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1 Introduction

The primary struggle among citizens in all advanced democracies is over the
distribution of economic resources. Income taxation, besides being a major
source of state funds, is one of the essential tools for solving such a struggle,
which makes it a matter of concern for politicians and economists alike.
The search for the perfect income tax structure is (and has been for a long
time) a milestone and even though some consensus has been reached (e.g.,
almost all countries in the world use statutory tax schedules specified only
in terms of the brackets and tax rates) the discussion is far from being over.1

In this paper, we approach this issue from a political economy perspective,
upon studying the political process in which tax methods are either chosen
directly by voters, according to majority rule, or via elections in a perfectly
representative democracy.

Academic interest in this area started to emerge after Foley (1967), who
analyzed the problem of voting over taxes in an endowment economy. Foley
focused on the case of flat taxes (with or without exemption; and allowing
or excluding for the existence of negative taxes) and showed that, for such
a class, there always exists a majority voting equilibrium, i.e., a (flat) tax
method that cannot be overturned by any other member of the class through
majority rule.2

In this paper, we plan to focus on the class of piece-wise linear tax
methods (rather than flat taxes) which, as mentioned above, seems to be
almost ubiquitous in advanced democracies worldwide. For such a class,
however, Foley’s result does not extend and a majority voting equilibrium
fails to exist. In other words, any piece-wise linear tax method can be
overturned by another piece-wise linear tax method through majority rule.
This is actually not more than another instance of Condorcet’s paradox of
voting, which is perhaps best exemplified by the problem of determining the
division of a cake by majority rule (or, equivalently, tax shares by majority

1In the 2008 US presidential election we had a recent instance of such a discussion.
President (then, Senator) Obama proposed a tax plan that would make the tax system
significantly more progressive by providing large tax breaks to those at the bottom of the
income scale and raising taxes significantly on upper-income earners. Senator McCain
instead advocated for a tax plan that would make the tax system more regressive, upon
providing relatively little tax relief to those at the bottom of the income scale while
providing huge tax cuts to households at the very top of the income distribution (e.g.,
Burman et al., 2008).

2Foley’s work mostly relies on verbal discussion. A more formal treatment of his model
(and some of his results) is provided by Gouveia and Oliver (1996).
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rule from a given initial distribution of endowments).3

Such a result might lead one to despair of ever achieving a voting equi-
librium for any democratic polity. Nevertheless, as Campbell (1975) puts
it, majority voting is never allowed to operate by itself without restraints
imposed by constitution and convention. We actually show that if we limit
the class of admissible methods in a meaningful way, albeit not very re-
strictive, the existence of a majority voting equilibrium is guaranteed. As a
matter of fact, under a mild assumption, we construct the precise equilib-
rium for any parameter configuration of the model and show an interesting
feature of it: any tax method within the class can be a majority voting
equilibrium, provided the predetermined level of aggregate fiscal revenue is
properly chosen.

The class of admissible methods we consider emerges as a generalization
of a method inspired by the Babylonian Talmud (e.g., O’Neill, 1982; Aumann
and Maschler, 1985). The principle underlying behind these methods is to
impose each taxpayer a burden of the same sort as that faced by the whole
society. Namely, if the overall tax burden is below a certain fraction of the
aggregate income, then no taxpayer can pay more than such a fraction of
her gross income. Similarly, if the burden is above a certain fraction of
the aggregate income, then no taxpayer can pay less than such a fraction
of her gross income. The class encompasses a whole non-countable set of
methods ranging from the “least” progressive (the needs-blind head tax) to
the “most” progressive (the incentives-blind leveling tax) piece-wise linear
tax methods. Thus, voters are confronted with a wide variety of choices to
select the best tax method, even if we restrict their options to this class.4

As we shall see later in the text, our modeling choice for this work
is somehow unconventional. More precisely, most of the contributions in
this area assume the existence of a continuum (rather than a finite set) of
taxpayers. The main reason for it is twofold. On the one hand, the aim of
modeling large (rather than small) elections. On the other hand, to allow
for the use of calculus and hence avoid some theoretical problems, such as
those resulting from the non-convexity of the individual voting choice set, or
from the fact that a change of a vote might make a discrete change in policy
(e.g., Alesina and Rosenthal, 1996). Nevertheless, we find some of those
problems interesting and hence believe that they should not be dismissed

3Hamada (1973) provides a general treatment regarding why cycling is ubiquitous for
this problem.

4Restricting to a one-parameter family of tax methods in which the parameter reflects
the degree of progressivity (or regressivity) of the method is a usual course of action in
taxation models (e.g., Bénabou, 2002).
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from the outset. That is the main reason why we opt in this paper for a
discrete modeling assumption. Another important reason to do so is the
intention to explore the existence of equilibrium in smaller elections, when
the tax problem refers to collecting a given amount of revenue out of a
small (and hence finite) community. This is also the spirit in part of the
literature to which this paper relates too. A notable instance is Young
(1988), which although not concerned with the political economy of income
taxation, could be considered as the seminal paper to analyze the principle
of equal sacrifice, and its connections with distributive justice (a recurrent
theme of this paper), in taxation.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the model. In Section 3, we provide our main result regarding the
existence of majority voting equilibrium for a large set of piece-wise linear
tax methods. In Section 4, we explicitly construct the equilibrium under an
additional condition. Finally, Section 5 concludes.

2 The model

We study taxation problems in a variable population model, first introduced
by Young (1988).5 The set of potential taxpayers, or agents, is identified by
the set of natural numbers N. Let N be the set of finite subsets of N, with
generic element N . For each i ∈ N , let yi ∈ R+ be i’s (taxable) income and
y ≡ (yi)i∈N the income profile. A (taxation) problem is a triple consisting
of a population N ∈ N , an income profile y ∈ RN

+ , and a tax revenue
T ∈ R+ such that

�
i∈N yi ≥ T . Let Y ≡

�
i∈N yi. To avoid unnecessary

complication, we assume Y =
�

i∈N yi > 0. Let DN be the set of taxation
problems with population N and D ≡ ∪N∈NDN .

Given a problem (N, y, T ) ∈ D, a tax profile is a vector x ∈ RN satisfying
the following three conditions: (i) for each i ∈ N , 0 ≤ xi ≤ yi, (ii)

�
i∈N xi =

T and (iii) for each i, j ∈ N , yi ≥ yj implies xi ≥ xj and yi − xi ≥ yj −
xj . We refer to (i) as boundedness, (ii) as balancedness and (iii) as order
preservation. A (taxation) method on D, R : D → ∪N∈NRN , associates
with each problem (N, y, T ) ∈ D a tax profile R (N, y, T ) for the problem.6

5O’Neill (1982) used earlier the same mathematical framework to analyze the prob-
lem of adjudicating conflicting claims. Readers are referred to Moulin (2002) or Thom-
son (2003) for extensive treatments of diverse problems (such as taxation, conflicting
claims, bankruptcy, cost sharing, or surplus sharing) fitting this framework.

6In essence, the problem under consideration is a distribution problem, in which the
total amount to be distributed is exogenous, and the issue is to determine methods pro-
viding an allocation for each admissible problem. There is another branch of the taxation
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Instances of methods are the head tax, which distributes the tax burden
equally, provided no agent ends up paying more than her income, the leveling
tax, which equalizes post-tax income across agents, provided no agent is
subsidized and the flat tax, which equalizes tax rates across agents.

All these methods are instances of piece-wise linear tax methods. For-
mally, a piece-wise linear tax method is a method associated to a vector
of brackets, rates and lump-sum levies. For each bracket, a given tax rate
is proposed and the corresponding lump-sum levies of the brackets are de-
signed so that the schedule moves continuously from one bracket to another.
More precisely, a method R is piece-wise linear if for each (N, y, T ) ∈ D there
exist sequences {αj , βj , λj}k

j=1 such that

(i) For each j = 1, . . . , k, αj , λj ∈ R+ and βj ∈ R;

(ii) For each j = 1, . . . , k − 1, λj ≤ λj+1;

(iii) For each j = 1, . . . , k, 0 ≤ αj ≤ 1.

(iv) For each j = 1, . . . , k − 1, αjλj + βj = αj+1λj + βj+1;

(v) For each j = 2, . . . , k, (1− αj)λj−1 ≥ βj ≥ −αjλj−1;

and, for each i ∈ N ,
Ri (N, y, T ) = αjyi + βj ,

where j is such that λj−1 ≤ yi ≤ λj .
Note that item (iii) above guarantees that every tax schedule has slope

less than one. Item (iv) guarantees that the path of taxes generated by the
method is continuous. Finally, item (v) guarantees that the tax payed by
each agent is neither negative nor higher than her pre-tax income.7

literature in which no reference to the amount of revenue to be raised is made (e.g., Mitra
and Ok, 1997). In such a branch, the basic problem is to determine a tax function yielding
the tax associated to each positive income level. An underlying assumption of the corre-
sponding models is to assume the existence of a non-countable set of agents (a reasonable
assumption only in the case of arbitrary large populations), which, as mentioned above,
allows the use of calculus. A more general approach encompassing both possibilities is
taken by Le Breton et al., (1996).

7Alternatively, if we do not impose item (v) in the parameter configuration of the
method R, we shall impose that for each i ∈ N ,

Ri (N, y, T ) = max{0, min{αjyi + βj , yi} = min{yi, max{αjyi + βj , 0},

where j is such that λj−1 ≤ yi ≤ λj , and will also deem the resulting method to be a
piece-wise linear method.
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We will analyze the problem in which agents vote for tax methods ac-
cording to majority rule. We assume that voters are self-interested: given
a pair of alternatives, a taxpayer votes for the alternative that gives her
the greatest post-tax income. We say that a method R is a majority voting
equilibrium for a set of methods S if, for any (N, y, T ) ∈ D, there is no other
method R� ∈ S such that, y−R� (N, y, T ) > y−R (N, y, T ) for the majority
of voters.

3 The existence of equilibrium

We start this section with a (non-surprising) negative result.

Theorem 1 There is no majority voting equilibrium for the family of piece-
wise linear tax methods.

Even though the technical proof of this result might be cumbersome,
its logic should be clear. It all amounts to realize that given a piece-wise
linear tax method, one can construct another (piece-wise linear) method
increasing taxes for a small group of taxpayers and reducing the burden for
all the others, while keeping the tax revenue constant. The argument, which
is even valid for two-piece linear methods, is similar to others used in related
models (e.g., Hamada, 1973; Marhuenda and Ortuño-Ort́ın, 1998).

A caveat is worth mentioning. If more than half of the agents are paying
zero taxes, we cannot reduce their burdens and thus the corresponding tax
allocation could not be defeated through majority rule by any other alloca-
tion. Nevertheless, there is no method guaranteeing that more than half of
the agents are paying zero taxes for any admissible problem (although there
certainly exist methods doing so for specific problems). The most extreme
case would be the leveling tax, which would always be the most preferred
method by the agent with the lowest income. This method, however, can
be defeated by other piece-wise linear methods in many problems (in which,
needless to say, there is not a majority of the population facing a zero tax
burden with the leveling tax).

Given the previous result, our aim now shifts to prove the existence of
a majority voting equilibrium for a sufficiently large family of piece-wise
linear tax methods. To do so, we start considering a (piece-wise linear)
method inspired by the Babylonian Talmud, implementing an old principle
of distributive justice by which each taxpayer should face a burden of the
same sort as that faced by the whole society. More precisely, if the overall tax
burden is below one half of the aggregate income (which could be considered
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as a psychological threshold), then no taxpayer can pay more than such a
fraction of her gross income. Similarly, if the burden is above one half of the
aggregate income, then no taxpayer can pay less than such a fraction of her
gross income. Formally,

For all (N, y, T ) ∈ D, and all i ∈ N ,

Ri (N, y, T ) =
�

min
�yi

2 , λ
�

if T ≤ Y
2

max
�yi

2 , yi − µ
�

if T ≥ Y
2

where λ > 0 and µ > 0 are chosen so that
�

i∈N Ri (N, y, T ) = T .

In the usual parlance of taxation, the “Talmud method” yields two pos-
sible types of tax schedules. If the aim is to collect a tax revenue below one
half of the aggregate income, the tax rate is one half up to some income
level (which is endogenously determined), and zero afterwards. If, on the
contrary, the tax revenue is above one half of the aggregate income, the tax
rate is one half first and then one. Thus, even though it is a well-justified
method on normative grounds (e.g., Moulin, 2002; Thomson, 2003), it seems
to be quite specific for real-life taxation purposes.

One way of generalizing the Talmud method would be by moving the
threshold (and the tax rate) in the above definition from one half to any
other possible fraction (of the aggregate and individual incomes). In doing
so, we would obtain a non-countable set of piece-wise linear methods ranging
from the leveling tax to the head tax (and having the Talmud method in
the middle).8 Those tax methods would also yield two possible types of tax
schedules that could be described similarly to those originating from the
Talmud method. More precisely, for tax revenues below a fraction θ of the
aggregate income, the tax rate would be θ up to some income level, and zero
afterwards. For tax revenues above such fraction, the tax rate would be θ
first and then one.9

In order to accommodate less restrictive methods too, while preserving
the principle behind the Talmud method, we allow for other minimum and
maximum tax rates, instead of always imposing zero and one for those val-
ues. More precisely, we consider tax methods yielding two possible types of
tax schedules; namely, for tax revenues below a fraction θ of the aggregate
income, the tax rate would be θ up to some income level, and θmin after-

8The resulting family of methods was studied, in the dual framework of bankruptcy
problems, by Moreno-Ternero and Villar (2006a).

9Note that the flat tax schedules would also be covered by those tax methods, although
the flat tax itself could not be considered a method of the resulting family.
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wards. For tax revenues above such fraction, the tax rate would be θ first
and then θmax. Formally, we have the next definition.

Definition 1 The family of generalized talmudic tax methods {Rθ}θ∈[θmin,θmax].

Let θmin, θmax ∈ [0, 1] be fixed and such that θmin < θmax. For each θ ∈
[θmin, θmax], we define the method Rθ as follows. For all (N, y, T ) ∈ D, and
all i ∈ N ,

Rθ
i (N, y, T ) =

�
min {θyi,max {θminyi + λ, 0}} if T ≤ θY
max {θyi,min {yi, θmaxyi − µ}} if T ≥ θY

where λ and µ are chosen so that
�

i∈N Rθ
i (N, y, T ) = T .10

In order to illustrate further the above definition, we describe the al-
gorithm by which tax burdens are allocated according to the (generalized
talmudic) method Rθ, as the revenue varies from zero to the aggregate in-
come of a given group of taxpayers. More precisely, let y be a given (gross)
tax profile such that y1 ≤ y2 ≤ · · · ≤ yn and imagine that the tax revenue T
moves from 0 to the aggregate income Y =

�n
i=1 yi. For T sufficiently small,

the revenue is only financed by n (the taxpayer with the highest income).
As T increases, the remaining taxpayers are sequentially asked to pay taxes
(once they are able to do so) at the tax rate θmin. This continues until all
taxpayers contribute a θmin fraction of their income. As T increases from
that point, equal taxation (for the increment) prevails until 1 (the taxpayer
with the lowest income) pays a fraction θ of her income. At that point,
1 stops contributing while equal contribution of each (revenue) increment
prevails among the other taxpayers. This process continues (making the
remaining taxpayers stop contributing, sequentially, once they contribute a
θ fraction of their income) until T = θY . The next increments of T are
faced by n until n − 1 (the taxpayer with the second highest income) can
contribute at the rate θmax, at which point she is invited to do so. As T
increases from there, the remaining taxpayers are also asked sequentially
(but now in the reverse ordering of incomes) to contribute at the rate θmax.
Once all agents are contributing at the rate θmax then equal taxation (for
the increment) prevails until 1 contributes with her whole income. From
there, equal taxation (for the increment) prevails for the remaining agents,
with the proviso that taxpayers contributing their whole income (obviously)
stop paying additional increments.

10For ease of exposition, we shall avoid to mention explicitly θmin and θmax, while
referring to each rule within the family, unless it is specifically needed.
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It turns out, as the next result shows, that the family of generalized
talmudic methods described above constitutes a rich domain of piece-wise
linear tax methods for which majority voting equilibrium exists.

Theorem 2 There is a majority voting equilibrium for the family of gener-
alized talmudic tax methods.

In order to prove Theorem 2, we need the following lemma, which is inter-
esting on its own, and whose proof appears in the appendix.

Lemma 1 Let 0 ≤ θmin ≤ θ1 ≤ θ2 ≤ θmax ≤ 1 and (N, y, T ) ∈ D. If
n denotes the agent in N with the highest income then Rθ1

n (N, y, T ) ≥
Rθ2

n (N, y, T ).

We also need to introduce the following concept:

A method R single-crosses R� if for each (N, y, T ) ∈ D, there exists i ∈ N
such that one of the following statements holds:

(i) Rj(N, y, T ) ≤ R�
j(N, y, T ) for all j such that yj ≤ yi and Rj(N, y, T ) ≥

R�
j(N, y, T ) for all j such that yj ≥ yi.

(ii) Rj(N, y, T ) ≥ R�
j(N, y, T ) for all j such that yj ≤ yi and Rj(N, y, T ) ≤

R�
j(N, y, T ) for all j such that yj ≥ yi.

The single-crossing property allows one to separate those agents who
benefit from the application of one method or the other, depending on the
rank of their incomes. It is well known that a sufficient condition for the
existence of a majority voting equilibrium is that voters exhibit intermedi-
ate preferences over the set of alternatives (e.g., Gans and Smart, 1996).
Thus, as we assume that voters are self-interested and therefore simply vote
according to the post-tax incomes that methods offer to them, it suffices
to show that, for any pair of values θ1, θ2 ∈ [θmin, θmax], Rθ1 single-crosses
Rθ2 . To do so, let 0 ≤ θmin ≤ θ1 ≤ θ2 ≤ θmax ≤ 1, with θmin < θmax, and
(N, y, T ) ∈ D be given. For ease of exposition, assume that N = {1, . . . , n}
and y1 ≤ y2 ≤ · · · ≤ yn. Then, it is enough to show that there exists some
i∗ ∈ N such that:

(i) Rθ1
i (N, y, T ) ≤ Rθ2

i (N, y, T ) for all i = 1, ..., i∗ and
(ii) Rθ1

i (N, y, T ) ≥ Rθ2
i (N, y, T ) for all i = i∗ + 1, ..., n.

We distinguish five cases:
Case 1: 0 ≤ T ≤ θmin(Y − ny1).
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In this case, the single-crossing property trivially follows as Rθ1 (N, y, T ) ≡
Rθ2 (N, y, T ).

Case 2: θmin(Y − ny1) < T ≤ θ1Y .
In this case, by the definition of the family of generalized talmudic meth-

ods, R
θj

i (N, y, T ) = min{θjyi, θminyi +λj}, for all i ∈ N and j = 1, 2, where
λ1 and λ2 are chosen so as to achieve feasibility. Let r1 be the smallest
non-negative integer in {0, ..., n} such that T ≤ θ1(

�r1
i=1 yi) + (n− r1)(θ1 −

θmin)yr1+1 and r2 the smallest non-negative integer in {0, ..., n} such that
T ≤ θ2(

�r2
i=1 yi) + (n − r2)(θ2 − θmin)yr2+1. It is straightforward to show

that r2 ≤ r1. Thus,

Rθ1 (N, y, T ) = (θ1y1, ..., θ1yr2 , ..., θ1yr1 , θminyr1+1 + λ1, ..., θminyn + λ1), and
Rθ2 (N, y, T ) = (θ2y1, ..., θ2yr2 , θminyr2+1 + λ2, ..., θminyr1+1 + λ2, ..., θminyn + λ2),

where λ1 =
T−θ1(

Pr1
i=1 yi)−θmin

“Pn
i=r1+1 yi

”

n−r1
and λ2 =

T−θ2(
Pr2

i=1 yi)−θmin

“Pn
i=r2+1 yi

”

n−r2
.

Consequently, Rθ1
i (N, y, T ) ≤ Rθ2

i (N, y, T ) for all i = 1, ..., r2 and, by
Lemma 1, Rθ1

i (N, y, T ) ≥ Rθ2
i (N, y, T ) for all i = r1 + 1, ..., n. To con-

clude the proof of this case, we distinguish three subcases:
Subcase 2.1: λ2 + θminyr2+1 < θ1yr2+1.
Then, i∗ = r2 + 1 and the single-crossing property holds.
Subcase 2.2: λ2 + θminyr1 ≥ θ1yr1 .
Then, i∗ = r1 + 1 and the single-crossing property holds.
Subcase 2.3: λ2 ∈ [(θ1 − θmin)yr2+1, (θ1 − θmin)yr1 ].
Then, there exists some k ∈ {r2+1, ..., r1−1} such that (θ1−θmin)yk+1 >

λ2 ≥ (θ1− θmin)yk. Thus, i∗ = k + 1 and the single-crossing property holds.
Case 3: θ1Y < T < θ2Y .
By the definition of the family of generalized talmudic methods, Rθ1

i (N, y, T ) =
max{θ1yi, θmaxyi−µ} and Rθ2

i (N, y, T ) = min{θ2yi, θminyi+λ} for all i ∈ N ,
where µ and λ are chosen so as to achieve feasibility. Let r1 be the small-
est non-negative integer in {0, ..., n − 1} such that T ≥ θ1Y + (θmax −
θ1)((

�n
i=r1+1 yi)− (n− r1)yr1+1). Furthermore, let r2 be the smallest non-

negative integer in {0, ..., n− 1} such that T ≤ θ2(
�r2

i=1 yi) + (n− r2)(θ2 −
θmin)yr2+1. It is straightforward to show that r2 ≤ r1. Thus,

Rθ1 (N, y, T ) = (θ1y1, ..., θ1yr1 , θmaxyr1+1 − µ, ..., θmaxyn − µ), and
Rθ2 (N, y, T ) = (θ2y1, ..., θ2yr2 , θminyr2+1 + λ, ..., θminyn + λ),

where λ =
T−θ2(

Pr2
i=1 yi)−θmin

“Pn
i=r2+1 yi

”

n−r2
and µ =

θ1(
Pr1

i=1 yi)+θmax

“Pn
i=r1+1 yi

”
−T

n−r1
.

Consequently, Rθ1
i (N, y, T ) ≤ Rθ2

i (N, y, T ) for all i = 1, ...,min{r1, r2}. To
conclude the proof of this case, we distinguish two subcases:
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Subcase 3.1: r1 ≥ r2.
Then, Rθ1

i (N, y, T ) ≤ Rθ2
i (N, y, T ) for all i = 1, ..., r2. By Lemma 1,

Rθ1
n (N, y, T ) ≥ Rθ2

n (N, y, T ). Let k be the smallest non-negative integer in
N such that Rθ1

k (N, y, T ) ≥ Rθ2
k (N, y, T ).11 Two options are then open.

If k ≥ r1 + 1, then θmaxyk − µ = Rθ1
k (N, y, T ) ≥ Rθ2

k (N, y, T ) = λ +
θminyk. Thus, (θmax − θmin)yk� ≥ µ + λ for all k� = k, ..., n, or equivalently,
Rθ1

k� (N, y, T ) ≥ Rθ2
k� (N, y, T ) for all k� = k, ..., n and the single-crossing

property follows. If, on the other hand, r2 + 1 ≤ k ≤ r1, then θ1yk =
Rθ1

k (N, y, T ) ≥ Rθ2
k (N, y, T ) = λ + θminyk. Thus, (θ1 − θmin)yk� ≥ λ for all

k� = k, ..., n. In particular, Rθ1
k� (N, y, T ) ≥ Rθ2

k� (N, y, T ) for all k� = k, ..., r1.
Now, as Rθ1

r1+1 (N, y, T ) = θmaxyr1+1−µ ≥ θ1yr1+1 ≥ λ+θminyr1+1 we obtain
that µ + λ ≤ (θmax − θmin)yr1+1 ≤ (θmax − θmin)yk� for all k� = r1 + 1, ..., n.
As a result, Rθ1

k� (N, y, T ) ≥ Rθ2
k� (N, y, T ) for all k� = k, ..., n, and the single-

crossing property follows.
Subcase 3.2: r1 < r2.
Then, Rθ1

i (N, y, T ) ≤ Rθ2
i (N, y, T ) for all i = 1, ..., r1. Furthermore, by

Lemma 1, Rθ1
n (N, y, T ) ≥ Rθ2

n (N, y, T ). Let k be the smallest non-negative
integer in N such that Rθ1

k (N, y, T ) ≥ Rθ2
k (N, y, T ). As before, we have two

options. If k ≥ r2 + 1, then θmaxyk − µ = Rθ1
k (N, y, T ) ≥ Rθ2

k (N, y, T ) =
λ+θminyk. Thus, yk�(θmax−θmin) ≥ µ+λ for all k� = k, ..., n, or equivalently,
Rθ1

k� (N, y, T ) ≥ Rθ2
k� (N, y, T ) for all k� = k, ..., n, and the single-crossing

property follows. If, on the other hand, r1 + 1 ≤ k ≤ r2, then, θmaxyk −µ =
Rθ1

k (N, y, T ) ≥ Rθ2
k (N, y, T ) = θ2yk. Thus, (θmax − θ2)yk� ≥ µ for all

k� = k, ..., n. In particular, Rθ1
k� (N, y, T ) ≥ Rθ2

k� (N, y, T ) for all k� = k, ..., r2.
Now, as Rθ2

r2+1 (N, y, T ) = λ + θminyr2+1 we know that λ ≤ (θ2− θmin)yr2+1.
As θ2yr2+1 ≤ θmaxyr2+1 − µ, it follows that λ + θminyr2+1 ≤ θmaxyr2+1 − µ
or, equivalently, that λ + µ ≤ (θmax − θmin)yr2+1 ≤ (θmax − θmin)yk� , for all
k� = r2+1, ..., n. As a result, Rθ1

k� (N, y, T ) ≥ Rθ2
k� (N, y, T ) for all k� = k, ..., n

and the single-crossing property follows.
Case 4: θ2Y ≤ T < θmax(Y − ny1) + ny1.
In this case, by the definition of the family of generalized talmudic meth-

ods, R
θj

i (N, y, T ) = max{θjyi, θmaxyi−µj}, for all i ∈ N and j = 1, 2, where
µ1 and µ2 are chosen so as to achieve feasibility. Let r1 be the smallest non-
negative integer in {0, ..., n} such that T ≥ θ1Y +(θmax−θ1)((

�n
i=r1+1 yi)−

(n − r1)yr1+1). Furthermore, let r2 be the smallest non-negative integer in
{0, ..., n} such that T ≥ θ2Y + (θmax − θ2)((

�n
i=r2+1 yi)− (n− r2)yr2+1). It

11Note that k ≥ r2.
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is straightforward to show that r2 ≤ r1. Thus,

Rθ1 (N, y, T ) = (θ1y1, ..., θ1yr2 , ..., θ1yr1 , θmaxyr1+1 − µ1, ..., θmaxyn − µ1), and
Rθ2 (N, y, T ) = (θ2y1, ..., θ2yr2 , θmaxyr2+1 − µ2, ..., θmaxyn − µ2),

where µ1 =
θ1(

Pr1
i=1 yi)+θmax

“Pn
i=r1+1 yi

”
−T

n−r1
and µ2 =

θ2(
Pr2

i=1 yi)+θmax

“Pn
i=r2+1 yi

”
−T

n−r2
.

By Lemma 1, Rθ1
n (N, y, T ) ≥ Rθ2

n (N, y, T ). Thus, µ1 ≤ µ2. Consequently,
Rθ1

i (N, y, T ) ≤ Rθ2
i (N, y, T ) for all i = 1, ..., r2 and Rθ1

i (N, y, T ) ≥ Rθ2
i (N, y, T )

for all i = r1 + 1, ..., n. Now, there are three subcases:
Subcase 4.1: µ2 < (θmax − θ1)yr2+1.
Then, i∗ = r1 + 1 and the single-crossing property holds.
Subcase 4.2: µ2 ≥ (θmax − θ1)yr1 .
Then, i∗ = r2 and the single-crossing property holds.
Subcase 4.3: µ2 ∈ [(θmax − θ1)yr2+1, (θmax − θ1)yr1 ].
Then, there exists some k ∈ {r2+1, ..., r1−1} such that (θmax−θ1)yk+1 >

µ2 ≥ (θmax− θ1)yk. Thus, i∗ = k +1 and the single-crossing property holds.
Case 5: T ≥ θmax(Y − ny1) + ny1.
In this case, the single-crossing property trivially follows as Rθ1 (N, y, T ) ≡

Rθ2 (N, y, T ).

It is worth mentioning that the above proof of Theorem 2 does not
extend to the whole domain of two-piece linear methods. To see this, take
the Talmud method (T ), and the method R

5
8 , for θmin = 1

4 and θmax = 1.
Let (N, y, T ) = ({1, 2, 3}, (4, 16, 20), 15). It is straightforward to show that
T (N, y, T ) =

�
2, 13

2 , 13
2

�
, whereas R

5
8 (N, y, T ) =

�
5
2 , 23

4 , 27
4

�
.

4 Further insights

The proof of Theorem 2 tells us that the majority voting equilibrium for the
family of generalized talmudic tax methods is precisely the method preferred
by the median voter, i.e., the median taxpayer. We now explore further
the properties of the equilibrium whose existence has been shown in the
previous section. In what follows, we make the following mild assumption,
which reflects a well-established empirical fact in advanced democracies.

Assumption 0. In each taxation problem, the median income is below the
mean income.

Our next result summarizes the main findings within this section. To
ease the exposition of its statement, we assume, without loss of generality,

11



that for each (N, y, T ) ∈ D, N = {1, . . . , n} with n ≥ 3 odd, and y1 ≤
y2 ≤ · · · ≤ yn. Let m = n+1

2 denote the median taxpayer of this problem.
Furthermore, let Y m =

�n
j=m yj − (n−m + 1)ym, and

θ∗ = max
�

θmin,
T − θmaxY m

Y − Y m

�
.

Theorem 3 If Assumption 0 holds, and θminY ≤ T ≤ θmaxY , then Rθ∗

is the majority voting equilibrium for the family of generalized talmudic tax
methods {Rθ}θ∈[θmin,θmax].

Proof. We start with a piece of notation. Let (N, y, T ) ∈ D be given in the
conditions described at the statement and let k ∈ N . Let us also consider
the following thresholds:

θk
1 = θmax +

T − θmaxY

ny1
,

θk
2 =

T − θmax(
�n

j=k yj − (n− k + 1)yk)
�k−1

j=1 yj + (n− k + 1)yk

,

θk
3 =

T − θmin(
�n

j=k yj − (n− k + 1)yk)
�k−1

j=1 yj + (n− k + 1)yk

,

θk
4 = θmin +

T − θminY

ny1
.

As θminY ≤ T ≤ θmaxY , it is straightforward to show that θk
1 ≤ θk

2 ≤ θk
3 ≤

θk
4 , and that θk

2 ≤ θmax and θk
3 ≥ θmin. It can actually be shown, after some

algebraic computations, that

Rθ
k (N, y, T ) =






θmaxyk + T−θmaxY
n if θmin ≤ θ ≤ θk

1

fk(θ) if θk
1 ≤ θ ≤ θk

2

θyk if θk
2 ≤ θ ≤ θk

3

gk(θ) if θk
3 ≤ θ ≤ θk

4

θminyk + T−θminY
n if θk

4 ≤ θ ≤ θmax,

(1)

where fk(·) and gk(·) are piece-wise linear decreasing functions.12 A graph-
ical illustration appears in Figure 1.

Let k now be the median agent, i.e., k = m. Then, by Assumption 0,
it follows that θmaxyk + T−θmaxY

n ≤ θminyk + T−θminY
n . As θk

3 ≥ θmin and
12Note that θ1

1 = θ1
2 and θ1

3 = θ1
4, whereas θn

2 = θn
3 . Thus, the taxpayers with the lowest

and highest incomes only have three pieces (two of them constant with respect to θ) in
their preferences.

12



θk
2 ≤ θmax, there would be nine possible cases depending of the relative

positions of the remaining θk-thresholds with respect to θmin and θmax. For
our purposes, and thanks to (1), they summarize in just two supra-cases.
If θk

2 < θmin then the minimum of Rθ
k (N, y, T ), and therefore the most

preferred method by agent k, is achieved for θ = θmin. If, otherwise, θk
2 ≥

θmin, then the minimum of Rθ
k (N, y, T ), and therefore the most preferred

method by agent k, is achieved for θ = θm
2 . This concludes the proof.

✻

✲

Rθ
k

θminyk + T−θminY
n

θmaxyk + T−θmaxY
n

θθ1
k θ2

k θ3
k θ4

k

❏
❏

❏
❏❏☞

☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞☞❏

❏
❏

❏❏

Figure 1: Individual preferences. This figure represents the tax burden pro-
posed by the method Rθ, at the problem (N, y, T ), for agent k ∈ N , as a function
of the parameter θ.13

It is straightforward to show that if T = θmaxY then θ∗ = θmax. Thus,
the range of θ∗ is the whole interval [θmin, θmax] and, hence, we have the
next corollary.

Corollary 1 Under Assumption 0, any method within the family of gen-
eralized talmudic tax methods {Rθ}θ∈[θmin,θmax] can be the majority voting
equilibrium for this family, for a given predetermined level of aggregate fis-
cal revenue θminY ≤ T ≤ θmaxY .

Theorem 3 provides, under a mild assumption, an explicit expression for
the majority voting equilibrium within the family of generalized talmudic tax

13For simplicity, we consider the second and fourth pieces as linear in the picture,
although they are indeed piece-wise linear, as mentioned above.
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methods, whose existence was shown in Theorem 2, as a function of the data
of the tax problem (namely, the group of taxpayers and the predetermined
level of aggregate fiscal revenue). Corollary 1 goes further and shows that,
for a given group of taxpayers, and a given method within the family, there
exists a predetermined level of aggregate fiscal revenue for which such a
method is the equilibrium. Thus, if there is freedom to determine the level
of aggregate fiscal revenue to be raised, a given method can be targeted
to become the majority voting equilibrium. Another way of reading this
corollary is as a neutrality condition for the family of generalized talmudic
tax methods. In other words, the corollary is saying that there is no bias in
favor, or against, any of the methods within the family as any of them can
arise as an equilibrium.

5 Concluding remarks

We have dealt in this paper with the issue of designing the most appropri-
ate income tax. There is a broad consensus worldwide about implementing
piece-wise linear tax methods and therefore we have endorsed such a restric-
tion in our (simple) modeling. A key aspect regarding the implementation of
a piece-wise linear tax method is the choice of the corresponding brackets,
rates and lump-sum levies. Here we have analyzed such aspect assuming
that the tax parameters are chosen directly by voters according to majority
rule. In spite of the impossibility result saying that if we allow agents to
vote freely for any piece-wise linear tax method, no equilibrium can come
out of it, we have obtained two positive results. First, we show that if we
restrict the universe in a meaningful way an equilibrium does exist. Sec-
ond, we show that, within such a restricted domain, basically any method
can be the majority voting equilibrium, upon selecting precisely the level of
aggregate fiscal revenue.

Our results also hold for the case of a perfectly representative democ-
racy in which tax methods arise as a result of political competition.14 More
precisely, assume that there are two parties running in an election and that
competition occurs only over tax policies. Given a pair of alternative poli-
cies, a taxpayer votes for the one she prefers (i.e., the one that gives her
the greatest post-tax income). If she is indifferent, she votes for each policy
with probability one-half. A political equilibrium would then be defined as
a Nash equilibrium of the resulting game played by the two parties, where

14See, for instance, Roemer (1999) for a general analysis of the role of political compe-
tition in the design of income taxes.
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they share a common policy space, and in which their payoff functions are
their probabilities of victory (that obviously depend on their policy choices).
Under these conventions, one could easily mimic the results of this paper
replacing the concept of majority rule equilibrium by that of political equi-
librium and obtaining that both parties cater to the median voter.

The restriction to piece-wise linear tax methods has not been our only
assumption in the model. We have also assumed the existence of a finite set
of taxpayers, in contrast to most of the related literature, where it seems
customary to deal with taxes in a calculus framework. We have actually
eschewed any reference to tax functions and presented our proofs for pre-tax
and post-tax vectors. It turns out that simple inequalities, dispensing with
any differentiability assumption, have shown to be powerful enough (and
mathematically elegant) to prove our results. Our modeling choice has also
allowed us to analyze interesting features that are normally bypassed in this
area (such as the effect that a change of a vote might have over policies, or,
more generally, the behavior of voters in small elections) because of dealing
with a calculus framework.

We have also imposed a constraint on the tax structure indicating that
there is a predetermined level of aggregate fiscal revenue that has to be
raised. This is a standard feature of both optimal tax models and voting
models (e.g., Romer, 1975). On the other hand, we have assumed that
labor is perfectly inelastically supplied. Nevertheless, such assumption could
be easily relaxed. In a more general model in which agents would have
preferences over consumption and leisure, the preferred tax schedule of the
median voter would also be the majority voting equilibrium, provided both
preferences and tax schedules satisfy the single-crossing property (e.g., Gans
and Smart, 1996). Minor restrictions (e.g., assuming both consumption and
leisure are normal goods) would suffice to guarantee that preferences are
single-crossing, and hence our results would still be relevant in this context.

To conclude, it is worth mentioning that our result regarding the exis-
tence of majority voting equilibrium offers as a byproduct an implication
over the distributive power of the methods within the domain being consid-
ered. More precisely, and as a consequence of the single-crossing property
they exhibit, it also holds that the methods within the domain are com-
pletely ranked according to the so-called Lorenz dominance criterion, the
most fundamental criterion of income inequality.15

15Moreno-Ternero and Villar (2006b) prove this result directly for the case in which
θmin = 0 and θmax = 1.
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6 Appendix

Proof of Lemma 1
We distinguish five cases:
Case 1: 0 ≤ T ≤ θmin(Y − ny1).
In this case, the statement trivially follows as Rθ1 (N, y, T ) ≡ Rθ2 (N, y, T ).
Case 2: θmin(Y − ny1) < T ≤ θ1Y .
In this case, by the definition of the family of generalized talmudic meth-

ods, R
θj

i (N, y, T ) = min{θjyi, θminyi +λj}, for all i ∈ N and j = 1, 2, where
λ1 and λ2 are chosen so as to achieve feasibility. Let r1 be the smallest
non-negative integer in {0, ..., n} such that T ≤ θ1(

�r1
i=1 yi) + (n− r1)(θ1 −

θmin)yr1+1 and r2 the smallest non-negative integer in {0, ..., n} such that
T ≤ θ2(

�r2
i=1 yi) + (n − r2)(θ2 − θmin)yr2+1. It is straightforward to show

that r2 ≤ r1. Thus,

Rθ1 (N, y, T ) = (θ1y1, ..., θ1yr2 , ..., θ1yr1 , θminyr1+1 + λ1, ..., θminyn + λ1), and
Rθ2 (N, y, T ) = (θ2y1, ..., θ2yr2 , θminyr2+1 + λ2, ..., θminyr1+1 + λ2, ..., θminyn + λ2),

where λ1 =
T−θ1(

Pr1
i=1 yi)−θmin

“Pn
i=r1+1 yi

”

n−r1
and λ2 =

T−θ2(
Pr2

i=1 yi)−θmin

“Pn
i=r2+1 yi

”

n−r2
.

Consequently, Rθ1
i (N, y, T ) ≤ Rθ2

i (N, y, T ) for all i = 1, ..., r2. Assume,
by contradiction, that Rθ1

n (N, y, T ) < Rθ2
n (N, y, T ), i.e., λ1 < λ2. Then,

Rθ1
i (N, y, T ) < Rθ2

i (N, y, T ) for all i = r1 + 1, ..., n. Finally, let k ∈
{r2+1, ..., r1−1}. Then, Rθ1

k (N, y, T ) = θ1yk ≤ θminyk+λ1 < θminyk+λ2 =
Rθ2

k (N, y, T ). Thus,

T =
n�

i=1

Rθ1
i (N, y, T ) <

n�

i=1

Rθ2
i (N, y, T ) = T,

which represents a contradiction.
Case 3: θ1Y < T < θ2Y .
By the definition of the family of generalized talmudic methods, Rθ1

i (N, y, T ) =
max{θ1yi, θmaxyi−µ} and Rθ2

i (N, y, T ) = min{θ2yi, θminyi+λ} for all i ∈ N ,
where µ and λ are chosen so as to achieve feasibility. Let r1 be the small-
est non-negative integer in {0, ..., n − 1} such that T ≥ θ1Y + (θmax −
θ1)((

�n
i=r1+1 yi)− (n− r1)yr1+1). Furthermore, let r2 be the smallest non-

negative integer in {0, ..., n− 1} such that T ≤ θ2(
�r2

i=1 yi) + (n− r2)(θ2 −
θmin)yr2+1. It is straightforward to show that r2 ≤ r1. Thus,

Rθ1 (N, y, T ) = (θ1y1, ..., θ1yr1 , θmaxyr1+1 − µ, ..., θmaxyn − µ), and
Rθ2 (N, y, T ) = (θ2y1, ..., θ2yr2 , θminyr2+1 + λ, ..., θminyn + λ),
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where λ =
T−θ2(

Pr2
i=1 yi)−θmin

“Pn
i=r2+1 yi

”

n−r2
and µ =

θ1(
Pr1

i=1 yi)+θmax

“Pn
i=r1+1 yi

”
−T

n−r1
.

Consequently, Rθ1
i (N, y, T ) ≤ Rθ2

i (N, y, T ) for all i = 1, ...,min{r1, r2}. As-
sume, by contradiction, that Rθ1

n (N, y, T ) < Rθ2
n (N, y, T ), i.e., (θmax −

θmin)yn < µ + λ. It follows from here that (θmax − θmin)yk < µ + λ for
all k ∈ N . Thus, Rθ1

i (N, y, T ) < Rθ2
i (N, y, T ) for all i = max{r1, r2}, ..., n.

Finally, let k ∈ {min{r1, r2}+ 1, ...,max{r1, r2}− 1}.
If r1 < r2 then Rθ1

k (N, y, T ) = θmaxyk−µ ≥ θ1yk whereas Rθ2
k (N, y, T ) =

θ2yk ≤ θminyk + λ. Thus,

Rθ1
k (N, y, T ) = θmaxyk − µ

< θmaxyk − (θmax − θmin)yn + λ

≤ θmaxyk − θmaxyn + θ2yn

≤ θ2yk

= Rθ2
k (N, y, T ) .

If r1 > r2 then Rθ1
k (N, y, T ) = θ1yk ≥ θmaxyk−µ whereas Rθ2

k (N, y, T ) =
λ + θminyk ≤ θ2yk. Thus,

Rθ1
k (N, y, T ) = θ1yk

≤ θ1yn − θmin(yn − yk)
≤ (θmax − θmin)yn − µ

< θminyk + λ

= Rθ2
k (N, y, T ) .

We have therefore shown that, in any case, Rθ1
k (N, y, T ) < Rθ2

k (N, y, T )
for all k ∈ {min{r1, r2}+ 1, ...,max{r1, r2}− 1}. Thus,

T =
n�

i=1

Rθ1
i (N, y, T ) <

n�

i=1

Rθ2
i (N, y, T ) = T,

which represents a contradiction.
Case 4: θ2Y ≤ T < θmax(Y − ny1) + ny1.
In this case, by the definition of the family of generalized talmudic meth-

ods, R
θj

i (N, y, T ) = max{θjyi, θmaxyi−µj}, for all i ∈ N and j = 1, 2, where
µ1 and µ2 are chosen so as to achieve feasibility. Let r1 be the smallest non-
negative integer in {0, ..., n} such that T ≥ θ1Y +(θmax−θ1)((

�n
i=r1+1 yi)−

(n − r1)yr1+1). Furthermore, let r2 be the smallest non-negative integer in
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{0, ..., n} such that T ≥ θ2Y + (θmax − θ2)((
�n

i=r2+1 yi)− (n− r2)yr2+1). It
is straightforward to show that r2 ≤ r1. Thus,

Rθ1 (N, y, T ) = (θ1y1, ..., θ1yr2 , ..., θ1yr1 , θmaxyr1+1 − µ1, ..., θmaxyn − µ1),
Rθ2 (N, y, T ) = (θ2y1, ..., θ2yr2 , θmaxyr2+1 − µ2, ..., θmaxyn − µ2),

where µ1 =
θ1(

Pr1
i=1 yi)+θmax

“Pn
i=r1+1 yi

”
−T

n−r1
and µ2 =

θ2(
Pr2

i=1 yi)+θmax

“Pn
i=r2+1 yi

”
−T

n−r2
.

Consequently, Rθ1
i (N, y, T ) ≤ Rθ2

i (N, y, T ) for all i = 1, ..., r2. Assume,
by contradiction, that Rθ1

n (N, y, T ) < Rθ2
n (N, y, T ), i.e., µ1 > µ2. Then,

Rθ1
i (N, y, T ) < Rθ2

i (N, y, T ) for all i = r1 + 1, ..., n. Finally, let k ∈
{r2 + 1, ..., r1 − 1}. Then, Rθ1

k (N, y, T ) = θ1yk ≤ θ2yk ≤ θmaxyk − µ2 =
Rθ2

k (N, y, T ). Thus,

T =
n�

i=1

Rθ1
i (N, y, T ) <

n�

i=1

Rθ2
i (N, y, T ) = T,

which represents a contradiction.
Case 5: T ≥ θmax(Y − ny1) + ny1.
In this case, the statement trivially follows as Rθ1 (N, y, T ) ≡ Rθ2 (N, y, T ).
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