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Abstract

We consider the construction of valid Edgeworth expansions for statistics
arising in the context of Gaussian autoregression. By exploiting the properties
of exponential families (to which these models belong), validity, of any order,

is routinely established for a wide class of statistics.
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1 Introduction

The application of higher-order asymptotic techniques for autocorrelation estima-
tors in Gaussian autoregression has received considerable attention. Examples in-
clude derivation of o(n~!) Edgeworth series contained in Phillips (1977), Ochi (1983),
Satchel (1984), Bose (1988), Taniguchi (1991) and more recently Kakizawa (1999),
while Phillips (1978) and Durbin (1980) (for the circular case) derive variants of the
saddlepoint approximation. For the purposes of this paper, we suppose that a sample

y = (y1,...,yn)" was generated by the following Gaussian AR(p) process,

Yi = Y1ty o+ ...t opyiptE; (1)

e; ~ IN(0, 0'2) 5 Y pri =Y pr2=..=yo =0,

and we assume that the roots of the polynomial (27 + 2P~ + ... + o) lie inside the
unit circle, so that (1) is stationary.

The major stumbling block for applications of higher-order asymptotic tools in
models such as (1) is, as one might expect, demonstrating validity. In general, let
Xn be a k x 1 random vector, having cumulants <%, for v = 1,2, ..., (for details of
the ‘index notation’ see McCullagh (1987), Chapter 2) and suppose that as N — oo,
Xn —a Ni(0, x2). Expansion and term-by-term inversion of the cumulant generating
function of X yields an Edgeworth series for the distribution, Fy(z) = Pr(Xy < z),

as

Fy(z) = ®(z; 5) — ¢(;5"2) {Z cjn () Qj(w)} 7 (2)

=3



where the ¢; v(k) are coefficients involving the sample size and the cumulants of Xy,
the g;(x) are the tensoral Hermite polynomials and ® and ¢ represent the k-dimension

normal CDF and PDF respectively. The series in (2) is valid if
sup |Fy(z) — Fy(z)| = o(N~2/2),

Although necessary conditions for validity are well established, (see Bhattacharya and
Ghosh (1978) or Durbin (1980)), to demonstrate validity in non-i.i.d. data settings
the following is sufficient (for example, see Hall (1992), Chapter 2 and Taniguchi

(1991), p.14).

Assumption 1 Let % be the j7 cumulant of Xy, then

R = NUTDRY T N2 3)
=1

) I
where the cumulant coefficients ¢, are free of /N and we also assume mﬁ} 1 =0.

For the special case of the autoregressive model (1), with p = 1, validity up to order
o(N™1) (as, for example, in Phillips (1977) and Kakizawa (1999)) is demonstrated by

finding low order cumulant coefficients, and showing that, for j = 1,..,4,

/iéé — N*(j72)/2/<;§§71 — N*j/Qlié& = o(N /%),

In this paper we demonstrate that in order to prove validity, such calculations
are in fact not necessary. That is by fully exploiting the properties of the model,
validity, up to order o(N~(=2/2) not just o(N~!) is assured, for a wide class of
statistics arising from this model. Moreover the approach of this paper seems more
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straightforward and general than that of Taniguchi and Watanabe (1994), who derive
o(N~') approximations for the MLE in curved exponential models. The key is the
fact that joint distributions of samples generated by Gaussian autoregression are
simply members of the exponential family and consequently the majority of inference
will be conducted through simple functions of the sufficient statistic. Therefore, in
order to establish validity we need only prove validity for (a) the sufficient statistic
itself and (b) simple functions of it. Once validity has been established for Edgeworth
series a fuller range of higher order techniques such as Bootstrap (Hall (1992)) and

transformation methods (Niki and Konishi (1986)) may be used.

2 Main Results

Let y = (y1,..,yn) have the usual curved exponential density (see for example,

Barndorff-Nielsen and Cox (1989)), viz.

f(y;0) = exp{tiyn — Kn(n) + h(ty)}, (4)

with k-dimension sufficient statistic ¢y = ¢(y) and canonical parameter n = 7(0),
a smooth function of the d-dimension parameter 6 and cumulant function Ky (n) =
Kn(n(0)). Before specialising to autoregression we examine the validity of asymp-
totic expansions of the type (2), for the distribution of ¢y. Let sy = NY?ty, and

denote the cumulants of sy by %, then sy is also minimal sufficient and (4) may be



reparameterised, with v = v(0), as

f(y;0) = exp{syy — Kn(7) + h*(sn)}.

Moreover, the cumulant generating function of ¢ty is K;(\) = Ky (n +iX\) — Kn(n),
and so ty has cumulants

L P Kn(n+i))

1+ iz PN (i)
ON O

J1 Jk - Nﬁj/%igj )
ONI 0N

ry = (i)

= ()

A=0

with S°F j, = j, so that if k¢ = O(N) for all j, then x; = O(N~U~2/2) which

A=0

satisfies Assumption 1, with /ﬁfjl = 0 for [ > 2. That is validity for the distribution of
ty follows if the cumulants of N'/?¢y are all O(N).
Now, let gy = g(xy) be a m x 1 function of the sufficient statistics zy = sy /N =

(21, ..., Tg), satisfying the following assumption.

Assumption 2 g(zy) is v times differentiable, where v > b, with derivatives

g(xy) koo
LG R

B Ox'r..0x}k
with the g7, continuous in a neighbourhood of 7 = k* = E[xy] and all minors

of g;, bounded away from zero.
Under Assumption 2, gy permits the following stochastic expansion
g =g + ijl G20+ O, (N2 =1, (5)

and Z = (zy — 7) = O,(N~'/2). We consider approximat-

TN=T

=r __ 8U!J(HCN)
where gI” - Bmil..aac;k

ing the distribution of the standardised statistic

hy = Vi (glzn) — g(r)
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where Viy = var[g(zy)]-

Theorem 1 Assume that the cumulants of sy = N'/*ty are O(N) and that Assump-
tion 2 holds for gy = g(xy) and let the distribution of hy be Fy(h), with Edgeworth

series approzimation, analogous to (2), Fx(h), then
sup | Fy (h) — Fy(h)| = o(N~0=2/2),
h

Proof. The proof of Theorem 1 is given in the appendix.

A consequence of Theorem 1 is that the only condition required for validity is the
existence of a sufficient statistic with cumulants of order O(N). Hence, in Gaussian
autoregressions, this is the only condition which needs to be checked. As a com-
parison, if there exists such a sufficient statistic, then Assumptions 1 and 3 in the
approach of Taniguchi and Watanabe (1994) are immediately satisfied.

Specifically, the set of & = (p + 1)(p + 2)/2 statistics, sy = (s1,..,5%)’, is the

minimal sufficient statistic, see Anderson (1994, p.358), where

Tf
{Zizppﬂ vi, vtk o PV s

T—p+1
Zi:plfl YiYi-1, Y1Y2 T YNYN, - Yp-1Yp T YN—pr1YN-p+2; (6)
SN —

T
Zi=p+1 yiyifp}

Since under normality y ~ N(0,%(6)), where 6 = (ay, .., a;, 0°) and



for a sequence of constant matrices A; and smooth functions of 6, n;(6) (see van
Garderen (1997) and Anderson (1994), Section 6), then the joint density of y may be

written

j=

f(y;0) = exp {—%Nl/Qtﬁvn(G) + % In )Zk ) nj(G)Aj‘ — gln%r} , (7)

where 7(0) = (11(0), ..,nk(6))". Consequently, for the Gaussian autoregression model

defined by (1), we have the following theorem.

Theorem 2 Let the minimal sufficient statistic sy for model (1), be defined as in

(6), then the cumulants of sy satisfy k¥ = O(N) for all j.

Proof. Theorem 2 is proved in the appendix.

Applying, first Theorem 2, then Theorem 1, yields the following results. First, we
may approximate, to any order, the density of the sufficient statistics via an appro-
priate Edgeworth series. Second, we may then transform to any function, say gy, of
those sufficient statistics, provided only that Assumption 2 holds, and approximate
to any order, the density of gn. As a consequence, the results of the papers mentioned
in the first paragraph of the introduction may be obtained, in principle, as special

cases of the results here.



3 Application

Although we have proved validity of higher-order Edgeworth approximations for
Gaussian autoregression, validity in itself, is by no means a guarantee of reasonable
accuracy. For comparison with previous studies, take the simplest AR(1) process;

Yi=ay; 1+¢&;, e~ N(0,1)and ¢ = 1,.., N, with sufficient statistics

51 Zz yiQfl

S92 Zz YiYi—1

with mean vector E(s) = 7 = (1, ar), where 71 = (N — (1—-a?Y)/(1-a?))/(1—a?).

We will consider the distribution of the z-transformation, see Taniguchi (1991), of

o

the (bias corrected) MLE for a, & = 212

ha(@) = VN <1og Gfi) ~log Gfi)) .

Notice that although log (%) is defined only for & € (—1,1), the probability 1 —

2|

Pr[a € (—1,1)] is of exponentially small order in IV, and hence does not affect our
calculations here. Denote the cumulants of hy by lii, j = 1,2, .., then after some

algebra, the cumulant coefficients in (3) are

1 —« 2 3
h,2 1—) 1 h,1
3a? (2 — 6a?)
2 . 4 _
Fho = (1—a?) o1 = (1—a?)

Then, applying Theorems 1 and 2 an Edgeworth approximation to Pr[hy < h] = F(h)
is
b ,
F(h) = @(k) = o(n) (D N-0-9/2a;(n) ) + o(N-0-2), (®)
j:
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with ® and ¢ the standard normal CDF and PDF, respectively and, for example,

ag(h) = “}1,2
ailh) = 5((5ha)? + K2 H () + 5ok H(h) ©

where H;(h) is the j Hermite polynomial. Since higher-order Edgeworth approxi-
mations are prone to non-monotone behaviour, caused by the highest-order Hermite
polynomial in the expansion, see Niki and Konishi (1986), then removing the term
involving } |, minimises the risk of non-monotonicity.

To illustrate the problem of non-monotonicity and to highlight the care needed
when constructing higher-order asymptotic approximations we will examine the dis-
tribution of both & and hy(&). In particular, the empirical distributions of & and
hn(&) were simulated for N = 50 and a = 0.9 with 100,000 replications. Then
o(N~') approximations were constructed for & (using the expansion contained in
Ochi (1983) and also Kakizawa (1999), p.346) and for hy(&) upon substitution of
(9) into (8). Comparisons between the simulated and approximate distributions are
contained in Figures 1 and 2 in the appendix.

Importantly, from Theorems 1 and 2, both approximations are valid, but that for
the MLE &, even in a moderate sample size, is clearly an unsuitable base for inference
about a. Therefore, if we wish to use higher-order asymptotic approximations for,
for example, one-sided confidence intervals for unknown parameters, then it is crucial

that we apply such techniques to suitable statistics.
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Appendix

Proof of Theorem 1

The proof requires only that we show that Assumption 1 holds for hy. Without
loss of generality, assume 7 = ¢g(7) = 0 and let g = gy and = = x, the joint density
of y may be written, for § = 3(0), as

fy;0) = exp{f'z — Kn(B) + r(z)}

and the characteristic function of g is
M©) = [ explic'g+ o~ Kn(8) + rla)}do
R
= e KB / exp{iC'g + Bz + r(z)}dx. (10)
Rk

The integral on the RHS of (10) is equal to the complex Laplace transform:

L (exp{i(’g} exp{r(x)}) (11)

where L(u ka Je ~1'%dz., denotes the Laplace transform operator. Now we

know
L(exp{r(z)}) = exp{Kn(8)},

and expanding exp{i(’g} on account of (5),

exp{i<’9}=1+z byya'i 4 Op(N~CH/2),

where 2 = 2" ...2", and the br; are O(1) tensor coefficients in the elements of ¢

and the derivatives of ¢(.), then

({13 mtfentrton) = -, 2L
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where in (12), b;, = 1, and we have used

9" exp{ Kn(8)}

L (acI” exp{r(ac)}) = (—1)" 93O

and the linearity and continuity of the Laplace transform. Consequently, the Laplace
transform (11) is (noting that Cramér’s condition is satisfied automatically in the

exponential case, and hence truncation of the integral series is permitted)

07 eXp{KN(ﬁ)}
OB .. 0B

L (exp{iC’g} exp{r(z)}) = ZZZO(—njblj L O(N-C/2y

and so,

MQ(C) =14+e ~(B) Z] ) ]blj Ig + O( v+1)/2) (13)

that is M, () permits a series expansion in terms of the cumulants of z. Assuming
v > b, taking logs, and expanding term by term, the cumulant generating function of
g is
o0 k
~ —Kn(B) J
Ky(Q)~ Yoo (~)F T (0N (1wl )
where ~ implies asymptotic equivalence of order O(N~+1/2)_ Since k2 = O(N~1),
then Viy ~ N~Y/2V, where V = O(1), and so the cumulant generating function of Ay
is
o0 v . . k
~ 1)k (o= En() _ 1) NI/2 1
K ()~ D0 () (V0N (1N k)
where d;; = V#liby, so that, since by definition, e=*¥®) = O(1) and sl =

O(N~*1) then

ab[(hN (C)
o ..O¢

—(b—2)/2 Z dZ N-(-D/2
=1
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where the dj are O(1), as required. B

Proof of Theorem 2

The cumulant generating function of the minimal sufficient statistic is

K,(\) = Kn(n+i)\) — Kn(n),

and from (7) the cumulant function is

Kl = =31 |3 4. (149)

and hence the cumulants are given by

by — 7 P S+ i0) 4
K = — - -
' 2 AN DN

k . .
) Zz’:lji =1

A=0

where § = {a, .., ap, 0} forms the natural parameter in the AR(p) model. Defining

Zle(nj +iX;)A; = A()) say, then note the following identities

(a) : 2200 — 7y (A1) ZR] (@) s P — A ()ZR AT
«g:aTgQ@”::Tr[%gy} (d) : limy_g A1 (\) = 2(6).

Applying (a), (b) and (c) gives

0’ In ‘Zé;(m + i)\j)Aj‘
ON}..ONJF

xTr

and hence from (d)

&’ In )Zle(ﬁj +iX;) 4
ON . ONJF
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Since the A, are constant matrices then

where 7,(N) = rank (£(0)A,)” and the 1,(6) are polynomials in 6, and are thus O(1)

for all v and J. Consequently, defining

Tmax(0) = max rank (2(0) A, )"

v,J
then

T [[1 COAY] <3 raNL0)

and further, since (V) = (N — 2), then

Tr [Hvzl (E(G)Av)j”} <(N-2) Zk,

and the theorem is proved. B
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Figures

Fig. 1: Simulated (solid) and o( N ') Edgeworth

approximation (dotted) for the distribution of &

Fig. 2: Simulated (solid) and o(N~') Edgeworth

approximation (dotted) for the distribution of iy (&)
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