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Abstract

This paper extents Karanasos (1999a) results for the n Component GARCH(1,1) and the two Com-
ponent GARCH(2,2) models and it further examines the n Component GARCH(n,n) model. In particular,
we present the GARCH(n2; n2) representation of the aggregate variance and we give the condition for
the existence of the fourth moment of the errors. In addition, we use the canonical factorization of the
autocovariance generating function for the univariate ARMA representations of the component variances,
the aggregate variance and the squared errors to obtain their autocovariances and cross covariances. Fi-
nally, we illustrate our general results giving three examples: the three component GARCH(1,1), the two
component GARCH(2,2) and the three component GARCH(2,2) models.
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1 INTRODUCTION

Since the beginning of the eighties the ARCH1model and its various generalizations have
been used extensively in the modeling of the conditional volatility of �nancial time series.
Within this class of models, it is almost a \stylized fact" that the sum of the estimated
coe�cients in the conditional variance function is insigni�cantly di�erent from unity,
especially for high-frequency �nancial data. These models were called by Engle and
Bollerslev(1986) Integrated GARCH(IGARCH) and have the characteristic that shocks
to the conditional variance are persistent in the sense that current information remains
important for long-term volatility forecasts. This non-stationary behaviour is important
both from a theoretical point of view and for the construction of long-horizon volatility
forecasts which are essential in many asset-pricing models (see, for example, Poterba and
Summers, 1986).

However, Ding and Granger (1996), hereafter DG, proved that the autocorrelation
function for an IGARCH(1,1) process is exponentially decreasing and is very di�erent
from the sample autocorrelation function found for several long speculative asset return
series (e.g. stock and exchange rate returns). As DG(1996, p199) wrote: \It is quite
clear from the sample autocorrelation (of the various speculative returns) that there are
di�erent volatility components that will dominate di�erent time periods. Some volatility
components may have a very big short-run e�ect, but die out very quickly. Some of them
may have a relatively smaller short-run e�ect, but they last for a long time period".

Motivated by this empirical result they introduced the N-component GARCH(1,1) (C-
GARCH) model2. In this model the aggregate conditional variance, hereafter av, of the
errors (ht) is a weighted sum of n component variances, hereafter cv, (hit); (i = 1; � � � ; n)
with wi (i = 1; � � � ; n) as weights, respectively. Each component is a GARCH(1,1)-
type speci�cation. DG also mentioned that the n component model corresponds to a
GARCH(n,n) model3. This GARCH(n,n) representation together with the autocovariance
function of the squared errors4,hereafter se, is obtained in Karanasos(1999a), hereafter K5.
In addition, K(1999a) derived the GARCH(2n,2n) representation of the two component
GARCH(n,n) model and the autocovariance function of the squared errors for this model.

The goal of this article is to provide a comprehensive methodology for the analysis of
the general n component GARCH(n,n) model. First, it derives the VARMA representa-
tion of the cv and it shows that they follow a n-th order VARMA(n,1) model. Second,

1The ARCH model was originally proposed by Engle(1982), whereas Bollerlsev(1986) presented the GARCH
model. The existence of the huge literature which uses these processes in modelling conditional volatility in
high frequency �nancial assets demonstrates the popularity of the various GARCH models [see, for example,
the surveys by Palm(1996), Shepard(1996) and Pagan(1996); see also the book by Gourieroux(1997) for a detail
discussion of the GARCH models and �nancial applications].

2Karanasos, Psaradakis and Sola (1999), hereafter KPS, derive the ARMA-GARCH representation that linear
aggregates of ARMA processes with multivariate-GARCH errors (the S-GARCH model) admit, and establish
conditions under which persistence in volatility of the aggregate series is higher than persistence in the volatility
of the individual series. They illustrated empirically the practical implications of their results in the context of
an option pricing exercise. KPS(1999) also show that the C-GARCH model is a special case of the S-GARCH
model. The issue of contemporaneous aggregation of GARCH processes has also been examined in K(1999b) and
Za�aroni (1999).

3Moreover, they derived the GARCH(2,2) representation of the two-component GARCH(1,1) model.
4The autocovariance function of the squared errors of the simple GARCH(p,q) model is given in

Karanasos(1999a) (see also He and Terasvirta, 1999).
5K(1999a) derived the GARCH(n,n) representation using the Ding and Granger's (1996) method.
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it provides the univariate ARMA representations of the cv, the av and the se and it
shows that they can be represented as an ARMA(n2; n2) model. Third, it gives the
GARCH(n2; n2) representation of the av. Finally, it uses the canonical factorization of
the autocovariance generating function of a stationary stochastic process to obtain: (i)
the autocovariances of the av, the cv and the se, (ii) the cross covariances between the cv,
and (iii) the cross covariances between the av and the cv, and between the av and the se.
It should be noted that we only examine the case of distinct roots in the autoregressive
(AR) polynomial of the univariate ARMA representations and we express the autocov-
ariances in terms of the roots of the AR polynomial and the parameters of the moving
average polynomials of the univariate ARMA representations.

Section 2 provides the results for the general n component GARCH(n,n) model. Be-
cause of the highly complicated nature of the algebraic derivation involved and in order
to familiariaze the reader with the notation used, we start by presenting the results of two
special cases: the n component GARCH(1,1) model and the two component GARCH(n,n)
model. In addition, for illustrative purposes, we give three examples: the three component
GARCH(1,1) model, the two component GARCH(2,2) model, and the three component
GARCH(2,2) model. Finally, Section 3 concludes.
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2 COMPONENT GARCH MODELS

2.1 N Component GARCH(1,1) Model

In what follows we will examine the N component GARCH(1,1) model. In this model the
conditional variance of the errors (ht) is a weighted sum of N components (hit; i = 1; � � � ; n)
with (wi; i = 1; � � � ; n) as weights, respectively. Each component is a GARCH(1,1)-type
speci�cation:

�t=
t�1 � D(0; ht); ht =
nX
i=1

wihit;
nX
i=1

wi = 1; (2.1)

hit = �i!1 + ai�
2
t�1 + �ihi;t�1; �i =

(
1 if i = 1

0 otherwise
(2.2)

Proposition 1a. The univariate ARMA representations of hit; i = 1; � � � ; n are given
by

B(L)hit = !?
i + Ai(L)vt; B(L) = 1 +

nX
l=1

BlL
l =

nY
j=1

(1� B�
jL); Ai(L) =

nX
l=1

AilL
l;
(2.3)

Bl = �1l + �2l; �1l =
lY

k=1

[

n�(l�k)X
fk=fk�1+1

]
lY

k=1

�fk(�1)
l; f0 = 0; �21 = �

nX
r=1

arwr;
(2.3a)

�2l =
l�1Y
k=1

[

n�[(l�1)�k]X
fk=fk�1+1

]
l�1Y
k=1

�fk(�1)
l �

nX
r=1
r 6=fk

arwr; Ail = ai

l�1Y
k=1

[

n�(l�1�k)X
fk=fk�1+1

fk 6=i

]
l�1Y
k=1

�fk(�1)
l�1;
(2.3b)

Ai1 = ai; !?
i =

8>><
>>:
!1[1 +

n�1P
l=1

B1
l ] if i = 1

ai!1w1[1 +
n�2P
l=1

�i
1l] otherwise

; vt = �2t � ht; (2.3c)

Bi
l = �i

1l + �i
2l; �i

1l =
lY

k=1

[

n�(l�k)X
fk=fk�1+1

fk 6=i

]
lY

k=1

�fk(�1)
l; f0 = 1; �i

21 = �
nX

r=1
r 6=i

arwr;

�i
2l =

l�1Y
k=1

[

n�[(l�1)�k]X
fk=fk�1+1

fk 6=i

]
l�1Y
k=1

�fk(�1)
l�1 �

nX
r=1

r 6=fk;i

arwr; f0 = 1 (2.3d)
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The proof of Proposition 1a is given in Appendix A.
Example 1: For the three component GARCH(1,1) model the univariate ARMA rep-

resentation for the �rst component conditional variance (h1t) is

f1� (�1 + �2 + �3 + w1a1 + w2a2 + w3a3)L+ [�1�2 + �1�3 + �2�3 + w1a1(�2 + �3) +

+ w2a2(�1 + �3) + w3a3(�1 + �2)]L
2 � [�1�2�3 + w1a1(�2�3) + w2a2(�1�3) +

+ w3a3(�1�2)]L
3gh1t = !?

1 + [a1L� a1(�2 + �3)L
2 + a1�2�3L

3]vt (2.4)

Corrolary 1a. The ARMA(n,n) representation of ht is given by

B(L)ht = !? + A(L)vt; A(L) =
nX
l=1

AlL
l; !? = !1w1[1 +

n�1X
l=1

�1
1l]; Al = ��2l

(2.5)

Moreover, the GARCH(n,n) representation of ht is given by

B?(L)ht = !? + A(L)�2t ; B?(L) = 1 +
nX
l=1

�1lL
l (2.6)

Proof. The proof of equation (2.5) is given in Appendix A. The proof of equation (2.6)
follows immediately from (2.5), using vt = �2t � ht.

Example 1: For the 3 component GARCH(1,1) model the ARMA(3,3) representation
of the aggregate conditional variance is

f1� (�1 + �2 + �3 + w1a1 + w2a2 + w3a3)L+ [�1�2 + �1�3 + �2�3 + w1a1(�2 + �3) +

+ w2a2(�1 + �3) + w3a3(�1 + �2)]L
2 � [�1�2�3 + w1a1(�2�3) + w2a2(�1�3) +

+ w3a3(�1�2)]L
3ght = f(w1a1 + w2a2 + w3a3)L� [w1a1(�2 + �3) + w2a2(�1 + �3) +

+ w3a3(�1 + �2)]L
2 + [w1a1(�2�3) + w2a2(�1�3) + w3a3(�1�2)]L

3gvt + !? (2.7)

In addition, the GARCH(3,3) representation of the aggregate conditional variance is

f1� (�1 + �2 + �3)L+ (�1�2 + �1�3 + �2�3)L
2 � (�1�2�3)L

3ght =

f(w1a1 + w2a2 + w3a3)L� [w1a1(�2 + �3) + w2a2(�1 + �3) + w3a3(�1 + �2)]L
2 +

+ w1a1(�2�3) + w2a2(�1�3) + w3a3(�1�2)]L
3g�2t + !? (2.8)
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Assumption 1a. All the roots of the autorergressive polynomial B(L) are lie outside
the unit circle (Stationarity Condition).

Assumption 1b. The polynomials B(L) and Ai(L) (i = 1; � � � ; n), A(L) are left coprime.

In other words the representations B(L)
Ai(L)

and B(L)
A(L)

are irreducible.

In what folows we only examine the case where the roots of the autoregressive poly-
nomial [B(L)] are distinct.

Proposition 1b. Under Assumptions 1a and 1b the cross-covariances between the hit
and the hj;t�m components are given by


i;jm = cov(hit; hj;t�m) =

8><
>:

nP
r=1

�r;m�
ij
r;m�

2
v ; if m > 0

nP
r=1

�r;m�
ji
r;m�

2
v ; if m < 0

; (2.9)

�rm =
(B�

r )
n�1+m

nQ
k=1

(1� B�
rB

�
k)

nQ
k=1
k 6=r

(B�
r � B�

k)
; (2.9a)

�ijr;m =
n�1X
c=0

n�cX
d=1

AidAj;d+c(B
�
r )

c +
m?X
c=1

n�cX
d=1

AjdAi;d+c(B
�
r )

�c +
n�1X

c=m+1

n�cX
d=1

AjdAi;d+c(B
�
r )

c�2m

(2.9b)

where m? = min(n � 1; m) and �2
v = 2

3
E(�4t ) (under conditional normality) and is

given below. When i = j the above formula gives the autocovariance function of hit.
Moreover, the cross-covariances between ht and hj;t�m are given by


jm = cov(ht; hj;t�m) =

8><
>:

nP
r=1

�r;m�
j+
r;m�

2
v if m > 0

nP
r=1

�r;m�
j�
r;m�

2
v if m < 0

; (2.10)

�j+r;m =
n�1X
c=0

n�cX
d=1

AdAj;d+c(B
�
r )

c +
m?X
c=1

n�cX
d=1

AjdAd+c(B
�
r )

�c +
n�1X

c=m+1

n�cX
d=1

AjdAd+c(B
�
r )

c�2m;
(2.10a)

�j�r;m =
n�1X
c=0

n�cX
d=1

Aj;dAd+c(B
�
r )

c +
m?X
c=1

n�cX
d=1

AdAj;d+c(B
�
r )

�c +
n�1X

c=m+1

n�cX
d=1

AdAj;d+c(B
�
r )

c�2m

(2.10b)

When hjt = ht, Aj;d+c = Ad+c; �j�rm = �j+rm = �rm the above formula gives the autocov-
ariance function of ht.

The proof of Proposition 1b is given in Appendix A.
Proposition 1c. The condition for the existence of the fourth moment of the errors

(under conditional normality) is
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0 <
1

2
; 
0 =

nX
r=1

�r0�r0 (2.11)

Furthermore, the univariate ARMA(n,n) representation of the squared errors �2t is
given by

B(L)�2t = !? + Ae(L)vt; Ae(L) =
nX
l=0

Ae
lL

l = [B(L) + A(L)]; Ae
0 = 1

(2.12)

Assumption 1c. The polynomials B(L) and Ae(L) are left coprime.
Under assumptions 1a and 1c the autocovariance function of the squared errors is given

by


em = cov(�2t ; �
2
t�m) =

nX
r=1

�r;m�
e
r;m�

2
v ; (2.13)

�er;m =
nX

d=0

(Ae
d)

2 +
mX
c=1

n�cX
d=0

Ae
dA

e
d+c[(B

�
r )

c + (B�
r )

�c] +
nX

c=m+1

n�cX
d=0

Ae
dA

e
d+c[(B

�
r )

c + (B�
r )

c�2m]
(2.13a)

Finally, the cross covariances between the squared errors and the aggregate conditional
variance are given by

cov(�2t ; ht�m) = cov(ht; ht�m); cov(ht; �
2
t�m) = cov(�2t ; �

2
t�m) (2.14)

Proof. Using the form for the variance of ht and var(ht) =
1
3
E(�4t ) � [E(�2t )]

2, �2
v =

2
3
E(�4t ) we get equation (2.11) The proof of (2.12) follows from (2.5) on rearanging terms.

The proof of (2.13) is given in Appendix A. Equation (2.14) follows from the law of
iterated expectations.

2.2 2 Component GARCH(n,n) Model

In this subsection we will examine the two component GARCH(n,n) model. In this
model the conditional variance of the errors (ht) is a weighted sum of two components
(hit; i = 1; 2) with wi; i = 1; 2 as weights, respectively. Each component is a GARCH(n,n)-
type speci�cation:
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�tj
t�1 � D(0; ht); ht = w1h1t + w2h2t; w1 + w2 = 1; (2.15)

Bi(L)hit = �i!1 + Ae
i (L)�

2
t ; i = 1; 2; �i =

(
1 if i = 1

0 if i = 2
; (2.15a)

Bi(L) = �
nX
l=0

�l
iL

l; �0
i = �1; Ae

i (L) =
nX
l=1

aliL
l (2.15b)

Proposition 2a. The univariate representations of hit (i = 1; 2) are given by

B(L)hit = !?
i + Ai(L)vt; vt = �2t � ht; B(L) = 1 +

2nX
l=1

BlL
l =

2nY
l=1

(1� B�
l L

l);
(2.16)

Ai(L) =

2nX
l=1

AilL
l; Ail = <0

1l;nai � <0
2l;nai�3�i; i = 1; 2; (2.16a)

!?
i =

(
!1[B2(1)� w2A

e
2(1)] if i = 1

!1w1A
e
2(1) if i = 2

Bl = �<0
1l;n[�1 + �2 + w1a1 + w2a2] + <0

2l;n[�1�2 + w1a1�2 + w2a2�1]
(2.16b)

where <0
ml;n is given by

<0
ml;n =

(
<ml;n if l = m; � � � ; m� n

0 otherwise
; m = 1; 2

<ml;n denotes the set of all the combinations of m numbers taking values from 1 to n
and adding to l. As an example consider, the case where n = 3 and m = 2.

<0
ml;n = <0

2l;3 =

(
<2l;3 if l = 2; 3; 4; 5; 6

0 otherwise
; <22;3 = 11; <23;3 = 12; 21; � � � ;<26;3 = 33

When for example we multiply �1�2 + w1a1�2 + w2a2�1 by <23;3 we get

(�1
1�

2
2 + w1a

1
1�

2
2 + w2a

1
2�

2
1) + (�2

1�
1
2 + w1a

2
1�

1
2 + w2a

2
2�

1
1)

In addition the ARMA(2n,2n) representation of the aggregate conditional variance is

B(L)ht = !? + A(L)vt; A(L) =
nX
i=1

wiAi(L) =
2nX
l=1

AlL
l; (2.17)

Al = <0
1l;n(w1a1 + w2a2)� <0

2l;n(w1a1�2 + w2a2�1); !? = w1!
?
1 + w2!

?
2

8



Finally, the GARCH(2n,2n) representation of the aggregate conditional variance is

B?(L)ht = !? + A(L)�2t ; B?(L) = 1 +
2nX
l=1

B?
l L

l; B?
l = �<0

1l;n(�1 + �2) + <0
2l;n�1�2

(2.18)

Proof. The proof of equation (2.16) is given in Appendix A. The proof of (2.17) follows
immediately from (2.15) and (2.16). The proof of equation (2.18) follows immediately from
(2.17) using vt = �2t � ht.

Example 2. For the two component GARCH(2,2) model the univariate ARMA(4,4)
representation of the �rst component conditional variance is

f1� (�1
1 + �1

2 + w1a
1
1 + w2a

1
2)L+ [�(�2

1 + �2
2 + w1a

2
1 + w2a

2
2) +

+ (�1
1�

1
2 + w1a

1
1�

1
2 + w2a

1
2�

1
1)]L

2 + [(�1
1�

2
2 + w1a

1
1�

2
2 + w2a

1
2�

2
1) +

+ (�2
1�

1
2 + w1a

2
1�

1
2 + w2a

2
2�

1
1)]L

3 + (�2
1�

2
2 + w1a

2
1�

2
2 + w2a

2
2�

2
1)L

4gh1t =

= !?
1 + fa11L+ (a21 � a11�

1
2)L

2 � (a11�
2
2 + a21�

1
2)L

3 � a21�
2
2L

4gvt (2.19)

Moreover, the ARMA(4,4) representation of the aggregate conditional variance is

B(L)ht = !? + f(w1a
1
1 + w2a

1
2)L + [(w1a

2
1 + w2a

2
2)� (w1a

1
1�

1
2 + w2a

1
2�

1
1)]L

2

� (w1a
1
1�

2
2 + w2a

1
2�

2
1 + w1a

2
1�

1
2 + w2a

2
2�

1
1)L

3 � (w1a
2
1�

2
2 + w2a

2
2�

2
1)L

4gvt
(2.20)

where the autoregressive polynomial is the same with that of h1t in eq (2.19).
Finally, the GARCH(4,4) representation of the aggregate conditional variance is

f1� (�1
1 + �1

2)L+ [�(�2
1 + �2

2) + (�1
1�

1
2)]L

2 + (�1
1�

2
2 +

�2
1�

1
2)L

3 + (�2
1�

2
2)L

4ght = !? + A(L)�2t (2.21)

where the ARCH polynomial is the same with the moving average polynomial in
equation (2.20).

Proposition 2b. Under assumptions 1a and 1b the cross-covariances between the h1t
and h2t components are given by (2.9) where now i = 1, j = 2 and n is replaced by 2n.

Moreover, the cross covariances between ht and hj;t�m; j = 1; 2 are given by (2.10)
where now n is replaced by 2n. The proof is similar to that of Proposition 1b.

The condition for the existence of the fourth moment of the errors is given by (2.11)
where now n is replaced by 2n.

Furthermore, the univariate ARMA(2n,2n) representation of the squared errors �2t is
given by (2.12) where now n is replaced by 2n. The proof follows from (2.17) on rearanging
terms.
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Under assumptions 1a and 1c the autocovariance function of the squared errors is
given by (2.13) where now n is replaced by 2n. Finally, the covariances between the
squared errors and the conditional variance are given by (2.14). The proof is similar to
that of Proposition 1c.

2.3 N Component GARCH(n,n) Model

In what follows we will examine the N component GARCH(n,n) model. In this model the
conditional variance of the errors (ht) is a weighted sum of N components (hit; i = 1; � � � ; n)
with (wi; i = 1; � � � ; n) as weights, respectively. Each component is a GARCH(n,n)-type
speci�cation:

�t=
t�1 � D(0; ht); ht =
nX
i=1

wihit;
nX
i=1

wi = 1 (2.22)

where

Bi(L)hit = �i!1 + Ae
i (L)�

2
t ; i = 1; � � � ; n; �i =

(
1 if i = 1

0 otherwise
; (2.23)

Bi(L) = �
nX
l=0

�l
iL

l; �0
i = �1; Ae

i (L) =
nX
l=1

aliL
l (2.23a)

Theorem 1a. The univariate ARMA representations of hit (i = 1; � � � ; n) are given by

B(L)hit = !?
i + Ai(L)vt; !?

i =

8>><
>>:
!1[1 +

n�1P
l=1

<0
lm;nB

1
l ] if i = 1

!1w1[A
e
i (1) +

n�2P
l=1

<0
(l+1)m;n�

i
1l] otherwise

;
(2.24)

B(L) = 1 +
n2X
l=1

BlL
l =

n2Y
l=1

(1� B�
l L); Ai(L) =

n2X
l=1

AilL
l (2.24a)

In addition, the ARMA (n2; n2) representation of ht is given by

B(L)ht = !? + A(L)vt; A(L) =
n2X
l=1

AlL
l =

nX
i=1

wiAi(L); (2.25)

!? =
nX
i=1

wi!
?
i

10



Moreover, the GARCH(n2; n2) representation of ht is given by

B?(L)ht = !? + A(L)�2t ; B?(L) = 1 +
n2X
l=1

B?
l L

l; (2.26)

Proof. The proof of equation (2.24) together with the Bl's, the Ail's and the <0
(l+1)m;n

are given in Appendix B. The B1
l and �i

1l are de�ned in Proposition 1a. The proof of
equation (2.25) follows immediately from (2.22) and (2.24). The proof of equation (2.26)
follows immediately from (2.25), using vt = �2t � ht. The B

?
l 's are given in Appendix B.

Example 3. For the three component GARCH(2,2) model the univariate ARMA(6,6)
representation for the �rst component conditional variance is:

f1� (�1
1 + �1

2 + �1
3 + w1a

1
1 + w2a

1
2 + w3a

1
3)L +

f�(�2
1 + �2

2 + �2
3 + w1a

2
1 + w2a

2
2 + w3a

2
3) + [�1

1�
1
2 + �1

1�
1
3 + �1

2�
1
3

+ w1a
1
1(�

1
2 + �1

3) + w2a
1
2(�

1
1 + �1

3) + w3a
1
3(�

1
1 + �1

2)]gL
2 +

f�(�3
1 + �3

2 + �3
3 + w1a

3
1 + w2a

3
2 + w3a

3
3) + [�1

1�
2
2 + �2

1�
1
2 + �1

1�
2
3 + �2

1�
1
3 + �1

2�
2
3 + �2

2�
1
3

+ w1a
1
1(�

2
2 + �2

3) + w1a
2
1(�

1
2 + �1

3) + w2a
1
2(�

2
1 + �2

3) + w2a
2
2(�

1
1 + �1

3) + w3a
1
3(�

2
1 + �2

2) +

w3a
2
3(�

1
1 + �1

2 ]� [�1
1�

1
2�

1
3 + w1a

1
1(�

1
2�

1
3) + w2a

1
2(�

1
1�

1
3) + w3a

1
3(�

1
1�

1
2)]gL

3 +

f+�2
1�

2
2 + �2

1�
2
3 + �2

2�
2
3 + w1a

2
1(�

2
2 + �2

3) + w2a
2
2(�

2
1 + �2

3) + w3a
2
3(�

2
1 + �2

2)�

[�1
1�

1
2�

2
3 + �1

1�
2
2�

1
3 + �2

1�
1
2�

1
3 + w1a

1
1(�

1
2�

2
3) + w1a

1
1(�

2
2�

1
3) + w1a

2
1(�

1
2�

1
3) +

w2a
1
2(�

1
1�

2
3) + w2a

1
2(�

2
1�

1
3) + w2a

2
2(�

1
1�

1
3) + w3a

1
3(�

1
1�

2
2) + w3a

1
3(�

2
1�

1
2) + w3a

2
3(�

1
1�

1
2)]gL

4

� [�2
1�

2
2�

1
3 + �2

1�
1
2�

2
3 + �1

1�
2
2�

2
3 + w1a

2
1(�

2
2�

1
3) + w1a

2
1(�

1
2�

2
3) + w1a

1
1(�

2
2�

2
3) +

w2a
2
2(�

2
1�

1
3) + w2a

2
2(�

1
1�

2
3) + w2a

1
2(�

2
1�

2
3) + w3a

2
3(�

2
1�

1
2) + w3a

2
3(�

1
1�

2
2) + w3a

1
3(�

2
1�

2
2)]L

5

� [�2
1�

2
2�

2
3 + w1a

2
1(�

2
2�

2
3) + w2a

2
2(�

2
1�

2
3) + w3a

2
3(�

2
1�

2
2)]L

6gh1t = !?
1 +

fa11L + [a21 � a11(�
1
2 + �1

3)]L
2 + f�[a11(�

2
2 + �2

3) + a21(�
1
2 + �1

3)]

+ a11�
1
2�

1
3gL

3 + [�a21(�
2
2 + �2

3) + a11�
1
2�

2
3 + a11�

2
2�

1
3 + a21�

1
2�

1
3 ]L

4 +

+ [a11�
2
2�

2
3 + a21�

1
2�

2
3 + a21�

2
2�

1
3 ]L

5 + a21�
2
2�

2
3L

6gvt (2.27)

In addition the ARMA(6,6) representation for the aggregate conditional variance is

B(L)ht = !? + f(w1a
1
1 + w2a

1
2 + w3a

1
3)L+ f(w1a

2
1 + w2a

2
2 + w3a

2
3)� (2.28)

� [w1a
1
1(�

1
2 + �1

3) + w2a
1
2(�

1
1 + �1

3) + w3a
1
3(�

1
1 + �1

2)]gL
2 + f(w1a

3
1 + w2a

3
2 + w3a

3
3)�

� [w1a
1
1(�

2
2 + �2

3) + w1a
2
1(�

1
2 + �1

3) + w2a
1
2(�

2
1 + �2

3) + w2a
2
2(�

1
1 + �1

3) + w3a
1
3(�

2
1 + �2

2) +

w3a
2
3(�

1
1 + �1

2 ] + [w1a
1
1(�

1
2�

1
3) + w2a

1
2(�

1
1�

1
3) + w3a

1
3(�

1
1�

1
2)]gL

3 + f�[w1a
2
1(�

2
2 + �2

3) +

w2a
2
2(�

2
1 + �2

3) + w3a
2
3(�

2
1 + �2

2)] + [w1a
1
1(�

1
2�

2
3) + w1a

1
1(�

2
2�

1
3) + w1a

2
1(�

1
2�

1
3) +

w2a
1
2(�

1
1�

2
3) + w2a

1
2(�

2
1�

1
3) + w2a

2
2(�

1
1�

1
3) + w3a

1
3(�

1
1�

2
2) + w3a

1
3(�

2
1�

1
2) + w3a

2
3(�

1
1�

1
2)]gL

4

+ fw1a
2
1(�

2
2�

1
3) + w1a

2
1(�

1
2�

2
3) + w1a

1
1(�

2
2�

2
3) + w2a

2
2(�

2
1�

1
3) + w2a

2
2(�

1
1�

2
3) + w2a

1
2(�

2
1�

2
3) +

w3a
2
3(�

2
1�

1
2) + w3a

2
3(�

1
1�

2
2) + w3a

1
3(�

2
1�

2
2)gL

5 +

+ [w1a
2
1(�

2
2�

2
3) + w2a

2
2(�

2
1�

2
3) + w3a

2
3(�

2
1�

2
2)]L

6gvt
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where the autoregressive polynomial is the same with that of h1t in eq (2.27). Finally,
the GARCH(6,6) representation for the aggregate conditional variance is

f1� (�1
1 + �1

2 + �1
3)L+ [�(�2

1 + �2
2 + �2

3) + �1
1�

1
2 + �1

1�
1
3 + �1

2�
1
3 ]L

2 +

[�(�3
1 + �3

2 + �3
3) + �1

1�
2
2 + �2

1�
1
2 + �1

1�
2
3 + �2

1�
1
3 + �1

2�
2
3 + �2

2�
1
3 � �1

1�
1
2�

1
3 ]L

3 +

+ [�2
1�

2
2 + �2

1�
2
3 + �2

2�
2
3 � (�1

1�
1
2�

2
3 + �1

1�
2
2�

1
3 + �2

1�
1
2�

1
3)]L

4 �

� [�2
1�

2
2�

1
3 + �2

1�
1
2�

2
3 + �1

1�
2
2�

2
3 ]L

5 � �2
1�

2
2�

2
3L

6ght = !? + A(L)�2t (2.29)

where the ARCH polynomial is the same with the moving average polynomial in
equation (2.28).

Theorem 1b. Under assumptions 1a and 1b the cross-covariances between the hit and
the hj;t�m components are given by


i;jm = cov(hit; hj;t�m) =

8>><
>>:

n2P
r=1

�r;m�
ij
r;m�

2
v ; if m > 0

n2P
r=1

�jirm�
2
v ; if m < 0

; (2.30)

�rm =
(B�

r )
n2�1+m

n2Q
k=1

(1� B�
rB

�
k)

n2Q
k=1
k 6=r

(B�
r � B�

k)

; (2.30a)

�ijr;m =
n2�1X
c=0

n2�cX
d=1

AidAj;d+c(B
�
r )

c +
m?X
c=1

n2�cX
d=1

AjdAi;d+c(B
�
r )

�c +
n2�1X
c=m+1

n2�cX
d=1

AjdAi;d+c(B
�
r )

c�2m

(2.30b)

where m? = min(n2 � 1; m) and �2
v = 2

3
E(�4t ) (under conditional normality) and is

given below. When i = j the above formula gives the autocovariances of hit. Moreover, the
cross-covariances between the ht and hj;t�m (
jm) are as (2.30) where now hit is replaced
by ht, Aid is replaced by Ad, �

ij
rm is replaced by �j+rm, and �jirm is replaced by �j�rm. In

addition, when hjt, and hit are replaced by ht, Aid and Ajd are replaced by Ad and �ijrm is
replaced by �rm the above formula gives the autocovariances of ht. The proof is similar
to that of Proposition 1a.

Proposition 3a. The condition for the existence of the fourth moment of the errors for

this model is 
0 <
1
2
; 
0 =

n2P
r=1

�r0�r0.

Moreover, the univariate ARMA (n2; n2) representations of the squared errors �2t is
given by

B(L)�2t = !? + Ae(L)vt; Ae(L) =
n2X
l=0

Ae
lL

l = [B(L) + A(L)]vt; Ae
0 = 1

(2.31)
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In addition, the autocovariance function of the squared errors is given by (2.30) where
now hit and hjt are replaced by �2t , Aid and Aj;d+c are replaced by Ae

d and �ijrm is replaced
by �erm.

Finally, the covariances between the squared errors and the conditional variance are
given by cov(�2t ; ht�m) = cov(ht; ht�m); cov(ht; �

2
t�m) = cov(�2t ; �

2
t�m).

Proof. The derivation of the condition for the existence of the fourth moment is similar
to that of Proposition 1c. The proof of equation (2.31) follows from (2.25) on rearranging
terms. The equalities above follow from the law of iterated expectations.

3 Conclusions

This paper extendend K(1999a) results for the n Component GARCH(1,1) and the two
Component GARCH(2,2) models and it further examined the n Component GARCH(n,n)
model. First, we derived the VARMA representation of the component variances. Next,
we used these VARMA representations to obtain the univariate ARMA representations
of all the component variances, of the aggregate variance, and of the squared errors. In
addition, we presented the GARCH(n2; n2) representation of the aggregate variance and
we gave the condition for the existence of the fourth moment of the errors. Moreover, we
used the canonical factorization of the autocovariance generating function of the above
univariate ARMA representations to obtain (i) the autocovariances of the component
variances, the aggregate variance and the squared errors, (ii) the cross covariances between
the component variances, and (iii) the cross covariances between the aggregate variance
and the component variances, and between the aggregate variance and the squared errors.
Finally, we illustrated our general results using three examples: the three component
GARCH(1,1), the two component GARCH(2,2) and the three component GARCH(2,2)
models.

The potential generalisations of the simple Component GARCH model are numer-
ous. To state a few: The Component Exponential GARCH(C-EGARCH), the Compon-
ent GARCH-in-mean-level (C-GARCH-M-L), the Assymetric Power Component ARCH
(C-APGARCH), the Fractional Integrated Component GARCH (C-FIGARCH), and �-
nally the Multivariate Component GARCH (C-MGARCH) models6. Since this study
only examined the case where the roots of the autoregressive polynomial are distinct,one
potentially important issue relates to the e�ect of equal roots.
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A PROOF OF CORROLARY 1a, PROPOSITIONS 1a, 1b, 2a

Proof of Proposition 1a

We add and subtract aiht�1 in (2.2) and we use (2.1) to get

hit = �i!i + ai

nX
j=1
j 6=i

wjhj;t�1 + (�i + aiwi)hi;t�1 + aivt�1; i = 1; � � � ; n;
(A.1)

vt = �2t � ht; E(vt) = 0; cov(vt; vt�k) = 0 (A.1a)

Rewriting the system in a VARMA form we have

~B~ht = ~! + ~avt�1 (A.2)

where ~B is a n � n matrix. It's ijth element is bij =

(
�aiwj if i 6= j

1� aiwi � �i if i = j
. ~a is

a n � 1 column vector. It's i1th element is ai. ~ht is the n � 1 column vector of the n
components. ~! is a n� 1 column vector. Its i1th element is �i!i.

The univariate ARMA representations of (A.1) are given by (in what follows �B denotes
determinant)7

nX
l=0

�BlL
lhit = !?

i +
nX
l=1

i1 �Al L
lvt (A.3)

�Bl =
lY

k=1

[

n�(l�k)X
fk=fk�1+1

]
lY

k=1

( �Bfk
fk
)(�1)l; f0 = 0; B0 = 1 (A.3a)

�Bl denotes the sum of the determinants of all the (l � l) submatrices of the (n � n)
matrix ~B. As an example, consider the case where n = 3 and l = 2:

�Bl = �B2 = �B12
12 + �B13

13 + �B23
23 =

����b11 b12
b21 b22

����+
����b11 b13
b31 b33

����+
����b22 b23
b32 b33

����

i1 �Al =
lY

k=1

[

n�(l�k)X
fk=fk�1+1

]
lY

k=1

(
i1 �A1fk

1fk
)(�1)l�1; f0 = 0; ; i1A0 = ai (A.3b)

7The proof is similar to the one used in K(1999b)
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i ~A denotes an (n � n) matrix. It is obtained from matrix ~B by substituting its ith
column with the column vector ~a. As an example consider the case where n = 3, i = 2:

2 ~A =

2
4b11 a1 b13
b21 a2 b23
b31 a3 b33

3
5

i1 ~A denotes an (n � n)matrix. It is obtained from matrix
i ~A by moving the ith row

(column) into the �rst row (column). As an example, consider the case where n = 3,
i = 2:

21 ~A =

2
4a2 b21 b23
a1 b11 b13
a3 b31 b33

3
5

i1 ~Al denotes the sum of the (l + 1) � (l + 1) submatrices of the (n � n) matrix
i1 ~A

which include elements of its �rst row and column. As an example, consider the case
where n = 3, i = 2, and l = 1:

21 ~A1 =

�
a2 b21
a1 b11

�
+

�
a2 b23
a3 b33

�

From (A.3), (A.3a) and (A.3b) after some algebra we get (2.3).

Proof of Corrolary 1a

Multiplying (2.1) by B(L) and using (2.3) we obtain

B(L)ht =
nX
i=1

wi!
?
i +

nX
i=1

wi

nX
l=1

Ailvt�l (A.4)

or alternatively (2.5). �
An alternative derivation of the above result is given by K (1999a) (He derived it by

using the DG, 1996 technique).

Proof of Proposition 1b

From (2.3a) we get

1

B(z)B(z�1)
=

nX
l=1

(B�
l )

n�1

(1� B�
l z)(1�B�

l z
�1)

nQ
k=1
k 6=l

(B�
l � B�

k)(1� B�
l B

�
k)

(A.5)

Moreover, after some algebra, we can show that
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Ai(z)Ai(z
�1)

(1� B�
l z)(1�B�

l z
�1)

=
1

1� (B�
l )

2

1X
m=0

(�ijl;mz
m + �jil;mz

�m)(B�
l )

m

(A.5a)

From (A.5) and (A.5a), after some algebra, we get the cross-covariance generating
function gij(z)

gij(z) =
Ai(z)Aj(z

�1)

B(z)B(z�1)
�2
v =

nX
l=1

1X
m=0

fm�lm(�
ij
l;mz

m + �jil;mz
�m)�2

v ; (A.5b)

where fm =

(
:5 if m = 0

1 otherwise
. Thus,


i;jm = cov(hit; hj;t�m) =

8><
>:

nP
r=1

�rm�
ij
rm�

2
v ; if m > 0

nP
r=1

�rm�
ji
rm�

2
v ; if m < 0

(A.5c)

The proofs for the cross-covariances between ht and hit, and the autocovariances of
the squared errors are similar. �

Proof of Proposition 2a

In (2.15a) we add and subtract Ae
i (L)ht and we use (2.15) to get

Bi(L)hit = �i!i + Ae
i (L)vt + w1A

e
i (L)h1t + w2A

e
i (L)h2t )

[Bi(L)� wiA
e
i (L)]hit = �i!i + Ae

i (L)vt + w3�iA
e
i (L)h3�i;t; i = 1; 2 (A.6)

We multiply the above equation by B3�i(L)�w3�iA
e
3�i(L) and after some algebra we

get (2.16). �

B PROOF OF Theorem 1a

Proof of Theorem 1a

Adding and subtracting
nP
l=1

aliht�l, (i = 1; � � � ; n) in (2.23), using vt = �2t � ht, and

writing the system in a VARMA representation form we get
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~ht = ~! +
nX
l=1

~Bl
~ht�l +

nX
l=1

~alvt�l (B.1)

~ht =

2
66664
h1t
:
:
:
hnt

3
77775 ; ~B =

2
664
b11 ::: b1n
: : : : : : : : : : :
: : : : : : : : : : :
bn1 ::: bnn

3
775 ; bij = aiwj + �i�i; ~! =

2
66664
!1

0
:
:
0

3
77775 (B.1a)

~Bl =

2
664
bl11 ::: bl1n
: : : : : : : : : : :
: : : : : : : : : : :
bln1 ::: blnn

3
775 ; �i =

(
1 if i = j

0 if i 6= j
; ~a =

2
66664
a1
:
:
:
an

3
77775 ; ~al =

2
66664
al1
:
:
:
aln

3
77775 (B.1b)

The univariate ARMA representations of (B.1) are given by (in what follows �B denotes
determinant)8

n2X
l=0

�Blm Llhit = !?
i +

n2X
l=1

i1 �Alm Llvt; �B0m = 1; i = 1; � � � ; n (B.2)

where

�Blm =
nX

m=1

<0
ml;n

�Bm; �Bm =
mY
k=1

(

n�(m�k)X
fk=fk�1+1

)
mY
k=1

( �Bfk
fk
)(�1)m; f0 = 0

(B.2a)

where �Bm denotes the sum of the determinants of all the (m�m) submatrices of the
(n� n) matrix ~B. As an example, consider the case where n = 3 and m = 2:

�Bm = �B2 = �B12
12 + �B13

13 + �B23
23 =

����b11 b12
b21 b22

���� +
����b11 b13
b31 b33

���� +
����b22 b23
b32 b33

����

<0
ml;n =

(
<ml;n if l = m; � � � ; m� n

0 otherwise
; <ml;n =

mY
k=1

f

min[l�
k�1P

t=1

gt�(m�k);n]

gk=max[1;l�[(m�k)n+
k�1P

t=1

gt]]

gk

where <ml;n denotes the set of all the combinations of m numbers taking values from
1 to n and adding to l. As an example, consider the case where n = 2 and m = 2:

<0
ml;n = <0

2l;2 =

(
<2l;2 if l = 2; 3; 4

0 otherwise
; <22;2 = 11; <23;2 = 12; 21; <24;2 = 22

8The proof is similar to the one used in K(1999b)
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k1k2���km
�Bm (ki = 1; � � � ; n) denotes the �Bm sum of determinants where now the b's in

the ith column (i = 1; � � � ; m) are taken from the ~Bl matrix. As an example, consider the
case where n = 3 and m = 3:

121
�B3 = �

������
b111 b212 b113
b121 b222 b123
b131 b232 b133

������
When we multiply �Bm by <ml;n we get

(l1���lm)1
�Bm+ � � �+ (l1���lm)f

�Bm

where (l1 � � � lm)i; i = 1; � � � ; f denotes the set of all the f di�erent combinations of m
numbers which take values from 1 to n and sum to l. As an example, consider the case
where n = 3, m = 2 and l = 3:

<23;3
�B2 = 12

�B2+ 21
�B2 = [

����b111 b212
b121 b222

���� +
����b111 b213
b131 b233

���� +
����b122 b223
b132 b233

����]+

+[

����b211 b112
b221 b122

���� +
����b211 b113
b231 b133

���� +
����b222 b123
b232 b133

����]

i1 �Alm =
n�1X
m=0

<0
(m+1)l;n

i1 �Am;
i1 �Am =

mY
k=1

(

n�(m�k)X
fk=fk�1+1

)
mY
k=1

(
i1 �A1;fk

1;fk
)(�1)m; f0 = 1

(B.2b)

where
i ~A denotes a (n�n) matrix. It is obtained from matrix ~B by substituting its ith

column with the column vector ~a. As an example, consider the case where n = 3; i = 3:

3 ~A =

2
4b11 b12 a1
b21 b22 a2
b31 b32 a3

3
5

i1 ~A denotes a (n � n) matrix. It is obtained from matrix
i ~A by moving the ith row

(column) into the �rst row (column). As an example, consider the case where n = 3; i = 3:

31 ~A =

2
4a3 b31 b32
a1 b11 b12
a2 b21 b22

3
5

Of all the (m+ 1)� (m+ 1) submatrices of the (n� n) matrix
i1 ~A,

i1 ~Am denotes the
sum of those which include elements of its �rst row and column. As an example, consider
the case where n = 3; i = 3 and m = 1:

31 ~A1 =

�
a3 b31
a1 b11

�
+

�
a3 b32
a2 b22

�
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<0
(m+1)l;n =

(
<(m+1)l;n if l = m+ 1; � � � ; (m+ 1)n

0 otherwise

<(m+1)l;n =
m+1Y
k?=1

f

min[l�
k?�1P

t=1

gt�(m+1�k?);n]

gk?=max[1;l�[(m+1�k?)n+
k?�1P

t=1

gt]]

gk?

<(m+1)l;n denotes the set of all the combinations of (m+1) numbers which take values
from 1 to n and sum to l. As an example, consider the case where n = 2; l = 5 and
m = 2:

<35;2 = 221; 212; 122

From (B.2) using (B.1a), (B.1b), (B.2a) and (B.2b) after some algebra we get

B(L)hit = !?
i + Ai(L)vt; (B.3)

B(L) =
n2X
l=0

�BlmL
l =

n2Y
l=1

(1�Bo
l L); Ai(L) =

n2X
l=1

i1 �Alm Ll =
n2X
l=1

AilL
l

(B.3a)

where

�Blm =
n2X

m=1

<0
ml;n�̂m; �̂m = �̂1m + �̂2m; �̂21 = �

nX
i=1

wiai

�̂1m =
mY
k=1

(

n�(m�k)X
fk=fk�1+1

)
mY
k=1

(�fk)(�1)
m; �̂2m =

nX
i=1

wiai

m�1Y
k=1

(

n�(m�1�k)X
fk=fk�1+1

fk 6=i

)
m�1Y
k=1

(�fk)(�1)
m

where <0
ml;n is de�ned as above.

k1k2���km
�̂m denotes the �̂m where now the ith terms in each of the products of m terms

(i = 1; � � � ; m) are taken from the ~Bki matrix. As an example consider the case where
n = 4 and m = 3.

121�̂3 = �[(�1
1�

2
2�

1
3 + �1

1�
2
2�

1
4 + �1

1�
2
3�

1
4 + �1

2�
2
3�

1
4) + w1a

1
1(�

2
2�

1
3 + �2

2�
1
4 + �2

3�
1
4)

+ w2a
1
2(�

2
1�

1
3 + �2

1�
1
4 + �2

3�
1
4) + w3a

1
3(�

2
1�

1
2 + �2

1�
1
4 + �2

2�
1
4) + w4a

1
4(�

2
1�

1
2 + �2

1�
1
3 + �2

2�
1
3)]

When we multiply �̂m by <ml;n we get
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(l1���lm)1 �̂m+ � � �+ (l1���lm)f
�̂m

where (l1 � � � lm)j; j = 1; � � � ; f denotes the set of all the f di�erent combinations of m
numbers which take values from 1 to n and sum to l. As an example, consider the case
where n = 3, m = 2 and l = 3:

<23;3�̂m = 12�̂2+ 21�̂2 = (�1
1�

2
2 + �1

1�
2
3 + �1

2�
2
3) + (�2

1�
1
2 + �2

1�
1
3 + �2

2�
1
3) +

+ [w1a
1
1(�

2
2 + �2

3) + w2a
1
2(�

2
1 + �2

3) + w3a
1
3(�

2
1 + �2

2)]

+ [w1a
2
1(�

1
2 + �1

3) + w2a
2
2(�

1
1 + �1

3) + w3a
2
3(�

1
1 + �1

2)]

i1 �Alm =

n2�1X
m=0

<0
(m+1)l;nâim; âim = ai

mY
k=1

(

n�(m�k)X
fk=fk�1+1

fk 6=i

)

mY
k=1

(�fk)(�1)
m; âi0 = ai; f0 = 0:

(B.3d)

where <0
(m+1)l;n is de�ned as above.

k1k2���km âim denotes the âim where now the �rst term in each of the products of m terms
(j = 1; � � � ; m) are taken from the ~ak1 matrix and the next j-1 terms are taken from the
~Bkj matrix. As an example consider the case where n = 4 and m = 2.

121â13 = a11�
2
2�

1
3 + a11�

2
2�

1
4 + a11�

2
3�

1
4

When we multiply âim by <0
(m+1)l;n we get

(l1���lm+1)1 âim+ � � �+ (l1���lm+1)f âim

where (l1 � � � lm+1)j; j = 1; � � � ; f denotes the set of all the f di�erent combinations of
m+ 1 numbers which take values from 1 to n and sum to l. As an example, consider the
case where n = 3, m = 2 and l = 4:

<0
24;3â1m = 112â1m+ 121â1m+ 211â1m = a11�

1
2�

2
3 + a11�

2
2�

1
3 + a21�

1
2�

1
3

�
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