw (for r 6= s) The validity of

17



expansion (13) follows by using Chandra's (1985) Theorem which holds for all Borel

subset C of C satisfying:

sup
C2C

Z

(@C)²
gq;¿ (x) dx = O (²) ; ² # 0:

Theorem 4 gives a valid second order Edgeworth expansion for the empirical

likelihood ratio test under the null hypothesis. It is interesting to note that the

signed square root of the empirical likelihood is N (0; ±rs) + O
³
1=n3=2

´
(in terms

of a formal Edgeworth expansion) as in standard parametric theory. Moreover, by

examining the structure of the expansion, it is easy now to see that adjusting the test

statistic W by a scale constant of the form (1 +B0=n) where B0 = Br;s·r;s=q makes

the second order term vanish.

Corollary 5 (Bartlett Correction for W ) Under the conditions set forth in The-

orem 3.4, then the following holds:

sup
u2R+

¯̄
¯̄
¯̄P0 (W= (1 +B

0=n) · u) ¡
uZ

¡1
gq (x) dx

¯̄
¯̄
¯̄ = o (1=n) : (15)

with B0 (cf. (11)) the Bartlett correction factor for the empirical likelihood ratio test.

Proof. Immediate given the expansion (14) and hence omitted.

Remark 1 It should be noted that the approximation error o (1=n) is obtained by

considering a valid Edgeworth expansion for W . In terms of a formal Edgeworth

expansion, the error can be replaced by O (1=n2) given the odd-even property of the

third order Hermite tensors (Barndor®-Nielsen and Hall, 1988). (Of course by an

appropriate strengthening of moments, we can still obtain a valid Edgeworth expansion

to the order o
³
1=n3=2

´
).
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Remark 2 It should also be noted that the Bartlett adjustment as given in (11) di®ers

from the \standard" adjustment obtained by DiCiccio et al. (1991), being expressed

in terms of expectations of product of derivatives of a dual likelihood (see e.g. Lawley

(1956)) as opposed to simple moments. This fact should not come as a surprise

though, given the \likelihood" approach adopted in this paper.

In the next section, we analyse some applications of empirical likelihood method

to some econometric models.

4 Some Econometric Applications

So far we have seen that for a given data set, if the hypothesised model admits a

GS, then the use of empirical likelihood methods is theoretically justi¯able. We ¯rst

discuss how we can estimate the Bartlett correction.

As noted in Remark 2 of the previous section, the Bartlett adjustment (10) is

characterised by the presence of expectations of products of derivatives of a dual

likelihood. This latter fact implies that the estimation of B0 itself is more complicated

as we need to estimate these product of derivatives. Under the additional assumption:

D4 The vector f (x1; µ0) de¯ned in D2 satis¯es the following moment condition

E kf (xi; µ0)k8 < 1,

we can consistently estimate the Bartlett factor B0 (i.e. the consistency follows

by a straightforward application of Chebyshev' s inequality) by introducing the ar-

ray »Iº for any set of indices i; j; ::: in Iº and 1 · i; j; ::: · n such that its co-

e±cients satisfy the criterion of unbiasedness and are given by the general formula

(¡1)v¡1 (º ¡ 1)!= (n ¡ 1)(º¡1)with º · n and (n¡ 1)(º¡1) = (n¡ 1) (n¡ 2) ::: (n¡ º + 1)
(see McCullagh (1987, Chapter 4) for more details). Let f ir denote the (i; r)th compo-

nent of the matrix f ir; dropping temporarily the summation convention for the indices
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i; j; :::, the sample analog of the various components of the Bartlett adjustment are

cKr;s =
X

ij

»ijf irf
j
s =n;

cKrst =
X

i

f irf
i
sf
i
t=n;

cKr;s;t =
X

ijk

»ijkf irf
j
s f

k
t =n

cKrt;su =
X

ij

»ijf irf
i
tf
j
s f

j
u=n;

cKr;s;tu =
X

ijk

»ijkf irf
j
s f

k
t f

k
u=n;

cKr;s;t;u =
X

ijkl

»ijklf irf
j
s f

k
t f

l
u=n

and are evaluated at any root n consistent estimator of µ. The sample (i.e. the

feasible) version of the Bartlett correction is:

cB0 =
³
¡cKr;s;t;u=6 + cKrt;su=2¡ 4cKr;s;tu=3¡ 20cKr;t;v

cKsuw·
v;w=3+ (16)

8cKr;t;v
cKsuw

dKv;w=3 + 10cKr;s;t
cKuvw

dKv;w=3
´ dKr;s dKt;u=2

It should be noted that replacing the theoretical correction with its sample ver-

sion does not a®ect the (formal) O (1=n2) order of approximation. A simple Taylor

expansion about µ0 shows in fact that:

cB0 = B0 + Cr (µ)U r=n1=2 +Op (1=n)

(whereCr (µ) = (@B0=@µr) jµ=µ0) which implies that the di®erence betweenW= (1 +B0=nq)
and W=

³
1 + cB0=nq

´
is given by the following integral:

Z
Áq (w

r; ±rs)wrwrCs (µ)wsdw=n3=2

which is again 0 by symmetry (Barndor®-Nielsen and Hall, 1988).

As the computation of the sample adjustment is rather complicated, an alternative

approach to achieve higher order asymptotic re¯nements to the limiting distribution of

the empirical likelihood ratio test seems preferable. We propose to use the bootstrap

method. The bootstrap calibration can be implemented in two di®erent ways: we

can either bootstrap the distribution of W or the Bartlett correction B0 itself. Both

methods relies essentially on the following theorem, which shows that bootstrapping

the distribution of W under the null hypothesis leads to the same level of accuracy
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of the Bartlett corrected W . Let fx¤i gni=1 denote a bootstrap sample obtained by
the original sample fxigni=1 . Let also f¤r (x¤i ; µ) denote a centered bootstrap GS;
recentering here is essential as it makes the boostrapped GS unbiased conditionally

on the original sample. Let f¤ (z1; µ0) =
·
U ¤r U¤rs U¤rst U ¤rstu

¸
be the bootstrap

vector analogous to the one described in Section 2. Assume that with bootstrap

probability P ¤¸ 1 (w.b.p.1) the following holds

BE1 0 2 ch
½
f¤r (x

¤
1; µ0) ::: f ¤r (x

¤
n; µ0)

¾
for n su±ciently large

which justi¯es the existence and positiveness of a bootstrapped empirical likeli-

hood ratio for the parameter µ.

Assume also that w.b.p.1.

BD1 sup
¸2¡¿

E jf ¤ (z1; µ0)j4+° < 1

BD2 sup
¸2¡¿

sup
k¸0k·¿

j@®Wµ0 (¸
0) =@¸r1:::@¸rv j5+° < 1; jr1 + :::rvj = ® = 5;

BD3 E
¯̄
¯̄U¤RviU

¤
Rvj
:::U¤Rvk

¯̄
¯̄ < 1 for any partition Rvj j ::: j Rvk of the set Rv (see (4)).

We can then prove the following theorem:

Theorem 6 (Bootstrap empirical likelihood test) Under conditions BE1, BD1,

BD2 and BD3, assuming that.

lim sup
ktk!1

¯̄
¯E exp

³
¶tT f ¤ (x1; µ0)

´¯̄
¯ < 1

holds, then conditional on the original sample Â, there exist constants ª¤jk (k = 1; 2)

(not depending on n) such that the following holds:

sup
u2R+

¯̄
¯̄
¯̄P

¤
0 (W

¤ · u)¡
1X

j=0

2X

k=0

³
1=nj

´
ª¤jk

uZ

¡1
gq+2k (x) dx

¯̄
¯̄
¯̄ = o (1=n) : (17)
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Proof. See Appendix C.

Let z¤® be now a constant such that P
¤
¸ (W

¤ ¸ z¤®) = ® (i.e. an ® level for the boot-

strap test W ¤). Recalling Remark 1, we can deduce that the formal approximation

error is actually O (1=n2) : We can then state the following corollary:

Corollary 7 (Higher order accuracy for W ¤) The level of the empirical likelihood

ratio test with bootstrap corrected critical value z¤® is given by:

P0 (W ¸ z¤®) = ®+O
³
1=n2

´
: (18)

Proof. By direct comparison of expansion (13) with its bootstrap analog, as the

di®erence ªjk¡ ª¤jk = op (1), it follows that

sup
z2R+

jP0 (W ¸ z)¡ P ¤0 (W ¤ ¸ z)j = O
³
1=n2

´
;

and hence the results follows immediately replacing z with z¤®.

As originally suggested by Hall and LaScala (1991), the bootstrap distribution

W ¤ of W can be used to estimate directly a bootstrap based Bartlett correction, say

Bb. Speci¯cally, let nb denote the number of bootstrap replications. Then a bootstrap

based Bartlett correction can be found by solving the equation:

nbX

B=1
W ¤
B = q (1 +Bb=n) (19)

for Bb. It should be noted that Bb
p! B0 for nb ! 1, as it can easily deduced by the

expansion (17).

We now turn to some examples that will illustrate the applications of the empir-

ical likelihood method to some econometric problems.

EXAMPLE 1. Moment condition models
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We consider the case where the assumed (unconditional) moment restrictions are

of intrinsic interest (for example they might have been derived by economic theory)

and there is no parametric speci¯cation of the data generating process; in this set-up

the GS is given by the vector of moment conditions itself. Given the unconditional

nature of the problem, the bootstrapped centered moment condition is

f¤r (x
¤
i ; µ) = f (x

¤
i ; µ)¡ E¤f

³
x¤i ;

bµ
´

where bµ is a simple moment estimator. The following model, which can be related to

real business cycle models and is adapted from Burnside and Eichenbaum (1994), is

analysed:

Ef (xi; µ0)
T = E

·
x21i ¡ µ10 x22i ¡ µ20 ::: x2qi ¡ µq0

¸
(20)

The q = 5 elements of the vector x are either standard normal or are t (5) distributed,

and the null hypothesis to be tested areH0 : µ
T
0 =

·
1 :: 1

¸
and µT0 =

·
¹2 :: ¹2

¸

(¹2 = 5 (¡ (1=2) ¡ (5=2))
¡1 (¡ (3=2))2 = 5=3), respectively. Tables 1 and 2 report the

empirical sizes of the original empirical likelihood ratio, the feasible Bartlett corrected

analog (16) and its bootstrap based counterpart (18) for 0:10, 0:05 and 0:01 nominal

sizes.

Tables 1 and 2 here

Notice that both corrected tests improve upon the standard ¯rst order asymp-

totics based empirical likelihood ratio test. The bootstrap based correction seems to

perform slightly better that the empirical one, but this fact is hardly surprising given

the notorious di±culty to estimating empirical cumulants. Also notice that as the

sample size grows the relevance of the correction diminishes.

EXAMPLE 2. Regression models
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We consider semiparametric (i.e. with unknown distribution of the innovations)

possibly non linear regression models. In regression models, the GS is obtained by

considering (see e.g. Newey (1990)) a regression residual function

° (yi; x
r
i ; ¯r) = yi ¡ g (xri ; ¯r)

for some known measurable function g (¢) such that under the true distribution of the
data

E (° (yi; x
r
i ; ¯r) j x) = 0

which implies an unconditional moment restriction of the form

EA (xri ) ° (yi; x
r
i ; ¯r) = 0

for some q £ n matrix of instruments A (xri ). The matrix of optimal instruments

is A (xri ) = ¡riºij (where ¡ri = @° (yi; x
s
i ; ¯s) =@¯r = ¡@g (xsi ; ¯s) =@¯r and ºij =

E
³
° (yi; xri ; ¯r) °

³
yj; xrj ; ¯r

´
j x

´
); assuming further that the conditional variance takes

the following functional speci¯cation ºii = h (xri ), for some measurable function

h (¢) : Rq0 ! R+ (q0 · q) we obtain the optimally weighted GS

E¡riºii° (yi; x
r
i ; ¯r) = 0:

The corresponding bootstrapped GS is then based on

E¤@g (xs¤i ; ¯s) =@¯rº
ii (y¤i ¡ g (xr¤i ; ¯r)¡ "¤n) = 0;

where y¤i = x
r¤
i

b̄
r + "¤i is the ith bootstrap pseudo-observation,

b̄
r is a heteroskedas-

ticity corrected non linear least square estimator the unknown q £ 1 vector ¯r, "¤i

is the bootstrap sample drawn from b"i = yi ¡ xri b̄
r, x

r¤
i are sampled (independently

from "¤i ) from the empirical distribution of xr, and "¤n = E
¤"¤i . In the Monte Carlo

study, we consider the following speci¯cation for g (¢): yi = exp (¯0 + ¯1x1i ) + "i with
innovations "i » N (0; 1) or » t (4) and heteroskedasticity function ºii = x

2
1i. Tables 3
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and 4 report the empirical sizes of the original empirical likelihood ratio, the feasible

Bartlett corrected analog (16) and its bootstrap based counterpart (18) for 0:10, 0:05

and 0:01 nominal sizes..

Tables 3 and 4 here

EXAMPLE 3. Robust regression models

We consider robust regression models with ¯xed regressors; the GS in this case is

given by

ExriÃ (yi ¡ xri¯r) = 0

for the psi-function Ã : R ! R satisfying EÃ ("i) = 0. The bootstrapped GS is

E¤xri (Ã (y
¤
i ¡ xri¯r)¡ "¤n) = 0

where y¤i = x
r
i
b̄
r + "

¤
i is the bootstrap pseudo-observation,

b̄
r is an M-estimator for

the unknown q £ 1 vector ¯r, "¤i is the bootstrap sample drawn from b"i = yi ¡ xri b̄
r

and "¤n = E
¤"¤i . Following Huber (1973), we specify the psi-function Ã (¢) as

(yi ¡ xri¯r) I fjyi ¡ xri¯rj · kg+ k ¢ sgn (yi ¡ xri¯r) I fjyi ¡ xri¯rj > kg

with the constant k = 1:4, the scale parameter ¾2 = 1, sgn (¢) and I f¢g are the
sign and indicator function, respectively. Table 5 and 6 report some Monte Carlo

results for a simple 2 covariates design with an intercept and a single ¯xed regressor

xi generated as equally spaced grid of numbers between ¡1 and 1 and points at ¡3
and 3, so that we have a rather substantial leverage e®ect. The innovation process is

speci¯ed to be N (0; 1) and t (4). The null hypothesis is ¯0 =
·
1 1

¸
.

Table 5 and 6 here
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EXAMPLE 4. Quasi and Pseudo-likelihood models

We consider quasi and pseudo-likelihood models together because the analysis in

rather similar from the point of view of empirical likelihood based inference. In the

case of \classical" quasi-likelihood approach, the GS is given by the q£ 1 quasi-score

E@´ (xri ; ¯r) =@¯sº
ij (¯r)

³
yj ¡ ´

³
xrj ; ¯r

´´
= 0;

with Eyi = ´ (x
r
i ; ¯r) for some known link function ´ (¢) and V (yi) = ºij (¯r)(we as-

sume known dispersion parameter Á = 1). For this class of models, the bootstrapped

GS is

E¤@´ (xri ; ¯r) =@¯sº
ij (¯r) j

¯r=b̄r "
¤
j = 0

where "¤i is a bootstrap sample drawn from the centered residuals e"i = b"i¡
P
i b"i=n with

b"i = º
¡1=2
ii

³ b̄
r

´ ³
yj ¡ ´

³
xrj ;

b̄
r

´´
and b̄

r is the quasi-maximum likelihood estimator for

¯r.

For pseudo-maximum likelihood based models, we need to take into account the

possible misspeci¯cation of the model (i.e. the second standard Bartlett identity does

not hold as in quasi-likelihood models), hence a pseudo-score is

E
³
@´ (xri ; ¯r) =@¯sº

ij (¯r) @´
³
xsj ; ¯s

´
=@¯t

´
@´ (xrk; ¯r) =@¯tv

kl (¯r) (yl ¡ ´ (xrl ; ¯r)) = 0

for a given speci¯cation of the matrix vij (¯r) = COV
³
(yi ¡ ´ (xri ; ¯r))

³
yj ¡ ´

³
xrj ; ¯r

´´´
.

The bootstrap analog is (as in the quasi-likelihood case)

E¤
³
@´ (xri ; ¯r) =@¯sº

ij (¯r) @´
³
xsj ; ¯s

´
=@¯t

´
@´ (xrk; ¯r) =@¯tv

kl"¤l = 0;

the only (important) di®erence being that the estimated residuals are obtained by

using the matrix v¡1=2ii . Notice that we have been implicitly assuming a ¯xed regres-

sors set-up; as in the case of nonlinear regression, though, we can assume stochastic

regressors which implies resampling also from the empirical distribution of the x's

in the bootstrap algorithm. More importantly, it is worth noting that in this case

the bootstrap calibration is based not on a GS evaluated at the null, but on the
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(estimated) residuals. This is due to the fact that both quasi and pseudo-likelihood

models have not the structure of an expected term plus noise typical of regression

type models. However using the same argument used to justify the application of an

estimated Bartlett correction, we are still able to achieve higher order accuracy.

We analyse the Poisson model with a speci¯cation error discussed in Gourier-

oux, Monfort and Trognon (1984). Suppose that yi » Pois (&i)with parameter

&i = exp (xri¯r + ³i), where x
r is a q £ 1 vector of exogenous variables and ³i is a

speci¯cation error. We assume that: E (exp ³i) = 1 and V AR (exp ³i) = 1, and use

N (&i; 1)and Pois (&i)as kernels for the pseudo-likelihood; the resulting pseudo-scores

can be found in Gourieroux et al. (1984). In the Monte Carlo simulation we take

³i » N (¡0:35; 0:7056) (so that E (yi) = 1); Tables 7 and 8 report the results, for the
null hypothesis H0 : ¯r =

·
¯0 ¯1

¸
= 0.

Tables 7 and 8 here

Remark 3 (Using second moment information) So far, we have assumed that

the information available is given (essentially) in the form of a moment restriction

for the mean of the model. The empirical likelihood framework can easily incorporate

additional information, most noticeably information about the second moment. For

example, in regression analysis we can augment the residual regression function to

allow the conditional variance to depend on an additional p £ 1 parameter vector ´a
(which may include ¯r as well), so that residual speci¯cation. The resulting GS is

E (° (yi; xri ; µr0) j x) = 0 with the 2£ 1 vector

° (yi; x
r
i ; µr0) =

·
yi ¡ g (xri ; ¯r) (yi ¡ g (xri ; ¯r))2 ¡ h (xri ; ´a)

¸

depending on the r0£1 (r0 = q+s) vector of parameters, for some measurable function
h (¢) : Rs ! R+. A straightforward calculation shows that the optimal instrument ma-

trix is given in this case by ¡r
0i =

2
64
@° (yi; x

r
i ; µr0) =@¯r 0

@h (xri ; ´a) =@¯r @h (xri ; ´a) =@´a

3
75 and joint
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covariance matrix of "i and "
2
i . In the quasi-likelihood case we can introduce unknown

overdispersion via an extended quasi-likelihood , while for the robust regression model

we could introduce an estimating equation for the scale parameter ¾2.

5 Conclusions

We have shown how the empirical likelihood method can be applied to inferential

problems based on moment restrictions, emphasising the interpretation of the empir-

ical likelihood ratio test statistics as a dual likelihood. Provided that the econometric

model is identi¯ed, it is easy to test a simple hypothesis about the parameters of in-

terest by means of the dual empirical likelihood ratio test: one needs just to specify a

constraint (which in the case of moment conditions based models is given by the em-

pirical counterpart of the moment condition itself) and maximise the dual empirical

log-likelihood ratio with respect to the dual parameter. The accuracy of the resulting

test can be improved to third order by applying a Bartlett correction factor to the

test statistic itself; this latter feature is, possibly, the most interesting property of

empirical likelihood based inference, as no other nonparametric technique is known

to be Bartlett correctable. The dual likelihood approach gives a simple explanation

of this peculiar phenomenon. We have also investigated analytically the power prop-

erties of the dual empirical log-likelihood: from our analysis, it is clear that any loss

in power is typically a second order e®ect and hence its impact can be considered

negligible when the sample size is reasonably big, however no general conclusion can

be drawn.

Empirical likelihood can also be adapted to dependent processes (Kitamura, 1997).

In particular for smooth functions of ® mixing processes, Kitamura (1997) proves that

it is still possible to obtain higher order accuracy (speci¯cally up to O
³
n¡5=6

´
) for

the empirical likelihood ratio test statistic by using blockwise resampling techniques

analog to those used in the bootstrap literature. This should be of particular relevance
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for time series based models.

6 Notes

1 We use the term arti¯cial to stress the fact that we are dealing with a mathematical

object which shares some properties of a parametric likelihood but it cannot be de¯ned

as a formal Radon-Nikodym derivative with respect to some dominating measure.

2 To show this essential point, we restrict the collections of sets C on the Borel ¯eld
(Rq;Bq) supporting the unknown measure Pµ to some pointwise separable, (to en-
sure measurability) Vapnik-·Cervonenkis classes of sets (see e.g. Gaenssler (1983)).

Let e and E be a unit and the set of unit vectors in Rq respectively. By the clas-

sical Glivenko-Cantelli theorem generalised to uniform convergence to half spaces

(Ranga Rao, 1962) we get

sup
e2E

¯̄
¯(P ¡ Pn) eT f (z; µ0)

¯̄
¯ ! 0 a:s:;

this implies (Owen, 1990) that for any " > 0,

Pr
½
inf
e2E

Pn
³
eT f (z; µ0) > 0

´
> "=2

¾
all but ¯nitely often w.p.1 (21)

and as we are considering VC classes of sets, we can conclude that the latter prob-

ability converges to 0 at an exponential rate by the Vapnik-·Cervonenkis inequal-

ity (see for example Gaenssler (1983, Lemma 10)). This fact in turns implies that

0 2 ch ff (z1; µ0) ; :::; f (z2; µ0)g as an interior point (as in ED1 above), whence the
empirical likelihood ratio exists and its positive.
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APPENDIX

A Proof of Lemma 1

The ¯rst four Hermite tensors are:

hr = wr ¡ °r; hrs = hrhs ¡ ±rs; hrst = hrhsht ¡ [3]hr±st; (22)

hrstu = hrhshthu ¡ [6]hrhs±tu + [3] ±rs±tu:

Let ¿ = °r°r, Áq (°r; ±rs) be the q variate normal density with mean °r and identity

covariance matrix ±rs, and tr be a vector of auxiliary real variables: Also, let w
Rº =

wr1wr2 :::wrº and bRº = br1r2:::rº . To prove the lemma, we use the transformation

T : wr ! (x; vr) (with x = wrwr, vr = wr= (wsws)1=2 and Jacobian J = xq=2¡1=2)

and the following identity:

wRº bRºÁq (°
r; ±rs) ´

X
Rº
bRº@º (Áq (°

r; ±rs) exp (wr±rsts)) jtr=0

where
P
Rº indicates summation over the partition ¨ = fº1; :::; ºpg of º indices into

p non-empty blocks such that the resulting homogeneous polynomial in °Rº is even

or odd according to the number of indices in the set Rº.(i.e.e the components of the

b array). Using T , the density for x is obtained by integrating out the vector vr over

the unit sphere vrvr = 1 in Rq, that is:

(2¼)¡q=2
X

Rº

Z

vrvr=1
bRº exp f¡ (x+ ¿) =2gJ@º exp

n
x1=2vr±rsts

o
tr=0

(vrdvr) . (23)

Interchanging di®erentiation and integration which is permissible by assumptions

D1, D2 and L1 (note that the transformation T is essentially a polar coordinate type

transformation), we can then use Theorem 7.4.1 in Muirhead (1982), to get:

C (x; ¿ )
X

Rº
bRº@º 0F1 (; q=2;x (¿ + t

rtr + 2°rtr) =4) jtr=0
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with C (x; ¿ ) = xq=2¡1 exp f¡ (x+ ¿ ) =2g =2q=2¡ (q=2), 0F1 (; a; z) =
P1
k=0 z

k= (a)k k!

and (a)k = ¡ (a+ k) =¡ (a). Di®erentiating now 0F1 (; ¢; ¢) (up to º = 4) , evaluating
the resulting derivatives at tr = 0, and taking into account the symmetric structure

of the b arrays, we obtain:

qX

r=1

br@ 0F1 (; ¢; ¢) =@tr jt=0= br°rx 0F1 (; q=2 + 1; x¿=4) =2 (q=2) ;

qX

r;s=1

brs@2 0F1 (; ¢; ¢) =@tr@ts j t=0 = b
rrx 0F1 (; q=2 + 1; x¿=4) =2 (q=2) +

brs°r°sx2 0F1 (; q=2 + 2; x¿=4) =2 (q=2)2 ;

qX

r;s;t=1

brst@3 0F1 (; ¢; ¢) =@tr@ts@tt j t=0 = [3] b
rss°rx2 0F1 (; q=2 + 2; x¿=4) =2 (q=2)2 +

brst°r°s°tx3 0F1 (; q=2 + 3; x¿=4) =8q (q=2)3 ;

brstu@4 0F1 (; ¢; ¢) =@tr@ts@tt@tu j t=0 = [3] b
rrssx2 0F1 (; q=2 + 2; x¿=4) =2 (q=2)2 +

[6] brstt°r°sx3 0F1 (; q=2 + 3; x¿=4) =8q (q=2)3 +

brstu°r°s°t°ux4 0F1 (; q=2 + 4; x¿=4) =16q (q=2)4 ;

from which the following can be easily deduced

brwrÁq (°
r; ±rs) = br°rgq+2;¿ (x) ; (24)

brswrwsÁq (°
r; ±rs) = brs°r°sgq+4;¿ (x) + b

rrgq+2;¿ (x) ;

brstwrwswtÁq (°
r; ±rs) = brst°r°s°tgq+6;¿ (x) + 3b

rrs°sgq+4;¿ (x) ;

brstuwrwswtwuÁq (°
r; ±rs) = brstu°r°s°t°ugq+8;¿ (x) + 6b

rstt°r°sgq+6;¿ (x) + 3b
rrssgq+4;¿ (x) :

Expression (10) follows immediately after simple algebra, and applying the di®erence

operator rk (k = 1; :::; 4) to the various gq+¢;¿ (¢).
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B Proof of Theorem 2

Let B be the class of Borel sets satisfying :

sup
B2B

Z

(@B)²
Áq;°;· (w) dw = O (²

a) ; ² # 0

where (@B), (@B)² are the boundary of B and ²-neighbourhood of (@B), respectively

a 2 R+ and Áq;°;· (¢) is the q dimensional multivariate normal distribution with mean
°r and covariance matrix ·r;s. Using Bhattacharya and Ghosh's (1978, Theorem

2(b)), it follows that a formal Edgeworth expansion for the distribution of Wr is

given as follows:

sup
B2B

¯̄
¯̄P¸ (Wr 2 B)¡

Z

B
H (w)Áq;°;· (w) dw

¯̄
¯̄ = o (1=n) (25)

where H (w) = (¡1)v @r1 :::@rvÁq;°;· (¢) =@wr1@wr2:::@wrv (see e.g. (22)) is the (fourth
order) Edgeworth polynomial:

H (w) = 1 +
³
k2rh

r (w) + k2r;sh
rs (w) =2

´
=n1=2 +

³
k3rh

r (w) +
³
k3r;s=2 + k

2
rk
2
s

´
£(26)

hrs (w) +
³
k2r;s;t=6 + k

2
rk
2
s;t=2

´
hrst (w) + k2r;sk

2
t;uh

rstu (w) =8
´
=n:

In (26), the k's are the approximate cumulants obtained by the delta method as in

(9). Hence a valid Edgeworth expansion for Wr is given by:

P¸ (Wr · u) =

uZ

¡1
H (w)Áq;°;· (w) dw + o (1=n) : (27)

which can be shown to be valid by the standard argument of Bhattacharya and Ghosh

(1978) as the set A¸ is such that Prµn
³
AC¸

´
= o (1=n) given the assumptions. We

can then apply Lemma 3.1 to the integral in (27), by considering the approximate

cumulants k as the constants bRv appearing in the lemma and replacing ° with ·1=2r;s
f̧s.

After some algebra it follows that:

sup
C2C

¯̄
¯̄
¯̄Pµ0 (WrWs±

rs 2 C)¡
2X

j=0

4X

k=0

1=nj=2ªjk

Z

C
gq+2k;¿ (x) dx

¯̄
¯̄
¯̄ (28)
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for all Borel subset C of C satisfying:

sup
C2C

Z

(@C)²
gq;¿ (x) dx = O (²) ; ² # 0

where ªjk is as in (12)and is obtained after some simpli¯cations in H (w). The

validity of (28) follows from the classical result of Chandra and Ghosh (1980).

C Proof of Theorem 4

Under the assumptions, it is not di±cult to show that the bootstrap maximum

dual likelihood estimator b̧
BMDL satis¯es the bootstrapped dual likelihood equations

@W ¤
µ0
(¸) =@¸r = 0 with bootstrap probability Pr¤¸ 1¡o (1=n) and it admits a stochas-

tic expansion of the same form of (6) admits a stochastic expansion of the form (2:6)

(under the null hypothesis i.e. f̧r = 0); also, we can derive the stochastic expansion

for the bootstrap empirical likelihood ratio and its signed square root version as in

Section 2. Next, let B be the class of Borel sets satisfying :

sup
B2B

Z

(@B)²
Áq;°;· (w) dw = O (²

a) ; ² # 0

for some a > 0. We can then use Bhattacharya's (1987, Theorem3.3) to deduce that

sup
B2B

¯̄
¯̄P (W ¤

r 2 B)¡
Z

B
H¤ (w)Áq;°;· (w) dw

¯̄
¯̄ = o (1=n) (29)

where H¤ (w) is the Hermite polynomial as in (26) with coe±cients replaced by their

bootstrap analog. Proceeding then as in Theorem 3.2 we obtain the required result.

The validity of the expansion follows by using Chandra's (1985) theorem.
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D Tables

TABLE 1y. Moment condition model, N (0; 1) observations

Nominal size 0:100 0:050 0:010

n = 50 0:145a 0:127b 0:121c 0:091a 0:080b 0:073c 0:036a 0:029b 0:015c

n = 100 0:132a 0:119b 0:119c 0:079a 0:069b 0:064c 0:028a 0:020b 0:014c

n = 200 0:124a 0:110b 0:109c 0:068a 0:061b 0:059c 0:024a 0:019b 0:013c

n = 500 0:111a 0:109b 0:105c 0:061a 0:060b 0:058c 0:015a 0:015b 0:013c

y Based on 5000 replications. a original, b feasible Bartlett adjusted (16), and c bootstrapped empirical likelihood ratio
test (18)

Table 2y. Moment condition model, t (5) observations

Nominal size 0:100 0:050 0:010

n = 50 0:192a 0:150b 0:143c 0:121a 0:093b 0:083c 0:052a 0:042b 0:032c

n = 100 0:151a 0:130b 0:123c 0:093a 0:083b 0:075c 0:039a 0:030b 0:021c

n = 200 0:132a 0:126b 0:119c 0:081a 0:076b 0:070c 0:024a 0:020b 0:018c

n = 500 0:129a 0:120b 0:110c 0:073a 0:069b 0:065c 0:021a 0:018b 0:015c

y Based on 5000 replications. a original, b feasible Bartlett adjusted (16), and c bootstrapped empirical likelihood ratio
ratio test (18) :

Table 3y. Nonlinear heteroskedastic regression model

with N (0; 1) innovations

Nominal size 0:100 0:050 0:010

n = 50 0:131a 0:118b 0:113c 0:083a 0:73b 0:067c 0:035a 0:031c 0:026c

n = 100 0:115a 0:111b 0:109c 0:072a 0:065b 0:062c 0:026a 0:022b 0:020c

n = 200 0:109a 0:109b 0:108c 0:065a 0:062b 0:059c 0:021a 0:017b 0:013c

n = 500 0:105a 0:105b 0:105c 0:061a 0:060b 0:057c 0:018a 0:016b 0:016c

y Based on 5000 replications. a original, b feasible Bartlett adjusted (16), and c bootstrapped empirical likelihood ratio
ratio test (18)
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Table 4y. Nonlinear heteroskedastic regression model

with t (4) innovations

Nominal size 0:100 0:050 0:010

n = 50 0:178a 0:164b 0:156c 0:113a 0:090b 0:072c 0:043a 0:034b 0:026c

n = 100 0:142a 0:134b 0:125c 0:092a 0:081b 0:069c 0:037a 0:030b 0:023c

n = 200 0:135a 0:129b 0:114c 0:073a 0:067b 0:063c 0:027a 0:021b 0:019c

n = 500 0:129a 0:120b 0:116c 0:070a 0:065b 0:062c 0:024a 0:021b 0:018c

y Based on 5000 replications. a original, b feasible Bartlett adjusted (16), and c bootstrapped empirical likelihood ratio
ratio test (18)

Table 5y: Robust regression model, N (0; 1) innovations

Nominal size 0:100 0:050 0:010

n = 50 0:167a 0:149b 0:121c 0:096a 0:082b 0:076c 0:036a 0:030b 0:025c

n = 100 0:142a 0:0131b 0:119c 0:079a 0:071b 0:064c 0:029a 0:023b 0:019c

n = 200 0:130a 0:121b 0:114c 0:068a 0:061b 0:059c 0:026a 0:021b 0:017c

n = 500 0:120a 0:118b 0:113c 0:061a 0:059b 0:058c 0:020a 0:018b 0:016c

y Based on 5000 replications. a original, b feasible Bartlett adjusted (16), and c bootstrapped empirical likelihood ratio
test (18)

Table 6y: Robust regression model, t (4) innovations

Nominal size 0:100 0:050 0:010

n = 50 0:187a 0:169b 0:158c 0:116a 0:093b 0:086c 0:057a 0:043b 0:039c

n = 100 0:152a 0:141b 0:132c 0:099a 0:084b 0:072c 0:043a 0:034b 0:030c

n = 200 0:141a 0:135b 0:127c 0:081a 0:075b 0:068c 0:036a 0:027b 0:023c

n = 500 0:132a 0:126b 0:120c 0:075a 0:064b 0:060c 0:029a 0:021b 0:021c

y Based on 5000 replications. a original, b feasible Bartlett adjusted (16), and c bootstrapped empirical likelihood ratio
test (18)

38



Table 6y: Pseudo-likelihood model with N (¹i; 1)

Nominal size 0:100 0:050 0:010

n = 50 0:128a 0:116b 0:081a 0:077b 0:033a 0:021b

n = 100 0:112a 0:110b 0:072a 0:061b 0:027a 0:016b

n = 200 0:111a 0:104b 0:067a 0:059b 0:019a 0:013b

n = 500 0:109a 0:105b 0:061a 0:058b 0:016a 0:012b

y Based on 5000 replications. a original and b bootstrapped empirical likelihood ratio test

Table 7y: Pseudo-likelihood model with Pois (¹i)

Nominal size 0:100 0:050 0:010

n = 50 0:138a 0:121b 0:084a 0:076b 0:038a 0:025b

n = 100 0:121a 0:115b 0:081a 0:065b 0:030a 0:019b

n = 200 0:120a 0:116b 0:069a 0:061b 0:021a 0:015b

n = 500 0:114a 0:110b 0:065a 0:059b 0:020a 0:014b

y Based on 5000 replications. a original and b bootstrapped empirical likelihood ratio test
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