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1 Introduction

The central question of the analysis of con�icting claims problems is how to divide

a single in�nitely divisible good among a group of individuals when the total

amount to be divided is smaller than the total sum of individual claims. The

objective is to design �rules�that associate with each claims problem a division of

the amount available over the claimants. The indispensable review article of the

con�icting claims literature is Thomson (2003).

Depending on the speci�c claims problem under consideration, it might be advis-

able that some claimants are guaranteed to receive a �lower bound�, i.e. a min-

imal amount of the resource to be divided. The motivation to let some (or all)

claimants bene�t a lower bound could be prompted out of considerations of fair-

ness, participation or incentive compatibility. A straightforward interpretation is

the willingness to provide individuals with an insurance or the urge to reduce in-

equalities in outcomes. For a detailed analysis into the properties of lower bounds,

we refer to Dominguez (2008). A rule guarantees a lower bound if, for each claims

problem and for each claimant, the actual amount assigned to an individual is

larger than or equal to her lower bound.

The two most prominent lower bounds in the literature are the minimal rights

lower bound, proposed by Curiel et al. (1987), and the secured lower bound,

proposed by Moreno-Ternero and Villar (2004). It is a well established result that

all rules guarantee the minimal rights lower bound; see Thomson (2003). Most,

though not all rules also guarantee the secured lower bound; see Moreno-Ternero

and Villar (2004).

Lower bounds have appeared in characterizations of rules: either in axioms that

explicitly impose the rule to guarantee the lower bound (see, among others, Her-

rero and Villar (2001), Moreno-Ternero and Villar (2004), Moreno-Ternero (2006),

Yeh (2006)), either as an invariance property that requires the rule to assign the

same awards vector (i) directly or (ii) indirectly, by �rst assigning the lower bound

and then applying the rule to the appropriately revised problem (see, among oth-
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ers, Curiel et al. (1987), Dominguez and Thomson (2006), Dominguez (2008),

Thomson and Yeh (2008)).

In this paper, we introduce lower bounds into resource monotonicity requirements

for rules. We propose two axioms new to the literature. Both axioms express

how changes in awards should depend on changes in lower bounds. The �rst

axiom requires that two claimants whose lower bound changes equally should

experience an equal change in their awards. The second axiom requires that an

extra amount of resources should be divided only among those claimants who

experienced a strictly positive change in their lower bounds. We show that, in the

two-claimant case, Concede-and-Divide is the only rule that satis�es both axioms

when the axioms are de�ned over a large set of lower bounds that include the

minimal rights lower bound and the secured lower bound. We also show that, in

problems with more than two claimants where at least one claimant claims the

total amount to be divided, the Minimal Overlap rule is the only rule that satis�es

both axioms when the axioms are de�ned over the secured lower bound.

The paper is organized as follows. In the next section, we start with an example to

motivate our analysis. Preliminaries are presented in section 3. Our main axioms

are introduced in section 4. Our analysis of the two-claimant case can be found

in section 5, whereas section 6 is devoted to claims problems with more than two

claimants. Concluding remarks are made in section 7.

2 An example to motivate our analysis

Consider the well-known three-agent estate-division problem originally formulated

in the Talmud. A man bequeaths to his �rst, second and third wife an amount

of 100, 200 and 300, respectively. Consider, for the moment, the minimal rights

lower bound. The minimal right of an agent equals the amount that remains

from the total estate when all other agents have received their claim (a precise

formulation follows). Figure 1 depicts the minimal rights of the three wives as a

function of the value of the estate.
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Figure 1: minimal rights.

The minimal rights lower bound embodies a speci�c principle of fairness. The

minimal right of an agent could be given the interpretation of an uncontested

part of the amount to divide, an amount of resources that the other claimants

concede to a particular agent on the basis of their claims. From the example, it is

clear that the whole estate is contested as long as its value does not exceed 300.

But suppose that the estate is worth 400 instead of 300. Then, wife 1 and wife 2

together concede 100 to wife 3.

It is important to note that wife 1 and wife 2 only start making a concession

when the value of the estate exceeds 300 (and not earlier). The point we want

to make is that a meaningful lower bound, such as the minimal rights

lower bound, contains useful information about when exactly, depend-

ing on the amount to divide, a di¤erential treatment of claimants can

be justi�ed, following a speci�c principle of fairness. At the same time, a

lower bound is not e¢ cient in general (check, in �gure 1, that the minimal rights

of the three wives only add up to the value of the estate when the latter equals

600).

The goal of our analysis is exactly to combine the speci�c fairness principle im-

plied by a meaningful lower bound with e¢ ciency. More speci�cally, we aim at

sorting out those rules that, depending on the amount to divide, discriminate be-

tween claimants in exactly the same way as meaningful lower bounds do. When

the amount to divide increases, the two axioms that we introduce in this article

require (1) that if the lower bound of one agent increases while the lower bound
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of another agent remains constant, the rule must be such that the award of the

former increases while the award of the latter remains constant and (2) that if

the lower bounds of two agents increase equally, the rule must be such that the

awards of the two agents also increase equally.

3 Preliminaries

We present the �xed population version of the model. An amount E 2 R+ of
an in�nitely divisible good has to be divided among a set N of claimants, with

jN j = n. Each claimant i 2 N has a strictly positive claim ci 2 R++ over E;
denote c � (c1; : : : ; cn) the vector of claims. A con�icting claims problem for N

is a pair (c; E) 2 Rn++ � R+, where the sum of claims C =
P

i2N ci is larger than

or equal to E. Let C be the collection of con�icting claims problems that involve
n claimants.

An awards vector x 2 Rn+ of (c; E) 2 C has the following properties: 0 5 x (non-
negativity), x 5 c (claims boundedness) and

P
i2N xi = E (e¢ ciency).1 Denote

X(c; E) the set of awards vectors for the problem (c; E). A rule is a function that

associates with each (c; E) 2 C an awards vector in X(c; E). Let R be our generic
notation for a rule and R(c; E) our generic notation for an awards vector. We only

consider anonymous rules, i.e. rules for which the identity of the claimants does

not matter. Accordingly, we limit attention to claims vectors with c1 � : : : � cn.
Let Rd denote the dual of a rule R. The rule Rd shares awards as the rule R

shares losses, i.e. Rd (c; E) = c�R (c; C � E) for all (c; E) 2 C. A rule is self-dual
if R = Rd.

We can also apply the duality notion to properties of rules. We say that a property

P has a dual property P d if for every R it is true that R satis�es P i¤Rd satis�es

P d. A property P is self-dual when both R and Rd satisfy P .

A graphical representation of a rule is by means of its path of awards. Given a

rule R, for each claims vector c, the path of awards of R for c is the image of the
1Vector inequalities: x = y, x � y and x > y.
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function R(c; �) : [0; C] ! X(c; �), which maps each amount E with 0 � E � C

into the awards vector assigned by the rule.

A lower bound vector b 2 Rn+ of (c; E) 2 C has the following properties: 0 5 b,

b 5 c and
P

i2N bi � E. Denote B(c; E) the set of lower bound vectors for the

problem (c; E). A rule R satis�es a lower bound vector b if R(c; E) = b(c; E) for
all (c; E) 2 C.

4 Two lower bounds and two axioms

Lower bounds

We introduce the two most prominent lower bounds in the literature.

The minimal rights vector m(c; E), proposed by Curiel et al. (1987), assigns each

claimant the di¤erence between E and the sum of claims of all the other agents if

this di¤erence is strictly positive, or 0 otherwise. Formally, for all (c; E) 2 C and
all i 2 N , mi(c; E) � maxfE �

P
j2Nnfig cj; 0g and m(c; E) � (mi(c; E))i2N . The

properties of e¢ ciency, non-negativity and claims boundedness � properties that

we incorporated in the de�nition of a rule� together guarantee that each claimant

always at least receives her minimal right. In other words, all rules satisfy the

minimal rights vector (Thomson, 2003).

The secured lower bounds vector SLB(c; E), proposed by Moreno-Ternero and

Villar (2004), assigns (i) one nth of ci to each claimant holding a feasible claim

(ci � E) and (ii) one nth of E to each claimant holding an unfeasible claim

(ci > E). Formally, for all (c; E) 2 C, SLBi (c; E) � 1
n
minfci; Eg for all i 2 N

and SLB (c; E) � (SLBi (c; E))i2N . Most rules proposed in the literature satisfy
the secured lower bounds vector. Notable exceptions are the proportional rule

and the constrained equal losses rule; see Moreno-Ternero and Villar (2004) for

de�nitions and proofs.

Axioms

We propose two axioms new to the literature. Both axioms express how the

5



award vector should change in function of changes in the lower bound vector

when the amount to divide increases. Denote " an in�nitesimally small increase

in the amount to divide. One interpretation could be that, after a re-evaluation,

the estate is estimated to be worth slightly more than originally thought (E <

E+" � C). In this new situation, the lower bound of none, some or all individuals
could have changed, depending on c and E, i.e. b(c; E + ") = b(c; E).

The �rst axiom, which we call �Equal treatment for equal changes in the lower

bound b�(in short: Equal Treatment(b)) requires that two claimants whose lower

bound changes equally should experience an equal change in their awards vector.

Equal Treatment(b): For all i; j 2 N and for all (c; E) 2 C, if bi(c; E + ") �
bi(c; E) = bj(c; E + ") � bj(c; E), then Ri(c; E + ") � Ri(c; E) = Rj(c; E + ") �
Rj(c; E).

What if claimants experience di¤erent changes in their lower bound? The second

axiom, which we call �Priority for positive changes in the lower bound b�(in short:

Priority(b)), is motivated by the idea that lower bounds contain useful information

about which claimants deserve to gain from the re-evaluation. Suppose we can

partition the set of claimants into two subsets: (i) those who do not experience a

change in their lower bound after the re-evaluation and (ii) those who experience

an increase in their lower bound after the re-evaluation. Suppose that the latter

subset is non-empty. Then, the axiom requires that the extra amount of resources

is divided among the claimants who experienced an increase in their lower bounds.

In other words, the awards of the group of claimants whose lower bound stays

constant should remain unchanged.

Denote ~N = fi 2 N : bi(c; E + ") � bi(c; E) = 0g � N the subset of claimants

whose lower bound has not changed after the re-evaluation.

Priority(b): For all (c; E) 2 C, if Nn ~N 6= ?, then Ri(c; E + ") = Ri(c; E) for all
i 2 ~N .
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5 The two-claimant case

Let N � f1; 2g. Consider the following alternative expressions for the minimal
rights vector and the secured lower bound vector in the two-claimant case:

m(c; E) �

8>><>>:
(0; 0) if E � c1
(0; E � c1) if c1 � E � c2
(E � c2; E � c1) if c2 � E

and

SLB(c; E) �

8>><>>:
�
E
2
; E
2

�
if E � c1�

c1
2
; E
2

�
if c1 � E � c2�

c1
2
; c2
2

�
if c2 � E

.

Now consider the following family of lower bounds.

b
1;
2;
3(c; E) �

8>><>>:
(
1E; 
1E) if E � c1
(
1c1; 
1c1 + 
2 (E � c1)) if c1 � E � c2
(
1c1 + 
3(E � c2); 
1c1 + 
2 (c2 � c1) + 
3(E � c2)) if c2 � E

where


1 2
�
0; 1

2

�

2 2 (0; 1]

3 2 [0; 1� 
1]

.

Denote B̂(c; E) � B(c; E) the set that comprises all possible members of this fam-
ily for the problem (c; E). Both minimal rights and secured lower bound belong

to this set; more speci�cally b0;1;1(c; E) � m(c; E) and b
1
2
; 1
2
;0(c; E) � SLB(c; E)

for all (c; E) 2 C.

The two-claimant rule called Concede-and-Divide plays a central role in what

follows. Under Concede-and-Divide, every claimant receives in a �rst step her

minimal right (when strictly positive) conceded to her by the other claimant. In

a second step, the amount of resources that remains after both concessions is

divided equally. This equal division is preferable since, after being revised down
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by the minimal rights received in the �rst step, both claims become equal. Many

other rules coincide in the case of two claimants with Concede-and-Divide; we

refer to Thomson (2003) for an overview.

Concede-and-Divide, CD, selects for jN j = 2 and for all (c; E) 2 C, the awards
vector

CD(c; E) �

8>><>>:
�
E
2
; E
2

�
if E � c1�

c1
2
; E � c1

2

�
if c1 � E � c2�

E+c1�c2
2

; E+c2�c1
2

�
if c2 � E

.

Note that Concede-and-Divide coincides with the (e¢ cient) lower bound b
1
2
;1; 1

2 (c; E) 2
B̂(c; E).

Figure 2 depicts the path of awards of Concede-and-Divide.

-q q
1
2
c1 c1

x1

6qc2
x2

E = 0

E = c1

E = c2

E = C

�
�

�
�

Figure 2: path of awards of Concede-and-Divide.

We now obtain the following characterization result.

Proposition 1 For jN j = 2, for all (c; E) 2 C and for all b 2 B̂(c; E), a rule
R satis�es Equal Treatment( b) and Priority( b) if and only if it is Concede-and-

Divide.

Proof. Let us �rst show that CD satis�es Equal Treatment(b) for all b 2
B̂(c; E). Denote �b(c; E;E 0) = b(c; E 0) � b(c; E) with E � E 0. First, let

E � c1, so �b(c; E; c1) = (
1(c1 � E); 
1(c1 � E)) for all b 2 B̂(c; E). Then

CD(c; c1) � CD(c; E) =
�
c1�E
2
; c1�E

2

�
. Second, let c1 < E � c2 and remark that

�b1(c; c1; E) = 0 6= �b2(c; c1; E) = 
2(E � c1) for all b 2 B̂(c; E). Third, let
c2 < E, so �b(c; c2; E) = (
3(E � c2); 
3(E � c2)). Then CD(c; E)�CD(c; c2) =�
E�c2
2
; E�c2

2

�
.
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Let us now show that CD satis�es Priority(b) for all b 2 B̂(c; E). First, let E � c1
and remark that �b(c; E; c1) = (
1(c1 � E); 
1(c1 � E)) for all b 2 B̂(c; E). So
~N = f1; 2g when 
1 = 0 and ~N = ? when 
1 6= 0. In the latter case, Priority(b) is
vacuously satis�ed. Second, let c1 < E � c2, so �b(c; c1; E) = (0; 
2(E � c1)) �
(0; 0) for all b 2 B̂(c; E) since 
2 > 0 and hence ~N = f1g. Then CD1(c; E) �
CD1(c; c1) = 0. Third, let c2 < E, so �b(c; c2; E) = (
3(E � c2); 
3(E � c2)) for
all b 2 B̂(c; E). So ~N = f1; 2g when 
3 = 0 and ~N = ? when 
3 6= 0. In the

latter case, Priority(b) is vacuously satis�ed.

Conversely, letR be a two claimants rule satisfying Priority(b) and Equal Treatment(b)

for all b 2 B̂(c; E). Recall that R satis�es non-negativity and hence R(c; 0) =

(0; 0). First, let E � c1, so �b(c; 0; E) = (
1E; 
1E) for all b 2 B̂(c; E). By Equal
Treatment(b), R(c; E) =

�
0 + E

2
; 0 + E

2

�
= CD(c; E). Also R(c; c1) =

�
c1
2
; c1
2

�
.

Second, let c1 < E � c2, so �b(c; c1; E) = (0; 
2(E � c1)) for all b 2 B̂(c; E) and
~N = f1g. By Priority, R(c; E) =

�
c1
2
; c1
2
+ E � c1

�
= CD(c; E). Also R(c; c2) =�

c1
2
; c2 � c1

2

�
. Third, let c2 < E, �b(c; c2; E) = (
3(E � c2); 
3(E � c2)) for all

b 2 B̂(c; E). By Equal Treatment(b), R(c; E) =
�
c1
2
+ E�c2

2
; c2 � c1

2
+ E�c2

2

�
=

CD(c; E). �

Figure 3 provides graphical intuition for Proposition 1.
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c1 c1
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x2
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�
�

�
�

Figure 3: left panel: Equal Treatment(b) requires the path of awards to be a 45� line between the

points (0; 0) and ( c1
2
; c1
2
) and again a 45� line between the points ( c1

2
; c2� c1

2
) and (c1;c2); middle

panel: Priority(b) requires the path of awards to be a vertical line between E = c1 and E = c2. Dif-

ferent possible paths of awards are depicted; right panel: Equal Treatment(b) and Priority(b) together

characterize Concede-and-Divide.
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Note that (i) Equal Treatment(m) and Equal Treatment(SLB) and (ii) Priority(m)

and Priority(SLB) are identical properties in the two-claimant case. Furthermore,

remark that we can deduce from the left panel and the middle panel of Figure 3

that Equal Treatment(b) and Priority(b) are self-dual properties for all b 2 B̂(c; E)
in the two-claimant case.

6 The n-claimant case

Full domain of con�icting claims problems

For our analysis of the n-claimant case (n > 2), we focus in this section on

the axioms Equal Treatment(b) and Priority(b) de�ned for b = m(c; E) or b =

SLB(c; E). Other lower bounds are brie�y discussed in the next section.

Whereas Equal Treatment(m) and Equal Treatment(SLB) are identical, self-dual

properties in the case of two claimants, they turn out to be dual properties in

general. A similar observation holds for Priority(m) and Priority(SLB). We omit

the proof of this remark for reasons of parsimony.

Remark: Equal Treatment(m) and Equal Treatment(SLB) are dual properties.

Priority(m) and Priority(SLB) are dual properties.

We believe that this remark reveals that the minimal rights lower bound and the

secured lower bound, although very di¤erent in spirit and seemingly unrelated,

are nevertheless connected with each other. Indeed, in the spirit of the analysis

of Thomson and Yeh (2008), we can de�ne two operators on the space of lower

bounds, i.e. mappings that associate with each lower bound another lower bound.

These operators are (i) b0(c; E) � 1
n
minfE; c � b(c; C � E)g and (ii) b00(c; E) �

1
n
minfE; b(c; C)� b(c; C �E)g. The reader can check that in both cases it holds

that if b(c; E) = m(c; E), then b0(c; E) = b00(c; E) = SLB(c; E) (but not vice

versa, i.e. the above operators composed to themselves do not yield the identity).

We now obtain the following impossibility result on the full domain C.

10



Proposition 2 There does not exist a rule R that satis�es Equal Treatment(m)

for all (c; E) 2 C. There does not exist a rule R that satis�es Equal Treat-

ment(SLB) for all (c; E) 2 C.

Proof. We give the proof for Equal Treatment(SLB). The proof for Equal

Treatment(m) follows by duality. Suppose there exists a ruleR that satis�es Equal

Treatment(SLB) for all (c; E) 2 C. Let N � f1; 2; 3g. Consider the following
claims vector c = (c1; c2; c3) where 0 < c1 < c2 � c3 and the following claims

problems (c; 0), (c; c1), (c; c3) and (c; c1 + c2 + c3). By non-negativity, R(c; 0) =

(0; 0; 0) and by claims boundedness, R(c; c1 + c2 + c3) = (c1; c2; c3). We have that

SLB(c; 0) = (0; 0; 0), SLB(c; c1) =
�
c1
3
; c1
3
; c1
3

�
and SLB(c; c3) = SLB(c; c1+ c2+

c3) =
�
c1
3
; c2
3
; c3
3

�
. Hence, �SLB(c; 0; c1) =

�
c1
3
; c1
3
; c1
3

�
and �SLB(c; c3; c1 + c2 +

c3) = (0; 0; 0). Focussing on claimant 1, we must have that R1(c; c1 + c2 + c3) =

c1 =
c1
3
+ c1+c2

3
which implies that c1 = c2, a contradiction. �

In contrast, many rules satisfy Priority(m) and Priority(SLB) on the full domain

C. For example, the Lexicographic rule (the rule distributing awards �rst to

the highest claimant, then to the second highest claimant and so on, subject to

nobody receiving more than her claim) is the most inegalitarian rule that satis�es

Resource Monotonicity and Priority(SLB), i.e. the awards�distribution of the

Lexicographic rule is Lorenz dominated by the awards�distribution of any other

rule satisfying both axioms.

Restricted domains of con�icting claims problems

We restrict the analysis to two meaningful and dual subsets of con�icting claims

problems. Denote ~C � C the collection of all con�icting claims problems for which
E � cn, i.e. the collection of all con�icting claims problems for which there is at
least one claimant who claims the total amount to be divided. Denote ~Cd � C the
dual collection of all con�icting claims problems for which C � cn � E, i.e. the

collection of all con�icting claims problems for which at least one claimant has a

positive minimal right.

The well-known Minimal overlap rule, de�ned by O�Neill (1982), plays a central
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role in what follows. For the de�nition, we follow Thomson (2003). Instead of

thinking of claims abstractly, imagine that the amount to divide is composed

of individual and distinct units and that each claim is on speci�c units. Then,

distribute claims over these units so as to maximize the fraction of the estate

claimed by exactly one claimant, and subject to that, so as to maximize the

fraction claimed by exactly two claimants, and so on. Finally, for each unit

separately, apply equal division among all claimants claiming it.

Minimal overlap rule, MO. For all (c; E) 2 C, claims on units are arranged so
that the number of units claimed by exactly k + 1 claimants is maximized, given

that the number of units claimed by k claimants is maximized, for k = 1; : : : ; n�1.
Then, for each unit, equal division prevails among all claimants claiming it. Each

claimant collects the partial compensations assigned to her for each of the units

that she claims.

We obtain the following characterization result on the restricted domain ~C.

Proposition 3 For all (c; E) 2 ~C, a rule R satis�es Equal Treatment(SLB) and
Priority(SLB) if and only if it is the Minimal Overlap rule.

Proof. We follow Chun and Thomson (2005) for the de�nition of the Minimal

Overlap rule for (c; E) 2 ~C.

Let c0 = 0 and let ck� < E � ck�+1 � cn with k� 2 f0; 1; : : : ; n � 1g. Then
MOi(c; E) =

c1
n
+ c2�c1

n�1 + : : : +
ci�ci�1
n�i+1 for all i = 1; : : : ; k� and MOj(c; E) =

MOk�(c; E) +
E�ck�
n�k� for all j = k

� + 1; : : : ; n.

It is straightforward to show thatMO satis�es Equal Treatment(SLB) and Priority(SLB).

The result follows when noting that

�SLB(c; E; ck�+1) = �MO(c; E; ck�+1) =0BB@0; : : : ; 0| {z }
k� tim es

;
ck�+1 � E
n� k� ; : : : ;

ck�+1 � E
n� k�| {z }

n�k� times

1CCA :
Conversely, let R be a rule satisfying Equal Treatment(SLB) and Priority(SLB).

Since R satis�es non-negativity, R(c; 0) = (0; : : : ; 0). First, let E � c1, so
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�SLB(c; 0; E) = (E
n
; : : : ; E

n
). By Equal Treatment(SLB), R(c; E) =

�
0 + E

n
; : : : ; 0 + E

n

�
=

MO(c; E). Also R(c; c1) =
�
c1
2
; c1
2

�
. Second, let c1 < E � c2, so �SLB(c; c1; E) =�

0; E�c1
n�1 ; : : : ;

E�c1
n�1

�
and ~N = f1g. By Priority(SLB), R1(c; E) = R1(c; c1) = c1

2
=

MO1(c; E). By Equal Treatment(SLB), Ri(c; E) = c1
2
+ E�c1

n�1 =MOi(c; E) for all

i 2 f2; : : : ; ng. Also R(c; c2) =�
c1
2
; c1
2
+ c2�c1

n�1 ; : : : ;
c1
2
+ c2�c1

n�1
�
. Third, let c2 < E � c3, so �SLB(c; c2; E) =�

0; 0; E�c2
n�2 ; : : : ;

E�c2
n�2

�
and ~N = f1; 2g. By Priority(SLB), R1(c; E) = R1(c; c2) =

c1
2
= MO1(c; E) and R2(c; E) = R2(c; c2) =

c1
2
+ c2�c1

n�1 = MO2(c; E). By

Equal Treatment(SLB), Ri(c; E) = c1
2
+ c2�c1

n�1 +
E�c2
n�2 = MOi(c; E) for all i 2

f3; : : : ; ng. In general, let ck� < E � ck�+1 � cn with k� 2 f0; 1; : : : ; n � 1g,
so �SLB(c; ck� ; E) =

�
0; : : : ; 0; E�ck�

n�k� ; : : : ;
E�ck�
n�k�

�
. By Priority(SLB), Ri(c; E) =

Ri(c; ck�) =
c1
n
+ c2�c1

n�1 + : : : +
ci�ci�1
n�i+1 = MOi(c; E) for all i = 1; : : : ; k�. By

Equal Treatment(SLB), Rj(c; E) = MOk�(c; E) +
E�ck�
n�k� = MOj(c; E) for all

j = k� + 1; : : : ; n. �

Note that for claims problems in ~C, at least one claimant will experience a strictly
positive change in her secured lower bound when the amount to divide increases.

In contrast, for claims problems in Cn ~C, the secured lower bound of every claimant
will remain unchanged (at ci

n
for all i 2 N) when the amount to divide increases. In

other words, changes in the secured lower bound discriminate between claimants

in a signi�cant way only for claims problems in ~C. Therefore, it is intelligible that
Proposition 3 holds over the restricted domain ~C.

The Minimal Overlap rule is not a self-dual rule. Therefore, let MOd (c; E) =

c �MO (c; C � E) be the dual of the Minimal Overlap rule. We conclude this
section with the dual characterization result on the dual restricted domain ~Cd.

Corollary For all (c; E) 2 ~Cd, a rule R satis�es Priority(m) and Equal Treat-

ment(m) if and only if it is the dual of the Minimal Overlap rule.

Again, note that for claims problems in ~Cd, at least one claimant will experience
a strictly positive change in her minimal rights lower bound when the amount

to divide increases. In contrast, for claims problems in Cn ~Cd, the minimal rights

13



lower bound of every claimant will remain unchanged (at 0 for all i 2 N) when
the amount to divide increases. In other words, changes in the minimal rights

lower bound discriminate between claimants in a signi�cant way only for claims

problems in ~Cd. Therefore, it is intelligible that the Corollary holds over the

restricted domain ~Cd.

7 Epilogue

From proposition 2, the reader might wonder whether there exist lower bounds

for which the axioms Equal Treatment and Priority, de�ned over the lower bound

under consideration, together characterize a unique rule R on the full domain of

claims problems C.

The answer to this question is clearly a¢ rmative. To give an intuitive explanation

for this result, consider the set of rules, denoted by R, that have the following
property: for any amount of resources E, an in�nitesimally small increment " of

resources is (i) either shared equally among all claimants or (ii) some claimants are

excluded (their awards do not change), while the other claimants share " equally.

Many well known rules belong to R. Without giving formal de�nitions, we men-
tion the Increasing-Constant-Increasing (ICI) and Constant-Increasing-Constant

(CIC) families of rules of Thomson (2008), Piniles�rule and the Constrained Egal-

itarian rule of Chun, Schummer and Thomson (2001). As a notable exception,

the Proportional rule does not belong to R.

First, it is a straightforward result that, for any R 2 R, it holds that Equal
Treatment(R) and Priority(R) together characterize R. Second, for any R 2 R,
construct a lower bound bR such that bR increases equally among all claimants

when (i) holds or bR remains constant for those claimants whose awards do not

change and increases equally for the other claimants when (ii) holds. For example,

for all (c; E) 2 C, let bR(c; E) � kR(c; E) for any 0 < k � 1. Then it also holds
that Equal Treatment(bR) and Priority(bR) together characterize R, explaining

the result. However, a priori, it is not clear whether such a lower bound embodies

14



a meaningful fairness condition. This observation recon�rms why we focus mainly

on the minimal rights lower bound and the secured lower bound in this article.
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