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Abstract

This paper presents an Arrow-type result which can be simply demonstrated to hold within the standard
domain of welfare economics: in the (mxn) Edgeworth Box, a best alocation must assign all goodsto
asingle individual. Allowing the Social Welfare Function to take account of envy-freeness, or other
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1 I ntroduction

Probably the most familiar, if not the simplest, problem in welfare economics is as follows. There are
fixed amounts of several goods to be alocated between several individuas, each of whom has
conventionally-structured preferences over his (her) own assignment of goods. The problem isto rank,
i.e., to placein order of socia preference, the various feasible allocations of these goods, and for this

ranking to respect individual preferencesin two specific ways.

Firstly, the Pareto condition requires that allocation x is strictly preferred to (“better than*) allocation
y, if each individual strictly prefers his assignment in x to his assignment iny. Figure 1 is the familiar
representation of the 2x2 case. With the solid indifference curves, a is a Pareto-efficient alocation, as
isany other allocation on the dotted contract curve. For any allocation not on the contract curve, there

exists another which is better, because Pareto-superior.

The second condition, Independence of Irrelevant Alternatives, requires the ranking of any pair of
allocations {x,y} to depend on individuas preferences only over (their own assignmentsin) x and y.
The force of this condition emerges if it is additionally required that a socia preference ordering be
constructible for any admissible, albeit hypothetical, profile of individua preferences. Given this, 1A
imposes on the social preference ordering a requirement of consistency across different individual

preference profiles.

In a less structured context, i.e., where the available alternatives are abstract items over which any
individual may have any coherent preference ordering, the implications of these conditions are well
known. Arrow’ stheorem statesthat Pareto and |1 A cantogether be satisfied only by adictatorial Social
Wefare Function. That is, there is some specific individual j such that, for any profile of individual

preferences, the social preference ordering corresponds exactly to j’sindividual ordering.

Itisonly relatively recently (Bordes, Campbell and Le Breton, 1995) that the equivalent result has been
confirmed to hold in the more structured economic environment described above, i.e., in the Edgeworth
Domain.! In this paper we demonstrate an Arrow-like proposition which is logically weaker than that
of Bordes et al. However it is il a strong result, and can not only be obtained with great smplicity,
but can also be generalised in anovel direction. It concerns the possibility of a best allocation, that is,

one which has no other allocation ranked above it. Since in the Edgeworth Domain thereis an infinite



number of possible alocations, then it cannot be assumed that abest allocation always exists. But it can

be easily shown that if it does exist then it must assign al of the available goods to one individual.

The basic argument can be sketched immediately, with reference to Figure 1. Allocation a assigns
positive amounts of each good to each individual and, given the solid indifference curves, is Pareto-
efficient. Suppose that it is a best allocation, and is therefore at least as good as each of b and c, as
shown. (The requirements on b and ¢ will soon become apparent, as will the fact that such allocations

can aways be located.)

Individual 1 prefersato b, but could have preferred b to a, asindicated by a dashed indifference curve.
Inthat case, 2's preferences being unchanged, b would have been Pareto-superior to a. Each individua’s
preferences with respect to {a,c} are unchanged so that, for this hypothetical profile, IIA implies that
aisat least asgood as c. It follows that, for this profile, b is better than c.

Now consider another hypothetical profile where, instead, individual 2 preferscto a, again asindicated
by a dashed indifference curve. For this profile c is Pareto-superior to a. Given that each individua’s
preferences with respect to {a,b} are unchanged, I1A implies here that a is at least as good as b. It
follows that, for this profile, c is better than b. But individual preferences with respect to {b,c} are

invariant throughout; 1 prefers c to b and 2 prefers b to ¢. Hence there isaviolation of 11A.

So we cannot, without contradiction, assume that a is a best allocation. But there is nothing special
about a. For any Pareto-efficient allocation in theinterior of the Edgeworth Box asimilar argument can
be constructed, in that other allocations corresponding to b and ¢ may aways be found. Thiswould be
the case even were the contract curve to coincide (in part) with the edge of the box. The only points
immune to this argument, i.e., for which allocations such as b and ¢ cannot be found, are the endpoints
of contract curve, where one individua is assigned all the available goods. No other allocation can be
best.



2  TheEdgeworth Dictator

In this section we formalise and generalise the argument just outlined. There are m goods (g=1,..,m),
each available in a given quantity w,>0, and each infinitely divisible between n individuas (i=1,..,n).

The available endowment is therefore w = (w,,.., W) .

Anassignment x. = (X,,..,X;..) isany non-negative m-tuple, where x; o isthe quantity of good g assigned
to individua i. Givenw, an allocation x = (x,,..,X.) isany n-tuple of assignments such that Yy Xig S W, -

Let x(w) denote the set of al allocations, given w.

Each individual has a (complete, transitive) ordering R, defined on assignments, and assumed to be
continuous, strictly increasing and strictly convex. Call thisastandard preference ordering. In the usual
manner, X.R,y, denotesthat i weakly prefers x; to y,. Strict preferenceisdenoted by xP,y, < = y,R; X,

and indifference by x1.y, = [xR.y, & y.R,x].

Aprdfile p=(R,,..,R,) isany n-tuple of standard preference orderings, onefor eachindividual. For the
2x2 case, x(w) and p can be depicted in the familiar Edgeworth Box. In Figure 1 the solid indifference

curves represent a given profile p°=(R2, RD).

A social preference ordering R, defined on y(w), isrequired at any profile p. Thefunction R=f(p), i.e,
the Social Welfare Function (SWF), isto satisfy:?

Pareto If xP,y, fordli, then xPy

A The socia ordering of any pair of alocations { x,y} depends on each individual i’ s ordering

only of {x.,y}

Atany givenprofilep, thesocial orderingR =f(p) may identify abest allocation, i.e., somexsuchthat xRy
fordl yey(w). If xisabest allocation, then the Pareto condition impliesthat there can be no ye x(w)
such that Vi:y, P, x.. In Figure 1 this restriction is represented by the (dotted) contract curve; given
profile p°, neither of allocationsb and ¢ can be best. Aswe now show, however, [1A additionally implies

that even a cannot be best.



Proposition 1 Inthe mxn Edgeworth Domain (m>2), given Pareto and |1 A, at any profile p abest
allocation (if one exists) must assign all of the available goods to one individual, i.e.,

is characterised by X =W for someindividual j.
Proof Assume to the contrary that at p° there exists a best allocation a which does not assign all
goods to one individual. Then (allowing for an appropriate re-labelling of individuals and

goods) there must be a pair of distinct individuals{1,2} and a pair of distinct goods{ 1,2}
such that:

a;,>0  a,>0
Givenany {9,¢,(} such that:
0<(n-2)(,<g <), <a, (i=1,2)

define alocations b and ¢ as follows (where j#1,2):

b,=a,-9, b, =a,+06,-(n-2), bjlz a+ ¢y
b,, = a,-¢, b, =a,+e,-(N-2)(, ij: a,* ¢,
C =8, ¢ Cy =8, +e,-(N-2)C, Cy= &yt ¢y
Cyy = 8y~ 0, Cp, = a,+8,-(N-2)¢, Cp= Ayt ¢,

&= big: Cig (i=1,..,n; g=1,2)

Figure 2 illustrates this construction. For any standard preferences R;:

(1) cPb, & bPc, & blc (j*1,2)

11 (N

@) bPa & cPa (j*1,2)



There exist standard preferences R; and Rg such that:

3 bPa, & P,

Given {5,,8,} and p°, there exist €<, (i=1,2) such that if, additionally, € <g, then:
(@) cPla, & bPa,

Assume that € <e,, so that (4) is satisfied.’

At p°= (R}, RY,...R%), by assumption, both aR% and aR°c. Then from (1)-(4) there exists
aprofile p' = (R}, RY,..,R®) at which:

by Pareto: bP'a.
by lA: aR'c
and thus: bP'c

Similarly, there exists a profile p?=(R},R5,..,R%) at which:

by Pareto: cP%a
by IA: aR%b
and thus: cP’b

But from (1) thisisaviolation of [1A. So the initial assumption is false.
QED

Proposition 1 appliesto any given profile. But let x be an allocation such that X =W for someindividua
j, and let y be any other alocation. Given increasingness, each individual i‘s preference ordering of
{x,y} isinvariant acrossal profiles. So IlA impliesthat if xRy at any profilethen xRy at every profile.
From Proposition 1 it then follows that the set of best allocations must be the same at every profile.
Thus:



Proposition 2 If R=f(p) identifies abest allocation at some p’ then, given Pareto and I A, thereis
anon-empty set of individuals D such that, at every p, xisabest allocation if and only

if x;=w for some jeD.

Proposition 3 If R=f(p) identifiesauniquely best allocation at some p’ then, given Pareto and I1A,

thereisanindividua j such that, at every p, x isabest alocation if and only if X =W.

Propositions 1-3 are somewhat weaker than the Arrovian result of Bordeset al, i.e., that the SWF must
be dictatorial. But 1-3 are neverthel ess substantial in themselves. Furthermore, they can be extended in
adirection which, in one respect, represents an advance on Bordes et al. Thisinvolves aweakening of

[1A, to be described in the next section.

3 Envy-freenessin the Social Welfare Function

An dlocation x is envy-free if Vi,j: XR; X, that is, if no individua i strictly prefers the assignment of
some other individual j. Figure 3 illustrates for the 2x2 case, where to any allocation x=(x;,X,) there
correspondsaswapallocation x’ = (x,’,x,") suchthat x,"=x; (i+]).IntheEdgeworthBox, X" isobtained
fromx by a180° rotation about the equal-assignment allocation (W2, w'2) . Thenxisenvy-freeif neither
individual i strictly prefers x.’ to x.. Given standard preferencesin the Edgeworth Domain, thereadways

exist alocations which, like ain Figure 3, are both envy-free and efficient.*

Consider the following principle:

EF If xisenvy-freeandy is not, then xPy

Whatever the appeal of this principle, it is not consistent with I1A, as may be confirmed by a 2x2

example. Define alocations d = ((6,4),(4,6)) and e=((1,9),(9,1)), and profiles {p,p’} , asrepresented

by the following utility functions.



p u, = xflx12 u,= x21x222 so that for i#j:

u(d) =144 u,(d) = 96 u(e)=9 u(e) =81
p’ U, = X, X U, = X5 %, so that for i#j:
u(d) =96 u(d) = 144 u(e) =81 u(e)=9

In profile p, d is envy-free but eis not, so EF here requiresthat dPe. In profile p’ the reverse is true,
so EF hererequiresthat ePd. But each individua’ s ordering of own-assignmentsin d and eisthe same

inp’ asinp, sothisisaviolation of 11A.
Thereis, however, a natural weakening of I1A which permits EF. Itis:

[HA* The social ordering of any pair of allocations {x,y} depends on each individua i’s

ordering only of {Xx,,..,X ; ¥;:-., Y.}

I1A* allowsthesocial ordering of {d,e} todiffer between profilesp and p’, asEF requires. But EF itself
remains problematic, sinceit isinconsistent not only with I1A but also with Pareto, as can be seeninthe
above example. According to the invariant individua preferences over own-assignments, d is Pareto-
superior to e. But at profile p’ EF requires that ePd. So even with the weaker 11A*, a SWF which

satisfies Pareto cannot also accommodate EF.°

Although EF therefore cannot be part of it, the question arises asto whether there is any non-dictatorial
SWF which satisfies Pareto together with 11A*. Wewill show that thisisdoubtful, in that resultssimilar

to Propositions 2 and 3 can be obtained in this more general setting.

The outline argument is amost as simple as before. In Figure 3, assume that a is a best allocation at
p°=(R%,RY), so that aR% and aR°. As shown, a is not only efficient but also envy-free; given p°,
each individual strictly prefersato a’. Thus b (and ¢) can be located sufficiently close to a such that
individual 1 strictly prefers b, to any of {a,b,c,}. It is evidently then possible to construct an
alternative indifference curve, such asthe dashed curve shown, which passesthrough a, and below b,

but which leaves undisturbed 1's preferences over al other relevant assignments.

So there exists a profile p* = (Ri, Rg) at which b is Pareto-superior to a, but in which each individua’s



ordering of {a,,a,;c,,c,} andof {b;,b,;c,,c;} isthesameasin p°. At p?, IIA* thusimpliesthat aR'c,
from which it follows that bP'c.

Similarly, there exists a profile pzz(R‘;, Rg) at which c is Pareto-superior to a, but in which each
individual’s orderings of {a,,a,;b;,b,} and of {b,b,;c,.c.} isthesameasin p°. At p?, IIA* thus
impliesthat aR?b, fromwhichit followsthat cP?b. But thisisaviolation of 11A*. So a cannot be abest
alocation at p°.

In section 5 we formalise and generalise this argument. To do this, however, we need to show that
{R},R} can always be found which relevantly resemble {R?, R)} . The next section provides the
analytical framework for this.

4 A parametric preference transformation

Individual 1's standard preference ordering Rg can be represented by the function:

Xip = ¢(ul;xll’xl3""xlm)

which is continuous, increasing in u,, and for any given u, defines a decreasing and strictly convex

indifference surface. Given a, and b,,=a,,-06,, asin Proposition 1, calibrate u, and ¢ such that:

a, = 60by a8, = ¢layas..a,)

Given any b,, such that:

®(O;b,y,a 58, ay,) < b, < ¢1b,a,8;,.,a,,)

it is required to transform ¢ into y, representing R; such that b,Pja,, and thus:

a, = llj(l;all’a13’a13""a1m) and b12 > llj(l;bll’a13’a13""a1m)

but also to delimit the transformation in (standard) preferences over assignments other than {a,,b,} .
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For notational concisenesswewill assumethat m=3, but the following applies straightforwardly to any
m>2. Define:

O(x;,X5) = max{ X, | ax,+(1-e)a, < ¢ (L [ax; +(1-a)b, ], [ax ;+(1-x)a ,])
either (i) Ya>1, or (ii)) Ya>0 suchthat ax,+(1-a)b, < a;,}

To illustrate, Figure 4 shows ¢(1;X,,,X,5), delineated in each of the three cross-sections defined by
X4~y (9=1,2,3), intersecting at assignment a,. At a distance 6, directly below this is located
(b,;,a,,,8,,), emanating from which arefive representativerays. These are shown asdashed wherethey

lie below the indifference surface and solid where aboveit.

Thetwo lower rays, up to their respective points of tangency with the indifference surface, are on 6 by
virtue of both (i) and (ii). The locus of such tangencies is shown by the dotted arc on the indifference
surface at x,,<a,,. The other three rays break through the indifference surface in the plane x ,=a, .
They are on 0 by virtue of (i), unlessand until they disappear again below the surface at some x,,>a, ,,

as do two of these. The locus of such pointsis shown as two dotted curves.
Within the dotted boundary, therefore, 6 comprises rays such as those shown (dashed or solid). But
outside the boundary 6 coincides with ¢ by virtue of (i). It is everywhere continuous, weakly convex,
and non-increasing.
For any given A€[0,1], k°<0 and k*>1, let t(u,) be any continuous function such that:

T(u) = 4 for u,e[0,1]

t(u,) isincreasing for u,e[k® 0], and decreasing for u,e[1,k’]

(k% = t(kh) =0
The transformed preference function may now be defined as:

lp(ul;X111X13) = ¢(U1;X11,X13) for u, < kO

= [1-t(u)] dug;Xy5, %) + T(Uy) B(X 1, %;5) for u e[k®1]



max{ [1-t(u)] du;X 5, %5) + T(U) 0(X 5, %;5)
[1-A] d(u; X h X5-) + AO(X X 5) } for u,e[1, k']

max{ ¢(ul;xll’xl3) J
[1-A] d(uy;X 5 X5-) + AO(X X 5) } for u, > k*

This can be described with the aid of Figure 4. Consider first the indifference surface ¢(1;x;,X;,)-
Beyond the dotted boundary it coincides with 0, so the transformation leaves it intact here. Within the
boundary, it lies above 6 for x,,<a,,, and below it for x,,>a,, . So here the transformation depresses
thesurfaceat all x;<a,, andraisesitat al x;,>a, ;. In effect, it pushes the surface down towards the
vertex (b,;,a,,,a,,), while pivoting it around the indifference curve ¢(1,a,,,x,;), which therefore

remains intact. The magnitude of the distortion is given by the value of A.

Indifference surfaces above and below this are similarly transformed, in a manner which preserves
continuity and increasingness with respect to u, . For each such surface the distortion is unconfined by
any equivalent dotted boundaries. However, its magnitude diminishes to zero for u,<k° and u,>k*
except that, for the latter, increasingness requires each indifference surface to be raised where it lies

below 0, i.e., below rays such as the upper three in Figure 4.
Like ¢, the transformed function ¢ is continuous, increasing in u,, and for any given u, defines a
decreasing and strictly convex indifference surface.” It contains an indifference surface (u,=1) passing

through a, and, for asufficiently large value of A, below b, . But the transformation |eaves intact the

represented preferences over each of the following sets of assignments:

1= { X, | Xo= (I)(l;xllaxlg,) = 6()(11’)(13)}

K0 = {0 | X< DK Xy, %) }

K= {x | X, ¢(kl;xll’xl3) & X5 0(Xpy, Xp3) }

U kU «t and {b}Ux°Ux!

10



So far we have assumed arbitrarily given valuesof k°, k' and 8, . But let x,,= a,,+ B(a,5-X,,) bethe

hyperplane which supports ¢(1;a,,,x;,) a a,, so that:

VX3t ant Plagz=X3) < ¢(Liay;,X,)

Then:
lim 80, %,0) = Max{ G(LiX,y %) + By Blays3) )

6,-0+
So any assignment x,#a, such that x;,<a;; and x,=¢(1;X,;,X,5), can beincluded in 1 by taking a
sufficiently small valueof §,>0. In Figure 4, the surface enclosed within the lower dotted arc contracts

towards a,, diminishing to zero, as 6, approaches zero.

Any assignment X, such that x,,< ¢(1;X,,,%,5) canbeincludedin k° by taking sufficiently small 8,>0
and sufficiently large k°<0. Similaly, any assignment x, such that x,,>(1;%,,%4) and

X,5> 0(X,;,%;5), can beincluded in x* by taking sufficiently small k*>1.

1!

5 [1A* and t-exclusive allocations

We describe allocation x as t-exclusive if x.=wit for each i of somet individuals. Thus, at-exclusive
alocation shares al goods equally among t individuals, assigning nothing to the remaining n-t
individuals. Polar cases are t=1, where one individua is assigned al of the available goods, and t=n,

where dl individuals receive an equal share of all goods.

According to Proposition 1, Pareto and 11 A together imply that a best allocation must be 1-exclusive.

Using the apparatus provided in section 4, we now demonstrate:

Proposition 4 Inthe mxn Edgeworth domain (m>2), given Pareto and I|A*, at any profile p abest

allocation (if one exists) must be t-exclusive.

Proof Assume to the contrary that at p° there exists a best allocation a which is not t-exclusive.

For each good g, define:

11



ég = miax{aig} and A@J = {i| qg:ég}

Suppose that A g is not identical for each good g. Then (re-labelling as necessary) there
existssomeindividual 1 and somepair of goods{ 1,2} suchthat 1A, and 1¢A,. Selectany
individual 2€A,.

Suppose instead that A, isidentical for each good g. By assumption a is not t-exclusive,

so (again re-labelling as necessary) there exists someindividua 1 and good 1 such that:

a, = m_ax{a11| a;<a} >0
Select any other good 2, and any individua 2¢A,.

In either case, therefore, we can find individuals { 1,2} and goods{ 1,2} such that:

8,78,
a;,>0 &  Vj#lieither a;<a;; or Vg X, >X,

a,>0 & Vj¢2:a].2ga22

Define alocations b and ¢ in terms of {8,¢,,(.} asin Proposition 1 where, given any
6,,0,>0, it is possible to satisfy (4) by taking sufficiently small €,,e,>0. Reference to
Figure 2 confirms the following additional observations, which draw on Proposition 1 and

on the analysis in section 4.

Consider individual 1's preferences regarding {a,b,,c,} . Suppose that ainaz. For
sufficiently smal 6,>0 we have ainb2 (for any ¢,>0). Then, for sufficiently small 6,>0,

and sufficiently large k<0, we have {a,,b,,c,} =x°.
Supposealternatively that a,PJa, . Sinceeither a,,<a,, or Vg: a,,>a,, , thenitfollowsthat

a,,>0(a,,,a,,). Sofor sufficiently small 6,>0 we have both c,Pla, and c,,> 0(C,;,C,s)-

Then for sufficiently small k*>1 we have {a,,b,,c,} = x*.

12



Suppose lastly that a,1a, whichimpliesthat a,, < a,, . For sufficiently small 8,>0 wehave
a,e1. Given also that a, #a,, then for sufficiently small 6,>0 and £,>0 we have both
b,PYa, and b,,> 6(b,,,b,,) , andthusfor sufficiently small k>1 wehave b,ex*. Givenany
8,>0,forafficiently smdl ¢,>0 wehave a,Pc, (forany ¢,>0); thusfor sufficently small 8,>0

and sufficiently large k°<0 we have c,e x°.

Now consider individual 1's preferences regarding {a,b,,c} forany j#1,2, inwhich case
b,=c;>a,. For any a such that aina]., sufficiently small (>0 may be found such that
ainbj, and thus for sufficiently large k°<0 we have {a,b,c} =x°. For any a such that
aPia,, sinceeither a,<a,, or vg:a >a, , thenit followsthat a,>6(a,,a,), and so for
sufficiently smal k*>1 we have {a,,b,,c,} =x*. For any & such that ailfaj, and thus
a,<a,,,asuficiently small 3,>0 may befoundsuchthat ae 1; thenfor sufficiently small k*>1

we have {b,,c} = x.

From all of this it follows that {d,,e,{} may be found to allow a standard preference

ordering R; such that b,Pja, , but also such that the orderings over {a,,..,a_;c,,...c.} and

ll"l

over {b,..b ;c,...c} are identical to those in R}. So there exists a profile

p'=(RLRY,...R%) at which:

by Pareto: bP'a.
by I1A*: aR'c
and thus: bP'c

The equivalent reasoning can be applied in respect of individua 2's preferences, preserving

orderingsover {a,,..,a;b,,..,b.} andover {b,,..,b ;c,,...c}. Infactthisisdightly less

ll"l

demanding, giventhat ¥j+2: a,< a,,. Sothereexistsaprofile p?= (R}, R3,.., R}) atwhich:

by Pareto: cP’a
by I1A*: aR%b
and thus: cP’b

But thisisaviolation of I1IA*. So theinitial assumption isfalse.
QED

13



Proposition 4 applies to any given profile. But for any pair {x,y} of t-exclusive alocations, each
individua’s preference ordering of {x,,..,X.;Y,,...Y,} isinvariant across profiles. So I1A* implies that
if xRy at any profile then xRy at every profile. From Proposition 4 it then follows that the set of best

allocations must be the same at every profile at which it is non-empty.

However, there exist profiles at which no t-exclusive allocation other than t=1 is Pareto-efficient.
Figure 3illustrates a2x2 example.” Supposethat at such aprofilethereisabest allocation. Then it must
be 1-exclusive; moreover, so too must be a best allocation at any other profile. Thus (cf. Propositions
2and 3):

Proposition 5  If R=f(p) identifies abest allocation at every p then, given Pareto and IIA*, thereis
anon-empty set of individuals D such that, at every p, xisabest dlocationif and only

if x;=w for some jeD.

Proposition6  If R=f(p) identifiesabest allocation at every p, and auniquely best allocation at some
p’, then, given Pareto and I1A*, thereis an individual j such that, at every p, xisa
best allocation if and only if Xx;=w.

This appearsto be asfar as the present form of argument can lead us. Asin section 2, the SWF has not
been shown to be fully dictatorial. Nevertheless, Propositions 5 and 6 are substantial in themselves.
They confirm that even in the restricted Edgeworth Domain, and with the weakened I1A*, it remains
impossibleto make compl ete, consi stent and equitable social choiceson the basisof interpersonally non-

comparable individual preferences.

14



Notes

1. Therelated literature, however, dates back to Maskin (1976).

2. It would be more conventional to define Pareto and I1A in terms of individual preferences over
the relevant alocations x and y, with a separate stipulation that these correspond to (standard)
preferences over own-assignments. But the formulation used here is more appropriate to what follows

in sections 3 and 5.

3. Thismay beelaborated with referenceto Figure 2. Given 8., individua 1 gtrictly prefers ¢, to a,
if and only if e,<y,[(n-2),], this function corresponding to 1's indifference curve through a,.
Similarly, given 6, individua 2 trictly prefers b, to a, if andonly if e,<v,[(n-2){,]. Given aso that

(n-2){,<e,, the required critical values are determined simultaneously as e, =7y, [¢,] and e,=vy,[e,] .
4.  For arelatively recent review of the literature on envy-freeness, see Arnsperger (1994).

5.  Theinconsistency between EF and Pareto appears to have gone largely unremarked, although
Sugden (1981, section 4.4) discusses a closely related idea. Indeed, EF as such does not explicitly
feature in the envy-freeness literature, perhaps reflecting either atacit awareness of this inconsistency

or adisinterest in the SWF framework.

6.  For any given u,, al the stepsin the construction of y involve taking either the average or the
maximum of some pair of continuous, decreasing and convex functions. These properties are preserved
under these operations. For decreasingness and convexity, strictness is preserved in the average if in

either of the origina functions, and in the maximum if in both.

7. An mxn example s represented by the Cobb-Douglas utility functions u, = x; XX .
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Figure 1: The 2x2 Edgeworth Domain
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Figure 2: The construction of allocations b and ¢
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Figure 3: Swap alocations in the Edgeworth Domain
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Figure 4: The construction of 6
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