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Abstract

This paper presents an Arrow-type result which can be simply demonstrated to hold within the standard
domain of welfare economics: in the  Edgeworth Box, a best allocation must assign all goods to(m×n)
a single individual. Allowing the Social Welfare Function to take account of envy-freeness, or other
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1 Introduction

Probably the most familiar, if not the simplest, problem in welfare economics is as follows. There are

fixed amounts of several goods to be allocated between several individuals, each of whom has

conventionally-structured preferences over his (her) own assignment of goods. The problem is to rank,

i.e., to place in order of social preference, the various feasible allocations of these goods, and for this

ranking to respect individual preferences in two specific ways. 

Firstly, the Pareto condition requires that allocation x is strictly preferred to (“better than“) allocation

y, if each individual strictly prefers his assignment in x to his assignment in y. Figure 1 is the familiar

representation of the 2×2 case. With the solid indifference curves, a is a Pareto-efficient allocation, as

is any other allocation on the dotted contract curve. For any allocation not on the contract curve, there

exists another which is better, because Pareto-superior.

The second condition, Independence of Irrelevant Alternatives, requires the ranking of any pair of

allocations  to depend on individuals’ preferences only over (their own assignments in) x and y.{x,y}

The force of this condition emerges if it is additionally required that a social preference ordering be

constructible for any admissible, albeit hypothetical, profile of individual preferences. Given this, IIA

imposes on the social preference ordering a requirement of consistency across different individual

preference profiles.

In a less structured context, i.e., where the available alternatives are abstract items over which any

individual may have any coherent preference ordering, the implications of these conditions are well

known. Arrow’s theorem states that Pareto and IIA can together be satisfied only by a dictatorial Social

Welfare Function. That is, there is some specific individual j such that, for any profile of individual

preferences, the social preference ordering corresponds exactly to j’s individual ordering. 

It is only relatively recently (Bordes, Campbell and Le Breton, 1995) that the equivalent result has been

confirmed to hold in the more structured economic environment described above, i.e., in the Edgeworth

Domain.1 In this paper we demonstrate an Arrow-like proposition which is logically weaker than that

of Bordes et al. However it is still a strong result, and can not only be obtained with great simplicity,

but can also be generalised in a novel direction. It concerns the possibility of a best allocation, that is,

one which has no other allocation ranked above it. Since in the Edgeworth Domain there is an infinite
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number of possible allocations, then it cannot be assumed that a best allocation always exists. But it can

be easily shown that if it does exist then it must assign all of the available goods to one individual.

The basic argument can be sketched immediately, with reference to Figure 1. Allocation a assigns

positive amounts of each good to each individual and, given the solid indifference curves, is Pareto-

efficient. Suppose that it is a best allocation, and is therefore at least as good as each of b and c, as

shown. (The requirements on b and c will soon become apparent, as will the fact that such allocations

can always be located.)  

Individual 1 prefers a to b, but could have preferred b to a, as indicated by a dashed indifference curve.

In that case, 2's preferences being unchanged, b would have been Pareto-superior to a. Each individual’s

preferences with respect to {a,c} are unchanged so that, for this hypothetical profile, IIA implies that

a is at least as good as c. It follows that, for this profile, b is better than c.

Now consider another hypothetical profile where, instead, individual 2 prefers c to a, again as indicated

by a dashed indifference curve. For this profile c is Pareto-superior to a. Given that  each individual’s

preferences with respect to {a,b} are unchanged, IIA implies here that a is at least as good as b. It

follows that, for this profile, c is better than b. But individual preferences with respect to {b,c} are

invariant throughout; 1 prefers c to b and 2 prefers b to c. Hence there is a violation of IIA.

So we cannot, without contradiction, assume that a is a best allocation. But there is nothing special

about a. For any Pareto-efficient allocation in the interior of the Edgeworth Box a similar argument can

be constructed, in that other allocations corresponding to b and c may always be found. This would be

the case even were the contract curve to coincide (in part) with the edge of the box. The only points

immune to this argument, i.e., for which allocations such as b and c cannot be found, are the endpoints

of contract curve, where one individual is assigned all the available goods. No other allocation can be

best.
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2 The Edgeworth Dictator

In this section we formalise and generalise the argument just outlined. There are m goods ,(g'1,..,m)

each available in a given quantity , and each infinitely divisible between n individuals .wg >0 (i'1,..,n)

The available endowment is therefore .w' (w1,..,wm)

An assignment  is any non-negative m-tuple, where  is the quantity of good g assignedxi ' (xi1,.., xim) xig

to individual i. Given w, an allocation  is any n-tuple of assignments such that .x' (x1,..,xn) j
i

xig#wg

Let  denote the set of all allocations, given w.P(w)

Each individual has a (complete, transitive) ordering  defined on assignments, and assumed to beR i

continuous, strictly increasing and strictly convex. Call this a standard preference ordering. In the usual

manner,  denotes that i weakly prefers  to . Strict preference is denoted by ,xiR i yi xi yi xiP i yi ] ¬ yiR ixi

and indifference by . xiI i yi ] [ xiR i yi & yiR i xi ]

A profile  is any n-tuple of standard preference orderings, one for each individual. For theD' (R1 ,.., Rn)

2×2 case,  and D can be depicted in the familiar Edgeworth Box. In Figure 1 the solid indifferenceP(w)

curves represent a given profile . D0' (R0
1, R0

2)

A social preference ordering R, defined on , is required at any profile D. The function , i.e.,P(w) R' f (D)

the Social Welfare Function (SWF), is to satisfy:2

Pareto If  for all i, then xiP i yi xPy

IIA The social ordering of any pair of allocations depends on each individual i’s ordering{x,y}

only of {xi ,yi}

At any given profile D, the social ordering  may identify a best allocation, i.e., some x such that R' f (D) xRy

for all . If x is a best allocation, then the Pareto condition implies that there can be noy0P(w) y0P(w)

such that . In Figure 1 this restriction is represented by the (dotted) contract curve; givenœi:yiP i xi

profile , neither of allocations b and c can be best. As we now show, however, IIA additionally impliesD0

that even a cannot be best.
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Proposition 1 In the m×n Edgeworth Domain , given Pareto and IIA, at any profile D a best(m$2)

allocation (if one exists) must assign all of the available goods to one individual, i.e.,

is characterised by  for some individual j.xj'w

Proof Assume to the contrary that at  there exists a best allocation a which does not assign allD0

goods to one individual. Then (allowing for an appropriate re-labelling of individuals and

goods) there must be a pair of distinct individuals {1,2} and a pair of distinct goods {1,2}

such that:

a11 > 0 a22 > 0

Given any  such that:{*i,gi,.i}

0 < (n&2).i < gi < *i < aii (i'1,2)

define allocations b and c as follows (where ):j…1,2

b11 ' a11& *1 b21 ' a21% *1& (n&2).1 bj1 ' aj1% .1

b22 ' a22& g2 b12 ' a12% g2& (n&2).2 bj2 ' aj2% .2

c11 ' a11& g1 c21 ' a21% g1& (n&2).1 cj1 ' aj1% .1

c22 ' a22& *2 c12 ' a12% *2& (n&2).2 cj2 ' aj2% .2

aig' big' cig ( i'1,.., n ; g…1,2)

Figure 2 illustrates this construction. For any standard preferences :R i

(1) & &c1P1b1 b2P2c2 bjIjcj ( j…1,2)

(2) &bjPjaj cjPj aj ( j…1,2)
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There exist standard preferences  and  such that:R1
1 R2

2

(3) &b1P
1
1a1 c2P

2
2a2

Given  and , there exist  such that if, additionally,  then:{*1,*2} D0 ĝi<*i ( i'1,2) gi< ĝi

(4) &c1P
0
1a1 b2P

0
2a2

Assume that , so that (4) is satisfied.3gi< ĝi

At , by assumption, both  and . Then from (1)-(4) there existsD0' (R0
1, R0

2 ,.., R0
n ) aR0b aR0c

a profile  at which:D1' (R1
1, R0

2 ,.., R0
n )

by Pareto: . bP1a

by IIA: aR1c

and thus: bP1c

Similarly, there exists a profile   at which:D2' (R0
1, R2

2 ,.., R0
n )

by Pareto: cP2a

by IIA: aR2b

and thus: cP2b

But from (1) this is a violation of IIA. So the initial assumption is false.

QED

Proposition 1 applies to any given profile. But let x be an allocation such that  for some individualxj'w

j, and let y be any other allocation. Given increasingness, each individual i‘s preference ordering of

 is invariant across all profiles. So IIA implies that if  at any profile then  at every profile.{xi, yi} xRy xRy

From Proposition 1 it then follows that the set of best allocations must be the same at every profile.

Thus:
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Proposition 2 If  identifies a best allocation at some DN then, given Pareto and IIA, there isR'f (D)

a non-empty set of individuals D such that, at every D, x is a best allocation if and only

if  for some . xj'w j0D

Proposition 3 If  identifies a uniquely best allocation at some DN then, given Pareto and IIA,R'f (D)

there is an individual j such that, at every D, x is a best allocation if and only if .xj'w

Propositions 1-3 are somewhat weaker than the Arrovian result of Bordes et al, i.e., that the SWF must

be dictatorial. But 1-3 are nevertheless substantial in themselves. Furthermore, they can be extended in

a direction which, in one respect, represents an advance on Bordes et al. This involves a weakening of

IIA, to be described in the next section.

3 Envy-freeness in the Social Welfare Function

An allocation x is envy-free if , that is, if no individual i strictly prefers the assignment ofœi, j: xiR ixj

some other individual j. Figure 3 illustrates for the 2×2 case, where to any allocation  therex' (x1,x2)

corresponds a swap allocation  such that . In the Edgeworth Box,  is obtainedxN' (x1N,x2N) xiN'xj (i…j) xN

from x by a 180E rotation about the equal-assignment allocation . Then x is envy-free if neither(w/2 , w/2)

individual i strictly prefers  to . Given standard preferences in the Edgeworth Domain, there alwaysxiN xi

exist allocations which, like a in Figure 3, are both envy-free and efficient.4 

Consider the following principle:

EF If x is envy-free and y is not, then xPy

Whatever the appeal of this principle, it is not consistent with IIA, as may be confirmed by a 2×2

example. Define allocations  and , and profiles , as representedd' ((6,4),(4,6)) e' ((1,9),(9,1)) {D,DN}

by the following utility functions.
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D  so that for :u1' x 2
11 x12 u2' x21 x 2

22 i…j

ui(di)' 144 ui(dj)' 96 ui(ei)' 9 ui(ej)' 81

DN  so that for :u1' x11 x 2
12 u2' x 2

21 x22 i…j

ui(di)' 96 ui(dj)' 144 ui(ei)' 81 ui(ej)' 9

In profile D, d is envy-free but e is not, so EF here requires that . In profile DN the reverse is true,dPe

so EF here requires that . But each individual’s ordering of own-assignments in d and e is the sameePd

in DN as in D, so this is a violation of IIA.

There is, however, a natural weakening of IIA which permits EF. It is:

IIA* The social ordering of any pair of allocations  depends on each individual i’s{x , y}

ordering only of {x1,..,xn ; y1,.., yn}

IIA* allows the social ordering of  to differ between profiles D and DN, as EF requires. But EF itself{d,e}

remains problematic, since it is inconsistent not only with IIA but also with Pareto, as can be seen in the

above example. According to the invariant individual preferences over own-assignments, d is Pareto-

superior to e. But at profile DN EF requires that . So even with the weaker IIA*, a SWF whichePd

satisfies Pareto cannot also accommodate EF.5 

Although EF therefore cannot be part of it, the question arises as to whether there is any non-dictatorial

SWF which satisfies Pareto together with IIA*. We will show that this is doubtful, in that results similar

to Propositions 2 and 3 can be obtained in this more general setting.

The outline argument is almost as simple as before. In Figure 3, assume that a is a best allocation at

, so that  and . As shown, a is not only efficient but also envy-free; given ,D0' (R0
1,R

0
2) aR0b aR0c D0

each individual strictly prefers a to aN. Thus b (and c) can be located sufficiently close to a such that

individual 1 strictly prefers  to any of . It is evidently then possible to construct anb1 {a2,b2,c2}

alternative indifference curve, such as the dashed curve shown, which passes through  and below ,a1 b1

but which leaves undisturbed 1's preferences over all other relevant assignments.

So there exists a profile  at which b is Pareto-superior to a, but in which each individual’sD1' (R1
1,R

0
2)
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ordering of  and of  is the same as in . At , IIA* thus implies that ,{a1,a2;c1,c2} {b1,b2;c1,c2} D0 D1 aR1c

from which it follows that .bP1c

Similarly, there exists a profile  at which c is Pareto-superior to a, but in which eachD2' (R0
1,R

2
2)

individual’s orderings of  and of  is the same as in . At , IIA* thus{a1,a2;b1,b2} {b1,b2;c1,c2} D0 D2

implies that , from which it follows that . But this is a violation of IIA*. So a cannot be a bestaR2b cP2b

allocation at . D0

In section 5 we formalise and generalise this argument. To do this, however, we need to show that

 can always be found which relevantly resemble . The next section provides the{R1
1,R

2
2} {R0

1,R
0
2}

analytical framework for this.

4 A parametric preference transformation

Individual 1's standard preference ordering  can be represented by the function:R0
1

x12 ' N(u1;x11, x13,..,x1m )

which is continuous, increasing in , and for any given  defines a decreasing and strictly convexu1 u1

indifference surface. Given  and , as in Proposition 1, calibrate  and N such that:a1 b11' a11&*1 u1

a12 ' N(0;b11, a13,..,a1m ) ' N(1;a11, a13,..,a1m )

Given any  such that:b12

N(0;b11, a13,a13,.., a1m ) < b12 # N(1;b11,a13, a13,..,a1m )

it is required to transform N into R, representing  such that , and thus:R1
1 b1P

1
1a1

anda12 ' R(1;a11, a13,a13,.., a1m ) b12 > R(1;b11, a13,a13,.., a1m )

but also to delimit the transformation in (standard) preferences over assignments other than .{a1,b1}
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For notational conciseness we will assume that , but the following applies straightforwardly to anym'3

. Define:m$2

2(x11,x13) ' max{x12 * "x12%(1&")a12 # N (1;["x11%(1&")b11] , ["x13%(1&")a13] )

either  (i) ,   or  (ii)   such that  œ"$1 œ">0 "x11%(1&")b11# a11 }

To illustrate, Figure 4 shows , delineated in each of the three cross-sections defined byN(1;x11, x13 )

, intersecting at assignment . At a distance  directly below this is locatedx1g'a1g (g'1,2,3) a1 *1

, emanating from which are five representative rays. These are shown as dashed where they(b11,a12, a13)

lie below the indifference surface and solid where above it. 

The two lower rays, up to their respective points of tangency with the indifference surface, are on 2 by

virtue of both (i) and (ii). The locus of such tangencies is shown by the dotted arc on the indifference

surface at . The other three rays break through the indifference surface in the plane .x11#a11 x11'a11

They are on 2 by virtue of (ii), unless and until they disappear again below the surface at some ,x11>a11

as do two of these. The locus of such points is shown as two dotted curves. 

Within the dotted boundary, therefore, 2 comprises rays such as those shown (dashed or solid). But

outside the boundary 2 coincides with N by virtue of (i). It is everywhere continuous, weakly convex,

and non-increasing.

For any given ,  and , let  be any continuous function such that:80[0,1] k 0<0 k 1>1 J(u1)

for  J(u1) ' 8 u10[0,1]

  is increasing for , and decreasing for J(u1) u10[k 0,0] u10[1,k 1]

J(k 0) ' J(k 1) ' 0

The transformed preference function may now be defined as:

for R(u1;x11, x13) ' N(u1;x11, x13) u1#k 0

for ' [1&J(u1)]N(u1;x11,x13) % J(u1)2(x11, x13) u10[k 0,1]
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' max{ [1&J(u1)]N(u1;x11,x13) % J(u1)2(x11, x13) ,

for [1&8]N(u1;x11,x13..) % 82(x11, x13) } u10[1, k 1]

' max{ N(u1;x11,x13) ,

for [1&8]N(u1;x11,x13..) % 82(x11, x13) } u1$k 1

This can be described with the aid of Figure 4. Consider first the indifference surface .N(1;x11, x13)

Beyond the dotted boundary it coincides with 2, so the transformation leaves it intact here. Within the

boundary, it lies above 2 for , and below it for . So here the transformation depressesx11<a11 x11>a11

the surface at all , and raises it at all . In effect, it pushes the surface down towards thex11<a11 x11>a11

vertex , while pivoting it around the indifference curve , which therefore(b11,a12, a13) N(1;a11, x13)

remains intact. The magnitude of the distortion is given by the value of 8.

Indifference surfaces above and below this are similarly transformed, in a manner which preserves

continuity and increasingness with respect to . For each such surface the distortion is unconfined byu1

any equivalent dotted boundaries. However, its magnitude diminishes to zero for  and u1#k 0 u1$k 1

except that, for the latter, increasingness requires each indifference surface to be raised where it lies

below 2, i.e., below rays such as the upper three in Figure 4.

Like N, the transformed function R is continuous, increasing in , and for any given  defines au1 u1

decreasing and strictly convex indifference surface.6 It contains an indifference surface  passing(u1'1)

through  and, for a sufficiently large value of 8, below . But the transformation leaves intact thea1 b1

represented preferences over each of the following sets of assignments:

4 / { x1 * x12' N(1;x11, x13)' 2(x11, x13) }

60 / { x1 * x12# N(k 0;x11, x13) }

61 / { x1 * x12$N(k 1;x11,x13) & x12$2(x11, x13) }

and4 ^ 60 ^ 61 {b1}^ 60^ 61
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So far we have assumed arbitrarily given values of ,  and . But let  be thek 0 k 1 *1 x12' a12% $(a13&x13)

hyperplane which supports  at , so that:N(1;a11, x13) a1

œx13 : a12% $(a13&x13 ) # N(1;a11,x13)

Then:

lim
*160%

2(x11, x13) ' max{ N(1;x11,x13) , a12% $(a13&x13 ) }

So any assignment  such that  and , can be included in  by taking ax1…a1 x11#a11 x12'N(1;x11,x13) 4

sufficiently small value of . In Figure 4, the surface enclosed within the lower dotted arc contracts*1>0

towards , diminishing to zero, as  approaches zero. a1 *1

Any assignment  such that  can be included in  by taking sufficiently small x1 x12< N(1;x11, x13) 60 *1>0

and sufficiently large . Similarly, any assignment  such that  andk 0<0 x1 x12>N(1;x11,x13)

, can be included in  by taking sufficiently small .x12$2(x11, x13) 61 k 1>1

5 IIA* and t-exclusive allocations

We describe allocation x as t-exclusive if  for each i of some t individuals. Thus, a t-exclusivexi'w/t

allocation shares all goods equally among t individuals, assigning nothing to the remaining n&t

individuals. Polar cases are , where one individual is assigned all of the available goods, and ,t'1 t'n

where all individuals receive an equal share of all goods.

According to Proposition 1, Pareto and IIA together imply that a best allocation must be 1-exclusive.

Using the apparatus provided in section 4, we now demonstrate:

Proposition 4 In the m×n Edgeworth domain , given Pareto and IIA*, at any profile D a best(m$2)

allocation (if one exists) must be t-exclusive.

Proof Assume to the contrary that at  there exists a best allocation a which is not t-exclusive.D0

For each good g, define:
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andãg ' max
i

{aig} Ag ' { i * aig' ãg }

Suppose that  is not identical for each good g. Then (re-labelling as necessary) thereAg

exists some individual 1 and some pair of goods {1,2} such that  and . Select any10A1 1óA2

individual .20A2

Suppose instead that  is identical for each good g. By assumption a is not t-exclusive,Ag

so (again re-labelling as necessary) there exists some individual 1 and good 1 such that:

a11 ' max
i

{ai1 * ai1< ã1 } > 0

Select any other good 2, and any individual .20A2

In either case, therefore, we can find individuals {1,2} and goods {1,2} such that:

a1…a2

& either  or a11 > 0 œ j…1 : aj1#a11 œg: xjg >x1g

& a22 > 0 œ j…2 : aj2#a22

Define allocations b and c in terms of  as in Proposition 1 where, given any{*i,gi,.i}

, it is possible to satisfy (4) by taking sufficiently small . Reference to*1,*2 >0 g1,g2 >0

Figure 2 confirms the following additional observations, which draw on Proposition 1 and

on the analysis in section 4.

Consider individual 1's preferences regarding . Suppose that . For{a2,b2,c2} a1P
0
1a2

sufficiently small  we have  (for any ). Then, for sufficiently small ,*1>0 a1P
0
1b2 .1>0 *1>0

and sufficiently large , we have .k 0<0 {a2,b2,c2}d6
0

Suppose alternatively that . Since either  or  , then it follows thata2P
0
1a1 a21#a11 œg :a2g>a1g

. So for sufficiently small  we have both  and .a22$2(a2 1,a2 3) *2>0 c2P
0
1a1 c22$2(c21,c23)

Then for sufficiently small  we have .k 1>1 {a2,b2,c2}d6
1
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Suppose lastly that  which implies that . For sufficiently small  we havea1I
0
1a2 a21#a11 *1>0

. Given also that , then for sufficiently small  and  we have botha204 a1…a2 *1>0 g2>0

 and , and thus for sufficiently small  we have . Given anyb2 P0
1 a1 b22$2(b21,b23) k 1>1 b206

1

, for sufficiently small  we have  (for any ); thus for sufficiently small *2>0 g1>0 a1P
0
1c2 .1>0 *1>0

and sufficiently large  we have .k 0<0 c206
0

Now consider individual 1's preferences regarding  for any , in which case{aj,bj,cj} j…1,2

. For any  such that , sufficiently small  may be found such thatbj'cj>aj aj a1P
0
1aj .i>0

, and thus for sufficiently large  we have . For any  such thata1P
0
1bj k 0<0 {aj,bj,cj}d6

0 aj

, since either  or , then it follows that , and so forajP
0
1a1 aj1#a11 œg :ajg>a1g aj2 >2(aj1,aj3)

sufficiently small  we have . For any  such that , and thusk 1>1 {a2,b2, c2}d6
1 aj a1I

0
1aj

, a sufficiently small  may be found such that ; then for sufficiently small aj1#a11 *1>0 aj0 4 k 1>1

we have .{bj,cj}d6
1

From all of this it follows that  may be found to allow a standard preference{*i,gi,.i}

ordering  such that , but also such that the orderings over  andR1
1 b1P

1
1a1 {a1,..,an ;c1,..,cn}

over  are identical to those in . So there exists a profile{b1,..,bn ;c1,..,cn} R0
1

 at which:D1' (R1
1, R0

2 ,.., R0
n )

by Pareto: . bP1a

by IIA*: aR1c

and thus: bP1c

The equivalent reasoning can be applied in respect of individual 2's preferences, preserving

orderings over  and over .  In fact this is slightly less{a1,..,an ;b1,..,bn} {b1,..,bn ;c1,..,cn}

demanding, given that . So there exists a profile  at which:œ j…2:aj2#a22 D2' (R0
1, R2

2 ,.., R0
n )

by Pareto: cP2a

by IIA*: aR2b

and thus: cP2b

But this is a violation of IIA*. So the initial assumption is false.

QED
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Proposition 4 applies to any given profile. But for any pair  of t-exclusive allocations, each{x,y}

individual’s preference ordering of  is invariant across profiles. So IIA* implies that{x1,..,xn ;y1,..,yn}

if  at any profile then  at every profile. From Proposition 4 it then follows that the set of bestxRy xRy

allocations must be the same at every profile at which it is non-empty. 

However, there exist profiles at which no t-exclusive allocation other than  is Pareto-efficient.t'1

Figure 3 illustrates a 2×2 example.7 Suppose that at such a profile there is a best allocation. Then it must

be 1-exclusive; moreover, so too must be a best allocation at any other profile. Thus (cf. Propositions

2 and 3):

Proposition 5 If  identifies a best allocation at every D then, given Pareto and IIA*, there isR'f (D)

a non-empty set of individuals D such that, at every D, x is a best allocation if and only

if  for some . xj'w j0D

Proposition 6 If  identifies a best allocation at every D, and a uniquely best allocation at someR'f (D)

DN, then, given Pareto and IIA*, there is an individual j such that, at every D, x is a

best allocation if and only if .xj'w

This appears to be as far as the present form of argument can lead us. As in section 2, the SWF has not

been shown to be fully dictatorial. Nevertheless,  Propositions 5 and 6 are substantial in themselves.

They confirm that even in the restricted Edgeworth Domain, and with the weakened IIA*, it remains

impossible to make complete, consistent and equitable social choices on the basis of interpersonally non-

comparable individual preferences.
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1. The related literature, however, dates back to Maskin (1976).

2. It would be more conventional to define Pareto and IIA in terms of individual preferences over

the relevant allocations x and y, with a separate stipulation that these correspond to (standard)

preferences over own-assignments. But the formulation used here is more appropriate to what follows

in sections 3 and 5.

3. This may be elaborated with reference to Figure 2. Given , individual 1 strictly prefers  to *2 c1 a1

if and only if , this function corresponding to 1's indifference curve through .g1<(1[(n&2).2] a1

Similarly, given , individual 2 strictly prefers  to  if and only if . Given also that*1 b2 a2 g2<(2[(n&2).1]

, the required critical values are determined simultaneously as  and .(n&2).i <gi ĝ1'(1[ĝ2] ĝ2'(2[ĝ1]

4. For a relatively recent review of the literature on envy-freeness, see Arnsperger (1994).

5. The inconsistency between EF and Pareto appears to have gone largely unremarked, although

Sugden (1981, section 4.4) discusses a closely related idea. Indeed, EF as such does not explicitly

feature in the envy-freeness literature, perhaps reflecting either a tacit awareness of this inconsistency

or a disinterest in the SWF framework.

6. For any given , all the steps in the construction of R involve taking either the average or theu1

maximum of some pair of continuous, decreasing and convex functions. These properties are preserved

under these operations. For decreasingness and convexity, strictness is preserved in the average if in

either of the original functions, and in the maximum if in both.

7. An  example is represented by the Cobb-Douglas utility functions .m×n ui' x i
i1 xi2..xim

Notes
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Figure 1: The 2×2 Edgeworth Domain
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Figure 2: The construction of allocations b and c 
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Figure 3: Swap allocations in the Edgeworth Domain



20

(b11 , a12 , a13 )

x12
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N(1, a11 , x13 )
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Figure 4: The construction of 2


