THE UNIVERSITYW

Discussion Papers in Economics

No. 2000/42
Learning with Bounded Memory in Stochastic Models

by
Seppo Honkapohja and Kaushik Mitra

Department of Economics and Related Studies
University of York
Heslington
York, YO10 SDD




Learning with Bounded Memory in
Stochastic Models

Seppo Honkapohja and Kaushik Mitra
University of Helsinki and University of York

June 14, 2000

Abstract

Learning with bounded memory in stochastic frameworks is incomplete in the
sense that the learning dynamics cannot converge to an rational expectations equi-
librium (REE). The properties of the dynamics arising from such rules are studied
for models with steady states. If in standard linear models the REE is in a cer-
tain sense expectationally stable (E-stable), then the dynamics are asymptotically
stationary and forecasts are unbiased. We also provide similar local results for a
class of nonlinear models with small noise and their approximations.

Journal of Economic Literature Classification Numbers: C13, C22, C53, D83,
E32, E37.

Correspondent: Seppo Honkapohja, Department of Economics, P.O.Box 54
(Unioninkatu 37) FIN- 00014, University of Helsinki, Finland;
email: Seppo.Honkapohja@helsinki.fi.

Acknowledgements: The research was done while the second author was still
affiliated with Research Unit on Economic Structures and Growth, Department
of Economics, University of Helsinki. Funding from the Academy of Finland and
the Yrjo Jahnsson Foundation is gratefully acknowledged. We are grateful to
George Evans, Ed Greenberg, Antti Kupiainen, Ramon Marimon and participants
in various seminars for comments. The usual disclaimer applies.



1 Introduction

There exists by now a sizeable literature that studies the dynamics of adaptive learning
in macroeconomic and market equilibrium models. Two fundamental issues addressed
in this literature are (i) can economic agents, who rely on ”on-line” estimation rules and
forecasting with data on relevant variables, learn to have rational expectations in the
long run and (ii) what are the stable outcomes of such learning processes. The literature
has been recently surveyed in (Evans and Honkapohja 1999) and (Marimon 1997).

A common starting point in this research is to postulate that economic agents behave
like econometricians, i.e. they use standard econometric techniques to estimate the
parameters of the stochastic process of the relevant variables and forecast the future
values using these estimated parameter values. The assumed form of the stochastic
process, the perceived law of motion (PLM), is taken to be correctly specified in the sense
that with right parameter values it coincides with the rational expectations equilibria
(REE) of interest.! In the most commonly studied frameworks learning is complete in
the sense that the economy settles in an REE if the learning dynamics converges. For
most circumstances the condition for the convergence of learning dynamics has turned
out to be the so-called expectational stability (E-stability) condition. We will define
E-stability precisely below.

The possibility of nonconvergence of learning dynamics has also been considered in
the literature. It may be the case that the economy has no stable REE for particular
values of the model parameters.? Another possibility is that learning dynamics is in-
complete in the sense that it has no chance of converging to an REE for any parameter
configuration, see e.g. Section 5 of (Evans and Honkapohja 1999) for a discussion and
references. The incompleteness of learning may arise for different reasons. First, the
PLM may be incorrectly specified. Second, the procedure for estimating the PLM may
not yield exact convergence. Nevertheless, dynamics of incomplete learning may give a
good approximation to actual economic data.?

Several papers in the literature have considered learning with a finite memory, and
such rules have been shown to result in complete learning in various deterministic models.
Given suitable values of structural parameters, the learning economy can indeed find an
REE, see e.g. (Guesnerie and Woodford 1991), (Grandmont 1985), (Grandmont and
Laroque 1986), (Balasko and Royer 1996), (Grandmont 1998), (Evans and Honkapohja
2000a), and Section 2, Chapter 7 of (Evans and Honkapohja 2000b), though for other

'Note that the dynamics are econometrically misspecified during learning, but the misspecification
will disappear in the limit if the learning dynamics converges to an REE.

2This is discussed e.g. by (Grandmont and Laroque 1991), (Bullard 1994) and (Grandmont 1998).

3(Marcet and Nicolini 1998) argue that dynamics with certain type of incomplete learning provides
a good description of the inflation processes in Latin America. (Sargent 1999) suggests that a similar
form of incomplete learning may be an essential ingredient in the rise and decline of inflation in post-war
America.



parameter values the REE may be unstable. In contrast, learning with a finite memory
is known to lead to incomplete learning in the same models when random shocks are
present. For example, if agents try to learn a steady state by computing a sample
mean from a finite data set of fixed length, the resulting dynamics cannot converge to a
rational expectations solution for any parameter values when a random shock is present,
see (Evans and Honkapohja 1995b).

A different motivation for learning with bounded (or finite) memory is the observation
that it may be optimal for any single agent to use a particular finite memory length if
all other agents in the economy are using the same memory length. In other words,
learning with bounded memory may arise as a self-confirming equilibrium which is in
the spirit of (Sargent 1999). (Mitra 2000) considered this possibility in settings without
self-referential aspects. His results are applicable to our framework and illustrate this
possibility. This gives a further reason to characterize the dynamics arising from learning
with bounded memory.

These considerations invite a further study into the nature of incomplete learning
with finite memory when the economy is subject to random shocks. In this paper we show
that, despite incompleteness, dynamics of learning can have several attractive properties
in standard frameworks. Most importantly, E-stability has a key role for stationarity of
the learning dynamics. Generally speaking, under E-stability the state of economy has a
unique invariant distribution in the long run. Learning is then asymptotically unbiased
in the sense that the mean of the first moment of the forecast is correct. There is also
approximate convergence of the higher moments with the approximation improving as
the support of the shock becomes small. Finally, we obtain some results on the influence
of the memory length on the residual variance of the forecasts.

These properties seem relatively intuitive, but their precise statements require con-
siderable care. In this paper we derive these results for standard frameworks, where
agents try to learn a steady state. Several well-known models fall into the categories of
models analyzed in this paper, and we start by discussing two examples.

Example 1. (The Muth market model) Consider a competitive market with a pro-
duction lag. Demand is assumed to be a downward-sloping function of the market price,
while supply depends on the expected price in consequence of a production lag. For sim-
plicity, assume that suppliers are identical in their economic characteristics, including
expectations and learning rules.

Postulate the demand function

Qf = (1 — Bp,
and the supply function
¢ = Co+ DE; 1pi + vy,

where ¢!,7 = d, s, denote quantities demanded and supplied, p; is the market price,
Ef |p: denotes the (in general non-rational) price expectation of the suppliers, and v; is
an 77d random shock with mean 0. B, C,Cs and D are positive parameters.



Using equality of supply and demand, the reduced form of this model takes the form

pe = o+ BE{_pe + uy, (1)

where u; = —B vy, a = B7'(C] — C5) and 8 = —B7'D.* A (stochastic) steady state
equilibrium can be written in the form

. «

To model learning it is postulated that agents think that the economy is in a steady
state but do not know the value of the constant. In other words, they have a PLM of
the form p; = A+wu; and they form an estimate of the value of A using past observations
on prices. In this model the estimate is also the forecasted price E; ;p;. Computing
the sample mean for a set of data is the standard statistical technique for estimating an
unknown mean, so that a natural estimate of A at time ¢ is given by

T
A=T"" Zpt—i
i—1

if agents use past T prices in computing the sample mean. Substituting the estimate
into (1) yields

~

Dt

+ut.

3 T
Pt =+ ?;ptiﬂLut (2)

which is an autoregressive process of order T' (an AR(T) process). The forecast for
the equilibrium price is also %ZZTZI pt—; which is a random variable with a nontrivial
asymptotic variance if p; follows (2). This shows that forecasts from finite-memory rules
cannot converge to rational expectations equilibria. In this paper we are interested in
the properties of the dynamics (2).

Example 2. Several common economic models lead to the reduced form

Y = a+ BE Y1 + vy (3)

in which the current value of the endogenous variable depends on its expected value for
next period. Again v, is an 7id random shock. (Sometimes an exogenous non-iid variable
is added to the reduced form. We omit it for simplicity.)

For example, the demand for money is assumed to be a linear function of expected
inflation in the simple monetary inflation model. Assuming a constant nominal stock of
money then yields (3) as the reduced form. Other examples leading to (3) are the model
of a small open economy with purchasing power parity on prices and open interest rate

4Some other models, e.g. a version of the (Lucas 1973) island model, also lead to the same reduced
form. In Lucas’ model 5 > 0.



parity, and the model of risk-neutral asset pricing in which the current asset price is the
present value of expected price next period plus dividends.®

Model (3) has a stochastic steady state solution of the form y, = A + v, where
A= ﬁ, and a natural learning rule to estimate the constant, assumed unknown, is
computation the sample mean from a set of past values of y;, i.e. the estimate in period
t is given by A, = T~} ZiT=1 Yt (This assumes that current value of y; is not used in
the estimation. This avoids a simultaneity problem in the model.) Again the dynamics

of learning can be described by an AR(T") process.

These two examples have a convenient linearity property, and the learning dynamics
can be analyzed by standard techniques from time series analysis. We will study the
first and second moments of the learning dynamics described by the AR(T') process in
Section 2. In Subsection 2.5 we will illustrate the possibility that learning with bounded
memory may be a self-confirming equilibrium.

Nonlinear models with stochastic steady states also appear in the literature. In
Section 3 we take up a general class of nonlinear models which was analyzed for complete
learning by (Evans and Honkapohja 1995b). It turns out that, for models with small
shocks, E-stability implies useful asymptotic properties for learning dynamics locally
around a steady state when agents try to learn a (stochastic) steady state with a natural
finite-memory rule. We also linearize the process and obtain an approximation which is
an ARMA(T,T) process.

Stationarity of this ARM A approximation is briefly analyzed in Section 4. There
we also consider a generalization of model (3) in Example 2 to incorporate observation
errors. It is shown that E-stability yields stationarity of both processes.

Section 5 concludes.

2 Linear AR Models

2.1 Preliminaries

We start with the class of models mentioned in Examples 1 and 2 of the Introduction.
Recall that these are of the following general form

T =+ 0E; jx¢+ vy, (4)
or

xy=a+ BE z 1 + v (5)

depending on the dating of the expectations and time period they concern. Here z; is
an endogenous variable, F/x;, is the subjective expectation of x;,; held by agents at
time t and v; is a sequence of white noise shocks.

°See Section 3.3.1 of (Evans and Honkapohja 1999), or Section 7, Chapter 9 of (Evans and
Honkapohja 2000b), for more detailed discussions and references.
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We focus on steady state solutions of models (4) and (5).° These rational expectations
solutions may be written as x; = A+, where A = ﬁ As discussed above, in modeling
learning we postulate that agents think that they are in a steady state but do not know
the value of the constant A. In other words, they have a PLM of the form x; = A + u;
and they form an estimate of the value of A using past observations on x;. In the class
of models covered by Example 1 the estimate is also the forecast E; ,z; (or Efx; for
the class covered by Example 2).

Before considering learning we define precisely the concept of E-stability which, as
noted, will play a key role. With the PLM of the above form agents use the estimated
value of the constant as their forecast. If A is the value of the forecast the temporary
equilibrium or actual law of motion (ALM) of the economy is given by

T =+ A+ ug.

This defines a mapping from the PLM to the ALM which takes the form T'(A) = a+ BA.
E-stability is defined by considering the ordinary differential equation

dA
= T(A) — A.
If this differential equation is locally asymptotically stable (La.s.) at the REE A = %5
then the equilibrium is said to be weakly E-stable. The formal E-stability condition is
T (A) = (8 < 1. This formulation of E-stability is closely connected to convergence of
real-time learning schemes, see (Evans and Honkapohja 1999) for a recent survey and
(Evans and Honkapohja 2000b) for a detailed discussion.

This notion has been strengthened in several ways in the literature. For the results
of this paper the concept of iterative E-stability turns out to be central. We stay that
the REE is iteratively E-stable if it is locally asymptotically stable in iterations of the

T — map, i.e. if the difference equation
An—i—l = T(An)

is locally asymptotically stable at A. The formal condition for iterative E-stability is

A

T'(A)| = 18] < 1in this case.

The notion of iterative E-stability is related to concepts of rationalizability in game
theory, and the connection between these concepts has been explored by (Guesnerie 1992)
and (Evans and Guesnerie 1993) in the context of rational expectations. We also remark
that another related concept is strong E-stability in which the E-stability is required to
be robust to overparameterizations of the PLM of the agents. For the linear frameworks
(4) and (5) of this section weak and strong E-stability happen to coincide, while for the
nonlinear models in the next section the condition for iterative E-stability is identical to
that of strong E-stability.”

¢ As is well-known, (5) can have other solutions besides steady states.
"Discussions of the E-stability concepts for different frameworks are given in (Evans and Honkapohja
1995a), (Evans and Honkapohja 1999) and (Evans and Honkapohja 2000Db).
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2.2 Stationarity and Unbiasedness

After these preliminaries we begin to analyze learning dynamics with bounded memory
for models (4) and (5). As noted above, computing the sample mean for a set of data is
the standard way for estimating an unknown constant, so that an estimate of A at time

t is given by
T
T_l Z Tt—; (6)
i=1

if agents use past T' prices in computing the sample mean.® We will call T’ the memory
length. For some results we can in fact consider forecasting by a weighted sample mean,
ie. . .
Zuixt_i, where Vi : u; > 0 and Z,ui =1. (7)
i=1 =1
(6) is obviously a special case of (7).
Substituting the weighted mean into (4) or (5) yields

T

r=a+f Z HiTe—i + Uy (8)

i=1

which is an autoregressive process of order 7' (an AR(T') process). The first question
one needs to ask about such a process is whether it is stationary or not. This question
is answered in the following proposition.

Proposition 1 (i) If the steady state is iteratively E-stable, i.e. |B| < 1, then x; is
(covariance) stationary for all T > 1.

(ii) If it is weakly E-unstable, i.e. 3 > 1, then the process is non-stationary.’
Proof. Consider the following equation

We need the roots of (9) to be outside the unit circle for stationarity.
Suppose that |3| < 1. Then we have

1=

1 i :
1< ‘5‘ = [Zlma| < Tl o

where the final inequality follows from the triangle inequality. Suppose that for a root
z we have || < 1. Then for all i, |2|* < 1. It then follows from (10) that

1< S lz < S =1

8We note that, unlike in infinite memory learning, it is not possible to compute the sample mean of the
previous T prices from the corresponding average in the previous period, the number of observations
and the new observation. In other words, bounded memory learning cannot be written in recursive
fashion.

9The process is also non-stationary for 3 = 1.



which is a contradiction. This proves (i).
To prove (ii) consider the characteristic polynomial

p(A) = A= B N = BupA? — = By A = By (11)

If 5 > 1 we have p(1) < 0, so that by continuity p(\) must have a root greater than one.
This proves (ii). (Note that if 5 =1, then A =1 is a root.) B

Weak E-stability has also a further implication:

Corollary 2 If the steady state is weakly E-stable, i.e. § < 1, then in the case (6) of
equal weights 3T : YT > T™ the process is stationary.

Proof. We consider only the case < —1 due to Proposition 1. We basically replicate
the proof of (Giona 1991). Consider the characteristic polynomial (11) which may be
rewritten in this case as

6] (1 =T

1-NT

Define ¢(A) := (1—X)p(X). Observing that A = 1 is not an eigenvalue (since p(1) > 0),
the roots of ¢(\) are the same as that of p(\). The roots of ¢(\), on the other hand, are
given by solving the equation

p(A) ="+

_ 181y, 18]

Ty = =0. 12
Viat - Py Py (12)
From (12) we have (on re-arranging)
16l 18] 5] 5]
AN=p1-S+ = <h-2 )+
A ‘ T TAT| T T| TN

The proof now proceeds by contradiction. Assume that there exists some eigenvalue A
such that |A\| > 1. Then we can choose T* such that VI' > T we have ‘L;l < 1 and
‘)\T} > 2. Consequently V1" > T™* it is true that
6l 18 18]

AMN<l——=+—==1-—=<1

Al T 2T 2T
which contradicts |A] > 1. Now let us assume that ¥7' > 7™ there exists at least one
eigenvalue on the unit circle, that is, A = €. In this case we have

16|
— ?)

This last equation implies § = 0, but we have already ruled out A = 1 as an eigenvalue.
Hence VT' > T, all the eigenvalues are inside the unit circle. W

The results demonstrate that iterative and weak E-stability are closely connected
to stationarity properties for learning dynamics with natural finite-memory rules for

8



learning a stochastic steady state. With such rules exact convergence cannot obtain,
but stationarity prevails if the underlying model has an iteratively E-stable REE and it
may prevail even with just weak E-stability.

If the dynamics is stationary, it makes sense to consider further properties of learning
with these finite-memory rules. Inspecting (8) it is immediately seen that the uncon-
ditional mean of x; converges to the rational steady state ﬁ under the postulated
learning rule, and therefore the (unconditional) mean of the forecast also converges to
the same value. Thus we have:

Proposition 3 If the dynamics (8) is stationary, then learning is asymptotically unbi-
ased for all T > 1, i.e. the mean of the forecast Zg‘rzl ;T —; converges, ast — oo, to

the steady state A = ﬁ

This result shows that at each memory length the forecasts provide, on average, the
correct estimate of the steady state.

2.3 Second Moment Properties

Here we are interested in determining the asymptotic variance of estimation errors when
the process is stationary. We thus impose weak E-stability, i.e. § < 1 (and strengthen
it if necessary). In order to compute this variance we first need to calculate the second
moments of the x; process. This is a standard problem in time series econometrics, and
one makes use of the Yule Walker equations, see e.g. Chapter 3 of (Hamilton 1994). The
Yule Walker equations for this AR(T) process yield a system of 7' simultaneous linear
equations which can be solved for the first T auto-correlations of the process.
First define the ¢ — th auto-correlation as

_ Cov(wy_i74)
P Var(z;)
where Cov(z_; x;) denotes the covariance between z;_;, and z; and Var(z;) denotes

the variance of x;. To economize on notation we also define a := % The Yule Walker
equations in our case are

pr = atalp;+py+ ...+ pry)

P2 apy +a+a(py + py+ ... + pr_s)

ps = alpy+py) +a+alp;+py+ ...+ pp_s)
Pr—1 = G(PT_Q +pr_3+ ...+ pl) +a—+ ap;

pr = alpr1+prot..t+p)ta

The solution to this system is given in the following proposition:

Proposition 4 If |3| < 1, then the above system of equations has a unique solution

pi:p:%,forallisuchthatlgigT.

9



Proof. The T linear simultaneous equations need to be solved for the T unknowns
P15 Pas -, pp- However, on careful observation one sees that the following is true p; = p;;
P2 = Pr_1; P3 = Pp_g OF, in general, p; = pp_; ;.

This means that we can reduce the dimensionality of the equations to be solved for.
As mentioned above, one can match the auto-correlations pairwise, so that we have to
distinguish between two cases: when 7" is even and when 7" is odd. We first consider the
case when T’ is even.

CASE 1: T =2M; M is a positive integer greater than or equal to 2. In this case we
can reduce the above set of T' equations into M equations to solve for the M unknowns
P1, Pas -, Prs- The resulting M equations are

p1 = a+alpy+2py+ ...+ 2py)
py = apy+a+alpy + py+2p3+ ...+ 2py)

P = alppyr ot pyzt o tp)tatalp+...+py g +2py)
Pm = a(/’M—l + Pyt Pl) +a+ a(Pl + ooyt PM)-

There is an easy way to solve the above set of equations. First, subtract the second
equation from the first to get p; — py = a( py — py) or (p; — py)(1 —a) = 0. Since |B| < 1
implies that |a| < 1 for all T" > 1, we get p; = py. Analogously, in general, subtracting
equation j + 1 from equation j (where 1 < j < M — 1) one gets (p; — p;,1)(1 —a) =0,
so that p; = p; ;.

This proves that all the auto-correlations are the same so that we can get the common
value, say p, from a single equation. This yields (1 — a — 2a(M — 1))p = a or

. a . a
S l-a—2a(M—-1) 1—a(T—-1)

p

CASE 2: T =2M + 1; M is a positive integer greater than equal to 2. In this case
we can reduce the above set of T' equations into M + 1 equations to solve for the M + 1
unknowns py, py, ..., Pass Parg1- Lhe resulting M + 1 equations are

p1 = a+alpy+2py+ ... +2py +2pp41)
py = apy+a+a(py+py+2p3+ ..+ 2p5 + ppria)

oy = alpy 1+ Py ot o+ p) Fatalpy+ ...+ py+ pari)
P = alpyr+py g+ p) Fatalp+ .o pyg +par)-

Note that in this case we get an extra equation corresponding to the unmatched
autocorrelation at lag M + 1. Here, analogously as for the first case, subtracting equation
J from equation j + 1 for all 1 < j < M we get p; — p; 1 = —ap; + ap;; which implies
(pj — pjy1)(1 —a) =0, and since a # 1 we get p; = p; ;.

This proves that again we have p, = p for all 1 <i < M +1. Using this fact we can
now easily get p from the first equation. This again gives us p = %

10



Note that this also shows that the solution is unique. So finally we get the common
value of p for all 7' > 1 as

a % 16}
1—aT-1) 1-BT-1) Q-BT+p

p:

This proves the proposition for all 7' > 4. One can also check easily that the same is
true for T'=1,2,3. |
We are now in a position to get the asymptotic variance of x;. First define ~, to be

the ¢th autocovariance, so that
Vi
Pi = "
"o
where 7, is the asymptotic variance of z;. From (Hamilton 1994), p. 59, we have v, =

aX vt ot=ayy Y, pi+ 0t =yalp+ o’ = 70(%) + o2, So finally solving
for 7, yields

62 )71:0_2( (1_5)T+6
(1-p)T+p (1=5)(T+p)
Clearly 7, is decreasing in T" and in o2 if the process is stationary.

We finally turn to the forecast error to see how it behaves with 7. Denote the forecast
error of the least squares estimate from the REE based on memory 7" as Y;(T"). We have,

by definition,
T
=3 g

Proposition 5 If |3| < 1, the asymptotic variance of forecast error, Var(Y,(T)), de-
creases monotonically with T and increases with 0. As T — oo, Var(Yy(T)) — 0.

).

Yo = 02(1 -

Proof. Var(Yi(T)) = Var(3 L L 7). Thus

Var(Y(T)) = ZV@T Ty +§;Ji@ Cov(xy_i, ;)]
Zwai Z Con(en o)
_ (%)Q[TVO + 270,){(; - 1)]+ (T—2)+..+2+1)]
= (i + g o DA

If | B |< 1, this is clearly decreasing monotonically in 7" and increasing in o2, Also
note that limy_o Var(Y;(7T)) =0. |

We note that it can similarly be shown that the asymptotic variance of the fore-
cast error as calculated from the actual price, i.e. ZZ 1 Tact ; — ¢ for model (4) and

11



Z;‘F | 74—; — Ty for model (5), respectively, are decreasing in 7" and increasing in o2
In the limit 7" — oo they both go to o2.

We illustrate the dynamics (8) for equal weights with simulations. We set « = 5,3 =
—4 and assume a uniformly distributed shock with support [—0.1,0.1]. The dynamics
were run for 5000 periods and the figures show the last 100 periods. Figure 1A displays
the actual value for x; for two simulations when memory lengths 5 and 50 were assumed
(star denotes the dynamics with the higher memory length in Figures 1A and 1B). We
note the clear reduction in the volatility for the longer memory length. Figure 1B shows
the same simulation with memory lengths 50 and 500. Interestingly, this further ten-fold
increase in memory length did not reduce the volatility much further. Finally, Figure
1C compares the dynamics with memory length 50 to the RE solution which in this case
is just constant plus noise (squares indicate the RE values and triangles the learning

solution). These two processes are apparently rather close to each other.

FIGURES 1A, 1B AND 1C ABOUT HERE

2.4 Generalization to Higher Order Models

The preceding results can be easily generalized for the steady states of some higher order
linear models. For example, consider the model

Ty =+ 50 1T+ 51 1T TV

first analyzed in (Evans 1985) for E-stability.
If the agents have a PLM of the stochastic steady-state form

Ty = a+ V¢

the iterative E-stability condition is |3, + ;] < 1.1 Assume now that agents make
forecasts of the unknown constant a by computing the sample mean a; = ZZT 1 %xt i
from past data x; 1,...,z; 7 and using the estimate as the forecast. The actual law of

motion is given by

T
vy =a+ (By+ B)ay + v, = a+ (By + By) Z? t—i T+ U,

which is an AR(T') process. This process is a very minor modification to (8), and the
above results apply to this framework.!?

10See (Evans 1985). Evans’ definition of E-stability is iterative E-stability in our terminology. (The
distinction between E-stability and iterative E-stability was made only more recently.) Note that one
could make a distinction between weak and strong iterative E-stability, but this is not needed in this
paper.

1The new feature brought by the generalization is that this framework has other equilibria besides
steady states.
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2.5 Bounded Memory Learning as Self-Confirming Equilibrium

The preceding results characterize the dynamics of x; when all agents use the same finite
memory length. In earlier work (Mitra 2000) showed that use of finite memory may be
optimal for a single agent in short term forecasting of an exogenous stationary AR(1)
process. Here we show that in a self-referential setting it may sometimes be optimal for
any single agent to use bounded memory learning when all other agents also do so.

In model (4) suppose that all agents use memory length 7" = 1 in their forecasting.
Does any single agent have an incentive to use T' > 1, given that all other agents continue
to use T' = 17 In this analysis we assume that the objective function for the agent is
the minimization of the asymptotic (¢ — oo) Mean Squared Error (MSE) of his forecast
error. It turns out that the agent does not want to deviate from using memory length
T=1if1>p3>0.5.

When all agents use T' = 1, the true law of motion of the price p; is an AR(1)
process by (2). A single agent computes the forecast of p; by 7! Z?zl pi—i. Formally,
the question is to find the value of 1" that minimizes

T
hm t_)ooE[T_l Z Pt—i — pt]2 .
i=1

It can be shown that this is ezactly the problem studied in (Mitra 2000), and we can
appeal to those results. T = 1 minimizes the asymptotic MSE of the forecast error of
a single agent given that other agents use T' = 1 in their forecasting if § > 0.5. In this
sense 7' =1 is a self-confirming equilibrium in memory lengths.

We note that the optimality of 7" = 1 has nothing to do with any computational
costs of acquiring more data. If, as might be realistic, one assumes that it is costly to
acquire more data this result can probably be strengthened. The result above is only
partial, and we leave a systematic study of the optimality of bounded memory learning
to a separate paper.

3 Nonlinear Models

3.1 Preliminaries

In this section we consider learning of a steady state for the class of nonlinear models

= H(G(x441,0141)%, v1), (13)

discussed in (Evans and Honkapohja 1995b). Here H and G are given twice differentiable
functions, z; is the value of the (scalar) variable of interest at time ¢, and v; is a sequence
of independently and identically distributed random shocks with mean 0 and variance
02, G(w441,v541)¢ denotes the subjective expectations of G (1, v,1) formed in period
t. We will introduce some further assumptions later.
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A rational steady state is a function z(v) such that
Vo :z(v) = H(E,G(z(w),w),v),

where the expectation FE,, is taken with respect to a random variable which has the
same distribution as the 7id shocks v;. For later purposes & denotes the steady state of
the corresponding nonstochastic model, i.e. & = H(G(%,0),0). (Evans and Honkapohja
1995b) provide an existence theorem for this kind of steady state when the support of
the shock v; in (13) is sufficiently small.'?

Ezample 3. (The basic overlapping generations model with shocks.) In the basic
overlapping generations (OG) model with production agents supply labor n; and produce
(perishable) output when young and consume ¢;; when old. The utility function of the
representative agent of generation ¢ is U(ciy1) — V' (ne). Holding money is the only means
of saving, and there is a fixed quantity of money M,. Output is assumed to be equal to
labor supply plus and an additive productivity shock, so that output ¢; is given by

qr = ny + A,

where \; is an i¢d positive productivity shock. The budget constraints are p;i1c,11 = M,
and p;q; = M;. The first-order condition plus the market clearing condition ¢;11 = ¢441

and py/pii1 = i1/ g yields
(ne + )V (ne) = Ef (na1 + A1) U (ng1 + Ae))-

Since (n + A\)V'(n) is strictly increasing in n, and letting v, = A\, — E();), this equation
can be solved for n; Letting x; = n; the model can be put in the standard form (13).

Returning to the general framework, suppose that agents are trying to learn the
steady state. Agents have to forecast the quantity G(zyy1,v441)¢ which is a constant
E,G(z(w),w) in the steady state. The learning problem for the agents is to find this
value. The data are given by the past observations G(z1,v1), G(x2,v2), ....., G(xt_1,v4_1),
and the agents are assumed to use the sample mean of these observations to forecast
G(@yp1,ve41)°.

We continue to focus on learning with a finite memory length 7" : At date ¢t agents
use T' past observations to estimate G(z;,1,v:11)¢. The estimate and forecast at date ¢,
¢, is given by

T
o = ZMiG(xt—n Ut—i)u
i=1

where p,; is a weight such that Z;il i; = 1,pu; > 0. The general results in this section
hold for general weighting schemes, but in Section 4 attention will be focused on the
most important case of the sample mean, i.e. the weights are equal u, = T~

12To our knowledge, existence of the stochastic steady state equilibria has not been analyzed in full
generality.
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Given the forecast 6;, the actual law of motion of z; from (13) is given by
Ty — H(6t7 ’Ut).

Substituting for ¢; in the above equation, we finally get the dynamical system

T

T = H(Z 1w, G (i v_i), vp) (14)

i=1

(14) is the law of motion we are concerned with. This form can cover a wide variety
of overlapping generations models with shocks to either preferences or technology. A
special case arises if G is independent of its second argument.'?

3.2 Markovian Formulation

We now start to analyze the process (14) for some general properties. First, observe
that (14) can be written as a Markov process in the following manner. Define the state
vector

!
Xi1= ($t71, Lt—2y -0y Tt—T, Vg1, Uth,--avth) .

Introducing the notation X, ; for the j — th component of X; ;, we can write

[z, | [ I:I(Xt_l,vt) i
Ti_1 Xit1
Te—T+1 | _ X1 o141 (15)
vy Uy ’
Vg1 XT+1,t—1
| vty | | Xor_14-1
where -
H(X, 1,1,) = H(Z G (i, vi—i), ). (16)
i=1

This can be written compactly as
Xt = F(Xt_l, Ut), (]_7)

where the right hand side of (15) defines F.

Since X;_1 and v; are independent, X; is a Markov process with some state space
A C R?T. The first question we study is whether there exists a unique invariant proba-
bility for (17) and whether any initial probability distribution converges to this invariant

BFor example, the dynamics in an overlapping generations model with a multiplicative shock to the
disutility of labor and with agents trying to learn a stochastic steady state would follow a process in
which the current value of the state variable depends only on the current shock and past states.
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probability asymptotically. It should be emphasized that this analysis will be local since
we will assume that the underlying noise is small (in a sense to be made precise shortly),
since the existence of equilibria is known only for this case and since the linearization of
(14) can be justified only in models with small noise.

3.3 Asymptotic Properties

It turns out that the existence of the unique invariant distribution with small noise and
starting points in a neighborhood of the steady state can be established, if the steady
state of the corresponding nonstochastic model is iteratively E-stable.!* To obtain this
condition suppose that in the nonstochastic model agents have a PLM 6 about the
expectations G(,0)¢, where & is the unknown steady state. Then the T'— map is given
by

T(0)=G(H(6,0),0)

yielding the condition for iterative E-stability given in Condition 2 below.
We now proceed to the general analysis of (14) or (17). We make the following
assumptions.

Condition 1 v € [—¢,,¢,] for all t.
Condition 2 (Iterative E-stability) | D1 H(G(%,0),0)D1G(,0) |< 1.

We first show that with Conditions 1 and 2 and with ¢, small enough, the state space
of the Markov process (17) may be assumed to be compact. This is the content of the
following lemma.

Lemma 6 Assume Conditions 1 and 2 and €, small enough. Then the state space of
(17), call it N(g,) C A, may be assumed to be compact.

Proof. We want to show that if || X;_; [|[< e and | v, |< &,, then we have || X, ||< e,
too. (The vector norm will be specified later.) Given the structure of (15) it is clear
that it is basically the first component of the vector which is problematic (as the other
components are merely definitions). The first component of X; describes the process
(14) for x;. We will now prove that for suitable e, if | x;_; |< g, for all i = 1,2,..,T
and | v, ; |< g, foralli =0,1,2)..,T then we have | z; |< &, too. By choosing some
appropriate vector norm (like the max norm), this in turn shows that if | X, ;1 [|[< e
and | v; |< g, then we have || X} ||< ¢, too.

Assume, without loss of generality, that the perfect foresight steady state is = 0.
We linearize (14) around the vector (0,0, ....,0) € R**! and get a second order residual
term in the Taylor series expansion in the following manner:

T T
Ty = Z Q; Ty + ﬁo”t + Z @Ut—i + T(.Q?t—lu vy Tt—T5 Uty -+ Ut—T)7 (18)
i=1 i=1

4For this class of models iterative E-stability is in fact equivalent to strong E-stability, compare
(Evans and Honkapohja 1995b).
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where o; = u; D1HD\G, 3, = u;D1HD>G, for i = 1,2,..,T and 8, = Do H; D;H being
the partial derivative of H with respect to the ith argument, etc. These derivatives are
evaluated at values corresponding to the nonstochastic steady state. Note also that,
with the normalization £ = 0, the constant term in the Taylor series is 0.

Using the mean value theorem, the residual r(.) satisfies

IT(ze 1,y 1y Vg oy V)| < K (|| 4+ oo+ || + v + o] + o+ ve7]).
Taking absolute values in (18) we get

o] < Ten |zl + o+ [ar [z + | Bo [ ol + [ By | oia] + . +

Br | lvep| + |r(xs 1, oy @1, vey oy V)]

T T
< Y (K + o) |zl + > (K 4 18,]) [oeil + (K + |Bo]) [ve]
i=1 =1

if |z, 4| < e, for all .

Since aaT and 88’“
Lt—j Vt—j

here), the constant K can be made as close to zero as desired by restricting the analysis
to a small enough neighborhood of the origin. We choose the neighborhood so that
1 —TK — |DHD,G| > 0. Then we choose ¢, such that

are zero when evaluated at the origin (which is the steady state

(TK 4+ |D1HD7\G|)ex + (TK + |D1HD>G|)ey + (K 4 | Do H|)ey < &4

or in other words

e > (TK+ ‘DlHDQG‘ +K+ ‘DQH’)EU
v = 1 —TK — |DiHD:G|

By condition 2 and the choice of K this inequality is well defined. This proves the
lemma.'” W

We now prove that under suitable assumptions there exists a unique invariant prob-
ability for (17) and that the n—step transition probability of this Markov process con-
verges weakly to this invariant probability, as n — oo, for every point in the state space.
We use the results of (Bhattacharyya and Lee 1988) to prove these assertions.

By Lemma 6 the state space N(g,) of (17) may be assumed to be compact. Hence-
forth, we assume that €, in (19) is set so that equality holds. Thus N(g,) is a compact
metric space. We begin by proving the following lemma.

(19)

Lemma 7 There exists e, sufficiently small such that for all v, € [—&,,&,] = N, the
process (17) is a strict contraction on N(g,), i.e. |[[F(h,v)— F(0,v)| < ||h|| for all
h € N(g,),h #0.

15We note here that in general the constant K will depend on 7. In particular, the larger is T
the smaller must K be. There are, however, special cases where a uniform result is obtainable when
w; = o(T~1). This happens when the function H(X; 1,v;) is either independent of v; or additive and
linear in it.
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Proof. We continue to assume, without any loss of generality, that the deterministic
steady state is (0,0, ..,0). First, note that

F(h,v) — F(0,v) = DF(0,v)h + r(h,v)

Here DF denotes the Jacobian of F' with respect to first (vector) argument. It then
follows that

|F'(h,v) — F(0,v)|| = |[DF(0,v)h+r(h,v)] (20)
< DEQ,v)[[{[All + [Ir(h, v)]]

The 27" x 2T Jacobian matrix DF'(0,0) at the steady state takes the form

Fll F12
F21 F22 ’

where the 7" X T" submatrices are given by

0 p¥ pzd e pp g0 )
1 0 o .- 0 0
0 1 o .- 0 0
Pu=1t 9 o 1 -~ S
i . 0 0
0 0 0 1 0
00 O 00
10 0 00
LA 2 01 0 0 0
Fip = o -~ 0 ,Fo1 =0, Fag = -
0O -.- 0 09 1
Do . .00
00 -- 0 10

Here we have introduced the notation ¥ = D1 H DG, kK = D1HD-G.

Consider now the eigenvalues of DF(0,0). From the partitioned form it is seen that
the matrix DF(0,0) — Alypwxor is block triangular, so that its determinant is equal to
the product of the determinants of Fij; — Ay and Fos — A pyp. Thus the eigenvalues
of DF(0,0) consist of the eigenvalues of F1; and Fsy. Zero is the only eigenvalue of Fio.
The special form of F}; implies that its eigenvalues must satisfy the polynomial equation

p(A) = AT — I N — =Py A= =0,

see e.g. (Hamilton 1994), Proposition 1.1. If A # 0, dividing through by A” and setting
z = \"! we obtain equation (9) with 38 = 1J. The argument in Proposition 1 yields that
the roots of this equation must have modulus less than one if | ¥ |< 1.
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Thus Condition 2 implies that the spectral radius of the matrix DF(0,0) is strictly
less than one. Then there exists some matrix norm such that || DF(0,0)|| < 1, see (Horn
and Johnson 1985), Lemma 5.6.10. Now, by uniform continuity of the matrix norm in
its elements, it follows that there exists ¢, sufficiently small such that for Vv, € [—¢,,&,]
— N, : |DF(0,v,)|| < § < 1. Moreover, ||r(h,v)|| < 6]h||* for some & since 7(h,v) is 2nd
order in h.

It now follows from (20) that for all ||| small enough we have

[£(h,v) = F(0,0)[| < (IDFO, 0) [ + & [} [[2]| < [[A]]
This proves that F'(.,.) is a strict contraction on the state space N(e,). W

Proposition 8 There exists a unique invariant probability for the Markov process F' on
the state space N (e,) and the n—step transition probability of F' converges weakly to this
invariant probability, as n — oo, for every point in N(&,).

Proof. Lemmata 6 and 7 show that the conditions of Corollary 2.3 of (Bhattacharyya
and Lee 1988) are satisfied on N. W

This result demonstrates how, with small noise, iterative E-stability of the steady
state of the nonstochastic model yields attractive limiting properties for the learning
dynamics with small noise. Obviously, if v, = 0 for all ¢, iterative E-stability also
guarantees local stability of the dynamical system (14) or (17).

3.4 Error Bounds

To obtain further information on model (14), it appears necessary to revert to lineariza-
tion. This will be done in the next section. Here we briefly discuss errors bounds for the
residual term r(x; 1, .., 1, V¢, .., v4_7) in the Taylor series expansion (18).
Rewrite (14) as
= R(xp 1, ., Te 7, Uty oy V) (21)

Consider the linearization of (21). The residual r(z;_1, .., T¢_7, ¥y, .., v4_7) in the Tay-

lor series (18) consists of terms of the form %ﬁw (X)(@p—izi—j), #{S)H (X) (v—iv4—)
o°R

55— (X)(z,iv,;) at some point X.'° Assuming that all the second order par-
—ov;

tial derivatives are bounded, it can be shown that the mean residual is bounded above
by the expression Me?. For example,

and

O*R
m (X) (z—ive—5)

< MiE |z v ;] < My /Ea:f_iEvtz_j = Mig,e, < Moe?,

16Note that we have again assumed, w.l.o.g, that the nonstochastic steady state & = 0.

OR
- - ‘ . <
E%ﬁ%&hxxxﬁzw]w E
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where M; are constants. Likewise, the absolute value of the means of the other terms
%(X)(vt,wtﬂ) and %(X)(mt,ﬂpj) are bounded by expressions of the
same form.

Consider next the second order moments of x;. Viewing the x; process as a linear
ARMA(T,T) process plus a residual, these moments can be computed from the Yule
Walker equations with error terms. If these residuals can be shown to be small, then
the second order moments derived from the linearized process will be close to the true
second order moments of ;.

Recall that the Yule Walker equations are derived by multiplying z; in (21) by
Ty (u=1,2,..,T) and then taking expectations of both sides. Thus an individual
representative term in the residual of these equations is of the form

O*R

Ovy_i0zy_; (X) (Ve jTu)

with the absolute value of the mean bounded above by

0’R 1
E[W(X)(”t—m—jmt—u)] < Mse, [E(zy ) E(a;,)]* < Mg,
where we have applied Holder’s inequality twice. Here we have also used the fact that
x? < g2 < Me? for some M. Similar bounds can be found for the other terms involved
in the residuals of the Yule Walker equations.
These considerations yield the following conclusion:

Remark 1 The mean absolute residuals in the Yule Walker equations are of third order
i the support of the noise.

To illustrate the goodness of the approximation we simulated the model in Example
3 with the utility functions U(c) = ¢'7*/(1 — 5), V(n) = n'*¢/(1 + e) with parameter
values s = 4.0 and e = 1. The productivity shock A was assumed to be uniformly
distributed with support [0.3,0.9]. Figure 2 illustrates the dynamics from the original
nonlinear model and its linear approximation (diamonds are the dynamics of the original
model and squares its approximation).

FIGURE 2 ABOUT HERE

4 Linear ARMA Models

In the preceding section it was seen that the linearization of the general nonlinear frame-
work yielded an ARM A(T,T) process as an approximation of the original model. In this
section we study further the dynamics of the linearized process (but with the restriction
that learning is based on estimation by the sample mean).
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The significance of the ARM A setup is not limited to this case. A closely related
framework can arise in finite-memory learning in some linear frameworks when observa-
tion errors prevail. We present an example before proceeding to the main result.

Example 4. (A model with observation errors.) Consider model (3) as in Example
2. Assume now that agents do not directly observe 1, but only a variable z; = 1 + u,
where u; represents the observation error, assumed to be iid with zero mean, constant

variance 02, and independent of the shock v;. As before, v; is assumed to be iid with

zero mean and constant variance o2.
Agents have the perceived law of motion
x; = b+ noise
and they estimate b by the sample mean from 7' past observations
T
by=T" Z(yt—i + ;).
i=1

Substituting into (3) leads to a somewhat non-standard ARM A(T, T)-type process

ﬁ T
= ?Zyt i+ wg) +

describing the dynamics of learning with memory length 7". Note that this is not a stan-
dard ARM A(T,T) process in that the current shock v; is permitted to have a different
distribution from the lagged observation errors u;_;. Such a process can nevertheless be
tackled using standard time series techniques with minor modifications.

We now set up a framework that covers both this example and the linearization of
the nonlinear model of Section 3. After centering both processes can be written as

T T
Z=a Z Zi—i +cvy + b Z Ug—;, (22)
i—1 i=1

where 2, = y, — By, a = %, b= % Formally in Example 4 we have 6 = ¢ = 3, and in
the linearized model (18) v, = u; and 6 = D1HD1G, ¢ = D1H D-G.

Proceeding with the general analysis, we are interested in finding the condition for
stationarity of this process. Again iterative E-stability yields this property:

Proposition 9 If | 6 |< 1, then the process (22) is (covariance) stationary.

Proof. First, it is easily seen that the mean of z; is zero. We then consider the two
cases v; # u; and vy = u,; separately.
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Case 1: v; # u;. Using the lag operator and substituting in the values for a and b we
can write (22) in the form

6
[1— ?(L + L+ 4+ L))z = co + %(L + L+ 4 L )uy.

Using the method of proof in Proposition 1 it is seen that the polynomial in the lag
operator 1 — 2(L 4+ L? + ... + LT) in the left-hand side has all roots outside the unit
circle if | § |< 1. Dividing both sides by this polynomial shows that z; is the sum of two
independent covariance-stationary processes

cvy o %(L—l—LQ—F...—l—LT)ut

Therefore, it is itself covariance stationary.

Case 2: v; = u;. In this case, again using the method of proof in Proposition 1, it is
easily seen that the process is stationary if | § |[< 1. W

The following further results are also evident.

Remark 2 If the condition for weak E-instability &6 > 1 holds, the process (22) is not
stationary, and under weak E-stability 6 < 1 the process is stationary for T sufficiently
large.

If the learning dynamics (22) is stationary, it is possible to proceed as in Section 2
and derive the asymptotic second moments of the process for z; using the technique to
derive Yule Walker equations. Given knowledge of these moments one can also obtain
the variance of the forecast error in terms of the memory length 7" and the variance
of the disturbances u; and v;. Unfortunately, it appears that unambiguous analytic
results on properties of the variance of the forecast error, which would be comparable
to Proposition 5, are not available. We leave the lengthy details and further analysis to
another paper.

5 Concluding Remarks

Frameworks in which adaptive learning is incomplete are beginning to receive attention.
This paper has provided basic analytical results for dynamics of adaptive learning when
the learning rule has a finite memory and the presence of random shocks precludes exact
convergence to the REE.

We focused on the case of learning a stochastic steady state. Our central result is that
the E-stability principle, which plays a central role in situations of complete learning,
as discussed e.g. in (Evans and Honkapohja 1999) and (Evans and Honkapohja 2000b),
retains its importance in the analysis of incomplete learning, though it takes a new
form. In our setup E-stability guarantees the stationarity of the dynamics of the learning
economy and the unbiasedness of the forecasts.
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Several open issues merit a further study. Clearly, the nature of the linear approx-
imation of the nonlinear framework in Section 3 is worthy of a further analysis. It
would also seem useful to generalize our approach in the nonlinear setting for cycles and
Markov chain sunspot equilibria which were studied for complete learning in (Evans and
Honkapohja 1995b) and (Evans and Honkapohja 1994).

We note that our approach to incomplete learning is quite different from that of
(Hommes and Sorger 1997) who introduce the notion of a consistent expectations equi-
librium (CEE) in a similar nonlinear setup. In the CEE the perceived law of motion
is linear and thus misspecified, but it is required that the sample mean and autocor-
relations coincide with their theoretical counterparts. There can be different types of
CEE, such as steady states, cycles or even chaotic solutions. The relationship between
bounded memory learning and CEE are not clear-cut, but evidently processes such as (8)
are approximately CEE when the memory length 7' is sufficiently large by Propositions
3 and 4. This follows since the sample mean is unbiased and the covariances are small
for large enough 7.

Finally, we remark that with incomplete learning it is possible to imagine criteria for
choosing among different learning rules, so that they would be equilibria within some
specified class of rules. (Evans and Honkapohja 1993), (Brock and Hommes 1997) and
(Sargent 1999) are examples of such view points. The partial result in Section 2.5 is in
this spirit. We hope to consider these issues further in the future.
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FigurelA: Plot of theactual valueof x; for atypical simulationwithT=

5and 50. Noi seisuniformw thsupport [-0.1, 0.1].
have beenrun for 5000 peri odsw ththefinal 100 val ues plotted.

5and B =-4for thesinulation.
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FigurelB: Plot of theactual valueof x; for atypical sinulationwithT=

50 and 500. Noi seisuniformw thsupport [-0.1, 0.1].
have beenrun for 5000 peri odsw ththefinal 100val ues plotted.

5and B =-4for thesinulation.
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FigurelC: Pl ot of theactual val ueof x;
andthe REvaluefor atypical simulationwithT =

50. Noi seisuniformw thsupport [-0.1, 0.1]. Thesinulations
have beenrun for 5000 peri odswi ththefinal 100val ues plotted. a=
5and B =-4for thesinulation.

Figure2: Plot of theactual val ue
of x¢ andits|inear approxi mationfor atypical simulationwithT =
50. The productivityshock xis assumedtobeuni formw thsupport [0.3, 0.9]. The
si mul ati ons have beenrun for 5000 periodswi ththefinal 50val ues plotted.
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