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Abstract 
 

Nonnegative matrix factorization (NMF) is a data analysis technique based on the approximation of a 
nonnegative matrix with a product of two nonnegative factors, which allows compression and interpretation 
of nonnegative data. 
In this paper, we study the case of rank-one factorization and show that when the matrix to be factored is not 
required to be nonnegative, the corresponding problem (R1NF) becomes NP-hard. This sheds new light on 
the complexity of NMF since any algorithm for fixed-rank NMF must be able to solve at least implicitly such 
rank-one subproblems. 
Our proof relies on a reduction of the maximum edge biclique problem to R1NF. We also link stationary 
points of R1NF to feasible solutions of the biclique problem, which allows us to design a new type of biclique 
finding algorithm based on the application of a block-coordinate descent scheme to R1NF. We show that this 
algorithm, whose algorithmic complexity per iteration is proportional to the number of edges in the graph, is 
guaranteed to converge to a biclique and that it performs competitively with existing methods on random 
graphs and text mining datasets. 
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1 Introduction

(Approximate) Nonnegative matrix factorization (NMF) is the problem of approximating a given
nonnegative matrix by the product of two low-rank nonnegative matrices: given a m× n nonnegative
real matrix M ∈ Rm×n

+ and a factorization rank r, one has to compute two nonnegative matrices
V ≥ 0 and W ≥ 0 of dimensions m× r and r × n such that

M ≈ V W . (1.1)

Typically the quality of the approximation is measured by the Frobenius norm1 of the residual error
matrix, and one tries to solve:

min
V ∈Rm×r,W∈Rr×n

||M − V W ||2F such that V ≥ 0, W ≥ 0. (NMF)

This problem was first introduced in 1994 by Paatero and Tapper [26], and more recently received
a considerable interest after the publication of two papers by Lee and Seung [21, 22]. It is now well
established that NMF is useful in the framework of compression and interpretation of nonnegative
data ; it has for example been applied in analysis of image databases, text mining, interpretation
of spectra, computational biology and many other applications (see [2, 8, 9] and references therein).
Unfortunately (NMF) is a NP-hard optimization problem [29] and therefore we cannot expect to solve
it up to global optimality in a reasonable computational time. Therefore most practical algorithms
proposed to find approximate solutions of (NMF), based on iterative optimization schemes (see, e.g.,
[2, 3, 5, 6, 9, 14, 19, 23]), offer no guarantee on the global optimality of the solutions they provide.
How can one interpret the outcome of a NMF? Assume each column M:j of matrix M represents an
element of a data set: expression (1.1) can be equivalently written as

M:j ≈
�

k

V:kWkj , ∀j, (1.2)

where each element M:j is decomposed into a nonnegative linear combination (with weights Wkj)
of nonnegative basis elements ({V:k}, the columns of V ). Nonnegativity of V allows interpretation
of the basis elements in the same way as the original nonnegative elements in M , which is crucial
in applications where the nonnegativity property is a requirement (e.g., where elements are images
described by pixel intensities or texts represented by vectors of word counts). Moreover, nonnegativity
of the weight matrix W corresponds to an essentially additive reconstruction which leads to a part-
based representation: basis elements will represent similar parts of the columns of M . Sparsity is
another important consideration: finding sparse factors improves compression and leads to a better
part-based representation of the data [18]. In particular, when dealing with sparse matrices, NMF
can be interpreted as a biclustering model, see [10, 20] and references therein. In fact, each rank-
one factor of the decomposition will correspond to a dense rectangular submatrix of M (a bicluster),
enabling NMF to detect interactions between columns and rows of the matrix M (e.g., in text mining
applications, NMF extracts closely related sets of texts and words [11]).

In the special case where we seek a rank-one factorization (i.e. when r = 1), NMF is known
to be polynomially solvable (using the Eckart-Young and Perron-Frobenius Theorems, it reduces to
computing the dominant left and right singular vectors). The central problem studied in this paper,
called rank-one nonnegative factorization (R1NF), is an extension of rank-one NMF where the matrix
to be approximated by the outer product of two nonnegative vectors is now allowed to contain negative
elements.

R1NF is introduced in Section 2, where it is shown that allowing negative elements in the matrix
transforms the polynomially solvable rank-one NMF problem into a NP-hard problem. The reduction

1||A||F =

��
i,j A2

ij .
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used on the proof is based on the problem of finding a maximum edge biclique in a bipartite graph.
Because any algorithm designed to solve NMF must at least implicitly solve R1NF problems, this
hardness result sheds new light on the limitations of NMF algorithms and the complexity of NMF
when the factorization rank r is fixed.

In Section 3, stationary points of the R1NF problem used in the above-mentioned reduction are
shown to coincide with bicliques of the corresponding graph. Building on that fact, Section 4 introduces
a new type of biclique finding algorithm that relies on the application of a simple nonlinear optimization
scheme (block-coordinate descent) to the equivalent R1NF problem considered earlier, which only
requires for each iteration a number of operations proportional to the number of edges of the graph.
This method is then compared to a greedy heuristic and an existing algorithm [12] on some synthetic
and text mining datasets, and is shown to perform competitively.

2 Rank-one Nonnegative Factorization (R1NF)

2.1 Motivation

Solving (NMF) amounts to finding r nonnegative rank-one factors V:kWk:, each having to satisfy the
following equality as well as possible

V:kWk: ≈ M −
�

i�=k

V:kWk:
.= Rk � 0 ∀k,

i.e. each of them should be the best possible nonnegative rank-one approximation of the corresponding
residual matrix, denoted Rk. It is important to notice here that, unlike input matrix M , matrices Rk

can contain negative elements. Therefore, any NMF algorithm has to solve, at least implicitly, the
following subproblems

min
V:k∈Rm,Wk:∈Rn

||M − V W ||2F = ||Rk − V:kWk:||2F such that V:k ≥ 0, Wk: ≥ 0, (2.1)

for each k. We may wonder whether theses subproblems can be solved efficiently, i.e., ask ourselves

Is it possible to compute efficiently the best rank-one nonnegative approximation of a ma-
trix which is not necessarily nonnegative?

An interesting observation is that computing the globally2 optimal value of V:k for a given value of
Wk: can be done in closed-form (and similarly for computing the optimal value of Wk: for a fixed V:k):

V
∗
:k = argminV:k≥0 ||Rk − V:kWk:||2F = max

�
0,

RkW
T
k:

||Wk:||22

�
, (2.2)

W
∗
k: = argminWk:≥0 ||Rk − V:kWk:||2F = max

�
0,

V T
:k Rk

||V:k||22

�
. (2.3)

One can therefore try to solve (2.1) and, more generally, (NMF) by updating successively the columns
of V and rows of W . This scheme, which amounts to a block-coordinate descent method, was proposed
by Cichocki et al. [5] and called hierarchical alternating least squares (HALS) (see also [4, 17]). It
has been observed to work remarkably well in practice, and in particular it clearly outperforms the
standard multiplicative updates (MU) of Lee and Seung [22].

2
Indeed, each of these two subproblems is convex.
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2.2 Definition of R1NF and Implications for NMF

In order to shed some light on the above question, we define the problem of rank-one nonnegative
factorization3 (R1NF) to be the variant of rank-one NMF where the matrix to be factorized can be
any real matrix, i.e., is not necessarily nonnegative. Formally, given an m× n real matrix R ∈ Rm×n

+ ,
one has to find a nonnegative column vector v ∈ Rm and a nonnegative row vector w ∈ Rn such that
the nonnegative rank-one product4 vw is the best possible approximation (in the Frobenius norm) of
matrix R:

min
v∈Rm,w∈Rn

||R− vw||2F such that v ≥ 0, w ≥ 0. (R1NF)

The next subsection shows that, in contrast with standard rank-one NMF, this problem is NP-hard,
which provides the following new insights about the NMF problem:

• We cannot expect to be able to solve subproblems (2.1) efficiently up to global optimality, and
the HALS algorithm most probably cannot be improved with a better scheme for successively
computing rank-one factors V:kWk: arising in (2.1). More generally, any algorithm for NMF
cannot expect to solve at each iteration a subproblem where a given column of V:k and its
corresponding row Wk: are to be optimized simultaneously which shows that, in that sense, the
partition of variables for block-coordinate schemes such as alternative nonnegative least squares
(ANLS, optimizing V and W alternatively) [20] and (implicitly) HALS is best possible.

• Recall that the NP-hardness result characterizing NMF requires both the dimensions of matrix
M and the factorization rank r of M increase, and that the complexity of NMF for a fixed rank r

is currently not known (except5 in the polynomially solvable rank-one case). Our hardness result
on (R1NF) therefore suggests that NMF is also a difficult problem for any fixed rank r ≥ 2.
Indeed, even if one was given the optimal solution of a NMF problem except for a single rank-one
factor, it is not guaranteed that one would be able to find this last factor in polynomial-time,
since the corresponding residual matrix is not necessarily nonnegative.

2.3 Complexity of R1NF and the Maximum Edge Biclique Problem in Bipartite

Graphs

In this section, we show how the optimization version of the maximum edge biclique problem (MB)
can be formulated as a specific rank-one nonnegative factorization problem (R1NF-MB). Since the
decision version of (MB) is NP-complete [27], this implies that rank-one nonnegative factorization
(R1NF) is in general NP-hard.

A bipartite graph Gb is a graph whose vertices can be divided into two disjoint sets V1 and V2 such
that there is no edge between two vertices in the same set

Gb = (V,E) =
�
V1 ∪ V2, E ⊆ (V1 × V2)

�
.

A biclique Kb is a complete bipartite graph, i.e., a bipartite graph where all the vertices are connected

Kb = (V �
, E

�) =
�
V
�
1 ∪ V

�
2 , E

� = (V �
1 × V

�
2)

�
.

3
This terminology has already been used for the problem of finding a symmetric nonnegative factorization, i.e., one

where V=W, but we assign it a different meaning in this paper.
4
In the sequel, it is always assumed that v and w are respectively a column and a row vector, i.e. that the rank-one

matrix vw is equal to the outer product of v and w.
5
In fact, testing whether a nonnegative matrix admits a rank-two nonnegative factorization can also be done in

polynomial time [7], but, when the answer is negative, finding the best possible rank-two approximate nonnegative

factorization has unknown complexity status.
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The so-called maximum edge biclique problem in a bipartite graph Gb = (V,E) is the problem of
finding a biclique Kb = (V �, E�) in Gb (i.e., V � ⊆ V and E� ⊆ E) maximizing the number of edges.
The decision problem: Given B, does Gb contain a biclique with at least B edges? has been shown to
be NP-complete [27], and the corresponding optimization problem is at least NP-hard.

Let Mb ∈ {0, 1}m×n be the biadjacency matrix of the unweighted bipartite graph Gb = (V1∪V2, E)
with V1 = {s1, . . . sm} and V2 = {t1, . . . tn}, i.e., Mb(i, j) = 1 if and only if (si, tj) ∈ E. We denote
by |E| the cardinality of E, i.e., the number of edges in Gb; note that |E| = ||Mb||2F . The set of zero
values will be denoted Z = {(i, j) |Mb(i, j) = 0}, and its cardinality |Z|, with |E| + |Z| = mn. With
this notation, the maximum biclique problem in Gb can be formulated as

min
v,w

||Mb − vw||2F

viwj ≤ Mb(i, j), ∀i, j, (MB)
v ∈ {0, 1}m

, w ∈ {0, 1}n
.

In fact, one can check easily that this objective is equivalent to maxv,w
�

ij viwj since Mb, v and w

are binary: instead of maximizing the number of edges inside the biclique, one minimizes the number
of edges outside.
Feasible solutions of (MB) correspond to bicliques of Gb. We will be particularly interested in maximal
bicliques, which are bicliques not contained in a larger biclique.

The corresponding rank-one nonnegative factorization problem is defined as

min
v∈Rm,w∈Rn

||Md − vw||2F such that v ≥ 0, w ≥ 0 (R1NF-MB)

where Md is the matrix Mb where the zero values have been replaced by −d, i.e.

Md = (1 + d)Mb − d1m×n, d > 0, (2.4)

and 1m×n is the matrix of all ones with dimension m × n. Although (R1NF-MB) is a continuous
optimization problem, we are going to show that, for a sufficiently large value of d, any of its opti-
mal solutions has to coincide with a binary optimal solution of the corresponding (discrete) biclique
problem (MB), which will then imply NP-hardness of (R1NF).
Intuitively, if a −d entry of Md is approximated by a positive value, say p, the corresponding term
in the squared Frobenius norm of the error is d2 + 2pd + p2. As d increases, it becomes more and
more costly to approximate −d by a positive number and we will show that, for d is sufficiently
large, negatives values of Md have to be approximated by zeros. Since the remaining values (not
approximated by zeros) are all ones, the optimal rank-one solution will be binary.

From now on, we say that a solution (v, w) coincides with another solution (v�, w�) if and only if
vw = v�w� (i.e., if and only if v� = λv and w� = λ−1w for some λ > 0). We also let M+ = max(0, M),
M− = max(0,−M), min(M) = mini,j(Mij) and ||M ||2 be the standard matrix 2-norm of M , i.e.
||M ||2 = maxx∈Rn,||x||2=1 ||Mx||2 = σmax(M) where σmax(M) is the maximum singular value of M .

Lemma 1. Any optimal rank-one approximation with respect to the Frobenius norm of a matrix M

for which min(M) ≤ −||M+||F contains at least one nonpositive entry.

Proof. If M = 0, the result is trivial. If not, we have min(M) < 0 since min(M) ≤ −||M+||F . Suppose
now (v, w) > 0 is a best rank-one approximation of M . Therefore, since the negative values of M are
approximated by positive ones and since M has at least one negative entry, we have

||M − vw||2F > ||M−||2F . (2.5)
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By the Eckart-Young theorem, the optimal rank-one approximation vw must satisfy

||M − vw||2F = ||M ||2F − σmax(M)2 = ||M ||2F − ||M ||22 .

Clearly,
||M ||2F = ||M+||2F + ||M−||2F and ||M ||22 ≥ min(M)2

so that we can write

||M − vw||2F ≤ ||M+||2F + ||M−||2F −min(M)2 ≤ ||M−||F

which is in contradiction with (2.5).

We will need to use the following well-known result concerning (unconstrained) low-rank approxi-
mations (see, e.g., [17, p. 29]).

Lemma 2. The local minima of the best rank-one approximation problem with respect to the Frobenius
norm are global minima.

We can now state the main result about the equivalence of (R1NF-MB) and (MB).

Theorem 1. For d ≥
�

|E|, any optimal solution (v,w) of (R1NF-MB) coincides with an optimal
solution of (MB), i.e., vw is binary and vw ≤ Mb.

Proof. We focus on the entries of vw which are positive and define their support as

K =
�

i ∈ {1, 2, . . . ,m}
��� vi > 0

�
and L =

�
j ∈ {1, 2, . . . , n}

��� wj > 0
�

. (2.6)

We also define v� = v(K), w� = w(L) and M �
d = Md(K, L) to be the subvector and submatrix with

indexes in K, L and K ×L. Since (v, w) is optimal for Md, (v�, w�) must be optimal for M �
d. Suppose

there is a −d entry in M �
d, then

min(M �
d) = −d ≤ −

�
|E| = −||(Md)+||F ≤ −||(M �

d)+||F ,

so that Lemma 1 holds for M �
d. Since (v�, w�) is positive (i.e., it is located inside the feasible domain)

and is an optimal solution of (R1NF-MB) for M �
d, (v�, w�) is a local minimum of the unconstrained

problem, i.e., the problem of best rank-one approximation. By Lemma 2, this must be a global
minimum. This is a contradiction with Lemma 1: (v�, w�) should contain at least one nonpositive
entry. Therefore M �

d does not contain any −d entry, and we have M �
d = 1|K|×|L| which implies than

v�w� = M �
d by optimality (it is the unique rank-one solution v�w� with objective value equals to zero)

and finally allows to conclude that vw is binary and vw ≤ Mb.

We have just proven the following theorem:

Theorem 2. Rank-one nonnegative factorization (R1NF) is NP-hard.

3 Stationary Points of (R1NF-MB)

We have shown that optimal solutions of (R1NF-MB) coincide with optimal solutions of (MB) for d ≥�
|E|, whose computation is NP-hard. In this section, we focus on stationary points of (R1NF-MB)

instead: we show how they are related to the feasible solutions of (MB). This result will be used in
Section 4 to design a new type of biclique finding algorithm.
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3.1 Definitions and Notations

The pair (v, w) is a stationary point for problem (R1NF-MB) if and only if it satisfies its first-order
optimality conditions, i.e. if and only if

v ≥ 0, µ = (vw −Md)wT ≥ 0 and v ◦ µ = 0, (3.1)

w ≥ 0, λ = v
T (vw −Md) ≥ 0 and w ◦ λ = 0, (3.2)

where ◦ denotes the component-wise multiplication. Of course, we are only interested in nontrivial
solutions and, assuming that v �= 0 and w �= 0, one can check that conditions (3.1)-(3.2) are equivalent
to

v = max
�
0,

Mdw
T

||w||22

�
and w = max

�
0,

vT Md

||v||22

�
. (3.3)

We define three sets of rank-one matrices:

1. Given a positive real number d, Sd is the set of nontrivial stationary points of (R1NF-MB), i.e.6

Sd = {vw ∈ Rm×n
0 | (v, w) satisfies (3.3)} ;

2. F is the set of feasible solutions of (MB), i.e.

F = {vw ∈ Rm×n | (v, w) is a feasible for (MB)},

3. B is the set of maximal bicliques of (MB), i.e., vw ∈ B if and only if vw ∈ F and vw coincides
with a maximal biclique.

3.2 Stationarity of Maximal Bicliques

The next theorem states that, for d sufficiently large, the only nontrivial feasible solutions of (MB)
that are stationary points of (R1NF-MB) are the maximal bicliques.

Theorem 3. For d > max(m, n)− 1, F ∩ Sd = B.

Proof. Let show that vw ∈ B if and only if vw ∈ F and vw ∈ Sd. By definition, vw belongs to B if
and only if vw belongs to F and is maximal, i.e.,

(*) �i such that vi = 0 and Md(i, j) = 1,∀j s.t. wj �= 0,

(**) �j such that wj = 0 and Md(i, j) = 1,∀i s.t. vi �= 0.

Since vw is binary and v �= 0, the nonzero entries of w must be equal to each other. Noting L the
support of w (see Equation (2.6)), we then have

wj =
||w||1
|L| = C, ∀ j ∈ L,

for some C ∈ R+, where ||x||1 =
�n

i=1 |xi| for x ∈ Rn. Moreover, d > max(m, n) − 1 so that (*) is
equivalent to

� i such that vi = 0 and Md(i, :)wT > 0
⇐⇒

vi = 0 ⇒ Md(i, :)wT ≤ 0 and vi �= 0 ⇒ vi = 1
C = ||Md(i,:)||1

||w||1 = Md(i,:)wT

||w||22
.

6R0 = R\{0}
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These are exactly the stationarity conditions for v �= 0, cf. (3.3). By symmetry, (**) is equivalent to
the stationarity conditions for w, so that we can conclude that vw ∈ B if and only if vw ∈ F and
vw ∈ Sd.

Theorem 3 implies that, for d sufficiently large, B ⊂ Sd. It would be interesting to have the
converse affirmation, i.e. to show that for d sufficiently large, any stationary point of (R1NF-MB)
corresponds to a maximal biclique of (MB). As we will see later, this property unfortunately does not
hold. However, the following slightly weaker result can be proved: as d goes to infinity, the points in Sd

get closer and closer to feasible solutions of (MB), i.e. to bicliques of the graph Gb. As a consequence,
rounding stationary points of (R1NF-MB) for d sufficiently large will generate bicliques of Gb.

3.3 Limit Points of Sd

Lemma 3. The set Sd is bounded, i.e., ∀d > 0, ∀vw ∈ Sd:

||vw||2 = ||v||2||w||2 ≤
�

|E|.

Proof. For any vw ∈ Sd, we have by (3.3)

||v||2 =
���
��� max

�
0,

Mdw
T

||w||22

����
���
2
≤ ||max(0, Md)wT ||2

||w||22
≤ ||max(0, Md)||F

||w||2
=

�
|E|

||w||2
.

Lemma 4. For vw ∈ Sd, if Md(i, j) = −d and if (vw)ij > 0, then

0 < vi <
||v||1
d + 1

and 0 < wj <
||w||1
d + 1

.

Proof. By (3.3), we have

0 < wj ||v||22 = v
T
Md(:, j) ≤ ||v||1 − (d + 1)vi ⇒ 0 < vi <

||v||1
d + 1

.

The corresponding result for w is obtained similarly.

Theorem 4. As d goes to infinity, stationary points of (R1NF-MB) get arbitrarily close to feasible
solutions of (MB), i.e., ∀� > 0, ∃D s.t. ∀d > D:

max
vw∈Sd

min
vbwb∈F

||vw − vbwb||F < �. (3.4)

Proof. Let vw ∈ Sd. We can assume w.l.o.g. that vw > 0 ; otherwise, we consider the subproblem with
the vectors v(K) and v(L) where K (resp. L) is the support of v (resp. w) and the matrix M(K, L),
see Equation (2.6). In fact, it is clear that if (v(K), w(L)) is close to a feasible solution of (MB)
for Mb(K, L), then (v, w) is for Mb. We also assume w.l.o.g. that ||w||2 = 1; in fact, if vw ∈ Sd,�
λv

1
λw

�
∈ Sd,∀λ > 0. Note that Lemma 3 implies ||v||2 ≤

�
|E|. By (3.3),

v = Mdw
T and w =

vT Md

||v||22
. (3.5)
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Therefore, (v/||v||2, w) > 0 is a pair of singular vectors of Md associated with the singular value
||v||2 > 0. If Md = 1m×n, the only pair of positive singular vectors of Md is

�
1√
m

1m,
1√
n
1n

�
so that

vw = Mb coincides with a feasible solution of (MB).
Otherwise, when Md �= 1m×n, we define

A =
�

i

��� Md(i, j) = 1,∀j
�

and B =
�

j

��� Md(i, j) = 1,∀i
�

, (3.6)

and their complements Ā = {1, 2, . . . ,m}\A, B̄ = {1, 2, . . . , n}\B; hence,

Md(A, :) = 1|A|×n and Md(:, B) = 1m×|B|.

These two sets clearly define the biclique A × B in graph Gb, or, equivalently, a (binary) feasible
solution (v̄A, w̄B) for problem (MB), where v̄A is equal to one for indices in A and to zero otherwise
(similarly for w̄B and B). We are now going to show that, for d sufficiently large, vw is arbitrarily
close to v̄Aw̄B, which will prove our claim.

Using Lemma 4 and the fact that ||x||1 ≤
√

n||x||2,∀x ∈ Rn, we get

0 < v(Ā) <

�
m|E|

d + 1
1|Ā| and 0 < w(B̄) <

√
n

d + 1
1|B̄|. (3.7)

Therefore, since ||w||2 = 1 and ||v||2 ≤
�

|E|, we obtain

||v(Ā)w − 0||F = ||v(Ā)||2||w||2 <
1

d + 1

�
m

�
|E|

�
, and (3.8)

||vw(B̄)− 0||F = ||v||2||w(B̄)||2 <
1

d + 1

�
n
�

|E|
�
. (3.9)

It remains to show that v(A)w(B) coincides with a biclique of the (complete) graph generated by
Mb(A, B) = 1|A|×|B| since v(Ā)w and vw(B̄) tend to zero as d goes to infinity.

Noting kw = ||v||1
||v||22

and using (3.5), we get w(B) = kw 1|B|. Combining this with (3.7) gives

1− |B̄|
√

n

d + 1
< ||w||22 − ||w(B̄)||22 = ||w(B)||22 = |B|k2

w ≤ ||w||22 = 1. (3.10)

Moreover, (3.5) implies v(A) = 1|A|×mwT = ||w||11|A| so that

|B|kw ≤ v(A) = (||w(B)||1 + ||w(B̄)||1)1|A| < |B|kw + |B̄|
√

n

d + 1
. (3.11)

Finally, multiplying (3.11) by kw, combining it with (3.10) and noting that, since ||w||2 = 1, we have
kw ≤ 1, we obtain

�
1− |B̄|

√
n

d + 1

�
1|A|×|B| < v(A)w(B) <

�
1 +

|B̄|
√

n

d + 1

�
1|A|×|B|. (3.12)

We can conclude that, for d sufficiently large, vw is arbitrarily close to a feasible solution v̄Aw̄B of
(MB) which corresponds to the biclique (A, B).
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3.4 Example

Let
Mb =

�
0 1
1 1

�
and Md =

�
−d 1
1 1

�
.

Clearly,
�

0 1
0 1

�
belongs to the set B, i.e., it corresponds to a maximal biclique of the graph generated

by Mb. By Theorem 3, for d > 1, it belongs to Sd, i.e., [(1 1)T , (0 1)] is a stationary point of
(R1NF-MB).
For d > 1, one can also check that the singular values of Md are disjoint and that the second pair of
singular vectors is positive. Since it is a positive stationary point of the unconstrained problem, it is
also a stationary point of (R1NF-MB). As d goes to infinity, it must get closer to a biclique of (MB)
(Theorem 4). Moreover Md is symmetric so that the right and left singular vectors are equal to each
other. Figure 1 shows the evolution7 with respect to d of this positive singular vector (v1, v2), which
is such that (v1 v2)T (v1 v2) ∈ Sd. It converges to (0 1), which means that the outer product of the

left and right singular vectors converges to
�

0 0
0 1

�
, which is a biclique, i.e. a member of F . We

also note that this biclique is not maximal, which shows that the converse to Theorem 3 is false, even
asymptotically as d goes to infinity.

Figure 1: Evolution of (v1, v2).

Corollary 1. For
d ≥ 2max(m, n)

�
|E|, (3.13)

any stationary point vw ∈ Sd of (R1NF-MB) can be rounded8 to generate a biclique of the graph Gb

generated by Mb.

Proof. The condition

max
vw∈Sd

min
vbwb∈F

max
ij

(vw − vbwb)ij <
1
2
,

is clearly sufficient to guarantee that rounding any stationary point of (R1NF-MB) will generate a
biclique of Gb. Looking back at Theorem 4, one can check that this is satisfied (cf. Equations (3.8),
(3.9) and (3.12)) for d given by (3.13) (note that w.l.o.g. |E| ≥ max(m, n), i.e., that each row and
each column of Mb has at least one nonzero entry, otherwise they can be removed).

7
By Wedin’s theorem (cf. matrix perturbation theory [28]), singular subspaces of Md associated with a positive

singular value are continuously deformed with respect to d.
8
Values smaller than 0.5 are set to 0, and set to 1 otherwise.
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4 Biclique Finding Algorithm

Many real world applications rely on the discovery of maximal biclique subgraphs, e.g., web community
discovery, biological data analysis, text mining, . . . [24]. Some algorithms aim at detecting all the
maximal bicliques, which is computationally challenging. In fact, there might be an exponential
number of such bicliques and the problem is at least NP-hard since it would solve (MB), cf. [1] and
references therein. For large datasets, it is in general hopeless to extract all the maximal bicliques
in a reasonable computational time. Therefore, one can be interested in finding only large maximal
bicliques, which is what we focus on in this section.

For example, a recent data analysis technique called binary matrix factorization (BMF) aims at
expressing a binary matrix M as the product of two binary matrices [31, 25, 30]. Each rank-one factor
of the decomposition corresponds to a bicluster in the bipartite graph Gb generated by M . Finding
bicliques in G allows to solve BMF recursively, since bicliques of G correspond to binary rank-one
underapproximations of M [15] (see also the formulation of the optimization problem (MB)).

In this section, we present a heuristic scheme designed to find large bicliques in a given graph,
whose main iteration requires a number of operations proportional to the number of edges |E| in the
graph. It is based on the reduction of the maximum edge biclique problem to (R1NF-MB) (Theorems
1, 3 and 4). We compare its performance on random graphs and text mining datasets with two other
algorithms requiring O(|E|) operations per iteration.

4.1 Description

For d sufficiently large, stationary points of (R1NF-MB) are close to bicliques of (MB) (Corollary
1). Since (R1NF-MB) is a continuous optimization problem, any standard nonlinear optimization
technique can in principle be used to compute such a stationary pint. One can therefore think of
applying an algorithm that finds a stationary point of (R1NF-MB) in order to localize a large biclique
of the graph generated by Mb. Moreover, since the two problems have the same objective function,
stationary points with larger objective functions will correspond to larger bicliques.

Of course, solving (R1NF-MB) up to global optimality, i.e. finding the best stationary point, is
as hard as solving (MB). However, one can hope that the nonlinear optimization scheme used will
converge to a relatively large biclique of Gb (i.e. with an objective function close to the global optimum)
; this hope will be confirmed empirically later in this section.

We choose to use the coordinate descent method presented earlier, i.e. solve alternatively the
problem in the variable v for w fixed, then in the variable w for v fixed, since the optimal solutions for
each of these steps can be written in closed form, cf. Equation (3.3). We also propose, instead of fixing
the value of parameter d to the value recommended by Corollary 1, to start with a lower initial value
d0 and gradually increase it (with a multiplicative factor γ > 1) until it reaches the upper bound D

equal to the recommended value. Convergence of the resulting scheme, Algorithm BF-NF, is proved
in the next Theorem.

Theorem 5. The rounding of every limit point of Algorithm BF-NF generates a biclique of Gb, the
bipartite graph generated by Mb.

Proof. When an exact two-block coordinate descent is applied to an optimization problem with a
continuously differentiable objective function and a feasible domain equal to the Cartesian product of
two closed convex sets (i.e. the two blocks correspond to Rm

+ and Rn
+ in this case), every limit point

of the iterates is a stationary point [16].
After a finite number of steps of Algorithm BF-NF, parameter d attains the upper bound D =

2max(m, n)|E| and no longer changes, so that we can invoke this result and, using Corollary 1,
guarantee that the resulting limit points can be rounded to generate a feasible solution of (MB), i.e.
a biclique of Gb.
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Algorithm BF-NF Biclique Finding Algorithm based on Nonnegative Factorization
Require: Bipartite graph Gb = (V,E) described by biadjacency matrix Mb ∈ {0, 1}m×n, initial

values w0 ∈ Rn
++ and d0 > 0, parameter γ > 1.

1: Set parameter D = 2max(m, n)|E| and initialize variables d ← d0, w ← w0

2: for k = 1, 2, . . . do
3:

v ← (1 + d)Mbw
T − d||w||1 ; (4.1)

v ← v/ max(v) ;

w ← (1 + d)vT Mb − d||v||1
||v||22

; (4.2)

d ← min(γd,D) ;

4: end for

Note that the normalization of v (v ← v/ max(v)) performed by Algorithm BF-NF only changes
the scaling of the solution vw and allows (v, w) to converge to binary vectors. Finally, one can easily
check that Algorithm BF-NF requires only O(|E|) operations per iteration, the main cost being the
computation of the matrix-vector products Mbw

T and vT Mb (the rest of an iteration requiring only
O(max(m, n)) operations).

Parameters

It is not clear a priori how the initial value d0 should be selected. We observed that it should not be
chosen too large: otherwise, the algorithm often converges to the trivial solution: the empty biclique.
In fact, in that case, the negative terms (d||w||1 and d||v||1) in (4.1) and (4.2) will dominate, even
during the initial steps of the algorithm, and the solution will be set to zero9.

On the other hand, the algorithm with d = 0 is equivalent to the power method applied to Mb,
and then converges (under some mild assumptions) to the best rank-one approximation of Mb [14].
Hence we observed that when d0 is chosen too small, the iterates will in general converge to the same
solution.

In order to balance positive and negative entries in Md, we found appropriate to choose an initial
value of d such that ||(Md)+||F ≈ ||(Md)−||F , i.e.,

d0 ≈
||Mb||F�

|Z|
=

�
|E|
|Z| , (4.3)

(recall |Z| is the number of zero entries in Mb). For our tests we chose d0 = 2
�

|E|
|Z| , which appears to

work well in practice.
Finally, the algorithm does not seem to be very sensitive to multiplicative factor γ and selecting

values around 1.1 gives good results; this value will be used for the computations below.

4.2 Other Algorithms in O(|E|) Operations

We briefly present here two other algorithms designed to find large bicliques using O(|E|) operations
per iteration.

9
In practice, we used a safety procedure which reduces the value of d whenever v (resp. w) is set to zero and reinitializes

v (resp. w) to its previous value.
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Greedy Heuristic

The simplest heuristic one can imagine is to add, at each step, the vertex which is connected to the
most vertices in the other side of the bipartite graph. Once a vertex is selected, the vertices which are
not connected to the chosen vertex are deleted. The procedure is repeated on the remaining graph
until one obtains a biclique, which is then necessarily maximal.

Motzkin-Strauss Formalism

In [12], Ding and co-authors extend the generalized Motzkin-Strauss formalism, defined for cliques, to
bicliques by defining the optimization problem

max
x∈F α

x ,y∈F β
y

xT
Mb y

where Fα
x = {x ∈ Rn

+|
�n

i=1 xα
i = 1}, F

β
y = {y ∈ Rn

+|
�n

i=1 y
β
i = 1} and 1 < α, β � 2.

Multiplicative updates for this problem are then provided:

x←
�
x ◦ Mb y

xT Mb y

� 1
α
, y ←

�
y ◦

MT
b x

xT Mb y

� 1
β
. (MS)

This algorithm does not necessarily converge to a biclique: if α and β are not sufficiently small, it may
only converge to a dense bipartite subgraph (a bicluster). In particular, for α = β = 2, it converges
to an optimal rank-one solution of the unconstrained problem, as Algorithm BF-NF does for d = 0.
For our tests, we chose α = β = 1.05 as recommended in [12].

In order to evaluate the quality of the solutions provided by this algorithm when it did not converge
to a biclique, we used the following two post-processing procedures to convert a bicluster into a biclique:

1. Greedy (MS): extract from the generated bicluster a biclique using the greedy heuristic presented
above.

2. Recursive (MS): use the algorithm recursively on the extracted bicluster, i.e. rerun it on the
positive submatrix while decreasing the values of parameters α and β with α ← 1 + α−1

2 and
β ← 1 + β−1

2 .

4.3 Results

Synthetic Data

We first present numerical experiments with random graphs: for each density (0.1, 0.3, 0.5, 0.7 and
0.9), 100 bipartite graphs with 200 vertices (100 on each side, i.e., m = n = 100) were randomly
generated (the probability that an edge belongs to the graph is equal to the density). We then
performed, for each graph, 100 runs with the same random initializations and each algorithm was
allotted 100 iterations, except for the greedy heuristic which was always run until completion and
only once for each graph (since it does not require a random initialization). Actual amounts of CPU
time spent by Algorithms MS and BF-NF were comparable, as expected from their similar iteration
complexity, while the greedy heuristic was faster.

Figure 2 displays the performance profile for these experiments [13], where the performance func-
tion at ρ ≤ 1 is defined as the percentage, among all graphs and all runs, of bicliques whose sizes (i.e.
number of edges) is larger than ρ times the size the largest biclique found by any algortihm in the
corresponding graph, i.e.,

performance(ρ) =
#{bicliques | size ≥ ρ× size of best biclique found}

#runs
.
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Figure 2: Performance profile for random graphs (densities from 0.1 to 0.9).

On such a performance profile, the higher the curve, the better ; more specifically, the left part of
the graph measures efficiency, i.e. how often a given algorithm produces the best biclique among its
peers, while the right part estimates robustness, i.e. how far from the best non-optimal solutions are.
These two aspects are also reported more quantitatively in Table 1, which displays the value of the
performance function at ρ = 1 (Efficicency, i.e. how often a given algorithm find a biclique with largest
size) and the smallest value of ρ such that the performance function is equal to 100% (Robustness,
i.e. the relative size of the worst biclique found).

We observe on the performance profile that both Algorithm BF-NF and (MS) perform better than
the greedy heuristic. The variant of (MS) using recursive post-processing performs slightly better
than the one based on the use of the greedy heuristic. Nevertheless, Algorithm BF-NF generates in
general better solutions: it is more efficient (9% of its solutions are ‘optimal’, twice better than the
greedy (MS)) and more robust (all solutions are at most a factor 0.56 away from the best solution,
better than 0.42 and 0.30 of other algorithms).

Densities Greedy Algo. 1 Greedy M.-S. Recursive M.-S.
Both (Fig. 2) 1% — 0.42 9% — 0.56 4% — 0.30 2% — 0.30

Sparse (Fig. 3) 0% — 0.33 24% — 0.39 14% — 0.28 14% — 0.28
Dense (Fig. 3) 2% — 0.76 16% — 0.80 6% — 0.68 2% — 0.70

Table 1: Efficiency — Robustness.

It is worth noting that the algorithms behave quite differently on sparse and dense graphs. Using
the same setting as before, Figure 3 displays performance profiles for sparse graphs (on the left, with
densities 0.05, 0.1, 0.15 and 0.2) and dense graphs (on the right, with densities 0.8, 0.85, 0.9 and
0.95). For sparse graphs, both versions of (MS) seem to coincide and the greedy heuristic performs
significantly worse. For dense graphs, the greedy heuristic coincides with the greedy (MS) and performs
almost as well as the recursive (MS). However, in all cases, Algorithm BF-NF performs better. It
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Figure 3: Performance profiles for random graphs: sparse (left, from 0.05 to 0.2) and dense (right,
from 0.8 to 0.95).

is more efficient: it finds the best solution in 24% (resp. 16%) of the runs for sparse (resp. dense)
graphs while (MS) only achieves 14% (resp. 6%) and the greedy heuristic 0% (resp. 2%). It is also
more robust: all solutions are at most a factor 0.39 (resp. 0.80) away from the best solution for sparse
(resp. dense) graphs, bigger than the best factor 0.33 (resp. 0.76) of the other algorithms.

Text Datasets

If parameter D in Algorithm BF-NF is chosen smaller than the value recommended by Corollary 1, the
algorithm is no longer guaranteed to converge to a biclique. However, the negative entries in Md will
force the corresponding entries of the solutions of (R1NF-MB) to be small (cf. Theorem 4). Therefore,
instead of a biclique, one gets a dense submatrix of Mb, i.e., a bicluster. Algorithm BF-NF can then
be used as a biclustering algorithm and the density of the corresponding submatrix will depend on the
choice of parameter D between 0 and 2 max(m, n)|E|. We test this approach on the six text mining
datasets (with sparse matrices) described in Table 2.

Data m n |E| sparsity
classic 7094 41681 223839 99.92
sports 8580 14870 1091723 99.14
reviews 4069 18483 758635 98.99
hitech 2301 10080 331373 98.57
ohscal 11162 11465 674365 99.47

la1 3204 31472 484024 99.52

Table 2: Text mining datasets [32] (sparsity is given in %: 100 ∗ |Z|/(mn)).

Figure 4 compares Algorithms BF-NF and MS for varying values of their parameters: for the Motzkin-
Strauss formalism, we tested α = β ∈ [1.3, 1.9] with step size 0.025 and, for Algorithm BF-NF,
D ∈ d010[3, 9] with step size 0.25 (d0 given by Equation (4.3)). For each value, we performed 10
runs (same initializations for both algorithms and 500 iterations) and plotted all the non-dominated
solutions (i.e., for which no other solution has both larger size and higher density) for each dataset.
We observe that our approach consistently generates better results since its curves dominate the ones
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Figure 4: Normalized size vs. density for the Motzkin-Strauss formalism (dashed line) and Algo-
rithm BF-NF based on (R1NF-MB) (solid line). The x-axis indicates the normalized sizes of the
extracted clusters (i.e., number of entries in the extracted submatrix divided by the number of entries
in the original matrix) while the y-axis indicates the density of these clusters (number of nonzero
entries divided by the total number of entries) for the text datasets of Table 2.

of the Motzkin-Strauss formalism, i.e., the biclusters it finds are denser for the same size or larger for
the same density.

Finally, we mention that Algorithm BF-NF can be further enhanced in the following ways:

• It is applicable to non-binary matrices, i.e., weighted graphs. Theorem 1 can easily be adapted
using d ≥ ||M+||F (Lemma 1), and one can show that the resulting algorithm will converge to
the optimal rank-one approximation of a positive submatrix of M .

• It is possible to give more weight to a given side of the biclique by adding regularization terms
to the cost functions. For example, on can consider the following objective function

min
v,w≥0

||Md − vw||2F + α||v||22 + β||w||22

which our algorithm can handle after some straightforward modifications (namely, the optimal
solution for v when w is fixed can still be written in closed-form, and vice versa).

• If Mb ∈ {0, 1}n×n is the adjacency matrix of a (non bipartite) graph G = (V,E) with V =
{v1, . . . , vn}, i.e., Mb(i, j) = 1 ⇔ (vi, vj) ∈ E, one can check that formulation (MB) corresponds
to the maximum edge biclique problem in any graph. This only requires that the diagonal entries
of Mb are set to zero (no self loop in the graph) since a vertex cannot simultaneously belong
to both sides of a biclique. Therefore, all the results of this paper are actually valid for not
necessarily bipartite graphs.

5 Conclusion

We have introduced Nonnegative Factorization (NF), a generalization of Nonnegative Matrix Factor-
ization (NMF), and proved its NP-hardness in the rank-one case by reduction of the maximum edge
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biclique problem. Since finding each rank-one factor in any NMF decomposition implicitly amounts to
solving a rank-one NF problem, this suggests that (NMF) is a NP-hard problem for any fixed factoriza-
tion rank and that no polynomial time algorithm based on the successive optimization of the rank-one
factors can be designed, giving more credence to algorithms based on alternating optimization (e.g.,
the HALS algorithm or the standard alternating nonnegative least squares).

We also presented a heuristic algorithm for detecting large bicliques whose iterations require O(|E|)
operations. It is based on results linking stationary points of a specific rank-one nonnegative factoriza-
tion problem (R1NF-MB) and the maximum edge biclique problem. We experimentally demonstrated
its efficiency and robustness on random graphs and text mining datasets.
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