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Abstract

In this paper, we extend the result of Dekel and Wollinsky [4] on rationaliz-

able outcomes in first-price auctions. Dekel and Wollinsky [4] show that under

certain conditions, each player chooses a unique bid conditional on her valuation.

Their result however depends on the assumption that the number of players is

sufficiently large (relative to the number of available bids). We first provide a

different set of sufficient conditions for the uniqueness result. We then show that

for the independent (possibly asymmetric) private value case, (i) the result holds

if the distributions are such that the inverse hazard rate is sufficiently high for

each valuation, implying that auctions need not necessarily be large, and (ii) if the

distributions satisfy the conditions of Dekel and Wollinsky [4], they always satisfy

ours.

Keywords: First-Price Auctions, Rationalizability, Dominance

JEL Classification: C72, D44

∗Shimoji appreciates financial support from Zengin Foundation for Studies on Economics and Fi-

nance. We thank Kim-Sau Chung and Joel Watson for their comments and Tatsuyoshi Okimoto and

Shinichi Sakata for discussions.

1



1 Introduction

It is standard to use the notion of (Bayesian) Nash equilibrium to analyze first-price

auctions. Battigalli and Sciniscalchi [1] and Dekel and Wollinsky [4] are the first studies

which departed from this tradition; they instead use the notion of rationalizability.1

This alllows us to have a larger class of beliefs since they are required to be correct

in equilibrium analyses. Moreover, Dekel and Wollinsky [4] (DW hereafter) show (i)

that under certain conditions, each player has a unique rationalizable bid conditional on

her valuation, and (ii) the conditions are satisfied for the case where the distributions

are conditionally independent and identical, and the probability of each type is strictly

positive.

Despite their surprising uniqueness result, they have one constraint which could be

unrealistic for certain cases; auctions need to be large. More specifically, the (implicit)

assumption in DW is that n, the number of players, is strictly higher than m + 1, the

number of grids for possible bids and valuations, i.e., n > m+ 1 (n− 1 ≥ m+ 1).2 Our

goal in this paper is to provide a different set of conditions under which (i) the same

uniqueness result is obtained, and (ii) auctions need not necessarily be large.

Our result does not require the assumption of n > m + 1. In addition, for the

independent case, we show that if the inverse hazard rate (the ratio of the probability

density function over the cumulative distribution function, also known as the inverse

Mills ratio) is sufficiently large for each valuation, the result holds.3 This can be achieved

even if the distributions are asymmetric (with the same support).4 We provide an

example under which the result still holds even if n is small independent of the size

of m. Lastly, we show that for the independent case, if players’ beliefs satisfy DW’s

conditions, they also satisfy ours.

The intuition behind DW’s approach is as follows: Given your valuation v and con-

ditional on the event that v is the highest valuation, if there are other players with

valuation v, bidding the lowest bid among the ones which are rationalizable, b, does not

make sense. This is because the best scenario in which you win is every one else with v

also bids b and the ones with lower valuations choose the bids lower than b. In this case,

1Battigalli and Sciniscalchi [1] consider the continuous case while Dekel and Wollinsky [4] use the

discrete case. See also Cho [2].

2If n > m+ 1 does not hold, L2 − U2 (DW p.181-182 in Proposition 1) is not well defined.

3Note that the assumption that the inverse hazard rate is high for each valuation excludes the case

where there exists a valuation whose probability is zero.

4The issue of asymmetry has also been analyzed in the literature. See for example Maskin and Riley

[5].
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the winner is drawn with equal probability. The chance of winning is small if there are

too many players with v.

Our approach provides a different intuition: Suppose, as in DW, that the valuation

and bid space is a discrete grid and let d be the distance between adjacent points.

Consider the case in which your valuation v is the highest possible valuation and the

second highest valuation is ṽ (v > ṽ). Each player with valuation v̂ ≤ ṽ has a unique

rationalizable bid v̂ − d. In this case, you do not want to make a bid ṽ − d since if it is

likely that there are players with ṽ, they will bid thier only surviving bid, ṽ − d. Thus

there is a chance that you lose. If instead you bid ṽ which is still less than v, you can

guarantee the win.

Note that the intuition for our result does not necessarily require a large number

of players. We need a player’s concern that someone else would match her lower bid.

If she believes that the event is very likely, she would choose a higher bid. This belief

is reflected by the assumption that the inverse hazard rate is sufficiently high for the

independent case. The case of large n is needed if players do not have such beliefs.

2 Preliminaries

The following is the set-up of DW which we adopt. Consider a first-price auction with

the set of players N = {1, . . . , n}. We assume n ≥ 3.5 Possible valuations are V =

{0, d, 2d, . . . , 1 − 2d, 1 − d, 1}. By denoting d = 1
m , V contains m + 1 elements where

m ≥ 2.6 Each player chooses her bid from V . Following DW, we assume that the various

types of each player can have different beliefs regarding the other players’ valuations and

strategies. We now introduce the conditions imposed on the set of beliefs we consider.

2.1 Beliefs

Given player i’s valuation vi, let pi(· | vi) ∈ ∆(V n−1) be player i’s belief regarding other

players’ valuations. We assume that the following two conditions hold for the set of

beliefs we consider:

Condition 1 For each i ∈ N ,

pi(vj ≤ 2d for all j 6= i | 0) > 0, and

pi(vj = 0 for all j 6= i | d) > 0.

5Remember that the arguments in DW implies n > m+ 1 ≥ 3.

6If m = 1, Condition 1 suffices.
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Condition 2 For each vi ≥ (α+ 1)d where α is an positive integer (α ≥ 1),

n−1∑
l=1

pi

(
vj ≤ αd for all j 6= i

#{k 6= i s.t. vk = αd} = l

∣∣∣∣∣ vi
)(

l − 1
l + 1

)
> pi(vj ≤ (α− 1)d for all j 6= i | vi).

For the comparison purpose, we provide the conditions in DW below:

DW-1 For any pi(· | vi = v),

• pi(vj < v for all j 6= i | vi = v) > 0 for every v > 0, and

• pi(vj = 0 for all j 6= i | vi = 0) > 0.

DW-2 There exists n̄ such that for any n > n̄, i, and v, and any pi(· | vi = v),

pi(#{j 6= i s.t. vj = v} ≤ m | vj ≤ v for all j, vi = v) <
1

n(m− 1) + 1
.

Note that
n−1∑
l=1

pi

(
vj ≤ αd for all j 6= i

#{k 6= i s.t. vk = αd} = l

∣∣∣∣∣ vi
)(

l − 1
l + 1

)

≤
n−1∑
l=1

pi

(
vj ≤ αd for all j 6= i

#{k 6= i s.t. vk = αd} = l

∣∣∣∣∣ vi
)

= pi

(
vj ≤ αd for all j 6= i

∃k 6= i s.t. vk = αd

∣∣∣∣∣ vi
)
.

Given Condition 2 and

pi(vj ≤ αd for all j 6= i | vi)

= pi(vj ≤ (α− 1)d for all j 6= i | vi) + pi

(
vj ≤ αd for all j 6= i

∃k 6= i s.t. vk = αd

∣∣∣∣∣ vi
)
, (1)

for any vi ≥ 2d, we have

pi(vj < vi for all j 6= i | vi) > 0. (2)

This almost replaces DW-1. Since this does not include the cases for vi = 0, d, we have

Condition 1.

Condition 2 assures that a player with valuation vi bids exactly vi − d. The idea

is, at each iteration, to use the bid αd to dominate the bid (α − 1)d for players with

valuations vi > αd. Since vi − αd < vi − (α − 1)d, the bid αd must have a sufficiently

larger probability of winning. Note that Condition 2 and (1) imply

pi

(
vj ≤ αd for all j 6= i

∃k 6= i s.t. vk = αd

∣∣∣∣∣ vi
)
> pi(vj ≤ (α− 1)d for all j 6= i | vi). (3)
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In the independent case, this relationship is reflected in the requirement that the inverse

hazard rate is sufficiently high.

Example 1. This example demonstrates that allowing correlations could lead to the

violation of Condition 2. Suppose that there exists player i who believes that, conditional

on her valuation being v, there are only two possible scenarios; (i) the other players have

the same valuation v, and (ii) the other players’ valuations are all (weakly) less than

v−d and there is exactly one player with valuation v−d. She assigns a high probability

to the first so that DW-2 is not violated. The second scenario, however, implies that

the left-hand side in Condition 2 is zero and hence it does not hold: First, for l = 1, the

associated probability is strictly positive while ( l−1
l+1 ) = 0. Second, for each l > 1, the

corresponding probability is zero.

We later show that for the case of independent distributions, if the distributions satisfy

the conditions in DW, they also satisfy ours. Hence, the violation of this statement (e.g.,

Example 1 above) can be observed only due to the possibility of correlations.

2.2 Dominance and Rationalizability

Given player i’s valuation vi, let qi ∈ ∆(V n−1 × V n−1) be player i’s forecast over her

opponents’ valuations and bids.7 Let bi ∈ V be player i’s bid and b−i ∈ V n−1 be player

i’s opponents’ bid profile.

Definition 1 Given the set of bids Uki (vi) ⊂ V for each i ∈ N and vi ∈ V , a bid

b′i ∈ Uki (vi) strictly dominates bi ∈ Uki (vi) for type vi if∑
v−i,b−i

ui(bi, b−i | v)qi(v−i, b−i | vi) <
∑

v−i,b−i

ui(b′i, b−i | v)qi(v−i, b−i | vi)

for all qi ∈ ∆(V n−1 × V n−1) such that

• qi(v−i, b−i | vi) > 0⇒ b−i ∈ (Ukj (vj))j 6=i, and

•
∑
b−i

qi(v−i, b−i | vi) = pi(v−i | vi).

We say that bi ∈ Uki (vi) is not strictly dominated if there does not exists b′i ∈ Uki (vi)

which strictly dominates bi. Let U0
i (vi) = V for each i ∈ N and vi ∈ V . For each i ∈ N

and vi ∈ V , let

Uk+1
i (vi) =

{
bi ∈ Uki (vi)|bi is not strictly dominated

}
7The word “forecast” is adopted from Dekel, Fudenberg and Morris [3].
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where k ∈ {0, 1, 2, . . .}. The set of iteratively undominated bids for player i with valuation

vi is hence ∩∞k=0U
k
i (vi).

The notion of strict dominance above is the adaptation of the same notion introduced

by Dekel, Fudenberg, and Morris [3]. Dekel, Fudenberg, and Morris [3] introduce the

concept of interim correlated rationalizability (ICR), and show that equivalence of ICR

and iterated strict dominance.8 Although the original definition of Dekel, Fudenberg

and Morris [3] uses mixed strategies, we only consider pure-strategy dominance above.

In addition, we assume that players are risk neutral.

3 Result

As in DW, our proof consists of two parts; we first identify an upper bound on bids for

each type, and we then identify a lower bound. We show that these two bounds are

identical, implying a unique bid for each type. We follow DW for the determination of

the upper bounds, which is reproduced in Appendix.

Observation 1 For any vi, no bid strictly higher than max{0, vi − d} survives iterated

dominance.

Note that for vi ∈ {0, d}, the only surviving bid is bi = 0.

Given Observation 1, we show that, for each vi ≥ 2d, bi = 0 is dominated by bi = d.

First, suppose that for each j 6= i, vj ≤ d, and hence they only choose bj = 0. Then,

bi = d gives a payoff of vi−d > 0 while bi = 0 gives a payoff of vin . Since we assume that

n ≥ 3, if follows that vi − d > vi
n for any vi ≥ 2d.9 If instead there is j 6= i such that

vj > d, then bi = d weakly dominates bi = 0. Condition 2 implies that for any vi ≥ 2d,

pi(vj ≤ d for all j 6= i | vi) > 0.

Thus, the former occurs with positive probability, and our claim holds.

Observation 2 For each vi ≥ 2d, the set of bids which still survive iterated dominance

is {d, . . . , vi − d}.

8Dekel, Fudenberg and Morris [3] define (i) payoff relevant state space, Θ, and (ii) type space

T = (Ti, πi)i∈N where πi represents player i’s belief and maps Ti to ∆(T−i × Θ). By letting Θ =∏
j∈N

Tj = V n, we utilize the beliefs we discussed above and define strict dominance with respect

to V n. The set of iteratively undominated strategies we obtain is hence the set of interim correlated

rationalizable strategies.

9(vi − d)− vi
n

= n−1
n
vi − d ≥ 2

3
2d− d = 1

3
d > 0.
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Note that for vi = 2d, the only surviving bid is bi = d.

We now turn to establishing the unique bid for the remaining types vi ≥ 3d. Suppose

that there exists α ≥ 3 such that for each vi ≤ αd, the only remaining bid is max{0, vi−
d}. For each vi ≥ (α + 1)d, we use bi = αd to dominate b̃i = (α − 1)d. Obviously,

vi − bi < vi − b̃i while bi gives a higher chance of winning than b̃i. We show that the

latter effect dominates the former with any belief satisfying Condition 2, implying that

bi strictly dominates b̃i for each vi ≥ (α+ 1)d. We then apply Proposition 1 iteratively.

This demonstrates that for vi ≥ 3d, any bi < vi − d is iteratively dominated, leaving

bi = vi − d as the only undominated bid.

Proposition 1 Let α ≥ 2. Suppose that for each vi ≥ (α+ 1)d,

Uki (vi) = {(α− 1)d, . . . , vi − d}

while for vi ≤ αd is Uki (vi) = {max{vi−d, 0}}. Then, for each vi ≥ (α+1)d, bi = (α−1)d

is strictly dominated by bi = αd.

Proof. Given vi ≥ (α+ 1)d, the chance of winning by choosing bi = (α− 1)d is

W [(α− 1)d|vi] = pi(vj ≤ (α− 1)d for all j 6= i | vi)

+
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ αd

(α− 1)d ≥ bk for all k 6= i

#{k 6= i s.t. bk = (α− 1)d} = l

∣∣∣∣∣∣∣∣ vi
( 1

l + 1

)
. (4)

Likewise, the chance of winning by choosing bi = αd is

W [αd|vi] = pi(vj ≤ αd for all j 6= i | vi) + qi

(
∃j 6= i s.t. vj ≥ (α+ 1)d

(α− 1)d ≥ bk for all k 6= i

∣∣∣∣∣ vi
)

+
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ (α+ 1)d

αd ≥ bk for all k 6= i

#{k 6= i s.t. bk = αd} = l

∣∣∣∣∣∣∣∣ vi
( 1

l + 1

)
. (5)

It is clear that

W [αd|vi] > W [(α− 1)d|vi]. (6)

We need to show that, independent of opponents’ bids (which still survive iterative

dominance),

(vi − αd)W [αd|vi] > (vi − (α− 1)d)W [(α− 1)d|vi].

Given (6), this is hardest to satisfy when vi = (α+ 1)d. Hence, it suffices to show that

W [αd|vi]− 2W [(α− 1)d|vi] > 0. (7)
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Equation (5) can be rewritten as

W [αd|vi] = pi(vj ≤ (α− 1)d for all j 6= i | vi) + pi

(
vj ≤ αd for all j 6= i

∃k 6= i s.t. vk = αd

∣∣∣∣∣ vi
)

+ qi

(
∃j 6= i s.t. vj ≥ (α+ 1)d

(α− 1)d ≥ bk for all k 6= i

∣∣∣∣∣ vi
)

+
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ (α+ 1)d

αd ≥ bk for all k 6= i

#{k 6= i s.t. bk = αd} = l

∣∣∣∣∣∣∣∣ vi
( 1

l + 1

)
. (8)

Equation (4) can be rewritten as

W [(α− 1)d|vi] = pi(vj ≤ (α− 1)d for all j 6= i | vi)

+
n−1∑
l=1

pi

(
vj ≤ αd for all j 6= i

#{k 6= i s.t. vk = αd} = l

∣∣∣∣∣ vi
)(

1
l + 1

)

+
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ (α+ 1)d

(α− 1)d ≥ bk for all k 6= i

#{k 6= i s.t. bk = (α− 1)d} = l

∣∣∣∣∣∣∣∣ vi
( 1

l + 1

)
. (9)

It is easy to see that

pi

(
vj ≤ αd for all j 6= i

∃k 6= i s.t. vk = αd

∣∣∣∣∣ vi
)

=
n−1∑
l=1

pi

(
vj ≤ αd for all j 6= i

#{k 6= i s.t. vk = αd} = l

∣∣∣∣∣ vi
)

and

qi

(
∃j 6= i s.t. vj ≥ (α+ 1)d

(α− 1)d ≥ bk for all k 6= i

∣∣∣∣∣ vi
)

=
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ (α+ 1)d

(α− 1)d ≥ bk for all k 6= i

#{k 6= i s.t. bk = (α− 1)d} = l

∣∣∣∣∣∣∣∣ vi
 .

Then, we have

W [αd|vi]− 2W [(α− 1)d|vi]

= −pi(vj ≤ (α− 1)d for all j 6= i | vi) +
n−1∑
l=1

pi

(
vj ≤ αd for all j 6= i

#{k 6= i s.t. vk = αd} = l

∣∣∣∣∣ vi
)(

l − 1
l + 1

)

+
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ (α+ 1)d

(α− 1)d ≥ bk for all k 6= i

#{k 6= i s.t. bk = (α− 1)d} = l

∣∣∣∣∣∣∣∣ vi
( l − 1

l + 1

)

+
n−1∑
l=1

qi


∃j 6= i s.t. vj ≥ (α+ 1)d

αd ≥ bk for all k 6= i

#{k 6= i s.t. bk = αd} = l

∣∣∣∣∣∣∣∣ vi
( 1

l + 1

)
.
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Note that only the last two terms depend on opponents’ bids and both are non-negative.

Hence, if Condition 2 holds, which ensures that the sum of the first two terms is strictly

positive, this expression is indeed strictly positive. Q.E.D.

It is then clear that the application of iterative dominance leads to the desired con-

clusion.

Proposition 2 Under Conditions 1 and 2, a unique bid surviving iterative strict dom-

inance is bi = max{vi − d, 0} for each vi ∈ {0, d, . . . , 1}.

4 Independent Distributions

DW also analyze the standard i.i.d. case, and demonstrate that if (i) players are sym-

metric, (ii) types are conditionally independent, and (iii) probability of each type is

non-zero, DW-1 and DW-2 hold for sufficiently large n (with respect to m). In this

section, we first show that under the same assumptions, our conditions also hold. Then,

we drop the assumption of symmetry. Lastly, we show that if the distributions satisfy

DW-1 and DW-2, then they also satisfy our conditions as well.

4.1 Symmetric Case

Let p(v = αd) be the probability that a player’s type is αd. Then, the difference of the

terms in Condition 2 becomes
n−1∑
l=1

(
n− 1

l

)
[p(v ≤ (α− 1)d)]n−1−l [p(v = αd)]l

(
l − 1
l + 1

)
− [p(v ≤ (α− 1)d)]n−1

= [p(v ≤ (α− 1)d)]n−1

{
n−1∑
l=1

(
n− 1

l

)[
p(v = αd)

p(v ≤ (α− 1)d)

]l(
l − 1
l + 1

)
− 1

}
.

By letting

p(v = αd)
p(v ≤ (α− 1)d)

= γ,

the expression in the bracket becomes

n−1∑
l=1

(
n− 1

l

)
γl − 2

n−1∑
l=1

(
n− 1

l

)(
1

l + 1

)
γl − 1. (10)

The first term of (10) is

n−1∑
l=1

(
n− 1

l

)
γl =

n−1∑
l=0

(
n− 1

l

)
γl − 1 = (1 + γ)n−1 − 1.

9



For the second term of (10), we have

n−1∑
l=1

(
n− 1

l

)(
1

l + 1

)
γl =

1
nγ

n∑
l=2

(
n

l

)
γl

=
1
nγ

{
n∑
l=0

(
n

l

)
γl − 1− nγ

}
=

1
nγ
{(1 + γ)n − 1} − 1

Then, (10) becomes

(1 + γ)n

γ

[
γ

1 + γ
− 2
n

]
+

2
nγ
. (11)

Let

n(α) = 2
⌈

1 + γ

γ

⌉
where d·e is the ceiling function. Let n∗ = max{n(α) | α ∈ {0, 1, . . . ,m}}. It is clear

that for any n ≥ n∗, (11) is strictly positive, and hence so is (10).10 That is, for any

n ≥ n∗, Condition 2 holds.

The expression in the bracket of (11) has an interesting implication. Note

γ

1 + γ
− 2
n

=
p(v = αd)

p(v ≤ (α− 1)d) + p(v = αd)
− 2
n

=
p(v = αd)
p(v ≤ αd)

− 2
n
. (12)

Note that the first term is the inverse hazard rate. From this, it is clear that if the

inverse hazard rate is high for each α, n does not have to be large.

Example 2. Consider the following simple example in which types are independently

drawn from a unique distribution:

p(v = 0) =
1

3m

p(v = αd) =
2

3m+1−α =
(

2
3m+1

)
3α for α = 1, . . . ,m.

Note that for α ≥ 1,

p(v ≤ αd) =
1

3m
+
(

2
3m+1

) α∑
l=1

3l = 3α−m,

10We only need weak inequality because of the second term in (11).
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and hence

p(v ≤ 1) = 1.11

For any α ≥ 1, we have
p(v = αd)
p(v ≤ αd)

=
2

3m+1−α

3α−m
=

2
3
.

In this case, independent of m, n = 3 suffices.

4.2 Asymmetric Case

For the left-hand side of Condition 2, the opponents are divided into two groups; (i)

those whose valuation is exactly αd, and (ii) those whose valuations are strictly lower

than αd. Let N−i = N\{i}, 2N−i be the power set of the opponents and N = 2N−i\{∅}.
Let Nk ∈ N be a typical element of N for k ∈ {1, . . . , |N |} where |N | = 2n−1 − 1. Let

pi(·) correspond to the distribution determining player i’s valuation, which is commonly

known. Then, we can rewrite the difference of the terms in Condition 2 as follows:

|N |∑
k=1

 ∏
j∈Nk

pj(v = αd)
∏

j′∈N−i\Nk

pj
′
(v ≤ (α− 1)d)

( |Nk| − 1
|Nk|+ 1

)
−
∏

j∈N−i

pj(v ≤ (α− 1)d)

=
∏

j∈N−i

pj(v ≤ (α− 1)d)

 |N |∑
k=1

 ∏
j∈Nk

pj(v = αd)
pj(v ≤ (α− 1)d)

( |Nk| − 1
|Nk|+ 1

)
− 1


By letting

γ = min
i∈N

{
pi(v = αd)

pi(v ≤ (α− 1)d)

}
,

we can apply the same arguments for the symmetric case to the current case. That is,

if the inverse hazard rate is sufficiently high for each valuation of each player, there is a

unique bid for each valuation even if n is small.

4.3 Comparison of Conditions

In this section, we show that given that the distributions are independent (and possibly

asymmetric), if they satisfy DW-1 and DW-2, they also satisfy Conditions 1 and 2. First,

given the assumption that probability of each type is non-zero, DW-1 and Condition 1

both hold.

11Remember that m = 1
d

.
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Suppose now that DW-2 holds. That is, there exists n̄ such that for all n > n̄, i and

α, we have

pi(#{k 6= i s.t. vk = αd} ≤ m|vj ≤ αd for all j 6= i) <
1

n(m− 1) + 1
.

Remember also that DW’s condition implies n > m+ 1.

Proposition 3 Suppose that valuations are independently distributed. If players’ beliefs

satisfy DW-2, they also satisfy Condition 2.

Proof. Since pi(vj ≤ αd for all j 6= i) > 0, the expression in Condition 2 can be

rewritten with the form of conditional probabilities:

n−1∑
l=1

pi (#{k 6= i s.t. vk = αd} = l | vj ≤ αd for all j 6= i)
(
l − 1
l + 1

)
> pi(vk ≤ (α− 1)d for all k 6= i | vj ≤ αd for all j 6= i). (13)

We show below that if DW-2 holds, (13) holds as well.

From the left-hand side expression in (13), we have

n−1∑
l=1

pi (#{k 6= i s.t. vk = αd} = l | vj ≤ αd for all j 6= i)
(
l − 1
l + 1

)

>

n−1∑
l=m+1

pi (#{k 6= i s.t. vk = αd} = l | vj ≤ αd for all j 6= i)
(
l − 1
l + 1

)

>

(
m

m+ 2

) n−1∑
l=m+1

pi (#{k 6= i s.t. vk = αd} = l | vj ≤ αd for all j 6= i)

=
(

m

m+ 2

)
[1− pi (#{k 6= i s.t. vk = αd} ≤ m | vj ≤ αd for all j 6= i)]

where (i) the first inequality holds since n > m+ 1 and (ii) the second inequality holds

since
(
l−1
l+1

)
is strictly increasing. Given DW-2, we have(

m

m+ 2

)
[1− pi (#{k s.t. vk = αd} ≤ m | vj ≤ αd for all j 6= i)]

>

(
m

m+ 2

)[
1− 1

n(m− 1) + 1

]
=

(
m

m+ 2

)[
n(m− 1)

n(m− 1) + 1

]
where the last term corresponds to the lower bound for the left-hand side of (13).

Since m ≥ 2, from the right-hand side of (13), we have

pi(vk ≤ (α− 1)d for all k 6= i | vj ≤ αd for all j 6= i)
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< pi(#{k s.t. vk = αd} ≤ m | vj ≤ αd for all j 6= i)

<
1

n(m− 1) + 1

where the last inequality comes directly from DW-2. The last term gives the upper

bound for the right-hand side of (13).

Hence, we need to show(
m

m+ 2

)[
n(m− 1)

n(m− 1) + 1

]
>

1
n(m− 1) + 1

.

Since n > m+ 1, it suffices to show

(m+ 1)m(m− 1) > m+ 2 ⇒ m3 − 2m− 2 > 0.

This holds for any m ≥ 2. Q.E.D.

5 Conclusion

In this paper, we show a set of conditions under which each player with valuation v

chooses b = max{v − d, 0}. Condition 2 in our study is different from DW-2. While

DW’s result requires a sufficiently large n (relative to m), ours does not rely on this. For

the independent case, we show that n need not be necessarily large if the inverse hazard

rate is sufficiently high for each type. This also applies to the case in which distributions

are asymmetric. Moreover, if the distributions satisfy DW-2, they also satisfy Condition

2.

A Appendix

The first part of the dominance arguments, which is identical to that of Dekel and

Wollinsky [4], identifies the upper bound of bid for each type. The only difference is

that we instead use Conditions 1 and 2 (and hence (2)). First, we show that bi ≤ 1− d
for any vi.

• For any vi ∈ {0, . . . , 1 − d}, bi = 1 is strictly dominated by bi = 0. This is

because the former guarantees a negative expected payoff (with a positive chance

of winning) while the latter guarantees at least a payoff of zero.

• For a player with vi = 1, bi = 1 is strictly dominated by bi = 1− d. For any state

in which vj ≤ 1 − d for all j 6= i and hence the highest bids are 1 − d, bi = 1 is

strictly dominated by bi = 1− d since the former guarantees a payoff of zero while
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the latter gives a strictly positive payoff. For any state in which there is player

j 6= i with vj = 1, bi = 1 is rather weakly dominated by bi = 1− d since the latter

does not win if an opponent with vj = 1 chooses bj = 1. Since the former class of

states happens with a positive probability (Equation (2)), the clam holds.

Take α ∈ {2, . . . ,m}. Suppose that for any vi ≤ αd, the remaining bids are bi ≤
(α − 1)d while for any vi > αd, it is bi ≤ vi − d. Then the arguments below show that

for any vi ≤ (α− 1)d, (α− 1)d is strictly dominated. Note that for the case of vi = 0, d

we need to use Condition 1.

• For a player with vi ≤ (α− 2)d, bi = (α− 1)d is strictly dominated by bi = 0. For

any state in which vj ≤ αd for all j 6= i, the highest possible bid is (α−1)d. Hence,

bi = (α−1)d gives a chance of winning, meaning a negative expected payoff, while

bi = 0 provides a non-negative payoffs. For any state in which there exists vj > αd,

dominance relationship is rather weak. Since Equation (2) implies that the former

states happen with a positive probability, our claim holds.12

• For a player with vi = (α−1)d, bi = (α−1)d is strictly dominated by bi = (α−2)d.

For any state in which vj ≤ (α− 2)d for j 6= i, the highest possible bid is (α− 2)d.

The former guarantees a payoff of zero while the latter gives a positive expected

payoff. For any state in which there exists vj > αd, dominance relationship is

rather weak. Since the former states happen with a positive probability (Equation

(2)), our claim holds.13

The repetition of the arguments above leads to the conclusion that, for each type

vi ∈ V , any bi ≥ vi does not survive iterative strict dominance except for vi = 0 whose

only surviving bid is bi = 0.
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