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Abstract

A nonparametric likelihood ratio test is derived via the exponential series density es-
timator examined in Barron and Sheu (1991). Moreover, utilising the results of Chow
and Teicher (1988) and Portnoy (1988) an asymptotic theory (distribution under the
null and consistency under the alternative) is developed. Crucially, the null hypoth-
esis (usually a parametric density) neither needs to be a member of the exponential
family nor completely specified, leading to a nonparametric profile likelihood ratio
test, which is interpreted as a Hausman (1978) test for density estimators. In a series
of experiments, based on the specification of a linear regression the size and power

properties of the test are examined and compared to existing tests.

Proposed Running head: Nonparametric L.R. Tests



1 Introduction

Although assessing the adequacy of a fitted parametric model for a sample generated
by some unknown population distribution is perfectly feasible, see White (1982), if
that adequacy is rejected we are often left with no reasonable description of the funda-
mental properties of that sample. For this reason a variety of non and semiparametric
estimation techniques have flourished recently. Such techniques usually fall into two
distinct categories; those based on nonparametric density estimation, whether by
Kernel based methods (see Silverman (1978)), or based on empirical likelihood (see
Owen (1988)) and those based on discriminating between two competing (incorrectly
specified) parametric models (see Nishi (1988) or Kitamura (1998)).

The purpose of this paper is to provide both a new specification test based on
a nonparametric density estimator introduced by Barron and Sheu (1991) and the
relevant asymptotic distribution theory. Usually, within this general context (for ex-
ample, see Eubank and Speigelman (1990), Hirdle and Mammen (1993) or Horowitz
and Hérdle (1994)), a goodness-of-fit test is employed based upon the relative fit of
the density estimators over the sample points. To illustrate, suppose that p,(z) is
a kernel-based density estimator based on a sample of size n, generated by a popu-
lation density p(z), with kernel K(v) and bandwidth h,. Then tests, based on the
implicit null hypothesis that « ~ p(z), may be based upon the following fundamental
asymptotic result; let h,, = en='/%, then if p(z) is twice continuously differentiable,

n?/® [pn(z) — p(x)] — p

—d N(Ov l)a (1)

where

uchp”(w)/ v’ K(v)dv azzc_lp(x)/ K(v)?dv,

— 00

and the bandwidth parameter c¢ is chosen to minimise either Asymptotic or Integrated
Mean Square Error. See Silverman (1978), Stone (1980) and Horowitz (1998) for these
and other related results. Application of (1) to derive nonparametric specification

tests are contained in Zheng (1996) and Fan and Linton (1999).
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Here, we develop analogous asymptotic results for the exponential series density
estimator proposed in Barron and Sheu (1991), specifically in order to design a test-
ing procedure for a class of specific null hypotheses against arbitrary alternatives.
Suppose that the null hypothesis specifies a family of population distributions, up to
some unknown parameters. Importantly these parameters may either be of interest
(i.e. the distribution is fully specified) or nuisance (i.e. only a family is specified).
Moreover, this null may be either fully parametric, or semiparametric in that only
a sequence of moments is specified. The alternative is simply that the null is not
true. Adaptation of Hausman’s (1978) test, supplies the required approach. That
is we compare the performance of two density estimators, both consistent under the
null, but only one of which is consistent under the alternative. In the context of
exponential series estimation this leads to a nonparametric likelihood ratio test.

The asymptotic theory derives from the fact that the estimation procedure is set
up in such a way that consistency may be demonstrated through convergence of sim-
ple functions of the sample. This occurs because the estimation routine, see equation
(6) below, equates the moments of the estimating density with those of simple func-
tions, usually polynomials, of the sample. Consequently, hypotheses concerning the
population may be formulated by the form and number of these functions required for
consistency of the density estimator. For example, to test whether the sample comes
from a member of the exponential family, of dimension m/’, say, only m’ functions of
the data will be required for consistency. For an arbitrary nonparametric alternative,
infinitely many will be required.

Infinite dimensional inference, which in general is what we have here, has also
been extensively studied. Portnoy (1988) gives asymptotic theory for a likelihood
ratio test of a simple null hypothesis in an infinite dimension exponential model,
while Murphy and van der Vaart (1997) consider tests on a scalar parameter in
the presence of infinitely many nuisance parameters. This paper differs in that we

consider the case of many interest parameters (if the null is a parametric density),



and moreover these parameters are not restricted under the null. Precise specification
of the kind of hypotheses considered here is contained in Section 3. The asymptotic
theory presented in the paper follows from extension of Portnoy’s (1988) analysis
to the case where the sequence of parameters, in the infinite dimension exponential
family, do not take fixed values under the null. As a consequence, the test may
actually be viewed as a profile likelihood ratio, as in Murphy and van der Vaart
(1997), but for more arbitrary null hypotheses.

The major practical advantage of basing such tests on the Barron and Sheu (1991)
estimator is that even in the event of rejection of the null, we have a relatively simple
analytic approximation for the population density. Such a feature is important if,
for instance as in Chesher (1999) and Koo, Kooperberg and Park (1999), a tractable
density estimator is required. Moreover, because the estimator is a member (albeit
infinite) of the exponential family, it embeds many of the parametric densities we
would wish to test for. However, due to the flexibility of the methods, the test also
has an application as a specification test, in the spirit of Zheng (1996) and Fan and
Linton (1999). Indeed, in Section 4 we apply the test to the regression hypothesis
considered in those papers, in order to assess the size and power properties of the
nonparametric likelihood ratio test.

The plan of the paper is as follows. The next section details the density estima-
tion procedure and it’s relevant properties. Section 2.2 examines consistency of that
procedure in terms of laws of large numbers (LLN) for functions of the sample, which
leads to a central limit theorem (CLT) for the parameters of the estimating density,
given in Section 2.3. Section 3 details the class of hypotheses of interest, derives the
form of the likelihood ratio test, and provides the relevant asymptotic theory. Section
4 contains a brief numerical study of the properties of the test, in the context of spec-
ification testing in a regression model, Section 5 then concludes. Finally an Appendix

contains the proofs of all theorems and tables used in the numerical analysis.



2 The Exponential Series Estimator

Most of the properties of the density estimator we consider are contained in Barron
and Sheu (1991), see in particular Theorem 1 and Remarks 1 through 6. Here, though,
we summarise some basic properties, but interpret, in particular, consistency in such a
way as to inform the testing procedure that is eventually set up. Moreover, we present
a CLT, which in conjunction with the consistency result, drives the asymptotics of

the test.

2.1 Basic Properties

Before considering hypothesis tests, we suppose that we wish to estimate the density
of some scalar random variable x, with distribution P(x), satisfying the following

assumption.

Assumption (i) Let z be defined on the bounded sample space Q2x = [a, b], (without

loss of generality [0, 1]) with density

p(z) = dP(z) : {QX SR, /QX dP(z) = 1, plx) > 0} ,

and any sample (x1, ..., zy) consists of i.i.d. copies of x.

(ii) The log-density of z satisfies

Ip(x) = In[p(z)] € W3,

d"lp(x) .

where WJ is the Sobolev space of functions, so that Ip(")(z) = et

absolutely continuous and Ip(™(z) is square integrable on [0, 1] for all r > 2.
The density estimator is a member of the exponential family
pole) = poe)exp {377 On(z) — om(0)} (2)
where in (2) the cumulant function is defined by
m(6) = log /Q po(@) exp {3 Oudela)} do, (3)
x

4



where 0 = (61, ..,0,,) € R™ and po(x) is a reference probability density function on
[0,1] and the ¢g(x) are a set of linearly independent functions, forming a basis for
some linear space, S,,. Although the choice of S, is somewhat arbitrary, popular
choices being polynomials, trigonometric (and/or exponential) series and splines, we
will be concerned with the polynomial case. Though none of the results depend on
this restriction, their interpretation will.

Implementation of the density estimator proceeds as follows. Given an indepen-
dent sample, (1, ..., 2,), the estimator, p;(x) is defined as the Maximum Likelihood
Estimator (MLE) in the family (2). That is, in terms of the log-likelihood

g méaxl(e) = In[po(z)] + Z:;l Z:;l Ordr (i) — npm(0). (4)

From now on, to save notation, all sums over i run from 1 to n, while those over k
run from 1 to m and all integrals are over the sample space, [0,1]. From (4) some

properties are immediately obtainable. First, the score:

“0) =) dulxi) —ngl(6), (5)

where the superscript(s) indicates, with respect to which variable(s) we are deriving.

From (3),we have

0) = d@k J po(@) exp {3201, O ()} da
o T po(@) exp (>4, On(@) } da

~ [ o@mos

and hence the MLE is simply the solution to the m estimating equations,

/Qbk x)po(x Z br(zs), k=1,...,m. (6)

Likewise we can calculate the Hessian, the second derivative of the log-likelihood

is
, ; d
BHO) = —ngt0) = g [ Gi@pla)da

= ([ e@atomiic - [o@m@a [o@n@a).



In the fully parametric case, i.e. m fixed and finite, we may obtain the usual asymp-

totic result
(ng3E ()2 15(8) —a Nuu(0, L), (8)

from which a CLT for the MLE, é, itself may be obtained. However, nonparametric
estimation requires m — oo as n — o0, hence standard asymptotic results are not
applicable. Moreover, since we will not, in general, assume p(x) is an exponential
density, the estimated parameters do not necessarily have any significant meaning.
Consequently, in this paper, we concentrate on the case where the ¢, (z) are polyno-

mials, where for instance, in the simplest case,

dr(z) = .

Considering the estimating equations (6), and defining E,, [.] as expectations with

respect to the series exponential family, we have

1
Ep@ [mk] = E ZZ m§7

or in general Ey, (¢ ()] = + >, ¢r(x;). That is (6) equates ‘moments’ from the family
po(z) with the sample moments. Alternatively, the nonparametric MLE chooses as
the density estimate, the member of py(z) having moments + 3. ¢ (x;). Moreover,

since the sample space is bounded, then

Eurofnlz)] = [ aula)dP(a), Vi

= pE < 0,

so that the moments of ¢(x) are themselves bounded. Consequently, for the purposes
of the asymptotic analysis to follow, the properties of the density estimator will be
closely related to those of the sample moments, in particular laws of large numbers
and CLTs. In summary, then, letting ¢ = (¢1(z), .., ()", ¢; defined analogously,

and ¢ =n~1>". ¢, we have the set of m estimating equations

/gb.pé(x)dx = ¢. 9)
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Although for the purposes of the development of the theory we assume that = has
bounded support, in practice this assumption is benign. As an example, suppose a
random variable z* € R has distribution P!(z*). Letting F(.) be any distribution func-
tion defined on R and let = F(z*), so that z € [0,1]. Now if F(z*) = P(2*), then
x will be uniformly distributed, otherwise suppose that the density of x is estimated
via (9), giving ps(x), then since z* = F~!(z), the density of z*, p* (z*) = dF(z*), may

be estimated via

Moreover, provided F(.) is differentiable, then the asymptotic properties of the den-
sity estimators, p;(z) and p'(z*) are identical. In the following section we develop
these asymptotic properties, stemming from a WLLN for the (infinite) vector of sam-

ple moments ¢.

2.2 Consistency

Unlike in the Barron and Sheu (1991) analysis, we are directly interested in the
parameters 0, in the sense that any hypothesis we test will take the form of a (profile)
likelihood ratio test, and therefore will involve a statistical measure of the distance
between é, and some other point in R™.

First, define the moment vector p = (j1, .., ) for m — oo, and let C denote

the hyper-plane of densities, dP, satisfying Assumption 1 and

O:{dP:/ngdP:u}.

Consider the population analogue of (9)

[ omtayiz = (10)

then the following Lemma, proved directly from Theorem 1 and Remark 6 of Barron

and Sheu (1991).



Lemma 1 Let 0 be a solution of (10) then
(i) ps(z) is the unique member of (2) in C' and moreover,
(i) the relative entropy (Kullback-Leibler divergence) of pg(x) to dP(z) is

/ln {pe(fﬂ)} dP(z) = O, (m™),

p(x)

where 1 is the ‘smoothness’ of the log-density lp(z) as in Assumption 1.
(iii) suppose that m?/n — 0 as m,n — oo, then the mazimum likelihood estimator in
the family (2), ps(x), given by (9) converges, in relative entropy, to dP(x) according

to

/ In {p@m} dP(z) = Opr (m™" +m/n) (11)

p(x)

Interpretation of the previous lemma is as follows; pg(x) is the member of family
(2) closest, in terms of entropy, to the underlying probability measure dP(x), and

r as m — oo. Convergence of the MLE then

has deterministic error of order m~
follows from bounds on the divergence of p;(x) to pg(z) and from pgz(z) to p(x). An
interesting corollary arises when we optimise the rate of convergence of (11), with

respect to m. Doing so, yields the optimal rate of increase
m nTlﬂ, (12)

giving convergence in (11) of order O, (7727—?@) . Hence in the absence of any knowl-
edge on dP(x), other than it satisfies assumption 1, this implies a minimax rate of
m o n%, which mirrors the corresponding optimal bandwidth selection, in kernel
based estimation.

For our analysis, any likelihood ratio test will be based upon a measure of dis-
tance of 0 to @ in R™, but unlike in Portnoy (1988) and Murphy and van der Vaart
(1997), @ is neither known, nor is pg(x) restricted to be the underlying probability
measure. Thus any restrictions imposed on the estimation program must be placed

on the estimating equations themselves, in the form of restrictions on the sample
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moment sequences. Details of these restrictions will be given later. Therefore, for the
unrestricted case, we prove first prove a LLN for the sample moment sequence, and
it is this basic result which drives the asymptotics of any hypothesis we may wish to
impose.

Let yr; = ¢r(x;) — g be the deviation of the sample moments from their (true,
but unknown) expectations. Obviously, since k = 1,...,m and m — oo, strong laws
for ¢ are precluded. However, a strong law can be established for each individual
¢r(x;), since it’s moments are bounded, then provided m is such that m/n — 0, a

weak law will follow. First note the following Lemma.

Lemma 2 Hajek-Renyi inequality
Let {Y;}7_, denote a sequence of independent random variables, such that E[Y;] =0
and var[Y;] < co. If ¢1, ..., ¢, 1S a non-increasing sequence of positive constants, then

for any positive integers r, s, with r < s and some arbitrary € > 0

Lo s 2
Pr[max ¢;|Yi +..+Y;| > ¢] < = (cr Zi:l var[Y;] + Zi:r—i—l c; var[Y;]) .| (13)

r<i<s

For a proof of the Hajek-Renyi inequality see, for example, Rao (1973), problem
(3.3). Direct application of the inequality leads to the following theorem, which is

proved in Appendix Al.

Theorem 1 Let |.| denote the Euclidean norm in R™, and given an € > 0, then under
Assumption 1,

lim Pr[|¢—p|>¢ =0, (14)

n,1M—00

where ¢ and p are defined above.

Theorem 1 establishes that



with convergence (in probability) obtained at a rate O(y/m/n). Alternatively, in light

of their definitions and equation (9), we have

o, (15)

[ enstarts— [ opstaris = o
where ¢ = {¢1(2), ..., o ()}, if m/n — 0, see also Barron and Sheu (1991, eq.
2.10). Consequently, applying Jensen’s inequality and by the Lebesgue dominated
convergence theorem we establish

/mwwwmwmmwwzm

m
n

/)’

or, with respect to the dominating measure dP(z),

(log[py(x)] — loglps(2)]) = Op(), (16)

that is convergence of the log-densities, alternatively the Kullback-Leibler divergence
of p;(z) from pg(x), is obtained at this rate. Moreover, analysing the problem in
this way gives a direct link between the asymptotics of the sample moments relative
to their population counterparts and the MLE relative to the entropy minimising

density.

2.3 A Central Limit Theorem

Our hypothesis tests are going to be based upon the stochastic differences implied by
equations (11) and (16). In particular, this difference takes the form of a log-likelihood
ratio. However, there are some technical aspects which need to be considered before
applying any statistical procedure. First, (11) is a weak, not a strong law, convergence
of the density estimator is obtained in probability only. In fact, unless p(z) is itself a
(finite) member of the exponential family, even asymptotically, the series log-density
estimator does not converge pointwise to the true log-density. Second, in the limit
the density estimator is a member of an infinite dimensional exponential family, and
hence the number of parameters to be estimated diverges. Consequently, standard

central limit theorems do not apply. However, Portnoy (1988) and Murphy and van
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der Vaart (1997) detail the analysis of estimation and testing in exponential families as
the number of parameters diverges. In those papers though, it is tacitly assumed that
the true density is itself a member of this family. Here, we are unable to make such
an assumption. Therefore, some subtle refinements of the Portnoy (1988) analysis
are required. To begin, as in the latter paper, we require the following central limit

theorem for martingale differences.

Lemma 3 (Theorem 9.3.1, Chow and Teicher (1988))

Let R, be a sequence of martingale differences, with associated sigma-field F,, such
that Ez, [Rpi1] = E[Rp1]Fn] = 0. Let S, = > | R; and s,, = >, 07, where 07 =
E[(S; — S;_1)?] = E[R?], then if R,, satisfies the Lindeberg condition

S° B[R] = o(s}), (17)

and also that the conditional variances are bounded, so that

> E[|E[R}|Fina] —o?

] =o(s,) (18)

then

Sv L N©1).

Sn,

In order to apply Lemma 3 we need to establish some notation, note that the

score vector is defined by

lk(Q) = /¢k(x)pg(x)dx - % Zz or(x;),

and has variance

1

1 . _
1%(0)] = var|— )] = (neZF(o
var(*(0)] = var(~ | én(x:)] = (nel(6))
consequently we let T, = (ngp{;f(x))l/ Y= — i, and finally define
_ 7 _
Zi=TYi and 7= 2% _ 1 (X~ )
n

11



In this set up we apply Lemma 3 directly to the sum of squared elements of Z, giving

the following Theorem, proved in Appendix A2.

Theorem 2 Let C, = n?Z'Z — nm, then under Assumption 1
a) Cy, is a martingale and

b) z'fmoch%H asn — oo

C, nZ'Z —m
= N(0,1). = 19
nv?2m \V2m e ( ) ( )

The theorem establishes a central limit theorem for the standardised sum of square

elements of

Z = Tm(X o :U’)a

obtained from the estimating equations (6). We may also pick out two special cases for
consideration, in order to generate some usable asymptotics, since the asymptotics
in (19) depend upon the unknown r. Letting m = anFE gives, in the absence of

knowledge of r, (i.e. we assume r = 2)

1

|>—t
|>—A

nwZ'Z — anio
—q N(0,1), 20
2 N (20
or alternatively if Ip(z) is analytic
7' 7 —
nes e, N(0,1). (21)

V2a

These alternative asymptotic representations are important because, in practice r will
not be known, however, for any experiment we may construct to analyse the density
estimator, Ip(x) will be analytic.

In the following section, we will relate the quantity C,, of Theorem 2 to the log-
likelihood difference in (16), and hence derive an asymptotic distribution for the
likelihood ratio test for the validity of certain restrictions placed on the estimating

equations.
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3 Non-Parametric Likelihood Ratios

In the previous section, we have first shown that the sample ‘moments’ generated by
the estimating equations converge in probability to their true but unknown expecta-
tions. This, as a consequence, implies probabilistic convergence of the log-likelihood
series estimator to the ‘true’ log density. It therefore seems obvious to construct any
testing procedure for the validity of any restrictions placed on the estimating equa-
tions to be based on the stochastic difference between the two. Second, a central
limit theorem for the sample ‘moments’ was established, which in this section will
be used to derive the asymptotic distribution of any resultant test statistic. Indeed,
under the assumption that p(z) is a member of (2) and moreover that the hypothesis

under consideration was simple, i.e.

Hy : p(z) = pe,(2),

for some fixed sequence, 6y = lim,, o {0k}7~,, this was precisely what was achieved
in Portnoy (1988).

However, here we do not necessarily wish to place such restrictions on the problem.
Suppose that p(x) is specified only in that the number of estimation equations in (6) is
fixed, that is under the null hypothesis the estimation programme is in fact standard
finite dimensional maximum likelihood. Hence, let 6* be the solution to the set of

equations

@) = [ e (@do = Gu, k=1L,
im  f (f1yend,y) = /gzﬁj(x)pg*(x)dx, P> m 41, (22)

m—0o0

where m’ is fixed and finite, and the {fx(.)}}; are known functions of the first m/
sample moments. Estimation programme (22) thus allows free estimation with respect
the first m’ ‘moments’, but restricts all further moments to be known functions of
those first m’ (as an illustration, for the exponential distribution the k" raw moment

is proportional to the first moment rased to the power k). Notice that the analysis
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of Portnoy (1988) is only applicable when we both assume that the whole set of
moments, {ug} is known under the null hypothesis and that p(x) is a member of
(2), in which case in which case we obtain 6* = 6, of Lemma 1. Formally then, the

specific hypothesis we test is

Hy :uj:fj(:ulv"v:um’) vs.

Hy o opy # filpas oo por)  for j >m’ + 1. (23)

To summarise, we have unconstrained estimation, as in (6), which gives the pa-
rameter 0, while constrained estimation, as in (22), gives 6%, which in the fully para-
metric case equals the approximating parameter, §. Respectively, these parameters
give densities p;(x), pe+(x) and pg(x), each of which are members of (2). Finally, we
have the ‘true’ density p(x).

For a given sample, we wish to test (23), via

—2log A = —2log {Z’é" ((;))} , (24)

which forms a profile log-likelihood ratio test. Notice also that under either formula-
tion of the null hypothesis (22) both p(x), the ‘unrestricted” density estimator and
Do~ () the ‘restricted’ estimator are consistent estimators for p(z). However, under the
implicit alternative that the restrictions do not hold, only p;(x) is consistent. Hence
the procedure we propose is essentially a Hausman (1978) test, applied to density
estimation.

To continue, we decompose the likelihood ratio,

log {pg*(a:)] ~ g {pg(x)} los {pg*(x)]

py(T) py(T) pa()
(z)

o] [ ], o

p(z) pa(z)

and examine convergence in the last two terms in (25). Supposing the restrictions in

(22) are valid, then from Theorem 1, we have

Pr(|¢ — pl > el = O(n™),

14



because the event |¢ — u| > £ may be decomposed into a finite union, rather than the
infinite (41). Hence, applying Jensen’s inequality, we have

log {Pe* (z)

p(x)

| =0, (26)

if Hy is true. Moreover, from Lemma 1, if m o< n2+1

Do (x)} . {pé(fﬂ)

py(z) py()

Eap(a) {log { H = Op(n_#ll),

and hence

—2log A = —2log A + O, (n_%) , (27)

where A = log {i "Eg} , and —2log A is a likelihood ratio test for testing the simple
0
hypothesis,
H,:0=0 wvs. Hj}:0+#0, (28)

in the family of exponential densities (2).

Having established that the log-likelihood ratio test for the imposed restrictions is
asymptotically proportional to —21log A, in we can relate the asymptotic distribution
of this approximate criterion with that derived in Theorem 2. Letting 6 be defined

as before, we let the random variable V' € R™, have density

ps(v) = poexp {0v — 0, (0)}

i.e. V ~ pg. Note that, by definition
dom(0)  dpn(0)
a0 |, ; P = Eap( )[Qb]

Ep,[V]

and hence let U = V — pu. Since we have decomposed the log-likelihood ratio as in
(27), it is asymptotically equivalent, to order O(n*%), to the criterion in Portnoy
(1988). As a consequence, the asymptotic distribution of —2log A is given by the

following Theorem, proved in Appendix A3.

Theorem 3 Let —2log A be the likelihood ratio test for the simple hypothesis (28),
then if m nFA @sn — 00

—2logA —m B nZ'Z —m

e Tt (). (29)
15




where 7 = (gp’,ﬁl(é))_l/z (¢ — p)and, as a consequence, if the restrictions implied by

(22) are true, then
—2logA —m

V2m

where A = log []f;f(%)} , otherwise the criterion diverges.
0

—q4 N(0,1), (30)

Notice that the effect of not assuming that the true p(z) is a fully specified member
of (2) is a slower rate of convergence of the criterion to it’s asymptotic distribution,
than in Portnoy (1988). However, what we gain is the ability to test whether the
sample comes from a family of distributions, rather than a specific member of that
family. Notice also that for specific values of r, i.e. for r = 2 and analytic functions,
the asymptotic results follow from (20) and (21) respectively.

In the following section a brief experiment is considered in order to illustrate the
implementation of the density estimation technique, and the numerical properties of

the likelihood ratio test.

4 An Application

4.1 Implementation

Details of the numerical properties of the density estimator (2) itself are contained
in the original article by Barron and Sheu (1991) and in applications due to Chesher
(1999) and Koo, Kooperberg and Park (1999). In this section, in order to compare
with existing results, we will apply the nonparametric likelihood ratio test (24) as
a specification test in the following regression model as analysed in Bierens (1990),

Zheng (1996) and Fan and Linton (1999);

where z; and (3 are k X 1 vectors of covariates and coefficients, respectively, and g(., .)

is a possibly nonlinear function. As in the latter papers we will assume that the null
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hypothesis specifies a Gaussian linear regression model, viz.
Hy:yi=zB+e ; & ~NID(0,1). (32)

According to classical hypothesis testing theory (Cox and Hinkley (1974) and
Hillier (1987)), let v = (Y1, -, Yn), Z = (21, ..., 2)', define My = I, — Z(Z'Z) 17
then the (n — k) vector v = C"y, where C'is the singular value decomposition of My
(i.e. CC"= My and C'C = I,, 1 ) characterises both the class of similar (having size
independent of the nuisance parameter 3) and invariant (with respect to affine group
action on y) tests of Hy. Indeed, the majority of the proposed tests for specific alter-
natives (e.g. omitted variables, functional form, dependence in the error structure,
non-normality etc.) are functions of the data only through y, and generally take the
form

test = v’ A(Hy)v,

where A(H;) is a matrix chosen for each alternative H;. However, although one
may deduce an ‘optimal’ (however optimality is defined) test for a given alternative,
there is no guarantee that this test will even be unbiased or consistent against other
alternatives, let alone ‘optimal’. To apply our test in this context note that under
Hy,

v~ N0, L),

and so if we let z7 = ®(v;), where v; is the i"" element of v and ®(.) is the stan-
dard normal cumulative distribution function, then under Hy, z} is uniform on [0, 1].
Moreover, under any alternative whatsoever, x3 has some other distribution on [0, 1],
consequently so long as the null and alternative distributions of 2} may be consistently
estimated by (2), then the nonparametric likelihood ratio test will be consistent.

As it turns out, direct nonparametric estimation of a uniform density proves nu-

*

merically troublesome, consequently we let x; = (]

)? and apply the procedure de-

scribed in Section 2.1 to estimate the density of x;. Practical implementation of the

17



procedure is as follows: By definition the MLE satisfies (4), which we rewrite as

1(0) — In[po(x Zz 1Zk Ok(dr(:) — on)
—nlog/o exp{z:k:1 (¢k(xz)—$k)}dac, (33)

and since, at the MLE, the contribution of the first term of (33) is zero, 6 formally
minimises,
J

lim R,(0) = JLH > exp {Z:;l Ox(Pr(85) — q}k)} (34)

m,n,J—oo
j=1

subject to m/n — 0, and where 3; = (j — 1)/.J. Reasonable density estimators are
then found by setting m and J to large positive integers.

Equation (34) delivers the unconstrained density estimator for z, given an inde-
pendent sample (z1,..,x,). Following the analysis outlined in the previous section,
under either of the null hypotheses, we estimate the density using the restrictions as

n (22). As above, in this case, the restricted MLE, minimises

m,iﬁﬂmR =711 Ze Xp {Z Ok (1(5;)) — on) + Z Or (o (8;) fk(¢))} ;

(35)

where f(.) is a known function of (¢1, .., ¢m). Again, the values J = 150 and m =7

were used, while the value m' depends upon the particular null hypothesis under
consideration.

For the null hypothesis (32), since \/z; is uniform, then under H, the moment

sequence of x; is given by
2
Elk =
I:ml ] Sk + 2 Y

for all k. Consequently, setting m’ = 1, the restrictions to be imposed are of the form

fj(clg)=§51><3 5 for j =2,..,m

and ¢, = ZZ | z;/n is the only estimated moment. Consequently, letting 6 be
the unrestricted MLE (which minimises (34)) and 6* be the restricted MLE (which

18



minimises (34)) the nonparametric likelihood ratio test is then

IR— —2log A — m7
V2m

where A = log[pg- (z)/ps(x)], and we reject (32) for small values of LR.

(36)

4.2 Numerical Properties

In this subsection, results from a Monte Carlo study are used to evaluate the numerical
properties of the test (36) for the null hypothesis specified in (32). All numerical
calculations were performed in Mathematica (see Wolfram (1999)). Following Zheng
(1996), we let & = 3 and (3; and (5 be independent drawings from the standard
normal distribution, and so the three regressors included in (32) are z1; = 1, z9; = (3

and z3; = (Ci; + C2:)/V/2, and so formally the hypothesis to be tested is
Hy :y; = By + Bozos + P3zsi +&; 5 €5~ NID(0,1). (37)

Values for (3; and (y; for i = 1, ...,400, were generated once and for all.
A number of relevant alternative hypotheses were considered, involving both the

mean function and the error term, viz.

a
Hy : vy, =0+ Pazoi + Bazsi + To22%si + &

Hy : yi=(B1+Pozoi + Bazs) ™" +e
Hs : y; = [+ Bazai + 323 +u;, where
N(0,1) with probability 1 — a/10
u; o~ (38)
U[-2,2] with probability a/10,
and we consider values of a = 1,2,..,10 (for Hy the real root is used) and various
sample sizes, n = 50, 100, 200,400. Notice that the null (37) is embedded in each of
the alternatives via a = 0. In particular the alternatives considered by Zheng (1996)
are recovered from H; with a =1 and Hy with a = 6.

The remaining issue is the choice of the dimension of the series density estimator,

i.e. m. Since in all cases the log-density of z; is analytic we may choose m to grow
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arbitrarily slowly with n, c.f. (12). In fact, we set m = 4 for n = 50, and increased
m by 1 as n doubled. Allowing m to grow either more rapidly or more slowly had
an insignificant impact upon the outcomes of the experiments, and so details are not
reported.

In the first experiment the null distribution of the test LR, (36), was simulated
with 20,000 replications and for sample sizes of n = 50,100,200 and 400. Table
1 below reports the nominal (based on the limiting standard normal) versus the
simulated rejection frequencies of LR, for each sample size. Furthermore, Table 2,
contained in the Appendix reports the nominal versus simulated quantiles for the null

distribution of LR, again for each sample size.

Table 1 : Nominal vs. True Size of the

LR test (36) under H, based on 20,000 replications.

n=2930 n=100 n=200 n =400

1% | .004 .006 .007 .008
5% | .034 .039 .043 .046
10% | .078 .084 .092 101

By way of comparison, the kernel based specification test of Zheng (1996) seems
to offer less finite sample accuracy under the null hypothesis. Not necessarily in
terms of absolute accuracy, but certianly in terms of the monotonicity of accuracy
as the sample size increases, although this may be explained by the relatively small
number of replications, and hence high standard error in that study. Fan and Linton
(1999) present results for a higher-order correction to a Kernel based specification
tests. Comparing Table 1 above with their Tables 1 and 2 would suggest that the
likelihood based approach offers reasonable accuracy even compared to their higher-
order correction.

Three further experiments were conducted, in order to assess the power properties
of LR (36), given each of the alternatives. Specifically the test was simulated under

each of the alternatives given in (38) for sample sizes of n = 100,200 and 400, and
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for each value of a = 1,2,..,10, based on 5,000 replications. For the purposes of
these experiments we fixed 8; = f» = 3 = 1 (again for comparison with Zheng
(1996)). The power was simulated using three significance levels (1%, 5% and 10%)
and the critical values used were those obtained in the null simulation study detailed
above. Tables 3 through 5 contained in the Appendix contain the simulated rejection
frequencies under each of the alternatives listed in (38) for each value of a and for
each sample size. Again, where comparisons can be made with the results of Zheng
(1996, Tables 2 and 3), the power of the LR test, (36), compares favourably with
that of the kernel based test.

Before concluding, some important qualitative distinctions between the likelihood
based approach of this paper and previous kernel based approaches need to be ex-
amined. Although here, the rate at which m increases with n has an insignificant
impact upon the results, the same is not true for the choice of bandwidth, h = en!/?
for kernel density estimators. Indeed Fan and Linton (1999) find that larger values of
¢ tend to degrade the accuracy of the nominal size as an approximation to the ‘true’
size, under the null. However, Zheng (1996) finds that larger values of ¢ increase
the power of the test. This implied trade-off does not appear to be present in the

approach of this paper.

5 Conclusions

The goal of this paper has been to develop some asymptotic theory for a test based
upon the exponential series density estimator proposed by Barron and Sheu (1991).
By exploiting both the properties of the estimator itself and the fundamental idea of
Hausman (1978) a nonparametric likelihood ratio may be constructed, which may be
seen as an alternative to other nonparametric approaches, such as empirical likelihood
or kernel based methods.

As in the analysis of Portnoy (1988) and Murphy and van der Vaart (1997) the

asymptotic theory for the test is nonstandard, involving convergence of infinite di-
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mensional seres, and hence convergence is slow in comparison with the classical case.
However, the asymptotics involved with the test are clearly mirrored with those
tests derived from kernel density estimators (e.g. see Silverman (1978) and Horowitz
(1998)).

Since it is based upon a nonparametric density estimator, the flexibility of the test
is impressive. However, when applied to a particular example, previously studied in
the literature, we find favourable numerical properties, as compared to more estab-
lished techniques. Equally, the test benefits from three beneficial properties. First,
the intuition behind the test comes from Hausman’s (1978) principle, secondly the
test is relatively simple to implement and finally, even when the test is rejected, one

is still left with an analytic approximation to the density of the statistic of interest.
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Appendix A: Proofs

A1l: Proof of Theorem 1.

We apply Lemma 1 to the y;, letting ¢; = 7!, s = n and defining i =

it 22:1 Yk j, then

1 /1 T n
Pr[max |y, x| > €] < ) (— Zi:l var(yg| + Zi:r+1 i_21)ar[yk7i]) . (39)

r<i<n 72
Since x is a bounded random variable, then
varlysl = Eap|or(z:)’] — 1k
< [ (@) apa) = o)
and hence
S varlye] = 0().

Substituting into (39), we then have

lim Pr[m<ax i k| > €] = O(n71),

n—oo

which immediately establishes a SLLN for ¢(z;), namely

1
- Z G (i) — pr —as 0,
n i

where the subscript a.s. denotes convergence almost surely. Equally, direct applica-

tion of Chebychev’s Theorem yields,

% > onls) —

Now consider the m terms in the estimating equations (6), {2 >, ¢1€($1’)}:;1 as

Pr| > e = O(n7h). (40)

m,n — oo, while m/n — 0. Let a; be the event that ‘% > Olxs) — uk‘ > €, and so
from (40),

Prla;] = O(n™1).
Let the m vector A,, = (a1, ..,an), so that the probability statement in (14) may be

written

lim Pr[|A,,| > €,

n,m—00
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and convergence is established if this limiting probability is zero. We let A be the

event that |A,,| > ¢, then for suitably chosen €, ..., €,, we may write

lim A= lim Um, ag.

m—o0 m— oo k=1

Since,

lim Pr(4A) < lim Z:_l Pr(ay)

m—oo
< lim msup P(ag),
m—oo k<m

and noting P(ax) = O(n™') = byn™!, say for some constant b, then

lim Pr(A) < lim b—

)
m—o0 m—o0 n

and so since m/n — 0, then the theorem is proved. B

Appendix A2: Proof of Theorem 2

(41)

Let F,, be the sigma-field F{¢(x1),...,¢(zn)} = F{Ci,...,C,} generated by

the set of estimating equations (6), and define for any positive integer n* < n,

Zey = (n*)™? Z:L Z;. For the purposes of this proof, all expectations, unless in-

dicated otherwise, are taken with respect to the dominating measure and to save

on notation we write E[.] = Egp(,)[.]. We assume that the number of estimating

equations grows according to its optimal rate, i.e. m o nTlJrl, so that all orders of

magnitude may be written solely in terms of powers of n. Asymptotics are driven

by the usual triangular array, so that dim Z(n*) = dim Z(n) for all n* < n, although

notation will be suppressed.

Consider the difference

R, = C,—Cn1=0°2'"Z —nm— (n— I)QZEnfl)Z(n_l) —(n—1)m

= 2(77/ — 1)Z;LZ(H_1) + (Z;LZn — m) ,

(42)

then that R, is a martingale difference, and hence C), is a martingale follows from

E|Z. Zm 1)) =0, and E[Z,Z.] = I,
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by definition, and so from (42), we have

E [Rn ‘ fnfl] = 07
E [Cn ‘ fnfl] = Cnfl-
As far as the limiting distribution is concerned, in order to apply Lemma 2 we

merely have to check that conditions (17) and (18) are satisfied. For the first, letting

02 and s? be defined as in the statement of Lemma 2, we have

o = E[R| =4(i—1)°E [Z]Z41)Z(;_17Z:] +4(i = \)E [ Z] Z;_1) Z; Zi]
+E [(Z{Z; — m)?]
= E[R}] =4(i —1)’E [Z[Zi-1)Z|; Z:] + E [(Z{Z; —m)?],

since R; is a martingale difference, therefore,

s = Y 0r=4Y (i=1)E[Tr(Zi)Z(-1)%:7)]

+3° E[Tr[(ZZ)Y) +nm?,
Again Z(i_l) and Z; are independent, so

ETr(Zi-1)2;1y%:%;)| = Tr |E|Zi-1) 2,1 ElZ:Z]]

2

and further since F [Tr[(Z;Z!)?]] = O(m?*) = O(nz+1), we have

22 = 43 (i— 12T [ElZ6 0 Zy)ln] + O(n3H1) (43)

2r4+3

= 2n(n —1)m + O(n2+1)

= 2nz1 (1+0(1)),

which establishes the rate of divergence of the right hand side of (17).
As for the left hand side of (17), from (42), we have

S E[RP] = Y B [\2(2'—1)2;2@,1)+(Z;Zi—m)\3}
_ ZiE{{(2(2’—1)Z£Z(2~_1)+(Z£Zi—m))6}1/2]. (44)
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For any random variable D = D(x), where x has support over [0, 1], we may define

the Ly norm || D]y of that random variable by

o= ([ rDPde)z,

see also Royden (1988), Chapter 6. Expectations with respect to dP(x) then satisfy
(B [IDF])” = [ID]le,

and so direct application of Jensen’s inequality implies
(E[ID)* < E[ID*]. (45)

Applying inequality (45) to (44) we find

S ERF) < Y (B[@6- 02200+ (Ziz-m)]) "

>R =1)ZZ6 + (212 —m)”| (46)

2
in terms of the Ly norm. Thus applying the Minkowski inequality to (46)

> B(rf] <Y (£]ei-0zz00)7) "+ 3 (8 [(zz-m)]) "

which on account of F[(Z!Z;)%] = O(m®) = O(nﬁrl), gives, for some positive con-

IN

stant bo,

Z ’R’ <82 ( [ 2—1 ZZ(Z 1)) })l/z—l—ang:rll.

Finally, writing (:—1)Z}, Z;_1) = Z,, S°7~! Z;, and noting the independence of the two
terms, Proposition (A.3) of Portnoy (1988) is applicable to the remaining expectation,

giving for some positive constant bs

Z4E [RP] < byn 2@ D <1+O (W/_T:-l))

= o(s,),

so that the Lindeberg condition holds.

26



Considering now the expectations of the conditional variances, and utilising both

Jensen’s and Minkowski’s inequalities, similar bounds may be found, in particular

Y E[E[RFii]-df]] < ) |B[RIF] -,

= > |46 -1°ZenZyy — (= 1)m
+A(i — 1) Z(_E [Z/(Z]Z; — m)] + O(nz)
Zi H4(Z - 1)22(2'—1)221’—1) — (i — 1)m}|2

+ Zz H4(Z - 1)Zéi71)E (Z: (Z,Z; — m)]H2 + O(nﬁ).

2

IN

Again Proposition (A.3) of Portnoy (1988) is applicable to the remaining expectation,

which yields, for some positive constant by

] < bn¥H (140 (n7))

= o(s;?),

> BB [ F] - o

so that (18) holds, and finally noting, from (43), we get the asymptotic equivalence

Sp ~ NV 2m,
the theorem is established. B

A3: Proof of Theorem 3
Consider the family of densities py(v), then by the intermediate value theorem,

there exists some 6 lying between 6 and 0, such that the following expansions hold,

om(0) = @m(0) + (6 —0)p,,(0) +

Aul0) = (0)+ 0 0a(@)+ 5B | (0-0YV) U]
Since,
“2logA =2n {(é —0yX — (gpm(é) - @m(é)) } (47)
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and on account of
¢ (0)=p and ¢, (0) =X,

we have
_ -1

(0-0) =7 -3 (¢n(0) "B, {((é - 9)'U)2 U] , (48)

then applying Theorems 2.1 and 3.1 of Portnoy (1988), in our case

é‘ = Op<n*TfH)
Z‘ = Op(n Tgl)

so that from (47) and (48),

_21(\)/g%—m _ \/Z_m{(Z/Z_%)_«é_é)_ )/((é—é)—Z)

Z
#1500 (18- 00~ 0)) | + 0, (n7285),

and so (29) may be established as in Theorem 3.2, Portnoy (1988). As for (30), since
)é — é‘ =0, (n_rll) , then

2'7 = ——7'7 + o0,(1),

\/_ V2m
which immediately gives the limiting distribution from Theorem 2. If however, the
restrictions imposed in (22) do not hold in that f; (¢1, .., ¢ms) and £ 3=, ¢;(z;), do not
have the same probability limit, for all j > m', then the second term in (25) diverges,

—2log A—m
and hence so does om [ |
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Appendix B: Tables

Table 2 : Asymptotic (N (0, 1)) and empirical quantiles of the LR test (36),
under Hy (37) based on 20,000 replications.

q| N(0,1) n=50 n=100 n=200 n =400

—_

-1.282 -1.163 -1.221 -1.236  -1.267
-0.842  -0.826 -0.836  -0.848  -0.846
-0.524  -0.551 -0.552 -0.541 -0.537
-0.253  -0.340 -0.333  -0.291 -0.274
0 -0.117  -0.093  -0.031 -0.020
0.253 0.121  0.135 0.224 0.245
0.524 0.389 0.414 0.491 0.518
0.842 0.730  0.781 0.817 0.834

© o0 N O Ot = W N

1.282 1.239  1.319 1.305 1.297

Table 3 : Simulated power of the LR test (36) under
H; of (38) based on 5,000 replications.

n = 100 | n = 200 | n = 400
1% 5% 10% | 1% 5% 10% | 1% 5% 10%
0.01 0.05 0.10|0.01 0.07 0.12|0.02 0.06 0.10

S

—_

0.02 0.06 0.11)0.02 0.11 0.18|0.04 0.11 0.18
0.03 0.10 0.18|0.07 0.20 0.32]0.09 0.22 0.34
0.06 0.17 0.27 [ 0.15 036 049|023 046 0.61
0.11 0.29 044|036 0.66 0.76|0.56 0.76 0.85
021 0.44 0.59 [ 0.64 0.87 092|086 095 0.98
0.35 0.63 0.75 086 096 0.99|0.99 1.00 1.00
0.54 080 0.88 096 1.00 1.00 | 1.00 1.00 1.00

© oo N O ot s W N

0.75 0.93 096 | 0.99 1.00 1.00|1.00 1.00 1.00
091 097 099|100 1.00 1.00|1.00 1.00 1.00

—_
=}

29



Table 4 : Simulated power of the LR test (36) under

H, of (38) based on 5,000 replications.

S

1%

5%

100
10%

n

1%

5%

200
10%

n

1%

5%

400
10%

© 00 N O Ot ks W N

—_
@)

0.01
0.02
0.03
0.04
0.05
0.08
0.10
0.17
0.24

0.34

0.06
0.08
0.12
0.15
0.20
0.27
0.29
0.41
0.49
0.63

0.11
0.13
0.22
0.26
0.33
0.41
0.43
0.53
0.64
0.76

0.01
0.02
0.03
0.05
0.07
0.11
0.17
0.26
0.42
0.66

0.05
0.07
0.13
0.16
0.22
0.32
0.41
0.54
0.68
0.86

0.12
0.15
0.23
0.27
0.35
0.45
0.53
0.67
0.79
0.93

0.01
0.04
0.09
0.18
0.25
0.40
0.54
0.76
0.89
0.98

0.07
0.13
0.22
0.36
0.48
0.62
0.77
0.91
0.97
1.00

0.13
0.23
0.33
0.47
0.61
0.74
0.86
0.95
0.99
1.00
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Table 5 : Simulated power of the LR test (36) under

Hj of (38) based on 5,000 replications.

S

1%

5%

100
10%

n

1%

5%

200
10%

n

1%

5%

400
10%

© 00 N O Ot ks W N

—_
@)

0.01
0.02
0.03
0.04
0.05
0.07
0.10
0.12
0.13

0.19

0.07
0.10
0.12
0.15
0.18
0.25
0.29
0.33
0.38
0.45

0.13
0.20
0.22
0.26
0.31
0.39
0.45
0.48
0.55
0.65

0.01
0.03
0.04
0.07
0.09
0.14
0.18
0.25
0.30
0.39

0.07
0.12
0.15
0.24
0.30
0.37
0.42
0.52
0.60
0.69

0.14
0.21
0.25
0.35
0.44
0.51
0.56
0.68
0.73
0.80

0.02
0.05
0.11
0.18
0.25
0.36
0.48
0.59
0.70
0.82

0.10
0.16
0.27
0.38
0.49
0.61
0.69
0.82
0.87
0.95

0.20
0.25
0.38
0.54
0.63
0.73
0.81
0.90
0.94
0.98

31




6 Bibliography

Barron, A.R. and C-H. Sheu, 1991, Approximation of density functions by sequences
of exponential families. Annals of Statistics, 19, 1347-1369.

Bierens, H. J., 1990, A consistent conditional moment test of functional form, Econo-
metrica, 58, 1443-1458.

Chesher, A., 1991, The effect of measurement error, Biometrika, 78, 451-462.
Chesher, A., 1999, Structural estimation in the presence of covariate measurement
error, mimeo, University of Bristol, U.K.

Cox, D.R. and D.V. Hinkley, 1974, Theoretical Statistics, (Chapman and Hall, Lon-
don).

Chow, Y.S. and H. Teicher, 1988, Probability theory, 2"¢ ed., (Springer-Verlag, New
York).

Csiszar, 1. 1975, I-divergence geometry of probability distributions and minimization
problems, Annals of Probability, 3, 146-158.

Eubank, R.L. and C.H. Speigelman, 1990, Testing the goodness of fit of a linear
model via nonparametric regression techniques, Journal of the American Statistical
Association, 85, 387-392.

Fan, Y. and O. Linton, 1997, Some higher order theory for a consistent nonparametric
model specification test, mimeo, London School of Economics, U.K.

Hérdle, W. and E. Mammen, 1993, Comparing nonparametric versus parametric
regression fits, Annals of Statistics, 21, 1926-1947.

Hausman, J. A., 1978, Specification tests in econometrics, Econometrica, 46, 1251—
1271.

Hillier, G.H., 1987, Classes of similar regions and their power properties for some
econometric testing problems, Econometric Theory, 3, 1-44.

Hong, Y. and H. White, 1995, Consistent specification testing via nonparametric
series regression, Econometrica, 63, 1133-1159.

Horowitz, J.L., 1998, Semiparametric methods in econometrics, Lecture notes in sta-

32



tistics (Springer-Verlag, New York).

Horowitz, J.L. and W. Hérdle, W., 1994, Testing a parametric model against a semi-
parametric alternative, Econometric Theory, 10, 821-848.

Kitamura, Y, 1998, Comparing misspecified dynamic econometric models using non-
parametric likelihood, mimeo, University of Minnesota.

Koo, J-Y., Kooperberg, C. and J. Park, 1999, Logspline density estimation under
censoring and truncation, Scandinavian Journal of Statistics, 26, 87-105.

Murphy, S.A. and A.W. Van der Vaart, 1997, Semiparametric likelihood ratio infer-
ence, Annals of Statistics, 25, 1471-1509.

Nishi, R. 1988, Maximum likelihood principle and model selection when the true
model is unspecified, Journal of Multivariate Analysis, 27, 392-403.

Owen, A.B., 1988, Empirical likelihood ratio confidence intervals for a single func-
tional, Biometrika, 75, 237-249.

Rao, C.R., 1973, Linear statistical inference and it’s applications, (Wiley, New York).
Portnoy, S., 1988, Asymptotic behaviour of likelihood methods for exponential fami-
lies when the number of parameters tends to infinity, Annals of Statistics, 16, 356-366.
Qin, J. and J. Lawless, 1994, Empirical likelihood and general estimating equations,
Annals of Statistics, 22, 300-325.

Robinson, P.M., 1991, Consistent nonparametric entropy-based testing, Review of
Economic Studies, 58, 437-453.

Royden, H.L., 1988, Real Analysis, 3" ed., (Macmillan, New York).

White, H., 1982, Maximum likelihood estimation of misspecified models, Economet-
rica, 50, 1-25.

Wolfram, S., 1999, The Mathematica book, 3" ed., (Cambridge University Press).
Zheng, J.X., 1996, A consistent test of functional form via nonparametric estimation

techniques, Journal of Econometrics, 75, 263—289

33



