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Abstract

This paper uses a variant of the Lotka-Volterra system explaining the
dynamic interaction between populations of infected and healthy individ-
uals in which the demographic and epidemiological parameters (the net
healthy birth rate, the death rate of the infected and the infection rate) are
functions of economic variables and some simple economic growth models
to examine deterministic growth paths of the system with an exogenous
savings rate. Demographic-epidemiological parameters depend on produc-
tive capital which combined with healthy workers produces output. We
find that there are generally multiple steady states. The system usually
converges to a steady state in which the economy moderates the disease.
If capital accumulation is set optimally to maximise welfare then there
may be multiple steady states and optimal growth paths generally display
four dimensional saddle point properties. Extensions of the framework
to allow for density dependent infection, recovery from the disease and
alternative social welfare functions are analysed.
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In various historical periods there have been epidemics of different global
infectious diseases which have had dramatic effects on population and indeed
society of the time e.g. the Plague in Western Europe and the Middle East
over the 500 year period from 1350; the nineteenth century and earlier ex-
amples of Tuberculosis; small pox and cholera in both Western Europe and
Asia (Watts, 1997). There are contemporary worries about the epidemics of
HIV/AIDS (WHO, 1996; WHO, 1997; WHO, 2000). Some of these diseases
are no longer endemic in the population. Sometimes this control has been due
to improvements in medical knowledge and technology e.g. the development of
public health responsibilities of governments together with increasing awareness
of the transmission mechanism of the disease in question (the control of cholera
in India has largely come through this route). Sometimes it has been due to
specific targeted regulatory action against the disease e.g. in European and
especially Italian responses to the plague and to leprosy until the 18th century,
there was an enforced isolation policy of infected individuals. Sometimes the
increase in knowledge that followed economic growth led to an innovation which
was targeted on the disease e.g. discovery in the 18th century in the U.K. of
the merits of vaccination against the plague. Often control of the disease has
been in major part due to education of the population at large about preventive
public health measures e.g. cholera control in India. Historically, apart from
segregation policy, economic growth has been one of the major stimuli to control
the diseases. In this sense it could be argued that direct policy against disease
has not been particularly successful over the broad historical picture (Alvi et al,
1998; De Cock and Chaison, 1999; Kimerling et al., 1999; Netto, 1999). Despite
this, contemporary concerns with disease control especially in the Third World
are usually framed in terms of specific targeted policies rather than on trying to
promote the general level of prosperity to control the disease e.g. the TB-WHO
programme (the DOTS strategy).

The causal direction outlined above concerns the effect of the economy on the
population structure. However, there are also severe effects of the population
structure on the economy e.g. the import of smallpox to Mid-America in the
16th century amongst the local population who had no immune resistance to the
disease led to their decimation which in turn eliminated the local labour force
for working the silver mines; the plague in the Middle East that had the effects
of reducing the productive work force so heavily that localised famines emerged
(Bartel and Taubman, 1979; Ettner, 1996; Lee, 1982; Luft, 1975; Watts, 1997).
The interaction between the economy and the epidemiology of the population
is thus two way with causal links in both directions.

Historically, when these infectious diseases were endemic they often gener-
ated epidemic cycles. For example a common pattern in medieval England was
for a geographical area to succumb to an outburst of plague over a period of
five months or so often concentrated at particular times of year but then the
disease would die away, subsequently breaking out again. In the population
and epidemiological literature, there are various frameworks for understand-
ing the intrinsic dynamics of such diseases and their effects on the population
structure. One of the most well researched of these is the Lotka-Volterra type



model which divides the population into the healthy and the infected individu-
als and then explores the dynamic interaction between these two groups. This
dynamic pattern matches the cycles that emerge from the interaction repre-
sented in predator-prey models where infected individuals act as predators of
susceptible prey. By contrast, in the economic literature models which explore
the effects of economic variables on population growth and the stock of human
capital do so in a rudimentary reduced form fashion e.g. the single sector growth
model can accommodate endogenous growth of labour in efficiency units either
through human capital effects or through effects on the birth and death rates
of the population in this way but treats everyone as identical in terms of health
status.

In order to model the two way interaction between the infectious disease and
prosperity, this paper combines the economic and demographic-epidemiological
approaches to examine how economic effects on birth and mortality rates and
on the rate of infection of healthy by infected people determine the population
structure and hence also the size of the labour force. The latter then determines
the level of prosperity. The paper also examines the form of optimal economic
policy to control the disease.

We start by reviewing the transmission mechanism of disease implicit in
the Lotka-Volterra type model of May and Anderson (1989). This assumes
random mixing of the two population groups and leads to dynamic population
equations that are homogenous of degree one in the number of healthy and
infected individuals.

Next we consider a variety of frameworks in which the disease dynamics
are embedded in the economy. A basic assumption is that healthy individ-
uals are productive in the economy but infected individuals are not. Gener-
ally the demographic-epidemiological parameters (the net growth rate of the
healthy population, the death rate of the infected and the infection rate between
healthy and infected) are functions of economic variables. FEconomic effects
on demographic-epidemiological parameters work through the level of general
economic prosperity as determined by the accumulation of productive capital.
When combined with the productive system of the economy, the homogeneity
of the demographic-epidemiological equations allows the existence of balanced
growth paths in which capital stock, healthy and infected population groups
all grow at a common rate. We consider both a descriptive epidemiological-
economic model with an exogenous savings rate and the form that optimal
accumulation policy would take in a centrally planned economy. For models
with a central planner who can control the system, we choose a time additive
social welfare function which depends positively on the level of consumption per
capita of the whole population and negatively on the change in the prevalence
of infected individuals. There is obviously some room for debate here. In the
last section we outline the effects of changing the objective function. We do not
consider microeconomic individual responses to the prevalence of the disease in
this paper. There is evidence that such responses are important (e.g. in the case
of the plague the wealthy could often move away from infected areas at least
during periods of infection) and are mostly concentrated on avoiding dangerous



contact with infected people. However, we indicate how these effects could be
added.

Our results indicate that the economic-epidemiological interaction has im-
portant structural effects. In a descriptive scenario, generally there are either
two or three steady states depending on how powerful general prosperity is
in controlling infection and on how productive the economy is. In both cases
one trivial steady state is at the origin: the capital/healthy labour ratio is
zero and population is extinct. This is also the only steady state of the pure
demographic-epidemiological system. The other steady states have a function-
ing economy. When there are two other steady states, in both the population
structure is constant but in only one of them are there no infected people. More-
over locally eradication of the disease is unstable and the system instead tends
to converge (with cycles in the population structure and economic prosperity
along the path of convergence) to the steady state with a constant proportion
of infected. Where there is just one other steady state then it has no infected
people and this steady state is globally stable. These dynamic patterns are
relatively robust to assumptions made about the economic environment so long
as the demographic-epidemiological variables vary with the level of prosperity
measured by the productive capital/productive labour ratio. In the centrally
planned framework we find that, in the general prosperity model, there are usu-
ally two steady states one with no infected individuals and one in which there
is a constant prevalence of the disease. The steady state which has no infec-
tion is locally a four dimensional saddle point. The local dynamics of the other
steady state are more complex. Depending on parameter values it may be a
four dimensional saddle point with or without oscillatory solutions, a centre or
a focus.

The paper is organised as follows. Section 1 introduces the demographic-
epidemiological models used and explores their equilibrium points and dynam-
ics. Section 2 explores the general economic prosperity model, its steady states
and dynamics. We provide some numerical integrations for a particular ex-
ample. Section 3 outlines extensions including individual reaction to disease
prevalence, the possibility of recovery from the disease and different forms of
welfare function.

1 Demographic-epidemiological model

At instant ¢ there are x; healthy and y; infected individuals. Healthy individuals
are in the labour force but infected individuals are not capable of work. All
births are of healthy individuals but by interacting with an infected person, a
healthy individual may become infected. There is a nondisease driven natural
death rate of healthy individuals; infected individuals may die of the disease or
from other causes. The three basic demographic-epidemiological parameters are
«, the net growth rate of the healthy; 3, the infection rate between the healthy
and infected; and w, the death rate of the infected group.

The physical interpretation of the transmission mechanism is that a given



healthy person has a chance of infection given by

Pr(becoming infected) =
= Pr(meeting an infected person & the meeting leads to infection) =

= Pr(meeting an infected person)Pr(the meeting leads to infection)

since these events are generally taken as independent. The chance of infec-
tion from an encounter between an infected and a healthy person (3) is usually
assumed to be a constant. For different diseases 3 may depend on individual
characteristics (e.g. the age of the healthy person) or characteristics of the meet-
ing (the plague often spread through fleas passing from one person to another
in multioccupied beds). In common with the literature we abstract from this
and assume homogeneity within population groups in terms of health status.
Given = healthy people and this transmission mechanism, the average number
of new cases of infection at ¢ is then

Pr(meeting an infected person)Bz

With equally likely meetings between any two people the probability of meeting
an infected is ¥/(z + y). This approach has been taken by May and Anderson
(1989) in exploring the dynamics of HIV and AIDS. This gives
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U = (mf—iyi) — WYy
where «, 3, w are constants.
Define p; = y;/x; and rewrite the dynamic equations in terms of just p; and
Ty as

b= 2 —wp — pla—£25) = (- a—wp, )
i — o — [Pt
T/ = T
In this pure demographic-epidemiological system we can solve as follows.
The equation in p has the solution p; = pg exp [ — @ — w)t] . Putting this back
into the equation for = gives

e E
which has solution
x4 = zo exp(ad)[1 + po exp((8 — a — w)t)] T=Tm (4)
and so
ye = pozo exp((5 — w)t)[1 + po exp((8 — a — w)t)]| T I (5)



Figure 1: Demographic-epidemiological model, 8 — a — w < 0 weak infection.

In the pure demographic-epidemiological system the ratio p either rises ex-
ponentially so that eventually the healthy are eliminated or falls to zero so that
the infected are eliminated depending on whether the infection rate is greater
than the combined net growth rate of the healthy and death rate of the infected.
There are no stationary or steady states of the system other than at the origin.
However, the number of healthy individuals may not be monotonic: the growth
rate £ from (3) may vary in sign starting negative and then becoming positive
if & < Bpo/(1+po). A typical example is shown in the phase diagrams of Fig-
ure 1 in which we take 8 — o — w < 0 and Figure 2 in which 3 — o —w > 0.
This extreme dynamic behaviour is consistent with history. The eflects of the
plague in Egypt, England and Italy or of smallpox in mid-America were that
whole villages were eliminated while other communities emerged relatively un-
scathed from an initial infection. We use this basic demographic-epidemiological
structure in the sequel.

2 The economic-epidemiological model

Here «, 8 and w are in general functions of economic prosperity. The healthy
individuals work to produce output from productive capital. Output can either
be consumed or invested to add to productive capital. We measure the level of
economic prosperity by the ratio of productive capital to the number of healthy
workers at time £. This is consistent with either an economic infrastructure
interpretation (the higher the capital-labour ratio, the more mechanised the so-
ciety) or, as consumption per healthy worker is a function of capital per healthy
worker, consistent with an individualistic interpretation in which demographic-
epidemiological parameters depend on consumption per healthy worker. We
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Figure 2: Demographic-epidemiological model, 3 — o — w > 0 strong infection.

consider both the case in which savings is exogenous! and the case of optimally
selected savings which takes into account the effects of productive capital on
the future demographic-epidemiological parameters.

The basic technological assumptions on the economy are that there is a
single good which can be consumed or invested. At any instant ¢ output of
the single good is given by F(k;,z;) where k; is the existing capital stock.
The production function satisfies the usual neoclassical properties (F'(k;, ;) is
increasing, homogenous of degree one and has diminishing marginal productivity
of each input). In addition we assume that each input is essential in that
F(0,z) = F(k,0) = F(0,0) = 0. We also impose that dF/8k — co as the ratio
k/x — 0 and that 0F/0k — 0 as k/z — oo.

Capital depreciates linearly at a constant rate of ¢. The interaction between
economics and the health structure of the population comes through the facts
that «, § and w are functions of k;/x; and that only healthy individuals are
productive in technology.

2.1 Exogenous Savings Behaviour

In this simple scenario the only policy instrument is the division of output at
each instant between consumption and investment. With this being exogenous,

1 The exogenous savings case could be rationalised through decentralised individual savings
decisions. With competitive input markets, worker per capita income is w—+rky; where the real
wage (w) is equal to the marginal product of labour and the rental rate on capital r is equal
to the marginal product of capital. Capital stock is equally owned by all individuals so that
ks is capital stock owned per worker. An infected person only receives rental income so total
income of the infected group is rky where ky is the aggregate capital stock. From homogeneity
of degree one of the production function aggregate income is wa + r(kex + ky) = F. If every
individual saves a constant share s of their income then aggregate savings sF' is proportional
to aggregate income.



we assume a proportional savings function, with rate of savings s. Hence, capital
accumulates according to

kt = SF(knxt) — ok (6)

and per capita consumption of the healthy is

ce = (1= 8)F(ke, )/ 24 (7)

At some stages in the sequel we select functional forms for the production
function and «, 3, w. Initially, we just assume Oé/(.) > 0; 6/() <0; w/(.) < 0;
B'()—a()—w'() <0and 3'(.) —a"(.)— w'(.) > 0 everywhere, «(0), 5(0),
w(0) > 0 and that 3(0) — @(0) — w(0) > 0 so that in the absence of productive
capital the prevalence of the disease increases without bound. It is also natural
to assume that o, 8, w are bounded above by @&, 3 , @ respectively and below

by zero (dealing with a growing rather then declining susceptible population).
We have

gbt:axt_m

T+ Yt
. T
g = 22— Ly, (8)

ke = sF (ke 1) — ke

where «, 3, w are functions of k;/x;. Given that F(.) is homogeneous of degree
one, we can define 2, = k;/xy, pi = Y/, and rewrite the dynamic equations
in terms of just 2; and p; as

5= 8 (%) — b3 — 21(c — DB (9)

by = £ —wp—pila— £225) = (B—a—w)p,
1+pe

where 3, a, w are functions of z; .

This system has steady states in which z and p are constant. Generically
there are three steady states:

(i) p* = 0 and 2* such that sf(2*) — ¢2* —az* = 0.

Since « is constant in steady state, here we have the steady state of a stan-
dard Solow-Swan growth model in which there are no infected people. All the
standard analysis of golden rule savings ratios for this steady state would ap-
ply. Overall consumption per capita is given by ¢;/(1 + p;). In this steady state
since p* = 0, ¢*/(1 + p*) = f(2*) — ¢2* — @2z* which is maximised over z* at
f'(#*)—¢—a'2* —a = 0. The usual Golden Rule equates the net marginal prod-
uct of capital to the population growth rate. Here it is equated to the marginal
population growth rate allowing for the effects of 2 on population growth.

(ii) p* =0 and z* = 0.

Due to the assumptions on technology and on boundedness of the demographic-
epidemiological parameters this is always a steady state in which the healthy
population grows at the rate a(0), there is no disease and no output or capital.



(iii) The most interesting cases are steady states where p* # 0 and 2* # 0.
These must solve

(B—a—w)=0 (10)

Op*

sf(2*) — ¢2" — (v — T+p

)2* =0 (11)

There must be a root, 2* to (10) if 5(0) —(0) —w(0) > 0 and B(c0) — a(c0) —
w(oco) < 0. The root must be unique if 3'(.) — a'(.) — w'(.) < 0. In this steady
state the infected/healthy structure of the population is constant through time
with new healthy births just balancing the new infections net of infected deaths.
The capital/healthy labour ratio is constant with new investment just matching
the depreciation of capital and the growth in the number of healthy individuals
net of attrition through infection.

Solving (11) for p we have

. sf—oz2* —az®
P T sf— 2t —azt + B (12)

so long as the denominator is nonzero. Since we need p* > 0, there can only
be feasible steady states of this form when the numerator and denominator of
this expression have opposite signs. As §2* > 0 this needs the numerator to
be negative. However for low z* the numerator is positive since f'(0) is high
and f(0) = 0. For sufficiently high values of 2* the numerator is negative since
f/ > 0 and concavity of f, under the Inada conditions, means that eventually
the linear term in depreciation dominates. We also know the numerator is zero
at 2* = 0; hence as 2* increases from 0 the numerator is first positive and rising
and then falls eventually becoming negative. Where it vanishes we have the
steady state (p* = 0, 2* # 0). Defining 22 as the root of (8 — o —w) =0, 2
as the root of sf — ¢z — az = 0, and 23 as the root of sf — ¢z —az+82=0
, a steady state with p* # 0 and 2* # 0 exists if 2; < 29 < 23 but fails to exist
if 21 > 29 as in Figure 3 and Figure 4, respectively. Generally 27 > 22 is more
likely when the level of (3 — @ — w) is relatively low and when it tends to fall
relatively fast. Alternatively, when f is not very concave, s is high and «, ¢ are
low.

If 29 > 2; there is a range of initial capital labour ratios bounded above
by 21, such that starting from any capital labour ratio in that range, capital
accumulates and the prevalence of the disease initially falls and then rises as the
population grows but the existing capital is spread too thinly between workers.
The continuing capital accumulation and the reduction of the work force due
to the increase in infection sufficiently raises z to improve the epidemiological
situation so that prevalence reaches a maximum and then starts falling again.
Thereafter p and 2 cycle in a convergent way around the steady state with



dp/dt=0

dz/dt=0

Figure 3: Productive capital model, 27 < 29 < 23.

P dp/dt=0

// dz/dt=0

//

Figure 4: Productive capital model, 27 > 2.
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p* # 0 and 2* # 0. The initial reduction in prevalence may not occur on paths
with a high initial capital labour ratio or a low prevalence; instead the system
goes directly into convergent cycles.

Conversely if 29 < 21 then sufficiently high initial prevalence of the disease
leads to a time path of increasing prevalence and accumulation until prevalence
reaches a maximum; then prevalence falls while capital accumulates until the
labour force has risen so much with decreasing infection and population growth
to lead to a fall in 2. On the last part of such a path, both p and 2 fall towards
the steady state with p* = 0 and 2* # 0.

The global phase spaces in Figure 3 and Figure 4 are consistent with the
local stability properties of the different steady states. Linearising the equations

[ ZZ } B [ Zﬁﬁ/_(lo:pb;2 sf’—sf;fi_z?;'_—wézg/(l +p)) } [ Z } (13)

Around the steady state pj = 0, 2 solving sf(2*) — ¢2* — a(2*)2* = 0 the
Jacobian becomes

O—a—w 0
[ 23 sfl —sf/z—za } (14)

At this steady state if 2] < 25 < 23 (so we are in the case with three steady
states) we know that f—a—w > Osince §'(.)—a'(.)—w'(.) < 0. The determinant
of the matrix is negative and we have a local saddle point. Alternatively if
2} > 23 (i.e. there are only two steady states), then 5 — «a — w < 0. The trace
is negative whilst the determinant is positive so that we have two roots with
negative real parts and local stability (node or focus).

Around the steady state (p* # 0, 2* # 0) when it exists the Jacobian
becomes

0 (B — o —w)p
[ B/(L4D)? sf —a—¢— (o’ — F'p/(1+D)) } (15)

The trace is negative and the determinant is positive: the real parts of the
two roots are both negative and we have local stability (node or focus).
Around the steady state (p* = 0, 2* = 0) the Jacobian becomes

O—a—w 0
[ 0 sf’—gb—oz} (16)

The diagonal elements, which coincide with the eigenvalues, are both positive
since at z* =0, f'(2*) is high. So we have local instability.

Numerical integration is useful to show the speed and amplitude of the dy-
namics although it requires specialization of functional forms. As an example
we take functions of the form

f(2) =g2%/a 0<a<l1 (17)

11
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Figure 5: Productive capital model, global phase space for g = 0.25.

a(z) = ap — oy exp(—an2) a>0 (18)
B(z) = By + B, exp(—552) 8>0 (19)
w(2) = wo + wi exp(—w22) w>0 (20)

We select values ag = 0.04, oy = 0.02, g = 0.5, By = 0.2, 8, = 0.2, 3, = 0.5,
wo =02, w; =01, wg =05, a =0.5, ¢ =0.2, s = 0.2 and two alternative
values for the scale of output: ¢ = 0.25 and ¢ = 1. With these parameters, as
z varies from 0 to 0o, the net growth rate of the healthy individuals varies from
2% to 4%, the infection rate and the total death rate of the infected individuals
vary from 40% to 20% and from 20% to 10%, respectively.

Using these values when g = 0.25 we have three steady states in the case
of an exogenous saving rule: (p* = 0,2* =0), (p* = 0,2* = 2.197) and (p* =
1.646, 2" = 2.917). The phase space is shown in Figure 5. When g = 1 we have
two steady states: (p* = 0,2* =0) and (p* = 0,2* = 2.197). The phase space
is shown in Figure 6.

Starting from an initial (po, 20) the economy shows cycles in which p and
2 alternately move either together or in opposite directions. In an economic
upswing the prevalence of disease is rising but then reaches a maximum and
in the later part of the upswing the disease prevalence falls. In the early stage
of the upswing there is such low prosperity that the infection rate is too high
relative to the healthy birth rate and infected death rate to reduce the prevalence
of the disease. Once prosperity has sufficiently increased, the infection rate has
fallen far enough to make further prosperity increases reduce prevalence. The
opposite effect occurs in the downswing. The dynamics shown here match those
of Figure 3 and Figure 4 although in Figure 5 the region of falling prevalence at
low values of 2 is compressed near the vertical axis.

12
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Figure 6: Productive capital model, global phase space for g = 1.

2.2 Optimal control of accumulation

Instead of taking the savings rate to be exogenous, there may be a centrally
planned economy in which savings is chosen to balance the welfare effects of
current and future consumption and the effects of capital accumulation on con-
trolling disease”.

2.2.1 The welfare function

In the centrally planned context defining intertemporal welfare is problematic:
the population and its composition is changing. This raises normative issues
that have been discussed in the optimal population literature (Dasgupta,1969;
Meade 1955; Yaari, 1981). One issue to be beware of is the danger of maximising
individual welfare of those alive by having just a single individual who owns all
the capital stock. A further issue is that of time additivity. Firstly there may be
intergenerational altruism within the private welfare functions of those alive at .
Second there is the issue of time discounting; generally in the body of the paper
we do not allow for discounting essentially on ethical grounds (Dasgupta, 1974;
Grout, 1982; Rawls, 1972) since there seems little reason to value generations
differently. If we did use a time discounted additive welfare function the form of
the necessary conditions are essentially unaltered, eflectively we can absorb the
discount rate in the depreciation rate ¢ and in the demographic-epidemiological
functions «, 3, w. However discounting is also of assistance in demonstrating
that an optimal solution exists. Apart from this at any ¢ there is the difficulty

2 A much more complex approach would model a decentralised system in which healthy in-
dividuals select labour supply and savings to optimise their lifetime utility taking into account
the chance of becoming infected and of dying. Similarly the infected choose their savings out
of any rental income taking into account their chance of death. Moreover new generations
would continuously enter the picture.

13



of determining the relative benefit of the infected and healthy. If there is a time
additive welfare function [w(.) dt with u(.) reflecting the social welfare of the
population at ¢, then it is plausible to take overall per capita consumption of the
whole population (¢/(1 + p)) as one argument of u(.) which implies that u(.) is
decreasing in p. This, however, gives an incentive to reduce p by whatever means
possible (’population cleansing’) which hardly seems acceptable. A preferable
structure makes u(.) also a decreasing function of p and generally we work
with this formulation. At ¢ welfare is given by u(c¢/(1 + p),p) where (using
subscripts 1 and 2 for derivatives with respect to the first and second argument
of u((l—j_m,p)), uy > 0; ug < 0; w11 < 0; uge < 0 and generally we take 112 =0
together with wug(.,0) = 0. We also generally assume that lim u; — 0o as
¢/(1+p)—0.

2.2.2 Necessary conditions for optimality

The policy problem then has control variable ¢; and state variables p;, 2; and is
to

mcwc/u(c/(l +p),p)dt (21)

subject to

p=(F—-a—wp

2= f(2) — ¢z — (@ — Tf_—p)z—c

The Hamiltonian is

H=u(c/(1+p),p)+ A | f(2) —p2—(a—f

1+p
(23)
Optimising H over c:
The equations of motion for the costate variables are
AN o= —(MeHw)(B —a —wp (25)
Ml = ¢ —(a=Pp/(1+p)) — 2(a' = 5'p/(1+p))]
Xo = 1w/ (1+p)? = A\28/(1+p)? — (A2 +u2)(8 — a — w) (26)

14



Here (24) has the interpretation that the marginal utility of consumption per
overall capita divided by (1 + p) which corrects for the unproductive workers
should be equated to the marginal value of investment per healthy worker. Next
(25) modifies the usual Euler equation in two respects. First the social marginal
productivity of capital deepening is reduced because it raises the healthy birth
rate via « and it reduces the infection rate via the transmission rate 3. Second
because capital deepening alters the growth of infection and of p, it changes the
marginal value of the population structure in the future. (26) indicates that the
shadow value of the prevalence of the disease for the future rises because of its
effects in reducing the instantaneous utility but falls because of its effects on
the future value of investment and the future growth of prevalence. Notice that
these conditions imply that on one margin higher prevalence is socially desirable
as it increases the capital deepening effect of a given amount of investment by
having fewer healthy workers available to use it. By contrast, it reduces the value
of current ¢/(1+p). (22), (24) - (26) are necessary conditions for optimality.
Subsequently we consider their sufficiency and also whether a solution exists
to the problem. In the case of time discounting the necessary conditions are
modified® but essentially the analysis below remains valid.

2.2.3 Dynamic analysis

To analyse the dynamic properties of this solution we start by examining the
steady states. There are two in general. The first has p* = 0 and corresponds
to the Golden Rule of a growth model with endogenous net population growth
at rate o and conditional on the absence of infection (8 = 0). Knowing p* = 0,
consider the steady state capital-healthy-labour-ratio 2 which maximises steady
state utility u(c, 0). This solves

ff—¢p—a—a'z"=0 (30)

31f the welfare function is

/ e "tu(e/(1+p),p) (27)

the present value Hamiltonian is

1= (W) M) - b (@ e - 9 4 re(@ - am ) (9

and the necessary conditions become

u1 = A1 (1 +p)

R A e e B CE e ) ERE CI GRS

Xy =Mfe(1+p)— Bz] - M(B—a—w—r) (29)

and the dynamic equations for the state variables. This affects the steady state values of the
costate variables and adds a growth term to their dynamics.
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Putting these values into the costate equations (25) and (26) at the steady
state gives

0 = “N[f'—¢—(a=0p"/(1+p") —2"(a' = 8p"/(1+p"))] (31)
—Ap* (B — o' —w')

(which is automatically zero since p* =0 and f'— ¢ — a — o/2z* =0) and

O=wusc* — (AN +u)(f—a—w)—A2"3 (32)

or

0= (e —2'8) = N(B—a—w) (33)

since at p* = 0,u; = A] and u} = 0. So one steady state is p* = 0; z* such
that f' —¢ —a—a'z* = 0; 1y is evaluated at ¢* = f(2*) — ¢2* — az*; A{ solves
up = Al; AS satisfies A\{(c—2*8) — A (f—a—w)=0.

The sign of A} is ambiguous. Since 92/9p > 0 the model does not satisfy the
most common condition imposed for negativity of Ay (Leonard, 1981). However,
as we see below Ao < 0 forms part of a set of sufficiency conditions for optimality
of the solutions to these equations.

In general there is also a second steady state with p* % 0. This satisfies the
equations

wy = A5 (1+p*) (34)

f—a—w=0 (35)

0=f(27) = d2" —2"(a— Bp' /(L +p")) — ' (36)

0 = - +u)( —a —whp" = Nlf —¢—(a—0Fp"/(1+p")) (37)

2*(a’ = B'p /(1 +p"))]

0=[usc" = Aj2" 0] /(L +p")2 = AL [e" (1 +p") = 2" 0] /(1 +p)*  (38)

implying either A] = 0 which is impossible under the assumptions on u;, or
(14 p*)c* = 2z*(. Using this in (36) we can solve for p and ¢:
. f— 2" —az*

P :_f—gbz*—ozz*—l—ﬁz* (39)

cF=f—op2F —azt 4+ 62° (40)
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and )] is given by

B/ p)?)
! (1+p*)

(41)

Here (35) sets 2* and (37) sets Aj.

This second steady state also has a Golden Rule interpretation. Consider
the problem of selecting steady state values of p and z which maximise ¢/(1+p)
and satisfy the steady state conditions

(B-—a—-w)p=0 (42)

/(1) = | () = 62— (a = B )2| [(1+D) (43)

There are two possibilities. First 2* is set to satisfy (42) and p* maximises
(43) and so solves?

L(1=p9)
(1+p*)

vielding ¢* /(1 +p*) = B2*/(1+p*)? and p* = —[f — ¢2" — az"]/[f — ¢2* —
az* 4+ [z2*] > 0if f — ¢2* — az* < 0. Second we could have p* = 0 which then
returns us to the first steady state satis{ying (30). Both these solutions are local
maxima so that the global Golden Rule could be either.

To determine the local dynamics, in the Appendix (Al) we calculate the
Jacobian of the linearised system and its value at the different steady states.
Around the steady state with p* = 0 the Jacobian has a zero trace so that,
unless all real parts of roots are zero, there are elements of both local stability
and instability. We can show that the matrix has two pairs of real roots, each
pair consisting of a real number of opposite sign. To see this rewrite the matrix
as

f(z*) — @2 —az® = B2 (44)

a11 0 0 0
a21 0 ao23 0
as3; as2 0 0
Gq1 G331 —0G21 —an

(45)

Its characteristic polynomial is (X — a11) (X3 + X2ay1 — 030093 X — aggaggan) .
There are four real roots to this matrix in pairs of opposite sign: +a;;,+,/az2a23.
Note that age > 0 and agsz > 0 since o’ > 0. Locally the steady state is a four
dimensional saddle point.

2
4This is actually a local maximum of ¢/(1 4 p) in p since at this value ﬂEaﬂplzﬁD =

_ 28z
e <0
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Around the steady state with p* # 0 the Appendix (A1) shows that the
Jacobian matrix has a zero trace so the sums of the real parts of the roots are
zero. The Jacobian has the form

0 a O 0
b ¢ d 0
f e —c —a (46)
g f =b O

so that the characteristic equation is X* — 2baX? — X2c? — ed X2 + b%a® + ga’d
which can be reparametrised as X* + AX? + B. If (A2 — 4B) is positive and
(—A—+/(A —4B)) is positive there are two pairs of real roots of equal absolute
value but opposite sign which represents a 4-D saddle point. When (A2 —4B) is
positive and (—A—+/(A — 4B)) is negative then there are two pairs of imaginary
roots. When (A% — 4B) is positive and (—A + /(A —4B)) is positive and
(—A — /(A —4B)) is negative then there is one pair of pure imaginary and
a pair of real roots of opposite sign. However, if (A% — 4B) is negative we
have two pairs of complex conjugate roots with the common real part of each
pair being of equal absolute value but opposite sign. We can think of this as a
combination of a 4-D saddle point and locally oscillatory solutions. Summarising
the possibilities are shown in Table 1.

(A% —4B) + + + —
CA— V@18 [+ — -
(—A+ /(A —4B)) + -
4-D saddle | cycles | focus | 4-D saddle and local oscillations

Table 1: Optimal control of productive capital model, local dynamics

Under our assumptions both of these steady states may not always exist and
in particular the steady state with p* # 0 generally requires a relatively high
infection rate. For example, suppose we confine attention to isoelastic utility
so that u(c/(1 +p),p) = (¢/(1 +p))1~2 /(1 — b) where b > 0. Putting together
the optimal control conditions and the conditions for )\2 =0, 2 = 0 gives us the
equations

ATT =200 % /(f = 02— ax + 52) )
¢ = (f — 62— az+ 2)/2 (48)
b 226 —1 (49)

(f — ¢z —az+ B2)
so that p* > 0 requires B > f/2 — ¢ — a given that f — ¢z —az+ Bz > 0.
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2.2.4 Numerical analysis

To understand the connections between the local stability properties of the
alternative steady states and also the qualitative amplitude of any oscillations,
numerical integration of the four dimensional non-linear system is illuminating.
To display the results of this geometrically whilst remaining in at most three
dimensions, we integrate around contours of the Hamiltonian. Since along any
solution path for [p(t), 2(¢), A1 (t), A2(?)], the Hamiltonian is identically constant
(Dankowicz, 1997) we can use the equation

o (.0 e
7 - C———T—>+&®K6 (1)

(1+p(t

+A1 (%) [f(z(t

~—

1+ p(t)
to solve for Ay(t)
G ow)
= e (] oy
Au(t) [f(z(t)) — ¢2(t) — 2(t) (o — f7EIS) — (M (t),p(1))
(8B —a—w)p(t)]

where H is the constant value of the Hamiltonian on the surface. We can then
substitute this expression for A2(f) into the differential equations for the other
variables p(t), 2(t), A1(¢) to reduce the system to three dimensions without
losing any information. Notice that because the system has the Hamiltonian
conservation property, close to a stationary position of p(t), A2(t) becomes un-
bounded.

For the welfare function we take the isoelastic case and add b = 2.0 to the
earlier set of parameters. With these parameter values when g = 0.25 the control
model has two steady states (p* = 0, 2* = 1.131, A] = 13.403, A\; = —38.818)
and (p* = 0.439, 2* = 2.197, A] = 8.678, \; = —12.850). The eigenvalues at the
first steady state where p* = 0 are £0.028 and +0.124. At the second steady
state when p* # 0 the eigenvalues are £0.093 and +0.027. Figure 7 shows
the three dimensional phase space in p, 2 and \; around a level surface of the
Hamiltonian corresponding to H = —3.626. Figures 8 and 9 show magnifications
of this in the vicinity of each of the two steady states, respectively. Since A,
only enters the differential equation for Aq, the constraint that the 3-D solution
lies on the Hamiltonian surface only bites in that equation. Hence, in the A
equation (25) the term in Ag is replaced by (51). If the system approaches one
of the steady states, then on the Hamiltonian surface this makes A\; diverge
to either +00 depending on whether z converges to the steady state faster or
slower than p. In the diagram, since \; diverges to co along some trajectories,
on these paths p must be converging more rapidly than z. On other trajectories
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Figure 7: Optimal control of productive capital model, global phase space for
g=0.25.

A1 is converging to zero. With the chosen parameters the two steady states both
show dual instability of a saddle point type and there are no oscillations; this
reflects the fact that all the eigenvalue are real. Careful study of Figures 7-9
reveals that there are six patterns of paths: along four of these A\; eventually
grows without bound and along two Ay converges to zero. Typically z is not
monotonic but initially increases, subsequently falls. Starting near p* = 0.4 the
movement of prevalence is very slow but starting near p* = 0 there is a relatively
rapid movement of prevalence towards the steady state with p* # 0. As a whole
the system spends most its time close to the steady state in which p and 2 are
nonzero and away from the origin.

To show that the system sometimes loses the second steady state with p* # 0
we also take the above example with ¢ = 1. Here the control model has a single
steady state: (p* =0, 2* = 17.357, A\{ = 0.058, \; = —1.001). The eigenvalues
at the unique steady state where p* = 0 are £0.0400 and +0.120. So again we
have a 4-D saddle point.
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Figure 8: Optimal control productive capital model, magnified view of the global
phase space near p = 0.
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Figure 9: Optimal control productive capital model, magnified view of the global
phase space for values near p = 0.4.
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2.2.5 Sufficiency conditions for optimality

Consider the sufficiency of the necessary conditions for optimal control. First
take the case in which «, 3 and w are constants. The control problem is then
the usual one of trading off consumption against investment. In this case p(f) is
like an exogenous time trend, growing or falling at rate v = (8 — a — w), which
affects the accumulation process of z and preferences. We can apply the usual
sufficiency argument to show that if u(.) and f(.) are concave then the necessary
conditions for optimality are sufficient so long as lim;_.o, A1(?)2(f) = 0. (See
Appendix A2).

A similar but more complex argument holds if we allow for the effects of
z on the demographic-epidemiological parameters. With a finite time horizon
and nonnegative terminal constraints on the state variables, the transversality
conditions

M(T)(T) = 0; Ao(T)p(T) = 0 (52)

form part of the necessary conditions for optimality. Then we can use the
sufficiency theorem that if the maximised Hamiltonian is concave in the state
variables p, 2z (Chiang, 1992; Mangarasian, 1966) any path satisfying the neces-
sary conditions is optimal. If the time horizon is infinite then the transversality
conditions are not generally necessary but we can use an adaptation of a similar
sufficiency theorem (Theorem 9.3.1 in Leonard and Long, 1992) that if a form
of transversality condition holds
Jim_ [\ (T)=(T) + a(T)p(T)] = 0

and the maximised Hamiltonian is concave in the state variables p, 2 then any
path satisfying the necessary conditions is optimal in the catching up sense.

Next we check the concavity of the maximised Hamiltonian. If H* = max H
C

then by the envelope theorem

OH*[0p = 0H/0p = —uic/ (1L +p)® + \B/(1+p)* — (ug + A2) (B — o — u()) |
53

SO

O*H*[0p* = ur /(1 +p)" [e(1 +p) = B2] = [L+ 1/n] ¢/ (1 + p)* + ue(8 - @ . w))2
54

where 1 is the elasticity of the marginal utility of overall per capita consump-
tion. Sufficient conditions for 9 H* /9p? to be negative are that [1 4 1/5] > 0,
[C(l —I—p) - 62] < 0 and w92 < 0.

Similarly

O*H* |opdz = M (28" + B8) /(1 +p)2 + (ug2 + \2)(B' — o’ — W) (55)
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which is positive if the elasticity of § is greater than -1. Similarly

62H*/6Z2 — U22(5, _ Oé, _ w/)2p2 + (u2 + )‘2)(6” _ Oé” _ w//)p

1" ' P " n_ P

(=20’ = ) < sa - ) (56)
This is negative if A2(t) < 0 and 3" —a” —w" > 0. There is nothing in the theory
to constrain the sign of A2(%) a priori. Interpreting Ao(t) at time ¢ as the shadow
cost of a marginal increase in prevalence of the disease, we might expect Az(%)
to be negative since this has a cost in reducing instantaneous utilty. However,
the increase in p(t) raises the capital per productive worker ratio for a given
capital stock by switching more of the population into the infected group (i.e.
in the % equation the effect of p(t) is positive) which is welfare improving. In
the numerical examples presented, Az(t) is negative for all £ and at each steady
state the other sufficient conditions for concavity are fulfilled.

3 Extensions and Alternatives

There are a variety of points at which alternative or more general assumptions
could be made. We have excluded any individual adaptive behaviour to the
prevalence of the disease. We have not allowed for the possibility of cure of the
disease. There is a lot of scope for consideration of alternative social welfare
functions. We have considered, economic factors as acting in a public way on
all demographic-epidemiological parameters. That is there are no individual
property rights in preventive health and all the demographic parameters are
affected by an investment policy. There are also interesting special cases of
our framework. For example if o’ = w’ = 0 identically then the model can be
thought of as finding the optimal targeted investment policy for controlling the
spread of infection. Similar interpretations attach to the special cases in which
only either a or w vary with 2. They correspond to net population growth or
cure of the disease policies.

3.1 Individual Adaptive Behaviour

The most important area for allowing adaptive behaviour by individuals in
the population is through § the infection rate e.g. in accounts of the plague
in England the rich could take preventive segregation measures by physically
moving out of a city which had plague outbreaks. To allow for this we take
8 = B(z,p) with 3, < O,BP < 0. From an epidemiological perspective this is
often considered as density dependent effects on the interaction process between
the two subpopulations. In the descriptive economic model this has the effect of
changing the nature of the phase space although the general pattern of steady
states remain unchanged. The main effect on the p = 0 locus is to generate
additional nonlinearity® in the locus as in Figure 13 which shows two possible

1 1 1
5Herewhen(ﬁfocfw):0,%§:*<ﬁ - *W>/ﬁp<0-
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dz/dt=0
dpldt=0

Z;

Figure 10: Individual adaptive behaviour

configurations.

The local stability properties of the first and third steady states are un-
changed but they may change for the second steady state where p* # 0 and
2* # 0 if it exists. The linearisations of (13) become

2t

bl _ Bp+B—a-w e p
A i T e |
57)

and evaluating the roots of this matrix at the first or third steady states leads
to no change in sign pattern.
Around the second steady state when it exists we have the Jacobian

ﬁpp (ﬁz - O/ - w,)p (58)
28/(L+p)? + 28,p/(L+p) sf' —sf/z—¢—2(d/ —B,p/(1L+Dp))
Here the trace is negative but the determinant may conceivably become

negative leading to a saddle point. An example of the phase space is given in
Figure 14 and Figure 15 where we have chosen

B = Bo/(1+p(t)) + By exp(—B22(t))

together with the earlier set of parameters except that in the first diagram
g = 0.25 and in the second diagram g = 3. When g = 0.25 the steady states are
at (p* =0.369,2* = 0.500) and (p* = 0,2* = 0.0203). The eigenvalues are then
respectively -0.044, -0.280 for p* = 0 and -0.313, 0.680 for p* # 0. When g = 3
there is a single steady state p* = 0, 2* = 25 which has eigenvalues -0.04, -0.32.
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Figure 11: Individual adaptive behaviour, global phase space for g = 0.25.
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Figure 12: Individual adaptive behaviour, global phase space for ¢ = 3.0.
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3.2 Cure of the Disease

Recovery from the disease may take alternative forms when it is possible at all.
For some diseases, like TB, individuals who recover from the disease develop
immunity. In this case we would have three groups in the population: those
who are healthy but susceptible to infection, those who are immune and those
who are infected. The immune individuals and the healthy individuals can both
work. The basic equations of the system thus become

5625:0[%__&&

Tet+Ye+re
Yo = midyety WY — Py (59)
ke = sF(ky,xe + 1) — dky
Tt = pYr — VTt

where p is the recovery rate of the infected and v is the net death rate of the
recovered individuals. We do not analyse this case here. Alternatively if the
cured individuals do not develop immunity then the equations can be written
as

Ty = ary — % + pYy:

y:t = % — WYt — PY (60)

]Ct = SF(]Ct,.’IJt) — ¢kt

Transforming the equations to p and 2

p=(8—-w—a—pp—pp?
{ 2y = sf(2) — p2e — 2e(a — Bpe/ (L + pe) + ppe) (61)

The pure demographic-epidemiological system represented by the p equation
now has the solution

Fw—a_pb +(1 - ﬁ_+_a_ppo)ef(@7w7a7p)t) (62)

The descriptive economic system still has a steady state at p* = 2* = 0 and
at p* =0,sf(2*) — ¢p2* — 2*a = 0. However the possibilities for the third steady
state are more complex. Where p* # 0 the p = 0 locus solves § —w—a—p = pp
and so has a negative slope under the assumption that 3’ — w' —a' — p' < 0.
In this case the 2 = 0 locus is quadratic in p with a maximum: sf(z) — ¢z —
2o+ p(sf(2) — ¢z — 2+ Bz — p2)) — p2p? = 0. This then has implications for
the existence of this steady state. The consequences on the local stability of the
steady states are very similar to the case of adaptive individual behaviour: if
p = p(z) with p'(2) > 0 and 5(0) — w(0) — @(0) — p(0) > 0 the steady state at
the origin is still locally unstable®. The steady state with p* = 0 but 2* # 0 has

Pt Zpo/(

6 At p* = 2* = 0 the Jacobian is

B—-—a—w—p 0
0 sfl— ¢ —«a
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Figure 13: Allowing for recovery, global phase space for g = 0.25 and p = 0.05.

a negative trace and an ambiguous determinant and so is either a saddle point
or a stable node”. The local stability of the third steady state where it exists
is unclear®. In Figure 16 and Figure 17 for the usual parameter values when
g = 0.25 the third steady state exists and is a stable node, whereas for g = 3.0
the third steady state fails to exist. In the numerical example when g = 0.25
and p = 0.05 the eigenvalues for the case p* # 0, 2* #£ 0 are -0.067, -0.078 and
when p* = 0, 2* # 0 the eigenvalues are -0.119, 0.017.

3.3 Alternative Welfare Functions

One problem is to balance the interest of the current infected with those of
future and present healthy susceptibles. From the viewpoint of output and con-
sumption per capita the infected are a net drain on the economy; they do not
work but under the assumption that consumption is equally distributed, they
consume output thus “diluting” the consumption of the workers. They also
infect healthy workers thus reducing the future labour force. This also raises
the future capital worker ratio ceteris paribus which decreases the productivity
of workers. If social welfare at one instant was taken to depend only on con-

TAt p* =0, 2* # 0 the Jacobian is

B-—a—w-—p 0
zB — pz sfl — ¢ — a—za

!
S At p* # 0, z* #£ 0 the Jacobian is

B-a—w—p—2pp (B —a' —w' —php—p?p’
2B8/(1+p)? —pz  sf'—¢—(a—Bp/(1+p)+pp)—z(a' — B'p/(1+p)+p)
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Figure 14: Allowing for recovery, global phase space for ¢ = 3.0 and p = 0.05.

sumption per capita of the whole population then this would be maximised over
the structure of the population by having zero infected. In a scenario in which
resources can be allocated to alternative types of health care policy, there would
be an incentive to minimise reductions in the death rate of the infected and to
spend all resources on either net birth policy of the healthy or on preventive
health care. With recovered individuals in the picture this is no longer so clear.
There would then be an economic benefit from both trying to raise the recovery
rate and reduce the death rate of the infected so that the chance of infected
people recovering and then becoming productive workers is increased.

An obvious alternative welfare function is [u(c/(1 + p),p)dt with u(.,.)
decreasing in its second argument. This gives some marginal diflerences in the
optimal policy. The Hamiltonian becomes

H=u(c/(1+p),p) + M (f(2) — gbz—z(a—ﬁ%_;p) —o)+XB-—a—w)p
(63)

The equation for the optimal control is unchanged:

wy = A (1+p) (64)

The equations of motion for the costate variables are

M= =Mlf = é —(a=0p/(1+p)) = 2(a’ = 8'p/(1+p))] = dep(0' — o —(w’))
65

Ao = ure/(14p)? —up — M28/(1+p)? = Na(B—a — w) (66)
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Given that wug(.,0) = O there are at least two steady states; one at p* = 0
and with

f—qsz*—z*(a—ﬁlip*)—c*:o (67)
fl—¢p—a—2a"=0 (68)
Ni(e = ' 8) ~ M(B— a—w) =0 (69)
w = Al (70)

and any others being solutions of
B—a—w=0 (71)
= X1+ p") (72
N (L +p") = 2*8) —ug =0 (73)
f—qsz*—z*(a—ﬁlfp*)—c*zo (74)
AN = ¢ —(a=Bp"/(1+p") = 2" (' = 8'p" /(1 +p"))] (75)

+)\§p*(6,_a,_w,) :0

Here 2* is set by (71). If we invert (72) to get ¢ = u; *(\i(1 + p)) and
eliminate ¢, then it is quite possible that (73) and (74) have multiple solutions
for A\l and p*. For any of these values for A] and p*, Aj is set by (75). Thus
we may have more than two steady states. By contrast, linearising the dynamic
equations around the steady states the only change in the Jacobians of (45) and

(46) is in the first element of the last row which becomes a4; = ﬁ%l a jp)Q —

+ (Qf\TI;)% — ug9. The four dimensional saddlepoint structure of the steady

2ujc
(1+p)®
states is independent of the properties of the a4; term and so is preserved. The

conditions for concavity of the maximised Hamiltonian in the state variables
alter:

OPH*[0p® = =208/ (1 4+ p)® —ug <0 if Ugg >0 (76)

Similarly
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ORI J9pdz = A3 /(1 +p)2 >0 (77)

So long as

PH* 1922 = A\ B" — " — "+ M (" — 2 — 3 p — (o) — 3" P <0
/05 = (s N 2 = ) e - )

(78)

under suitable conditions on the second derivatives of the demographic-epidemiological
parameters.

4 Conclusions

We use the May and Anderson (1989) version of the Lotka-Volterra equations to
model the interaction between healthy and infected individuals and then embed
that process in an accumulation model of productive capital.

There is a two way interaction between the population structure and the
economy. Infected individuals are unproductive and cannot work, the higher
the state of economic development, the lower is the infection rate and the death
rates of both the healthy and the infected. Taken on its own the population
structure has no steady state (other than extinction when parameters have the
appropriate magnitude). If there is an exogenous savings rule determining the
rate of accumulation, we find that with both types of capital stock, there is a
steady state in which the disease is eradicated and the capital-healthy labour
ratio is constant. However, if the level of economic development required to
keep the prevalence of the disease constant is high relative to the productivity
of technology and the savings rate, then there is also a steady state in which
prevalence of the disease is constant at a positive level of the disease. When
this steady state exists it is globally stable and the disease is not eradicated
by economic effects in the long run. However, if the savings rate is high or the
technology sufficiently productive for this steady state to fail to exist, then the
economy converges to the steady state in which the disease is eliminated and the
capital-healthy labour ratio is constant. In any case the convergence to a long
run equilibrium is generally oscillatory. Extinction of the population and a zero
level of capital stock is also a steady state but it is unstable. We illustrate these
qualitative results with examples of numerical integration using a Cobb-Douglas
production function and ’plausible’ functions for the way in which economic de-
velopment impacts on the demographic-epidemiological parameters. The qual-
itative results are consistent with broad historical observation that control of
major infectious diseases has come pari passu with economic development.

We also examine the situation in which a central planner can determine the
process of accumulation and does so in order to optimise a measure of intertem-
poral welfare. When population is changing it is not easy to see how the latter
should be defined; we take it to be a time additive function of the level of overall
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per capita consumption of those alive and of the rate of change of prevalence.
In normative terms prevalence has an ambiguous effect: on the one hand higher
prevalence lowers instantaneous per capita consumption; on the other hand it
makes the existing capital stock go further when shared between the lower num-
ber of healthy workers which impacts on the future infection rate and death rates
by raising economic development. We find that the centrally planned system
has two steady states: one of them is locally a 4-D saddle point in which the
disease is eradicated; the other has a positive prevalence of the disease and a
richer variety of possible local dynamic patterns depending on parameter values.
With four nonlinear differential equations and two steady states it is difficult to
get further qualitative information on the system; so we exploit a technique of
numerically integrating around a contour of the maximised Hamiltonian which
allows us to eliminate one dimension and to plot three dimensional phase spaces.

Various extensions are considered: to allow for recovery from the disease;
to try to analyse sensitivity of the planned economy results to the form of in-
tertemporal welfare function and to consider prevalence health action. Generally
these extensions do not change the basic form of the dynamics of the system
but they indicate that an important outstanding research question is to relate
the aggregate macro view of the system that is used here to more explicit micro
underpinnings.
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A Appendix 1

A.1 The Jacobian for the centrally planned productive
model

Linearising the dynamic equations (22), (25) and (26) gives a Jacobian of

[ B-a-w) p(8'—a'~w") 0
!
28 s f—gb—(a—ﬁﬁ) _bc
(1+p)2  op —z(a/—ﬁ/ (1+p)) SAL
=Nl =2 =8 )] :
_)\2(6,_0/_("),) " //(1+Pi/) —Z(Oé _6 H—%))
s —A2p(B —a —w ) e
(uic) 1 / urc
§p  (1+p)? - lil_z (6 + Zﬁ ) Y (1_:10)_2
2ujc + 22X 28 ( p), ’ ’ Z
TP T4} —Ao(f'—a'~w') DL 79)
79
where
be
i M(L+p)/uig +¢/(1+p) (80)
5(;;0) =M (1+p)?/urr +2Mi¢)] (81)
be 9
v (1+p)*/un (82)
(UIC) = C(l +p)+ul(1 —l—p)2/u11
o\

S(uic)  bc  bc 0 (83)

52 b6z b\

Specialising this to the values around the steady state with p* = 0 (using
the steady state equations) gives

[ B-a-w) 0 0 0
zﬁ—)\l/un—/l—c 0 —1/uy, 0
N5+ 28) gt
D ;

u? fuy, +20 20 —_)\:\Eé’ﬁ—z;z—ﬁw)’) c+ugfuy,—20 —-(B-—a—w)

) (84)
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Around the steady state with p* # 0 the Jacobian matrix becomes

_ 0 p(8'—a’'-w') 0
e —p (P —(1+ )y
A / “Mlf —2(a =8 7))
ey * " " 1 / ! /
_g;%,(_ﬁa,_iﬁ,)) +hiz(a =8 75) AL (B'—a—w")
_)‘2]9(6”—04”—00/”)
/(04 D) ~ by (B +26)
i/ #2200+ (el /o,
(85)

A.2 Sufficiency of the necessary conditions for optimality
with exogenous growth in prevalence

Let 2*(t), N[ (%), c*(t) satisfy

U = )\i(l +p067t) (86)

vt
2= f(2") — 2" _Z*(a_ﬁliojjoevt) —c (87)
N = =ALlf = 6 — (@ = Bpoe™ /(1 + poe™)) (88)

and let 2(t), c(t) be any feasible path which satisfies (87). Then

c c* c c*
— dt < ¥ — dt = 89
/u<1+p0w> ulo) _/U1(1+poew o) (89)

[X106) - 6= sta -2y -y (90
(1) = 62—t — S - ) o1

< [t - o- (0L iy sa (02)

1+ poe??
- /[_Aik(z —2") = Af(z=2")]dt (93)
= — Jim A{(H)(t) <0 (94)
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