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1 Introduction

Approximating a matrix with one of lower rank is a key problem in data analysis and is widely used
for linear dimensionality reduction. Numerous variants exist emphasizing different constraints and
objective functions, e.g., principal component analysis (PCA) [15], independent component analysis [5],
nonnegative matrix factorization [17], . . . and other refinements are often imposed on these models,
e.g., sparsity to improve interpretability or increase compression [6].

In some cases, it might be necessary to attach a weight to each entry of the data matrix corre-
sponding to its relative importance [7]. This is for example the case in the following situations:

⋄ The matrix to be approximated is obtained via a sampling procedure and the number of samples
and/or the expected variance vary among the entries, e.g., 2-D digital filter design [18], or
microarray data analysis [19].

⋄ Some data is missing/unknown, which can be taken into account assigning zero weights to the
missing/unknown entries of the data matrix. This is for example the case in collaborative
filtering, notably used to design recommender systems [22] (in particular, the Netflix prize com-
petition has demonstrated the effectiveness of low-rank matrix factorization techniques [16]), or
in computer vision to recover structure from motion [23, 14], see also [3]. This problem is often
referred to as PCA with missing data [23, 12], and can be viewed as a low-rank matrix completion
problem with noise, i.e., approximate a given noisy data matrix featuring missing entries with a
low-rank matrix1.

⋄ A greater emphasis must be placed on the accuracy of the approximation on a localized part of
the data, a situation encountered for example in image processing [13, Chapter 6].

Finding a low-rank matrix that is the closest to the input matrix according to these weights
is an optimization problem called weighted low-rank approximation (WLRA). Formally, it can be
formulated as follows: first, given an m × n nonnegative weight matrix W ∈ R

m×n
+ , we define the

weighted Frobenius norm of an m × n matrix A as ||A||W = (
∑

i,j WijA
2
ij)

1

2 . Then, given an m × n

real matrix M ∈ R
m×n and a positive integer r ≤ min(m,n), we seek an m×n matrix X with rank at

most r that approximates M as closely as possible, where the quality of the approximation is measured
by the weighted Frobenius norm of the error:

p∗ = inf
X∈Rm×n

||M − X||2W such that X has rank at most r.

Since any m × n matrix with rank at most r can be expressed as the product of two matrices of
dimensions m × r and r × n, we will use the following more convenient formulation featuring two
unknown matrices U ∈ R

m×r and V ∈ R
n×r but no explicit rank constraint:

p∗ = inf
U∈Rm×r ,V ∈Rn×r

||M − UV T ||2W =
∑

ij

Wij(M − UV T )2ij . (WLRA)

Even though (WLRA) is suspected to be NP-hard [14, 24], this has never, to the best of our knowledge,
been studied formally. In this paper, we analyze the computational complexity in the rank-one case2

(i.e., for r = 1) and prove the following two results.

Theorem 1. When M ∈ {0, 1}m×n, and W ∈ ]0, 1]m×n, it is NP-hard to find an approximate solution
of rank-one (WLRA) with objective function accuracy less than 2−11(mn)−6.

1In our settings, the rank of the approximation is fixed a priori.
2The obtained results can be easily generalized to any fixed rank r, see Remark 1.
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Theorem 2. When M ∈ [0, 1]m×n, and W ∈ {0, 1}m×n, it is NP-hard to find an approximate solution
of rank-one (WLRA) with objective function accuracy less than 2−12(mn)−7.

It is then NP-hard to find an approximate solution to the following problems: (1) rank-one (WLRA)
with positive weights, and (2) rank-one approximation of a matrix with missing data.

The paper is organized as follows. We first review existing results about the complexity of (WLRA)
in Section 2. In Section 3.1, we introduce the maximum-edge biclique problem (MBP), which is NP-
hard. In Section 3, we prove both Theorems 1 and 2 using a polynomial-time reduction from MBP.
We conclude with a discussion and some open questions.

Notation. The set of real matrices with dimension m-by-n is denoted R
m×n; the set R

m×n with
component-wise nonnegative entries is denoted R

m×n
+ ; and R0 is the set of nonzero reals. For A ∈

R
m×n, we note A:i the ith column of A, Aj: the jth row of A, and Aij the entry at position (i, j); for

b ∈ R
m×1 = R

m, we note bi the ith entry of b. The transpose of A is AT . The Frobenius norm of a
matrix A is defined as ||A||2F =

∑

i,j(Aij)
2, and ||.||2 is the usual Euclidean norm with ||b||22 =

∑

i b
2
i .

For W ∈ R
m×n
+ , the weighted Frobenius ‘norm’ of a matrix A is defined3 as ||A||2W =

∑

i,j Wij(Aij)
2.

The m-by-n matrix of all ones is denoted 1m×n, the m-by-n matrix of all zeros 0m×n, and In is the
identity matrix of dimension n. The smallest integer larger or equal to x is denoted ⌈x⌉.

2 Previous Results

Weighted low-rank approximation is known to be much more difficult than the corresponding un-
weighted problem (i.e., when W is the matrix of all ones), which is efficiently solved using the singular
value decomposition (SVD) [11]. In fact, it has been previously observed that the weighted problem
might have several local minima which are not global [24].

Example 1. Let

M =





1 0 1
0 1 1
1 1 1



 , and W =





1 100 2
100 1 2
1 1 1



 .

In the case of a rank-one factorization (r = 1) and a nonnegative matrix M , one can impose without
loss of generality that U ≥ 0 and V ≥ 0. In fact, one can easily check that any solution UV T is
improved by taking its component-wise absolute value |UV T | = |U ||V |T . Moreover, we can impose
without loss of generality that ||U ||2 = 1, so that only two degrees of freedom remain. Indeed, for a
given

U(x, y) =





x
y

√

1 − x2 − y2



 , with

{

x ≥ 0, y ≥ 0
x2 + y2 ≤ 1

,

the corresponding optimal V ∗(x, y) = argminV ||M − U(x, y)V ||2W can be computed easily (it reduces
to a weighted least squares problem). Figure 1 displays the surface of the objective function ||M −
U(x, y)V ∗(x, y)T ||W with respect to parameters x and y; we distinguish 4 local minima, close to ( 1√

2
, 0),

(0, 1√
2
), (0, 0) and ( 1√

2
, 1√

2
). We will see later in Section 3 how this example has been generated.

However, if the rank of the weight matrix W ∈ R
m×n
+ is equal to one, i.e., W = stT for some

3||.||W is a matrix norm if and only if W > 0.
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Figure 1: Objective function of (WLRA) with respect to the parameters (x, y).

s ∈ R
m
+ and t ∈ R

n
+, (WLRA) can be reduced to an unweighted low-rank approximation. In fact,

||M − UV T ||2W =
∑

i,j

sitj (M − UV T )2ij =
∑

i,j

sitj (M − UV T )2ij

=
∑

i,j

(

√

sitj Mij − (
√

si Ui:)(
√

tj V T
j: )
)2

.

Therefore, if we define a matrix M ′ such that M ′
ij =

√
sitj Mij ∀i, j, an optimal weighted low-rank

approximation (U, V ) of M can be recovered from the solution (U ′, V ′) to the unweighted problem for
matrix M ′ using Ui: = U ′

i:/
√

si ∀i and Vj: = V ′
j:/

√
tj ∀j.

When the weight matrix W is binary, WLRA amounts to approximating a matrix with missing
data. This problem is closely related to low-rank matrix completion (MC), see [2] and references
therein, which can be defined as

min
X

rank(X) such that Xij = Mij for (i, j) ∈ Ω ⊂ {1, 2, . . . ,m} × {1, 2, . . . , n}, (MC)

where Ω is the set of entries for which the values of M are known. (MC) has been shown to be NP-
hard [4], and it is clear that an optimal solution X∗ of (MC) can be obtained by solving a sequence
of (WLRA) problems with the same matrix M , with

Wij =

{

1 if (i, j) ∈ Ω
0 otherwise

,

and for different values of the target rank ranging from r = 1 to r = min(m,n). The smallest value of
r for which the objective function ||M − UV T ||2W of (WLRA) vanishes provides an optimal solution
for (MC). This observation implies that it is NP-hard to solve (WLRA) for each possible value of
r (from 1 to min(m,n)) since it would solve (MC). However, this does not imply that (WLRA) is
NP-hard when r is fixed, and in particular when r = 1. In fact, checking whether (MC) admits a
rank-one solution can be done easily4.

4The solution X = uv
T can be constructed observing that the vector u must be multiple of each column of M .
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Rank-one (WLRA) can be equivalently reformulated as

inf
A

||M − A||2W such that rank(A) ≤ 1,

and, when W is binary, it is then the problem of finding, if possible, the best rank-one approximation
of a matrix with missing entries. To the best of our knowledge, the complexity of this problem has
never been studied formally; it will be shown to be NP-hard in the next section.

Another closely related result is the NP-hardness of the structure from motion problem (SFM), in
the presence of noise and missing data [20]. Several points of a rigid object are tracked with cameras
(we are given the projections of the 3-D points on the 2-D camera planes)5, and the aim is to recover
the structure of the object and the positions of the 3-D points. SFM can be written as a rank-four
(WLRA) problem with a binary weight matrix6 [14]. However, this result does not imply anything on
the complexity analysis of rank-one (WLRA).

An important feature of (WLRA) is exposed by the following example.

Example 2. Let

M =

(

1 ?
0 1

)

where ? indicates that an entry is missing, i.e., that the weight associated with this entry is 0 (1
otherwise). Observe that ∀(u, v) ∈ R

m × R
n,

rank(M) = 2 and rank(uvT ) = 1 ⇒ ||M − uvT ||W > 0.

However, we have
inf

(u,v)∈Rm×Rn
||M − uvT ||W = 0.

In fact, one can check that with

u(k) =

(

1
10−k

)

and v(k) =

(

1
10k

)

, we have lim
k→+∞

||M − u(k)v(k)T ||W = 0.

This indicates that when W has zero entries the set of optimal solution of (WLRA) might be
empty: there might not exist an optimal solution. In other words, the (bounded) infimum might not
be attained. At the other end, the infimum is always attained for W > 0 since ||.||W is then a norm.

For this reason, these two cases will be analyzed separately: in Section 3.2, we study the compu-
tational complexity of the problem when W > 0, and, in Section 3.3, when W is binary (the problem
with missing data).

3 Complexity of rank-one (WLRA)

In this section, we use a polynomial-time reduction from the maximum-edge biclique problem to prove
Theorems 1 and 2.

5Missing data arises because the points might not always be visible by the camera, e.g., in case of rotation.
6Except that the last row of V must be all ones, i.e., Vr: = 11×n.
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3.1 Maximum-Edge Biclique Problem

A bipartite graph is a graph whose vertices can be divided into two disjoint sets such that there is no
edge between two vertices in the same set. The maximum-edge biclique problem (MBP) in bipartite
graph is the problem of finding a complete bipartite subgraph (a biclique) with the maximum number
of edges.

Let M ∈ {0, 1}m×n be the biadjacency matrix of a bipartite graph Gb = (V1 ∪ V2, E) with V1 =
{s1, . . . sm}, V2 = {t1, . . . tn} and E ⊆ (V1 × V2) , i.e.,

Mij = 1 ⇐⇒ (si, tj) ∈ E.

The cardinality of E will be denoted |E| = ||M ||2F ≤ mn.

For example, Figure 2 displays the graph Gb generated by the matrix M of Example 1.

Figure 2: Graph corresponding to the matrix M of Example 1.

With this notation, the maximum-edge biclique problem in a bipartite graph can be formulated as
follows [10]

min
u,v

||M − uvT ||2F
uivj ≤ Mij , ∀ i, j (MBP)

u ∈ {0, 1}m, v ∈ {0, 1}n,

where ui = 1 (resp. vj = 1) means that node si (resp. tj) belongs to the solution, ui = 0 (resp. vj = 0)
otherwise. The constraint uivj ≤ Mij , ∀ i, j guarantees feasible solutions of (MBP) to be bicliques of
Gb. In fact, it is equivalent to the implication

Mij = 0 ⇒ ui = 0 or vj = 0,

i.e., if there is no edge between vertices si and tj, they cannot simultaneously belong to a solution.
The objective function minimizes the number of edges outside the biclique, which is equivalent to
maximizing the number of edges inside the biclique. Notice that the minimum of (MBP) is |E|− |E∗|,
where |E∗| denotes the number of edges in an optimal biclique.

The decision version of the MBP problem:

Given K, does Gb contain a biclique with at least K edges?

has been shown to be NP-complete [21] in the usual Turing machine model [8], which is our framework
in this paper. Therefore (MBP) is NP-hard.

3.2 Low-Rank Approximation with Positive Weights

In order to prove NP-hardness of rank-one (WLRA) with positive weights (W > 0), let us consider
the following instance:

p∗ = min
u∈Rm,v∈Rn

||M − uvT ||2W , (W-1d)
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with M ∈ {0, 1}m×n the biadjacency of a bipartite graph Gb = (V,E) and the weight matrix defined
as

Wij =

{

1 if Mij = 1
d if Mij = 0

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with d ≥ 1 a parameter.
Intuitively, increasing the value of d makes the zero entries of M more important in the objective

function, which leads them to be approximated by small values. This observation will be used to show
that, for d sufficiently large, the optimal value p∗ of (W-1d) will be close to the minimum |E| − |E∗|
of (MBP) (Lemma 2).

In fact, as the value of parameter d increases, the local minima of (W-1d) get closer to the
‘locally’ optimal solutions of (MBP), which are binary vectors describing the maximal bicliques in
Gb, i.e., bicliques not contained in larger bicliques. Example 1 illustrates the situation: the graph Gb

corresponding to matrix M (cf. Figure 2) contains four maximal bicliques {s1, s3, t1, t3}, {s2, s3, t2, t3},
{s3, t1, t2, t3} and {s1, s2, s3, t3}, and the weight matrix W that was used is similar to the case d = 100
in problem (W-1d). We now observe that (W-1d) has four local optimal solutions as well (cf. Figure 1)
close to ( 1√

2
, 0), (0, 1√

2
), (0, 0) and ( 1√

2
, 1√

2
). There is a one to one correspondence between these

solutions and the four maximal bicliques listed above (in this order). For example, for (x, y) = ( 1√
2
, 0)

we have U(x, y) = ( 1√
2
0 1√

2
)T , V ∗(x, y) is approximately equal to (

√
2 0

√
2)T , and this solution

corresponds to the maximal biclique {s1, s3, t1, t3}.
Notice that a similar idea was used in [9] to prove NP-hardness of the rank-one nonnegative factor-

ization problem minu∈Rm
+

,v∈Rn
+
||M −uvT ||F , where the zero entries of M were replaced by sufficiently

large negative ones.

Let us now prove this formally. It is first observed that for any (u, v) such that ||M−uvT ||2W ≤ |E|,
the absolute value of the row or the column of uvT corresponding to a zero entry of M must be smaller
than a constant inversely proportional to 4

√
d.

Lemma 1. Let (i, j) be such that Mij = 0, then ∀(u, v) such that ||M − uvT ||2W ≤ |E|,

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj |
)

≤ 4

√

4|E|2
d

.

Proof. Without loss of generality u and v can be scaled such that ||u||2 = ||v||2 without changing the
product uvT . First, observe that since ||.||W is a norm,

||uvT ||W −
√

|E| = ||uvT ||W − ||M ||W ≤ ||M − uvT ||W ≤
√

|E|.

Since all entries of W are larger than 1 (d ≥ 1), we have

||u||2||v||2 = ||uvT ||F ≤ ||uvT ||W ≤
√

4|E|,

and then ||u||2 = ||v||2 ≤ 4
√

4|E|.
Moreover d(0 − uivj)

2 ≤ ||M − uvT ||2W ≤ |E|, so that |uivj | ≤
√

|E|
d which implies that either

|ui| ≤ 4

√

|E|
d or |vj | ≤ 4

√

|E|
d . Combining above inequalities with the fact that (max1≤k≤n |vk|) and

(max1≤p≤m |up|) are bounded above by ||u||2 = ||v||2 ≤ 4
√

4|E| completes the proof.

Using Lemma 1, we can associate any point (u, v) such that ||M − uvT ||2W ≤ |E| with a biclique
of Gb, the graph generated by the biadjacency matrix M .
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Corollary 1. For any pair (u, v) such that ||M − uvT ||2W ≤ |E|, the set

Ω(u, v) = I × J, with I = { i | ∃j s.t. |uivj | > α } and J = { j | ∃i s.t. |uivj | > α },

where α =
4

√

4|E|2
d , defines a biclique of Gb.

We can now provide lower and upper bounds on the optimal value p∗ of (W-1d), and show that it
is not too different from the optimal value |E| − |E∗| of (MBP).

Lemma 2. Let 0 < ǫ ≤ 1. For any value of parameter d such that d ≥ 26|E|6
ǫ4

, the optimal value p∗ of
(W-1d) satisfies

|E| − |E∗| − ǫ < p∗ ≤ |E| − |E∗|.

Proof. Let (u, v) be an optimal solution of (W-1d) (there always exists at least one optimal solution,
cf. Section 2), and let us note p = |E| − |E∗| ≥ 0. Since any optimal solution of (MBP) plugged in
(W-1d) also achieves an objective function equal to p, we must have

p∗ = ||M − uvT ||2W ≤ p = |E| − |E∗|,

which gives the upper bound.
By Corollary 1, the set Ω = Ω(u, v) defines a biclique of (MBP) with |Ω| ≤ |E∗| edges. By

construction, the entries in M which are not in Ω are approximated by values smaller than α. If

α =
4

√

4|E|2
d ≤ 1, i.e., d ≥ 4|E|2 which is satisfied for 0 < ǫ ≤ 1, the error corresponding to a one entry

of M not in the biclique Ω is at least (1−α)2. Since there are at least p = |E| − |E∗| such entries, we
have

(1 − α)2p ≤ ||M − uvT ||2W . (3.1)

Moreover
(1 − α)2p > (1 − 2α)p = p − 2αp ≥ p − 2α|E| ≥ p − ǫ,

since 2α|E| ≤ ǫ ⇐⇒ d ≥ 26|E|6
ǫ4

, which gives the lower bound.

This result implies that for ǫ = 1, i.e., for d ≥ (2|E|)6, we have |E| − |E∗| − 1 < p∗ ≤ |E| − |E∗|,
and therefore computing p∗ exactly would allow to recover |E∗| (since ⌈p∗⌉ = |E| − |E∗|), which is
NP-hard. Since the reduction from (MBP) to (W-1d) is polynomial (it uses the same matrix M and a
weight matrix W whose description has polynomial length), we conclude that solving (W-1d) exactly
is NP-hard. The next result shows that even solving (W-1d) approximately is NP-hard.

Corollary 2. For any d > (2mn)6, M ∈ {0, 1}m×n, and W ∈ {1, d}m×n, it is NP-hard to find an

approximate solution of rank-one (WLRA) with objective function accuracy less than 1 − (2mn)3/2

d1/4 .

Proof. Let d > (2mn)6, 0 < ǫ = (2mn)3/2

d1/4 < 1, and (ū, v̄) be an approximate solution of (W-1d) with

objective function accuracy (1−ǫ), i.e., p∗ ≤ p̄ = ||M− ūv̄T ||2W ≤ p∗+1−ǫ. Since d = (2mn)6

ǫ4
≥ (2|E|)6

ǫ4
,

Lemma 2 applies and we have

|E| − |E∗| − ǫ < p∗ ≤ p̄ ≤ p∗ + 1 − ǫ ≤ |E| − |E∗| + 1 − ǫ.

We finally observe that p̄ allows to recover |E∗|, which is NP-hard. In fact, adding ǫ to the above
inequalities gives |E| − |E∗| < p̄ + ǫ ≤ |E| − |E∗| + 1, and therefore

|E∗| = |E| −
⌈

p̄ + ǫ
⌉

+ 1.
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We are now in position to prove Theorem 1, which deals with the hardness of rank-one (WLRA)
with bounded weights.

Proof of Theorem 1. Let us use Corollary 2 with W ∈ {1, d}m×n, and define W ′ = 1
dW ∈ {1

d , 1}m×n.
Clearly, replacing W by W ′ in (W-1d) simply amounts to multiplying the objective function by 1

d ,

with ||M − uvT ||2W ′ = 1
d ||M − uvT ||2W . Taking d1/4 = 2(2mn)3/2 in Corollary 2, we obtain that for

M ∈ {0, 1}m×n and W ∈]0, 1]m×n, it is NP-hard to find an approximate solution of rank-one (WLRA)

with objective function accuracy less than 1
d

(

1 − (2mn)3/2

d1/4

)

= 1
2d = 2−11(mn)−6.

Remark 1. Using the same construction as in [10, Theorem 3], this rank-one NP-hardness result can
be generalized to any factorization rank, i.e., approximate (WLRA) for any fixed rank r is NP-hard.

Remark 2. The bounds on d have been quite crudely estimated, and can be improved. Our goal was
only to show existence of a polynomial-time reduction from (MBP) to rank-one (WLRA).

3.3 Low-Rank Matrix Approximation with Missing Data

Unfortunately, the above NP-hardness proof does not include the case when W is binary, corresponding
to missing data in the matrix to be approximated (or to low-rank matrix completion with noise). This
corresponds to the following problem

inf
U∈Rm×r,V ∈Rn×r

||M − UV T ||2W =
∑

ij

Wij(M − UV T )2ij , W ∈ {0, 1}m×n. (LRAMD)

In the same spirit as before, we consider the following rank-one version of the problem

p∗ = inf
u∈Rm,v∈Rn

||M − uvT ||2W , (MD-1d)

with input data matrices M and W defined as follows

M =

(

Mb 0s×Z

0Z×t dIZ

)

and W =

(

1s×t B1

B2 IZ

)

,

where Mb ∈ {0, 1}s×t is the biadjacency matrix of the bipartite graph Gb = (V,E), d > 1 is a
parameter, Z = st − |E| is the number of zero entries in Mb, m = s + Z and n = t + Z are the
dimensions of M and W .

Binary matrices B1 ∈ {0, 1}s×Z and B2 ∈ {0, 1}Z×t are constructed as follows: assume the Z zero
entries of Mb can be enumerated as {Mb(i1, j1),Mb(i2, j2), . . . ,Mb(iZ , jZ)}, and let kij be the (unique)
index k (1 ≤ k ≤ Z) such that (ik, jk) = (i, j) (therefore kij is only defined for pairs (i, j) such that
Mb(i, j) = 0, and establishes a bijection between these pairs and the set {1, 2, . . . , Z}). We now define
matrices B1 and as follows: for every index 1 ≤ kij ≤ Z, we have

B1(i, kij) = 1, B1(i
′, kij) = 0 ∀i′ 6= i and B2(kij , j) = 1, B2(kij , j

′) = 0 ∀j′ 6= j .

Equivalently, each column of B1 (resp. row of B2) corresponds to a different zero entry Mb(i, j) = 0,
and contains only zeros except for a one in position i within the column (resp j within the row).

In the case of Example 1, we get

M =









1 0 1
0 1 1
1 1 1

03×2

02×3 d I2









and W =













13×3

1 0
0 1
0 0

0 1 0
1 0 0

I2













,
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i.e., the matrix to be approximated can be represented as












1 0 1 0 ?
0 1 1 ? 0
1 1 1 ? ?

? 0 ? d ?
0 ? ? ? d













.

For any feasible solution (u, v) of (MD-1d), we also note

u =

(

ub

ud

)

∈ R
m, ub ∈ R

s and ud ∈ R
Z ,

v =

(

vb

vd

)

∈ R
n, vb ∈ R

t and vd ∈ R
Z .

We will show that this formulation ensures that, as d increases, the zero entries of the matrix Mb

(upper left of matrix M , which is the biadjacency matrix of Gb) have to be approximated with smaller
values. Hence, as for (W-1d), we will be able to prove that the optimal value p∗ of (MD-1d) will have
to get close to the minimum |E| − |E∗| of (MBP), implying its NP-hardness.

Intuitively, when d is large, the lower right matrix dIZ of M will have to be approximated by a
matrix with large diagonal entries since they correspond to one entries in the weight matrix W . Hence
ud(kij)vd(kij) has to be large for all 1 ≤ kij ≤ Z. We then have at least either ud(kij) or vd(kij) large
for all kij (recall each kij corresponds to a zero entry in M at position (i, j), cf. definition of B1 and
B2 above). By construction, we also have two entries M(s + kij, j) = 0 and M(i, t + kij) = 0 with
nonzero weights corresponding to the nonzero entries B1(i, kij) and B2(kij , j), which then have to be
approximated by small values. If ud(kij) (resp. vd(kij)) is large, then vb(j) (resp. ub(i)) will have to
be small since ud(kij)vb(j) ≈ 0 (resp. ub(i)vd(kij) ≈ 0). Finally, either ub(i) or vb(j) has to be small,
implying that Mb(i, j) is approximated by a small value, because (ub, vb) is bounded independently of
the value of d.

We now proceed as in Section 3.2. Let us first give an upper bound for the optimal value p∗ of
(MD-1d).

Lemma 3. For d > 1, the optimal value p∗ of (MD-1d) is bounded above by |E| − |E∗|, i.e.,

p∗ = inf
u∈Rm,v∈Rn

||M − uvT ||2W ≤ |E| − |E∗|. (3.2)

Proof. Let us build the following feasible solution (u, v) of (MD-1d) where (ub, vb) is an optimal
solution of (MBP) and (ud, vd) is defined as

ud(kij) =

{

dK if ub(i) = 0,
d1−K if ub(i) = 1,

and vd(kij) =

{

dK if vb(j) = 0,
d1−K if vb(j) = 1,

with K ∈ R and kij the index of the column of B1 and the row of B2 corresponding to the zero entry
(i, j) of Mb (i.e., (i, j) = (ikij

, jkij
)).

One can check that

(uvT ) ◦ W =

(

ubvb
T d1−KB1

d1−KB2 dIZ

)

,

where ◦ is the component-wise (or Hadamard) product between two matrices, so that

p∗ ≤ ||M − uvT ||2W = |E| − |E∗| + 2Z

d2(K−1)
, ∀K. (3.3)

Since d > 1, taking the limit K → +∞ gives the result.
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We now prove a property similar to Lemma 1 for any solution with objective value smaller that
|E|.

Lemma 4. Let d >
√

|E| and (i, j) be such that Mb(i, j) = 0, then the following holds for any pair
(u, v) such that ||M − uvT ||2W ≤ |E|:

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj |
)

≤
√

2 |E| 34
(

d −
√

|E|
) 1

2

. (3.4)

Proof. Without loss of generality we set ||ub||2 = ||vb||2 by scaling u and v without changing uvT .
Observing that

||ub||2||vb||2 −
√

|E| = ||ubv
T
b ||F − ||Mb||F ≤ ||Mb − ubv

T
b ||F ≤ ||M − uvT ||W ≤

√

|E|,

we have ||ub||2||vb||2 ≤ 2
√

|E|, and ||ub||2 = ||vb||2 ≤
√

2|E| 14 .
Assume Mb(i, j) is zero for some pair (i, j) and let k = kij denote the index of the corresponding
column of B1 and row of B2 (i.e., such that B1(i, k) = B2(k, j) = 1). By construction, ud(k)vd(k) has
to approximate d in the objective function. This implies (ud(k)vd(k) − d)2 ≤ |E| and then

ud(k)vd(k) ≥ d −
√

|E| > 0.

Suppose |ud(k)| is greater than |vd(k)| (the case |vd(k)| greater than |ud(k)| is similar), this implies

|ud(k)| ≥ (d − |E| 12 )
1

2 . Moreover ud(k)vj has to approximate zero in the objective function, since
B2(k, j) = 1, implying

(ud(k)vj − 0)2 ≤ |E| ⇒ |ud(k)vj | ≤
√

|E|.
Hence

|vj | ≤
√

|E|
|ud(k)| ≤

|E| 12
(

d −
√

|E|
) 1

2

, (3.5)

and since (max1≤p≤m |up|) is bounded by ||ub||2 ≤
√

2|E| 14 , the proof is complete.

One can now associate to any point with objective value smaller than |E| a biclique of Gb, the
graph generated by the biadjacency matrix Mb.

Corollary 3. Let d >
√

|E|, then for any pair (u, v) such that ||M − uvT ||2W ≤ |E|, the set

Ω(u, v) = I × J, with I = { i | ∃j s.t. |uivj | > β } and J = { j | ∃i s.t. |uivj| > β }, (3.6)

where β =
√

2 |E|
3
4

(

d−
√

|E|
) 1

2

, defines a biclique of Gb.

The next lemma gives a lower bound for the value of p∗.

Lemma 5. Let 0 < ǫ ≤ 1. For any value of parameter d that satisfies d > 8|E|
7
2

ǫ2
+ |E| 12 , the infimum

p∗ of (MD-1d) satisfies
|E| − |E∗| − ǫ < p∗.

Proof. If |E| = |E∗|, the result is trivial since p∗ = 0. Otherwise, suppose p∗ ≤ |E| − |E∗| − ǫ and let

β =
√

2 |E|
3
4

(

d−
√

|E|
) 1

2

. First observe that d > 8|E|
7
2

ǫ2
+ |E| 12 is equivalent to 2|E|β < ǫ. Then, by continuity

of (MD-1d), for any δ such that δ < ǫ, there exists a pair (u, v) such that

||Md − uvT ||2W ≤ |E| − |E∗| − δ.
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In particular, let us take δ = 2|E|β < ǫ. We can now proceed as for Lemma 2. By Corollary 3, Ω(u, v)

corresponds to a biclique of Gb, with at most |E∗| edges. Then, for β ≤ 1, i.e., for d ≥ 2|E| 32 + |E| 12
satisfied for 0 < ǫ ≤ 1,

(1 − β)2(|E| − |E∗|) ≤ ||M − uvT ||2W ≤ |E| − |E∗| − δ.

Dividing the above inequalities by |E| − |E∗| > 0, we obtain

1 − 2β < (1 − β)2 ≤ 1 − δ

|E| − |E∗| ≤ 1 − δ

|E| ⇒ δ < 2|E|β,

a contradiction.

Corollary 4. For any d > 8(mn)7/2 +
√

mn, M ∈ {0, 1, d}m×n, and W ∈ {0, 1}m×n, it is NP-hard to

find an approximate solution of rank-one (WLRA) with objective function accuracy 1 − 2
√

2(mn)7/4

(d−√
mn)1/2 .

Proof. Let d > 8(mn)7/2 +
√

mn, 0 < ǫ = 2
√

2(mn)7/4

(d−√
mn)1/2 < 1, and (ū, v̄) be an approximate solution

of (W-1d) with absolute error (1 − ǫ), i.e., p∗ ≤ p̄ = ||M − ūv̄T ||2W ≤ p∗ + 1 − ǫ. Lemma 5 applies

because d = 8(mn)7/2

ǫ2
+
√

mn ≥ 8(st)7/2

ǫ2
+
√

st ≥ 8|E|7/2

ǫ2
+ |E|1/2. Using Lemmas 3 and 5, the rest of the

proof is identical as the one of Theorem 1. Since the reduction from (MBP) to (MD-1d) is polynomial
(description of matrices W and M has polynomial length, since the increase in matrix dimensions
from Mb to M is polynomial), we conclude that finding such an approximate solution for (MD-1d) is
NP-hard.

We can now easily derive Theorem 2, which deals with the hardness of rank-one (WLRA) with a
bounded matrix M .

Proof of Theorem 2. Replacing M by M ′ = 1
dM in (MD-1d) gives an equivalent problem with

objective function multiplied by 1
d2 , since 1

d2 ||M − uvT ||2W = ||M ′ − uvT

d ||2W . Taking d = 25(mn)7/2 +√
mn in Corollary 4, we find that it is NP-hard to compute an approximate solution of rank-one

(WLRA) for M ∈ [0, 1]m×n and W ∈ {0, 1}m×n, and with objective function accuracy less than
1
d2

(

1 − 2
√

2(mn)7/4

(d−√
mn)1/2

)

= 1
2d2 ≥ 2−12(mn)−7.

4 Concluding Remarks

In this paper, we have studied the complexity of the weighted low-rank approximation problem
(WLRA), and proved that finding an approximate solution is NP-hard, already in the rank-one case,
both for positive and for binary weights (the latter also corresponding to low-rank matrix completion
with noise, or PCA with missing data).

Nevertheless, some questions remain open. In particular,

⋄ When W is the matrix of all ones, WLRA can be solved in polynomial-time. We have shown
that, when the ratio between the largest and the smallest entry in W is large enough, the problem
is NP-hard (Theorem 1). It would be interesting to investigate the gap between these two facts,
i.e., what is the minimum ratio of the entries of W so that WLRA is NP-hard?

⋄ When rank(W ) = 1, WLRA can be solved in polynomial-time (cf. Section 2) while it is NP-hard
for general matrix W (with rank up to min(m,n)). But what is the complexity of (WLRA) if
the rank of the weight matrix W is fixed and greater than one, e.g., if rank(W ) = 2?
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⋄ When data is missing, the rank-one matrix approximation problem is NP-hard in general. Nev-
ertheless, it has been observed [1] that when the given entries are sufficiently numerous, well
distributed in the matrix, and affected by a relatively low level of noise, the original uncorrupted
low-rank matrix can be recovered accurately, with a technique based on convex optimization
(minimization of the nuclear norm of the approximation, which can be done efficiently). It
would then be particularly interesting to analyze the complexity of the problem given additional
assumptions on the data matrix, for example on the noise distribution, and deal in particular
with situations related to applications.
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