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Abstract 

 
Stochastic dominance permits a partial ordering of alternatives (probability distributions on 
consequences) based only on partial information about a decision maker’s utility function. 
Univariate stochastic dominance has been widely studied and applied, with general agreement 
on classes of utility functions for dominance of different degrees. Extensions to the 
multivariate case have received less attention and have used different classes of utility 
functions, some of which require strong assumptions about utility. We investigate multivariate 
stochastic dominance using a class of utility functions that is consistent with a basic preference 
assumption, can be related to well-known characteristics of utility, and is a natural extension of 
the stochastic order typically used in the univariate case. These utility functions are 
multivariate risk averse, and reversing the preference assumption allows us to investigate 
stochastic dominance for utility functions that are multivariate risk seeking. We provide 
insight into these two contrasting forms of stochastic dominance, develop some criteria to 
compare probability distributions (hence alternatives) via multivariate stochastic dominance, 
and illustrate how this dominance could be used in practice to identify inferior alternatives. 
Connections between our approach and dominance using different stochastic orders are 
discussed. 
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1. Introduction 

 One of the big challenges in decision analysis is the assessment of a decision maker’s utility 

function. To the extent that the alternatives under consideration in a decision-making problem can be 

partially ordered based on less-than-full information about the utility function, the problem can be 

simplified somewhat by eliminating dominated alternatives. At the same time, partial orders can help in 

the creation of alternatives by providing an indication of the types of strategies that might be most 

promising. Stochastic dominance has been studied extensively in the univariate case, particularly in the 

finance and economics literature; early papers are Hadar & Russell (1969) and Hanoch & Levy (1969). 

For example, assuming that utility for money is increasing and concave can simplify many problems in 

finance and economics.  

 Moreover, stochastic dominance can be helpful not just in individual decision making, but 

perhaps even more so in group decision making, where the challenge of utility assessment is amplified by 

divergent preferences. Even though the group members can be expected to have different utility functions, 

these utility functions might share some common characteristics. Thus, if an alternative can be eliminated 

based on an individual’s utility function being risk averse, it can be eliminated in group decision making 

if each member of the group is risk averse, even though the degree of risk aversion may vary considerably 

among the group.   

 Multiattribute consequences make the assessment of utility even more difficult, and extensions to 

multivariate stochastic dominance are tricky because there are many multivariate stochastic orders 

(Denuit et al. 1999, Müller & Stoyan 2002, Shaked & Shantikumar 2007, Denuit & Mesfioui 2010) on 

which the dominance can be based. Hazen (1986) investigates multivariate stochastic dominance when 

simple forms of utility independence (Keeney & Raiffa 1976) can be assumed. If utility independence 

cannot be assumed, the potential benefits of stochastic dominance are even greater. Studies of 

multivariate stochastic dominance include Levy & Paroush (1974), Levhari et al. (1975), Mosler (1984), 

Scarsini (1988), and Denuit & Eeckhoudt (2010). In this paper we use a stochastic order that is consistent 

with a basic preference assumption, can be related to characteristics such as risk aversion and correlation 
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aversion, and is a natural extension of the standard order typically used for univariate stochastic 

dominance. We also consider a stochastic order that is consistent with characteristics such as risk taking 

and correlation loving by reversing the basic preference assumption. 

 The objective of this paper is to study multivariate stochastic dominance for the above-mentioned 

stochastic orders. In §2, we define these stochastic orders, which form the basis for what we call nth-

degree multivariate concave and convex stochastic dominance. We show a connection with a preference 

for combining good with bad in the concave case and with the opposite preference for combining good 

with good and bad with bad in the convex case. Then, we extend the concept of nth-degree risk to the 

multivariate case and consider infinite-degree concave and convex stochastic dominance, which can be 

related to utility functions that are mixtures of multiattribute exponential utilities. In §3, we develop some 

ways to facilitate the comparison of alternatives via multivariate stochastic dominance, focusing on the 

impact of background risk, on dominance results when the joint probability distribution for the attributes 

is multivariate normal, and on eliminating alternatives from consideration by comparing an alternative 

with a mixture of other alternatives. A simple hypothetical example is presented in §4, and in §5 we 

compare our multivariate stochastic dominance with dominance based on another family of stochastic 

orders possessing some interesting similarities and differences. A brief summary and concluding 

comments are given in §6.      

2. Multivariate Stochastic Dominance and Preferences for Combining Good with Bad or Good with 

Good and Bad with Bad 

2.1. Multivariate concave and convex stochastic dominance  

We begin by defining some notation. A random vector is denoted by a tilde,  is a vector 

of zeroes. For two N-dimensional vectors   

 Also,  denotes the component-wise sum, 

 and 0�x,

 if x y¢

).

and ,   if  for 1, , and  forj j j jx y j N x y> > = ≥…x y x y

1 1( , , N Nall  and j ≠x y. +x y x y x y+ +… , ]� �x y

or .� �x y

 We let [  denote 

a lottery with equal chances of getting   

Next, we formalize the notion of alternating signs for the partial derivatives of u, a multiattribute 
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utility function for a vector of N attributes. 

DEFINITION 1. { }1

1( 1) ( ) / 0 for 1, ,  and any {1, , }, 1, , .
k

N k k
n i i ju u x x k n i N j−= − ∂ ∂ ∂ ≥ = ∈ =" … …U x k…    

N
nU  consists of all N-dimensional real-valued functions for which all partial derivatives of a given 

degree up to degree n have the same sign, and that sign alternates, being positive for odd degrees and 

negative for even degrees. Observe that if ,  then  for any .N N
n ku u k n∈ ∈ <U U  Also, if ,N

nu∈U  then for 

any   and {1, , }, 1, , ,jk n i N j k< ∈ =… …
1 2

( 1) ( ) / .
k

k k N
i i i n ku x x x −− ∂ ∂ ∂ ∂ ∈" Ux  Now we use N

nU  to define 

multivariate concave stochastic dominance. 

DEFINITION 2. For random vectors  with support contained in  and �x �y [ , ],x x   dominates  in the 

sense of nth-degree concave stochastic dominance if 

�x �y

[ ( )] [ ( )] for all ,   defined onN
nu u u u� �E Ex y U≥ ∈  

[ , ].x x   

THEOREM 1. Let , , , and  be mutually independent N-dimensional random vectors with  

dominating  in the sense of ith-degree concave stochastic dominance, 

m�x m�y n�x n�y i�x

i�y , .i m n=  Then [ , ]m n m n+� � �x + y y� x  

dominates [  in the sense of  concave stochastic dominance. ]m n� �x , m�y + n�yx + th( )n m - degree+

Theorem 1 shows that concave stochastic dominance from Definition 2 is consistent with a 

preference for combining good with bad (up to degree n), where good and bad are understood in terms of 

lower-degree concave stochastic dominance. What if a decision maker prefers to combine good with good 

and bad with bad, as opposed to combining good with bad? Next we define convex stochastic dominance, 

which is consistent with such preferences.  

DEFINITION 1*. { }1
( ) / 0 for 1, ,  and any {1, , }, 1, , .

k

N k
n i i ju u x x k n i N j k= ∂ ∂ ∂ ≥ = ∈ =" … …U x …    

,N
nU  consisting of all N-dimensional real-valued functions for which all partial derivatives of 

degree up to n are positive, is called s idircx−U  by Denuit & Mesfioui (2010) and forms the basis for the s-

increasing directionally convex order. Similar to ,N
nU  if ,  then N N

n ku u∈U U∈  for any   Also, if .k n<

,N
nu∈U  then for any   and , 1, , ,jk n i j k< ∈ =… …{1, , }N

1 2
( ) / .kk

k N
i i i nu x x x −∂ ∂ ∈" Ux∂ ∂    
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DEFINITION 2*. For random vectors  with support contained in  and �x �y [ , ],x x   dominates  in the 

sense of nth-degree convex stochastic dominance if  for all 

�x �y

[ ( )] [ ( )]u u≥�E Ex �y ,   defi onN
nu u∈U ned  

[ , ].x x  

THEOREM 1*. Let  be N-dimensional independent random vectors with  dominating 

 in the sense of ith-degree convex stochastic dominance, 

, , ,   m m n nand� � � �x y x y i�x

i�y , .i m n=  Then [ ,  dominates 

 in the sense of  convex stochastic dominance. 

]m n m� � �x + x y + n�y

[ ,m n m+ +� � � �x y y x ]n + th( )n m - degree

Definition 2 extends the standard definition of univariate stochastic dominance to the multivariate 

case. As Theorem 1 shows, it preserves a preference for combining good with bad (Eeckhoudt & 

Schlesinger 2006, Eeckhoudt et al. 2009). Definition 2* and Theorem 1* develop similar orderings based 

on the opposite preference for combining good with good and bad with bad, and show the connection 

between convex and concave stochastic dominance that follows from the fact that ( ) N
nu ∈x U  if and only 

if ( ) N
nu− + − ∈x x x U .   

REMARK. The multivariate convex stochastic dominance in Definition 2* is different from what Fishburn 

(1974) calls convex stochastic dominance. Fishburn’s usage of “convex” does not relate to the utility 

function. Instead, it refers to dominance results for convex combinations, or mixtures, of probability 

distributions in the univariate case, which we will extend to the multivariate case in §3.3 and use to 

eliminate alternatives in decision-making problems in §4. To clarify the distinction, we will use the term 

“mixture dominance” when referring to the type of stochastic dominance developed by Fishburn (1974, 

1978). In contrast, our multivariate convex stochastic dominance can be thought of as “risk-taking 

stochastic dominance” because  for any 1N
nu∈U n >

,

 implies that u is multivariate risk seeking in the 

sense of Richard (1975). Not only do we have  but the underlying condition 

of preferring to combine good with good and bad with bad can be viewed as a form of risk taking. 

Similarly, our multivariate concave stochastic dominance from Definition 2 can be thought of as “risk-

averse stochastic dominance” because 

2 2/ 0 for 1, ,iu x i N∂ ∂ ≥ = …

for any 1u nN
n∈ >U  means that u is multivariate risk averse 
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(Richard 1975). Also, the preference for combining good with bad associated with N
nu∈U  implies that u 

is correlation averse (Epstein & Tanny 1980, Eeckhoudt et al. 2007, Denuit et al. 2010), which can be 

viewed as a form of risk aversion. Similarly, the preference for combining good with good and bad with 

bad associated with N
nu∈U  implies that u is correlation loving, a form of risk taking. 

2.2. The notion of nth-degree risk in the multivariate case  

 By Definition 2 (2*), concave (convex) stochastic dominance of degree n implies stochastic 

dominance of any higher degree. To isolate a higher-degree effect in the univariate case, Ekern (1980) 

introduced the concept of nth-degree risk. This subsection extends that concept to the multivariate case 

and relates it to concave and convex stochastic dominance.  

DEFINITION 3. For random vectors  with support contained in  and �x �y [ , ], ,< < <  �x x x x y− ∞ ∞  has 

more nth-degree risk than  if  for all �x [ ( )]uE)] [ (u ≥�E x �y defined on [ , ]u x x  such that 

 for any i N
1

1( 1) ( ) / 0
n

n n
iu x−− ∂ ∂ ∂"x ix ≥ {1,j , },  1, , .j n∈ =… …  

THEOREM 2. The random vector  has more nth-degree risk than the random vector  if and only if �y �x

 (i) in the sense of nth-degree concave stochastic dominance, and  dominates�x y  �

�y (ii) the kth moments of  are identical for   and�x 1, , 1:k n= −…  
1 2 1 2

[ ] [
k ki i i i i i ]x x x y y y=� � � � �" "E E  for 

     {1, , , .jany i k… …, },  1N j∈ =

REMARK. In the univariate case, Ekern (1980) defines a person as being “nth-degree risk averse” if the nth 

derivative of her utility function is positive (negative) when n is odd (even). Our interpretation of 

multivariate concave stochastic dominance as risk-averse stochastic dominance is consistent with the 

extension of the notion of being nth-degree risk averse to the multivariate case. 

THEOREM 2*. The random vector  has more nth-degree risk than the random vector  if and only if �y �x

 (i) in the sense of nth-degree convex stochastic dominance when      (  )dominates dominates� � �x y y  �x

�y

  n is odd (even), and 

 (ii) the kth moments of  are identical for  and �x 1, , 1.k n= −…  
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The proof of Theorem 2* is similar to the proof of Theorem 2. 

COROLLARY TO THEOREMS 2 AND 2*. If n is odd (even) and the kth moments of  are identical 

for  then  in the sense of nth-degree concave stochastic dominance if and 

only if  (  in the sense of nth-degree convex stochastic dominance. 

  and�x �y

 �y

�x

1, , 1,k n= −…

dominate

 dominates�x

  dominates�y  s� �x y )

 Thus, if all moments of degree less than n are identical, convex dominance goes along with 

higher nth moments for both odd and even n. With concave dominance, this holds only for odd n. For even 

n, concave dominance goes along with lower nth moments. These results relate stochastic dominance to 

ordering by moments, in the sense that convex dominance likes all moments to be higher, whereas 

concave dominance likes odd moments to be higher and even moments to be lower.  

2.3. Infinite-degree dominance  

Now we explore what emerges if a preference between combining good with bad, or combining 

good with good and bad with bad, holds for any n. In this case dominance relations are defined via N
∞U  

and ,N
∞U  which extend N

nU  and .N
nU  

DEFINITION 4. { }1

1( 1) ( ) / 0 for 1,2,  and any {1, , }, 1, , ,
k

N k k
i i ju u x x k i N j−

∞ = − ∂ ∂ ∂ ≥ = ∈ =" … …xU k…  

and { }1
( ) / 0 for 1,2,  and any {1, , }, 1, , .

k

N k
i i ju u x x k i N j k∞ = ∂ ∂ ∂ ≥ = ∈ =" … …xU …

�y

 

DEFINITION 5. For random vectors  with support contained in  and �x [ , ],x x   dominates  in the 

sense of infinite-degree concave (convex) stochastic dominance if for all 

�x

[ (

�y

[ ( )] )]u u≥�E Ex �y Nu ∞∈U  

( ),Nu ∞∈U   defined on [ , ].u x x  

Increasing the degree of dominance (n) restricts the set of utility functions with respect to which 

two random vectors are compared. Similarly, expanding the domain of definition of u (i.e., decreasing x  

and/or increasing )x  also restricts the set of utility functions, and thus increases the set of random vectors 

that can be ordered by stochastic dominance. As shown in Theorem 3, any ,  defined on [ , ),Nu u∞∈ xU ∞   

or ,   defined on  ( ],Nu u∞∈ xU ∞,−  is a mixture of multiattribute exponential utilities. Theorem 4 then 

shows that infinite-order dominance can be operationalized via multiattribute exponential utilities.  
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THEOREM 3. Consider a function ( )  defined on ,u x [ , .x ∞ ︶ Then Nu ∞∈U  if and only if there exists a (not 

necessarily finite) measure F on [  and constants  with  such that  , )0 ∞ 1, , Nb b… 0,  1, , ,ib i≥ = … N

     ( )( )( )1 1 1 1 10 0
( ) ( ) 1 exp ( ) ( ) ( , , ) ( ).N

N N N N i i ii
u u r x x r x x dF r r b x x

∞ ∞

=
= + − − − + + − + −∑∫ ∫" … …x x        (1) 

Viewing the linear terms in (1) as limiting forms of exponential utilities  

and rescaling, we can express any  

(  0  0 )i jas r with r for j i→ = ≠

,    [ , ),Nu u defined on∞∈ xU ∞   as a mixture of multiattribute 

exponential utilities, 

( )1 1 10 0
( ) exp ( , , ).N N Nu r x r x dF

∞ ∞
= − − − −∫ ∫" …x r r…              (2) 

Similarly, any ,Nu ∞∈U   (u defined on − x],∞,  can be expressed as   

( )1 1 10 0
( ) exp ( , , ).N N Nu r x r x dF r

∞ ∞
= + +∫ ∫" … …x r                (3) 

A proof for the concave case in Theorem 3 is given in Tsetlin & Winkler (2009), and the proof for the 

convex case is similar. From Theorem 3, we can state the following result without a proof. 

 THEOREM 4. The random vector  dominates the random vector  in the sense of infinite-degree 

concave stochastic dominance for 

�x �y

  [ , )u defined on x ∞  if and only if ( )1 1[exp ]N Nr y r y− − − ≥� �…E  

 for all ( )1 1[exp ]N Nr x r x− − −� …E � [ , ),0∈r ∞  and  dominates  in the sense of infinite-degree convex 

stochastic dominance for 

�x �y

  (n ]u x∞defined o − ,  if and only if ( )1 1 ]N Nr x r x[exp + + ≥� �…E  

 for all  ( )1 1[exp ]N Nr y r y+ +� �…E [ , ).0r ∞∈

Theorem 4 provides a convenient criterion for comparing multivariate probability distributions. 

Note that the expectations in Theorem 4 correspond to moment generating functions for distributions of 

 If we define  then for concave stochastic dominance we need  and .�x �y x( ) ( )1 1[exp ],N NM r x r= + +� � �…Ex r

( ) ( )M ≤�x M �yr r  for all  and for convex stochastic dominance we need ( ], ,∈ − 0r ∞ ( ) ( )M M≥� �x yr r  for 

all  [ ,∈ 0r ).∞

REMARK. The domain of definition of u is crucial for the result stated in Theorem 4. For instance, if 
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1 2( , ) (0.5,0.5) and [(0,1),(1,0)],x x= = =� �x y

�x �y

 then by examining the expectations in Theorem 4 we can 

show that  dominates  by infinite-degree concave stochastic dominance for u defined on [ , )x ∞  (e.g., 

on [  However, consider  u defined on [  Theorem 4 does not apply here, 

and taking expectations with respect to u yields 

, ))0 ∞ . 1 2( )u x= +x 1 2 ,x x x− , ].0 1

( ) ( )] 0.75 ] 1.u u[ [= < =�y�E Ex  Therefore,  does not 

dominate  by infinite-degree concave stochastic dominance. If we increase the upper limit of the 

domain of this u above 1, then 

�x

�y

2u ∞∉U  because ( ) / 0, when iu x  1,2,  i .∂ ∂ <x

).

= > 1x A similar situation can 

occur for any N, including the univariate case ( 1N =  As noted previously, expanding the domain of 

definition of u restricts the set of utility functions with respect to which random vectors are compared. In 

the example, the set of utility functions 2u ∞∈U defined on [  is larger than the set of utility functions , ]0 1

2u ∞∈U  defined on [  The former set includes ,0 ∞). 1 2( )u x x1 2 ,x x= + −x  whereas the latter does not.     

3. Comparing Alternatives via Multivariate Stochastic Dominance 

Here we present several results that are useful for comparing alternatives according to the 

stochastic dominance relations from §2. In §3.1 we show conditions under which dominance orderings 

remain unchanged in the presence of background risk, with independence playing an important role. In 

§3.2 we consider the case in which the distributions of the consequences are multivariate normal. In §3.3 

we use mixture dominance to show that an alternative, even if not dominated by any single alternative, 

can be eliminated from consideration if it is dominated by a mixture of other alternatives.   

3.1. Stochastic dominance with additive and multiplicative background risk 

When one faces a choice between two (or more) risky alternatives, this decision is often not 

made in isolation, in the sense that there are other risks that affect the decision maker but are outside of 

the decision maker’s control. Therefore, it is important to know whether a stochastic dominance ordering 

established in the absence of background risk will remain the same when background risk is present. 

Consider a choice between two projects, with consequences characterized by random vectors 

 In the presence of additive background risk, represented by the random vector  we are  and .�x �y ,�a
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interested in comparing  In the presence of multiplicative background risk, represented 

by the random vector  the appropriate comparison is between 

 and .+� � � �a x a y

,

+

�m  and ,  where ⊗ ⊗ ⊗� � � �m x m y m x

�y

 and .a m

and ;� �a m

to )

 

denotes the component-wise product,  If both additive and multiplicative background 

risks are present,  

1 1( , , N Nm x…

 are compar⊗ �y

,

�x

,  ,   ,  and� �a m m

dominates �x

inates +� �a m

and �x

�y

�y

).

�y

m x

 and + ⊗ +� � �x a m

,   ,  and 0� � � ¢a m m

 ,s �y | m a

+ ⊗� � �a m y

�y

� �x, y

 and .� �a m

 dom+ ⊗� � �a m x

�x

ed.

x,

 o�

inates

� ¢

⊗

�y

�a

� �a m

 ,  � �y

minate

  

THEOREM 5. Let  be N-dimensional random vectors such that for any fixed  

and  in the sense of nth-degree concave (convex) stochastic dominance. Then 

 in the sense of nth-degree concave (convex) stochastic dominance. 

a

, , dm  x | m a

dom+ ⊗� � �a m x

The result of Theorem 5 is quite intuitive. If  is preferred to  for each possible value of  

and  then  is preferred to  even if we are uncertain about the exact values of  If the 

project risk is independent of the background risk, the situation is further simplified. 

a

,m �x

COROLLARY 1 TO THEOREM 5. Let  be N-dimensional random vectors such that 

 are independent of  If  in the sense of nth-degree concave (convex) 

stochastic dominance, then  in the sense of nth-degree concave (convex) 

stochastic dominance. 

,0

�y

�y

 and �x

Thus, independent background risk preserves stochastic dominance orderings. Note that no 

assumption is made about the relationship between the background risks  they can be dependent. 

The assumption of independence of the project risk and the background risk is crucial, however. If 

background risk is not independent of project risk, preferences with and without background risk might be 

the opposite (Tsetlin & Winkler 2005). For example, suppose that a manager is considering adding a new 

project to an existing portfolio of projects. Let  represent the consequences of two potential new 

projects, and let  represent the consequences of the existing portfolio. Even if the manager is 

multivariate risk averse and  dominates  in terms of multivariate concave stochastic dominance, she 

might prefer the new project associated with  (i.e., prefer + +� �a x� �a y

.

 if the correlations between the 

components of  and  are smaller than those for   �a �y and � �a x
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Theorem 5 and its Corollary 1 can also be used to compare random vectors that are functions of 

other random vectors, which can be ordered by stochastic dominance. For instance, if the consequences of 

a particular alternative can be represented as + ⊗� � �a m x and any of the mutually independent random 

vectors  and  is improved in the sense of stochastic dominance, what can we say about the 

resulting changes to this alternative? 

, ,� �x a �m

COROLLARY 2 TO THEOREM 5. Let  be mutually independent N-dimensional 

independent random vectors with  dominating  in the sense of nth-degree concave (convex) 

stochastic dominance,  Then 

1 1 2 2,  ,  ,   and� � � �x y x y

i�y

1 2

i�x

1,2.i = +� �x x  dominates 1 2+� �y y

,  and0

 in the sense of nth-degree concave 

(convex) stochastic dominance. If 1 1 2,  ,  0 0� � �¢ ¢ ¢ 2 1 2 1 ,     then dominates⊗ ⊗0� � � �¢ 2�x y x y x x y y  in 

the sense of nth-degree concave (convex) stochastic dominance. 

REMARK. It might be that, e.g.,  dominates 1 +� �x x2 21 +� �y y  in the sense of stochastic dominance of degree 

lower than  For example, consider the univariate case (i.e., .n 1)N =  with 1 2 11,   0,x x y= = =� � �  and 2y =�  

 Then [ , ].c c− ix�  dominates  in the sense of second-degree concave stochastic dominance for iiy� 1,2,=  

but also note that 1x�

1

 dominates  in the sense of first-degree stochastic dominance. In this case 1y�

1 2 21, [ and , ].x x y y =� c c

1,> +

+ =� � +� −  For  in the sense of first-degree 

stochastic dominance, but for c x  only in the sense of second-degree 

concave stochastic dominance. 

1 21,   c x y≤ +� � �

1 2 1  dominx� �

1es y +�

2y+ �

2dominatx

ates y�

Theorem 5 and its corollaries show that, e.g., adding a non-negative random vector improves a 

multivariate distribution in the sense of first-degree concave and convex stochastic dominance. They also 

imply that if a set of N variables can be divided into two stochastically independent subgroups, and one of 

these groups is improved in the sense of nth-degree concave (convex) stochastic dominance, then the joint 

distribution over all N variables is improved in the sense of nth-degree concave (convex) stochastic 

dominance. In particular, if N random variables are independent, then their joint distribution is improved 

in the sense of nth-degree concave (convex) stochastic dominance whenever the marginal distribution of 

 10



any of the variables is improved in the sense of nth-degree concave (convex) stochastic dominance.  

3.2. Comparison of multivariate normal distributions via infinite-degree dominance 

The multivariate normal distribution is the most commonly encountered multivariate distribution, 

is very tractable, and is a reasonable representation of uncertainty in many situations. Müller (2001) 

provides several results on the stochastic ordering of multivariate normal distributions. The expectations 

appearing in Theorem 4 are especially tractable in this case, and thus the comparison of two multivariate 

normal distributions based on infinite-degree (concave and convex) stochastic dominance criterion is 

greatly simplified. If the random vector  is multivariate normal with mean vector �x 1( , , )Nμ μ= …μ  and 

covariance matrix ( ) ( )1 1( ),  then xp ] exp ( /2t
ij i j N Nr x r xρ σ σ= − + =� �… r r rEΣ Σμ

1 1 1
( / ) /2 .

N N N
t t

i i i j ij i j
i i j

r r rμ ρ σ σ
= = =

⎛ ⎞
+ ⎜ ⎟
⎝ ⎠

∑ ∑∑Σr rμ

[e

2+ =r

) ,t+  where a superscript 

t denotes transposition and  Thus, we have the following 

corollary to Theorem 4. 

COROLLARY TO THEOREM 4. Let  and  be multivariate normal vectors with mean vectors �x �y xμ  and 

yμ  and  covariance matrices  a .nd x yΣ Σ

/2)y+ r rμ

 Then  dominates  in the sense of infinite-degree concave 

stochastic dominance if and only if  for all  and  

dominates  in the sense of infinite-degree convex stochastic dominance if and only if 

 for all 

�x

( /t t
y yrμ

[ ,

�y

t
x r2) ( /t

x+ ≥ +Σ Σ-r rμ

).

2)-r

t

r [ , ),∈ 0r ∞ �x

�y

t t
x xμ ( /2) (t

y+ ≥Σ Σr r r r ∈ 0r ∞  

Thus, increasing any mean iμ  leads to stochastic dominance improvement (both concave and 

convex). Decreasing any correlation ijρ  leads to concave (convex) stochastic dominance improvement 

(deterioration). Decreasing any standard deviation iσ  leads to concave (convex) stochastic dominance 

improvement (deterioration) if 0 for all .ij jρ ≥  However, if 0ijρ <  for some j, things are more 

complicated. Overall, adding independent noise to attribute i leads to the increase of iσ  and to the 

decrease of the absolute value of correlations .ijρ  Thus, increasing iσ  without changing correlations is 
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equivalent to adding independent noise to attribute i and then to adjusting the correlations ijρ  up (if ijρ  is 

positive) or down (if ijρ  is negative). For concave (convex) stochastic dominance, adding independent 

noise is bad (good), and adjusting correlations up (down) is bad (good). If all correlations are positive, 

increasing any standard deviation leads to convex (concave) stochastic dominance improvement 

(deterioration). If some correlations are negative, the effect might go either way. Tsetlin & Winkler 

(2007) established similar confounding effects of increasing standard deviations in target-oriented 

situations. 

3.3. Elimination by mixtures 

 If an alternative (represented by a random vector) is dominated by some other alternative when 

the decision maker’s utility falls in a particular class (e.g., or N
nu N

∞∈U U  for concave stochastic 

dominance and   or N N
∞∈ U

1−

nUu  for convex stochastic dominance), then the dominated alternative can be 

eliminated from further consideration, thereby simplifying the decision-making problem. Mixture 

dominance, developed by Fishburn (1974) as “convex stochastic dominance” for the univariate case, 

allows us to eliminate an alternative even if it is not dominated by any other single alternative, as long as 

it is dominated by a mixture of other alternatives, which is a weaker condition (Fishburn 1978). We 

define mixture dominance for the multivariate case and then extend Fishburn’s (1978) result regarding 

elimination by mixtures. 

DEFINITION 6. For the random vectors  dominates 

 in the sense of mixture dominance with respect to  if there exists 

*
1 1, ,  and utility class ,  ( , ,k k− = …� � � �… Ux x x x

*U 1 1( , , kp p −

)�x

)

k

k�x ,= ≥ 0…p

*)] [ ( )] for all .i ku u≥ ∈� �x xE E U

 

 such that   
1

1
1,ip−

=
=

k

i∑ 1

1
[ (k

i i
p u−

=∑

 From Definition 6, the mixture can be thought of as a two-step process. In the first step, an 

alternative (a random vector  is chosen from  where )i�x ,k−�x ip  represents the probability of choosing 

 Then at the second step, the uncertainty about  is resolved. Mixture dominance means that this 

mixture has a higher expected utility than   

.i�x i�x

r all u *fo .k ∈�x U
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THEOREM 6. If  in the sense of mixture dominance with respect to  then for every   dominates k−�x

  {1, , 1} is an i k∈ ∈ …

k�x
*,U

*,   [ ( )] [ ( )].i ku there such that u u− ≥� �U x xE E  

 Note that the  in Theorem 6 can be different for different  The importance of Theorem 

6 is that if 

i�x
*.u∈U

*  and  dominates ku −∈ � k�x xU

k�x

 in the sense of mixture dominance with respect to the utility 

class of interest, then we can eliminate  from consideration even if none of  dominates  

individually. Reducing the set of alternatives that need to be considered seriously is always helpful. Since 

some of the mixing probabilities can be zero, note that we can eliminate an alternative if it is dominated in 

the sense of mixture dominance by any subset of the other alternatives. Of course, mixture dominance 

with respect to 

1, , k−� �…x x 1 k�x

, ,N N
∞  , orN

n nU U U   N
∞U  is of particular interest because it invokes concave or convex 

stochastic dominance and relates to a preference for combining good with bad or the opposite preference 

for combining good with good and bad with bad.   

4. Examples 

An important aspect of decision analysis is the assessment of a decision maker’s (DM’s) utility 

function, and this is especially challenging in a multiattribute context. The problem is somewhat 

simplified if some potential alternatives can be eliminated from consideration without having to assess the 

full utility function, and that is where multivariate stochastic dominance can be helpful. In this section, we 

present a simple hypothetical example to illustrate the concepts from §§2-3 without getting distracted by 

complicating details.  

Suppose that a telecom company is entering a new market and deciding among different entry 

strategies. For simplicity, assume that the DM focuses on two attributes, 1x  (the net present value (NPV) 

of profits for the first five years, in millions of dollars) and 2x  (the market share in percentage terms at 

the end of the five-year period). To begin, it is not surprising to find that the DM prefers more of each of 

these attributes to less. For example, she prefers 1 2( , ) ( ,40) to (2 30).x x 300 00,=  This is simple first-

degree multivariate stochastic dominance.  
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Next, if the DM concludes that she is risk averse with respect to NPV, then  would be 

preferred to [  a risky alternative that yields  with equal 

probabilities. Similarly, if she is risk averse with respect to market share, then (  would be 

preferred to [  These two choices are consistent with second-degree concave stochastic 

dominance but not sufficient to indicate that she would always want to behave in accordance with second-

degree concave stochastic dominance. For example, the risk aversion with respect to NPV and market 

share is not sufficient to dictate her choice between the two risky alternatives [  and 

 She states a preference for the latter and decides after some thought that she is, in 

general, correlation averse. Thus, her preferences are consistent with second-degree concave stochastic 

dominance. 

(250,30)

0)

,35)

,40),(200,

(300,30),(200,30)],

(250,30),(250,40)].

200,40)].

(300,30) or (200,3

250

(300 30)]

[(300,30),(

In practice, most comparisons between competing alternatives are not as clear-cut as the above 

examples. In other words, once obviously inferior alternatives have been eliminated, it may be hard to 

find many cases where one alternative dominates another. However, by looking at three or more 

alternatives, we may still be able to eliminate alternatives via mixture dominance, as discussed in §3.3.  

For a simple example, consider the choice among three alternatives: (  

 The first alternative gives a higher NPV, the second alternative gives a higher 

market share, and the third alternative is risky, with equal chances of either the high NPV and the high 

market share or the low NPV and the low market share. Note that a 50-50 mixture of the first two 

alternatives, [  dominates the third alternative by second-degree concave stochastic 

dominance, consistent with the DM’s preference for combining good with bad. By Theorem 6, then, we 

can eliminate the third alternative.  

300,30),  (200,40),  and

[(300,40),(200,30)].

(300,30),(200,40)],

Of course, if the DM has the opposite preference for combining good with good and bad with 

bad, then convex stochastic dominance is relevant and the second-degree dominance orderings in the 

above examples will be reversed. For example, [  dominates  by second-

degree convex stochastic dominance. Similarly, [  dominates [   by 

(300,30),(200,30)]

(300,40),(200,30)]

(250,30)

(300,3, 0), (200,40)]
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second-degree convex stochastic dominance, reflecting the fact that the DM is correlation loving. 

 The above comparisons among alternatives might have to be made in the presence of background 

risk. For example, the DM might be uncertain about the financial results of other ongoing projects of the 

telecom company, implying additive background risk with respect to the first attribute (NPV). She might 

also be uncertain about competitors' moves, which could translate into additive background risk with 

respect to the second attribute (market share). Finally, suppose that the company operates internationally 

and wants to express its NPV in another currency. In this case, the appropriate exchange rate, in the 

absence of hedging, would operate as multiplicative background risk with respect to the first attribute. As 

shown in §3.1, if the consequences of each alternative are independent of the background risk, then any 

stochastic dominance orderings are preserved and any resulting elimination of alternatives remains 

optimal under such background risk.   

5. Comparisons with Other Multivariate Stochastic Orders 
 
 Many multivariate stochastic orders have been studied, and the appropriate order upon which to 

base multivariate stochastic dominance is not as obvious as it is in the univariate case. Once we move 

from  the relationship among the attributes complicates matters both in terms of the joint 

probability distribution and in terms of the utility function. We focus here on multivariate s-increasing 

orders, a family of stochastic orders for which some interesting connections and comparisons with our 

multivariate concave and convex stochastic dominance can be drawn. This helps to highlight potential 

advantages and disadvantages of our approach.  

1 to 1,N N= >

 We begin by presenting the multivariate s-increasing concave order, where 1( , , )Ns s= …s  is a 

vector of positive integers, and defining stochastic dominance in terms of this order. This is a natural 

generalization of the bivariate  concave orders introduced by Denuit et al. (1999) and 

studied by Denuit & Eeckhoudt (2010) and Denuit et al. (2010).   

1 2( , )-increasings s

DEFINITION 7. 

1 1 1
1

1 1
( 1) ( ) / 0 for 0,1, , , 1, , ,  1 .

N N
i ii i N

Nk k kkN
icv N i i ii

u u x x k s i N= =
−

− =

⎧ ⎫∑ ∑= − ∂ ∂ ∂ ≥ = = ≥⎨ ⎬
⎩ ⎭

∑" … …U s x k  
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DEFINITION 8. For random vectors  with support contained in  and �x �y [ , ],x x   dominates  in the 

sense of the multivariate s-increasing concave order if  for all  u defined on 

�x

u

�y

[ ( )] [ ( )]u u≥�E Ex �y ,N
icv−∈U s

[ , ].x x  

 If 1 ,Ns s s= = =…  we say that the order is an s-increasing concave order. Special cases of this are 

the lower orthant order when 1s =  and the lower orthant concave order when 2s =  (Mosler 1984). With 

the lower orthant order, for example,  dominates  if �x �y ( ) ( ) for all [ , ].P P≤ ≤ ≤ ∈� �x c y c c x x  

 Our multivariate concave stochastic dominance, based on ,N
nU  has a convex counterpart, based 

on .N
nU  Similarly,  and dominance in terms of the s-increasing concave order have convex 

counterparts (Denuit and Mesfioui 2010).  

N
icv−U s

DEFINITION 7*. 1 1
1 1

( ) / 0 for 0,1, , , 1, , ,  1 .
N

ii N
Nk kkN

icx N i i ii
u u x x k s i N k=

− =

⎧ ⎫∑= ∂ ∂ ∂ ≥ = = ≥⎨ ⎬
⎩ ⎭

∑" … …U s x  

DEFINITION 8*. For random vectors  with support contained in  and �x �y [ , ],x x   dominates  in the 

sense of the multivariate s-increasing convex order if  for all  u defined on 

�x

u∈

�y

[ ( )] [ ( )]u u≥�E Ex �y ,N
icx−U s

[ , ].x x  

 The s-increasing concave order and the s-increasing convex order are closely related, because  

dominates  in the s-increasing concave order if and only if 

�x

�y  dominates + − +� �x x y x x x−  in the s-

increasing convex order. This follows from the fact that if  then ,N
icvu −∈ sU ( ) .N

icxu −− + − ∈ sx x x U  An s-

increasing convex order with 1 Ns s= = =…

1

s  is an s-increasing convex order. Analogous to the concave 

case, the s-increasing convex order with s =  is the upper orthant order, under which  dominates  if �x �y

( ) ) for all [ , ].> ≥ > ∈� �x c y c c x x(P P  

 The lower and upper orthant orders, based on lower orthants { | }≤x x c

1 for any≤

 and upper orthants  

 for a given c, highlight an important way in which moving from the univariate to the 

multivariate case makes stochastic orders and stochastic dominance more complex. In the univariate case, 

 When  

{ | }>x x c

( )P x c≤ + ( ) 1 for any P x c c> =� � . 2,  ( ) ( )N P P≥ ≤ + >� �x c x c [ , ],∈c x x  and this 
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becomes more of an issue as N increases because the lower and upper orthants for a given c represent 

only 2 of the  orthants associated with c. 2N

 Theorem 7 provides conditions characterizing stochastic dominance in the sense of the 

multivariate s-increasing concave and convex orders via partial moments, without reference to utilities. 

The following remark indicates an alternative characterization in terms of integral conditions.   

THEOREM 7. Let  be random vectors with support contained in  and �x �y [ , ],  ,− < <x x x < x∞ ∞  and 

denote  Then { ,0}.x xx ma+ =

(i)  dominates  in the sense of the multivariate s-increasing concave order if and only if  �x �y

1 1
1 1
( )i ix

,i N…

( )   [ , ]      1, , 1,i i
N Nk k

i i i i i i i i i i ii i
c c y for all c x x if k s and c x if k s− −

+ += =
⎡ ⎤− ≤ − ∈ = = = −⎣ ⎦∏ ∏� � …E E⎡ ⎤

⎣ ⎦

.

 

   1,=

(ii)  dominates  in the sense of the multivariate s-increasing convex order if and only if �x �y

1 1
1 1
( )i ic

,i N…

( )   [ , ]      1, , 1,i i
N Nk k

i i i i i i i i i i ii i
x y c for all c x x if k s and c x if k s− −

+ += =
⎡ ⎤− ≥ − ∈ = = = −⎣ ⎦∏ ∏� � …E E⎡ ⎤

⎣ ⎦

.

 

   1,=

REMARK.  Alternative necessary and sufficient conditions for dominance in the multivariate s-increasing 

concave and convex orders involve integral conditions. Let F�x  be the cumulative distribution function 

 for  Starting with ( )P ≤�x x .�x (1, ,1) ,F F=…
�x �x  define recursively the integrated left tails of  as  �x

 1 1( , ,k k 1, , ) ( , , , , )
1( ) ( , , , , )i

i N i N

i

xk k k k
i N ix

F F x z x dz= ∫… … … …
� � … …x xx+

1≥

( )k
i ic x

+
�

               (4) 

for  The lower partial moments in Theorem 7(i) can be expressed via integrated left tails: 

 Then  dominates  in the sense of the multivariate 

s-increasing concave order if and only if 

1, , .Nk k…

i ( ) 1
1 ( , , )

1 1
1 ! ( ).N

N N k k
ii i

k F−

= =
⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦∏ ∏ …

�x cE �x �y

1 1( ,k( , , ) (k k , )) ( ) for all [ ] if  and N Nk
i i i i i i i F F c x x k s c x≤ ∈ = =c c ,… …

� �x y  

 When if   1, , .i N=… … 1,N1, ,k s 1,i i= − =  (4) is the standard integral condition for univariate stochastic 

dominance.  
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 An expression similar to (4), involving integrated right tails of  holds for the multivariate s-

increasing convex order (Denuit & Mesfioui 2010). If  define 

recursively  

�x,

) ax (1, ,1)( ) ( nd ,G P G G= > =…
� ��x xx x �x

 1 1( , , 1, , ) ( , , , , )
1( ) ( , , , , )i

i N i N

i

xk k k k k k
i N i              (5) 

x
G G x z x dz+ = ∫… … … …
� � … …x xx

for  Then  dominates  in the sense of the multivariate s-increasing convex order if and 

only if 

1, , 1.Nk k ≥… �x �y

1 1( ,k… …
� �x y
( , , ) (k k , )) ( ) for [ ] if  and N Nk

i i i i i iG G c x x k s≥ ∈ =c c , Nall ic x= f  1, , 1,  1, , .i ik s i i = − =… …  

 Mosler (1984) showed that stochastic dominance in terms of two special cases of the multivariate 

s-increasing concave order is related to multiplicative utilities. First,  dominates  in terms of the 

lower orthant order  if and only if  for all multiplicative utilities of the form 

 where u x  Second, this 

dominance extends to the lower orthant concave order (

�x

l ,ix

�y

.N=

( 1)s =

)( ) ,i i

[ ( )] [ ( )]u u≥�E Ex

0 and ( ) /i i idu x dx≤ ≥

2s

�y

x(1
( ) N

i
u u

=
= − −∏x ( ) 0 for al  1, ,i i i …

)=  if each  is also concave. Theorem 8 

extends these results to the multivariate s-increasing concave order for any s, showing that this order 

corresponds to the preferences of decision makers having utility functions consistent with mutual utility 

independence (Keeney & Raiffa 1976). 

( )i iu x

THEOREM 8. For random vectors  with support contained in  and �x �y [ , ],  ,− < <x x x < x∞ ∞   

dominates  in the sense of the multivariate s-increasing concave order if and only if 

 for all 

�x

�y

1 1
( )]N NN

i ii i
u y

= =
� �E( 1) [ ( )] ( 1) [N

i iu x− ≤ −∏ ∏E 10,  ,  1, , .
ii i su u i≤ ∈ = …U N  

 We now compare our multivariate dominance with dominance for the multivariate s-increasing 

orders. There are some close similarities between the two approaches as well as some important 

differences. In terms of infinite-degree stochastic dominance, the two approaches are equivalent, because 

min{ } min{ }
lim  and lim .

i i

N N N
icv icxs s− ∞ −→∞ →∞
=sU U U UN

∞=s  However, this equivalence does not hold for finite n and s. 

 At a very basic level, our multivariate stochastic dominance is a natural extension of standard 

univariate stochastic dominance in that both are based on a preference between combining good with bad 
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and combining good with good and bad with bad. A preference for combining good with bad leads to 

multivariate concave dominance and the most common univariate dominance. The opposite preference 

leads to multivariate convex dominance and a risk-taking version of univariate dominance. The 

preference condition is easy for decision makers to understand and therefore easy to check. If the decision 

maker has a consistent preference one way or the other, this implies corresponding constraints on the 

utility function via  and ,N
∞U UN

∞  but the discussion about preferences does not require direct 

consideration of utility. 

 Dominance in the sense of the s-increasing orders cannot be related to a simple preference 

assumption, but it can be characterized in terms of integral conditions that are extensions of the integral 

conditions for standard univariate dominance. In contrast, our multivariate dominance admits no such 

integral conditions. From a practical standpoint, however, the integral conditions in (4) and (5) might be 

difficult to verify as N increases or 
1

N
ii

s
=∑  increases. 

 Of course, not all decision makers share the same preferences. Thus, the preferences of different 

decision makers can be consistent with different classes of utility functions and therefore with different 

definitions of dominance. The approach to multivariate stochastic dominance developed here is intuitively 

appealing and should fit the preferences of some decision makers. As such, it is a useful addition to the 

stochastic dominance toolbox.   

6. Summary and Conclusions 

The concept of stochastic dominance has been widely studied in the univariate case, and there is 

widespread agreement on an underlying stochastic order for such dominance. This standard order is 

consistent with a basic preference condition, a preference for combining good with bad, as opposed to 

combining good with good and bad with bad. Many multivariate stochastic orders have been studied. 

However, most lack sufficient connections with the standard univariate stochastic dominance order and 

are not based on an intuitive preference condition that is easy to explain to decision makers. We fill this 

gap by defining multivariate nth-degree concave stochastic dominance and nth-degree risk in a way that 
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naturally extends the univariate case because it is consistent with the same basic preference assumption. 

As in the univariate case, multivariate infinite-degree stochastic dominance is equivalent to an 

exponential ordering. We also develop the notion of multivariate convex stochastic dominance, which is 

consistent with a preference for combining good with good and bad with bad, as opposed to combining 

good with bad. 

After developing our notion of multivariate stochastic dominance, we present some results that 

are useful in applying our multivariate stochastic dominance relations to rank alternatives. We show that 

independent additive or multiplicative background risk does not change stochastic dominance orderings, 

discuss the ordering of multivariate normal distributions, and show how stochastic dominance can be 

applied to the choice among several alternatives using elimination by mixtures. We further illustrate our 

results with simple examples, and we discuss the connection of our approach with one based on a family 

of multivariate orders having some similarities to the order we use.  

Many situations involve multiple decision makers, and somewhat divergent preferences can make 

decision making challenging. Even if each member of the group assesses a utility function (a challenging 

task itself, particularly in a multiattribute setting), it would be surprising for all members of the group to 

have identical utilities. However, the preferences of group members might be somewhat similar, 

especially when they are making a decision for their company and not a personal decision. They most 

likely will agree on a preference for more of each attribute to less or can define the attributes in such a 

way as to guarantee that preference, so that first-order stochastic dominance is applicable. They might 

also agree that the company’s situation makes it prudent to be risk averse and that in general, a preference 

for combining good with bad is reasonable. This implies that they all should be willing to use a utility 

function  for any 1N
nu∈U n >  and therefore to use multiattribute concave stochastic dominance to 

eliminate some alternatives from consideration.  

Making a decision in a multiattribute situation is likely to be a multistage process. Some 

alternatives might be eliminated using stochastic dominance; choice among other alternatives might 

require more careful preference assessments, with emphasis on particular tradeoffs. That in turn might 
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lead to clarification of objectives and attributes, and generation of new promising alternatives (Keeney 

1992). The results of our paper can be useful in that kind of decision process. 
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Appendix 

PROOF OF THEOREM 1. Consider any ,N
n mu +∈U  and denote ( ) [ ( )] [ ( )].m mv u u= + −� �E Ez y z x + z

.5 [ ( )]m nu+ +� �y yE

)],  or [ ( )] [ ( )].n nv v≥� � �y x yE E

 Now 

 is equivalent to  

 It remains to 

show that 

0.5 [ ( )] 0.5 [ ( )] 0.5 [ ( )] 0m n m n m nu u u+ + ≥� � � � � �x + y y x x + xE E E

[ ( )] [ ( )] [ ( )] [ (m n m n m n m nu u u u+ − ≥ + −� � � � � � �y x x + x y y x +E E E E

( ) .N
nv ∈z U  For any   1, ,  and any {1, ,jk n i= ∈… …

(

}, 1, , ,N j k= …

)1

1 1 ( 1) ( ) / ( 1) [ ( ) /
k

k k k k
i i m iv z z u z− −− ∂ ∂ ∂ = − ∂ + ∂ ∂" "z y

1 1
] [ ( ) / ] ,

k k

k
i m i iz u z z− ∂ ∂ ∂� �E Ez x + z "  and 

1 2
 ( 1) ( ) / .

k

k k N N
i i i m n k mu x x x + −− ∂ ∂ ∂ ∂ ∈ ⊂" U Ux  Therefore, 

1

1) ( ) / 0,
k

k k
i iv z z−( 1− ∂ ∂ ∂ ≥"z  so ( )v ∈z U .N

n  ,  

PROOF OF THEOREM 1*. This is, essentially, a corollary to Theorem 1. Observe that ( ) N
nu ∈x U  if and 

only if ( ) N
nu− + − ∈x x x U .  Therefore,  dominates  in the sense of ith-degree convex stochastic 

dominance if and only if 

i�x i�y

i+ − �x x y  dominates i+ − �x x x  in the sense of ith-degree concave stochastic 

dominance. By Theorem 1, [ ,  dominates  ]m n m n+ − + − + − + + −� � � �x x x x x y x x y x x x+

[ ,m n+ − + + −� �x x x x x x  ]n+ − + − �x x y x y e

]

m +� x  in the sense of  concave stochastic 

dominance, and thus [ ,  dominates [ ,

th( ) -degren m+

]nm n m n� � � �x + x y + y m n m+ +� � �x y y �x  in the sense of  

convex stochastic dominance. ,  

th( ) -degren m+ e

PROOF OF THEOREM 2. For the “only if” part, (i) holds by the definition of .N
nU  For (ii), consider 

 For this 
1 2

( )  for any {1, , } and .
ki i i ju x x x i N k= ∈" …x n< x

1

1( ),  ( 1) ( ) / 0
n

n n
i iu u x−− ∂ ∂ ∂"x x =  for any 
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{1, , }, 1, , .ji N j∈ =… n… ].
k

 Therefore, 
1 2 1 2

[ ] [
ki i i i i ix x x y y y≥� � � � � �"E E

1 2 1 2
[ ] [

ki i i i i i

" x

]. ].
k

 Similarly, for  

 Thus, 

1 2
( ) ,

ki i iu x x= − "x

1 2 1 2
[ ] [i i i i iy y y x x≥� � � � �" "E E

k ki
x� x x x y y y=� � � � �"E E

1

1( 1) ( ) /
n

n n
i iu x−− ∂ ∂ ∂x

"

n…

 Now, suppose that (i) and (ii) hold. 

We need to prove that for any u  such that  

 Since u is differentiable at least n times, all lower-degree derivatives exist and are 

bounded on 

0 for any ,x ≥ {1, , },  1, ,ji N j∈ =" …

[ ( )] [ ( )].u u≥� �x yE E
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