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1 Introduction

The Efficient Market Hypothesis (EMH), advanced as a general interpretative and normative
framework nearly forty years ago (Fama, 1970), has grown to become a widely accepted work-
ing tool for the economic profession. Rooted in the evolutionary foundations of neoclassical
economics (Alchian, 1950; Friedman, 1953), the EMH is broadly based on the “as if” argument
that poorly informed investors are persistently loosing wealth in favor of the better informed.
If this is true, those who are poorly informed are, in the long-run, driven out of the market
so that the best available information about assets fundamentals is ultimately reflected in
prevailing prices.

Despite its pervasive influence in economics, a general formal proof of the selective ca-
pability of markets and, consequently, of the ultimate convergence of asset prices toward
fundamental values is still lacking. Only fairly recently scholarshiply work has started to in-
vestigate this issue. Several behavioral models based on evidence collected from laboratory
experiments and real markets (see Barberis and Thaler, 2003, and references therein) contend
both the positive and normative aspects of EMH. Rational behavior does not appear as a
pervasive property of trading, nor does automatically guarantee, even if appropriately im-
plemented, better performances and higher probability to “survive” the speculative struggle.
The modeling effort of these studies has been, however, limited to partial equilibrium models
with exogenous price dynamics. A general equilibrium model with an endogenous price dy-
namics has been firstly proposed in Blume and Easley (1992). They investigate wealth-driven
market selection, and the information content of asset prices, on a class of investment rules
that depend on the realization of exogenous variables, such as asset dividends. Two groups of
contributions developed from their analysis.

A first group of works has focused on investment rules not necessarily coming from utility
maximization and expressed as fraction of wealth to be invested in each asset (see Evstigneev
et al., 2009, for a recent survey). Rules are allowed to depend on histories of exogenous market
variables, in particular past dividends. Assuming that all agents consume the same fraction of
their wealth, a robust finding is that investing proportionally to asset expected dividends, also
named the Kelly rule after Kelly (1956), is the unique globally stable rule. The result holds
for both short- and long-lived assets, as shown in Amir et al. (2005) and Evstigneev et al.
(2008) respectively. When the Kelly rule is not present in the market, for instance when a
complete knowledge of the underlying dividend process is lacking, rules with the lowest relative
entropy with respect to the dividend process, or “nearest” to it, are gaining all the wealth in
the long-run. As a result asset prices are brought as “close” as possible to their fundamental
values and, in this sense, the market can be said informationally efficient.

A second group of works has instead focused on selection among investment decisions
explicitly coming from utility maximization. In this case assets demand is not necessarily
expressed as a fraction of wealth. The main objective of these works is to establish whether
the market is able to select for agents whose beliefs, or information, are “closer” to the un-
derlying dividend payment process. Assuming perfect foresight on realized prices and market
completeness', Sandroni (2000) and Blume and Easley (2006) find that the “as if” statement
is correct: no matter the functional form of the utility function they maximize, agents whose
beliefs are “nearest” the correct ones are selected for in the long run, provided that they
discount future consumption at the same rate.

I'Notice that market completeness cannot be achieved unless agents coordinate on having rational expecta-
tions on prices. On the issue of market completeness see also footnote 5.



Both groups of contributions leave some relevant questions unanswered. In particular, it is
not known how market selection works when agents do not coordinate to have perfect foresight
on realized prices and, at the same time, prices enter as explicit parameters in the investment
rules. The aim of the present paper is to investigate this issue. In particular, we extend the
model in Blume and Easley (1992) to encompass investment rules that depend on current and
past asset prices. In doing so we drop the assumption of perfect foresight, and, apart the
technical requirement of certain regularity conditions, do not pose any further restriction on
the functional forms of investment rules. Our aim is twofold. Firstly, we want to move closer
to a formal general check of the “as if” statement, studying market selection and the ensuing
asset prices behavior for a broader class of asset demands. Secondly, we want to better
understand the functioning of markets when their role of information gatherers is directly
acknowledged by traders. In fact, in a market where prices supposedly reflect fundamentals
as close as possible, the use of the formers to infer about the latters is a rational behavior
which does not imply the presence of informational asymmetries. When agents believe that
market prices reflect the best available information and use them to guide their investment
decision, is market efficiency increased or decreased? Relatedly, if agents rely on endogenous
information, what is the long-run effect of those strategies that are designed to trade against
asset mis-pricing?

The dependence of investment rules on current and, possibly, past prices implies the pres-
ence of a feedback effect in agents’ demands which links past and present market perfor-
mances. The same effect has already been investigated in several heterogeneous agents mod-
els. The main finding is that market instability and asset mis-pricing are in general possible
(see Hommes, 2006; LeBaron, 2006, for a review). However, in these works market selection is
postulated to operate according to ad-hoc fitness measures and not by looking at the natural
measure of relative wealth (Levy et al., 2000; Farmer, 2002; Chiarella and He, 2001, are among
the few exceptions). Moreover, results are often derived for specific investment behaviors and
in a partial equilibrium framework. Both gaps have been partially filled by our previous works,
see e.g. Anufriev and Bottazzi (2010), Anufriev et al. (2006) or Anufriev and Dindo (2010),
which study wealth-driven market selection on the general class of price dependent investment
rules. However, those works, being based on an essentially deterministic framework, do not
discuss the information efficiency issue we are interested here.

Technically we investigate market selection and the informational role of prices by analyz-
ing the random dynamical system that describes the price and wealth dynamics. The price
dependence of investment rules commands a notion of economic equilibrium compatible with
the way in which agents form their individual demand. In particular, a requirement of consis-
tency between agents’ expectation and realized market dynamics should be introduced. This
requirement, which is not necessary when agents base their investment decisions on exoge-
nous variables, leads to the notion of “procedural consistent equilibria” (see the discussion in
Anufriev and Bottazzi, 2010) which are naturally identified with the deterministic fixed points
of the random dynamical system describing the market evolution. We characterize such fixed
points, or long-run market equilibria, and investigate their stochastic stability. We are able
to derive general sufficient conditions ruling whether any given agent is locally dominating
all others. Since our exercise can be accomplished when investment rules depend on cur-
rent prices, a wide spectrum of behaviors can be modeled, including those derived from the
maximization of any Constant Relative Risk Aversion (CRRA) expected utility.

Extending previous contributions, our analysis confirms the existence of a special rule,
named S-rule, that turns out to be a price dependent generalization of the Kelly rule. When
it is present in the market, it acts as the “local” champion meaning that it can destabilize



any long-run informationally inefficient market equilibrium. At the same time, it determines
a market equilibrium where risky assets are correctly priced proportionally to their expected
revenues. This equilibrium is never unstable, no matter the number and type of other com-
peting investment rules. However, when the S-rule is not used by any agent, the analysis
of the informational efficiency of the market becomes much more complicated. In fact, the
dependence of investment rules on prices brings instability and multiplicity of equilibria into
the market, so that persistent asset mis-pricing can be observed, and prices do not need to
reflect the best available information.

The presence of multiple equilibria and instability is essentially related to two causes.
Firstly, inside the general class of investment rules we consider, the relative average wealth
growth rate obtained using two different rules depends on prevailing prices. It may well happen
that the first rule has a higher wealth growth rate at the prices determined by the second,
while the second has a higher wealth growth rate at the prices determined by the first, so that
none can prevail. A second source of instability is directly linked to the effect induced by price
feedbacks. Even though a given rule has the highest relative average wealth growth at “its”
prices than all other rules present in the market would have at “their” prices, it can happen
that its price feedback is too strong and acts as a destabilizing force. In both cases, market
prices do not converge to the level reflecting the “best” available information but instead keep
displaying endogenous fluctuations.

The outline of this paper is as follows. In Section 2 we present our model. Section 3
proposes an example which, albeit its simplicity, will hopefully help in appreciating our findings
and in understanding their causes. Section 4 contains our main results, that is, existence and
local stability of long run market equilibria for any finite set of investment rules inside the
general class considered here. In Section 5 we illustrate some implications of our results by
discussing three specific issues. In Section 5.1 we define the S-rule, as the rule that never
vanishes against any other rule, and show that it is a price dependent generalization of the
Kelly rule. Section 5.2 explores the possibility of establishing an order relation on the space of
investment rules by exploiting their relative market performance. The answer will be negative.
Section 5.3 characterizes conditions under which a generic form of learning from prices does
not vanish when trading with a S-rule investor. Section 6 concludes. All proofs are collected
in the Appendix.

2 The model

Given the set ¥ = {1,...,s,...,S} of states of the world, define the set of sequences Q :=
Hsz with elements w = (..., wy...,wy,...), so that {w}; = w, € ¥ for every ¢, and the
complete o-algebra P = 2. Let p be a measure on P so that (2, p) is a well-defined
probability space. We assume that the corresponding stochastic process with realizations in
) is ergodic, that is, there exists a unique invariant measure © = (7y,...,7g) on % such that
for every bounded statistics g : ¥ — R and almost all sequences w it holds

T S
.1
Jim 7 2o =3 gl

Given p, let 6 be the Bernoulli shift operator on €2, that is, for every component ¢ it holds
{0w}; = {w}ir1. Name 6" the composition of ¢ operators 6, so that {#'w}y = {w}y .

We study a market where, in each period ¢, I agents are trading K short-lived risky assets.
We denote agent i wealth in period ¢ as w}, and asset k price in period ¢ as py,, using the
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vector notations w; = (w},...,w]) and p; = (pky, - .., Px) when appropriate. Asset dividend

payoffs are paid in terms of a consumption good, the numéraire of the economy, and are random
variables defined over (2,P, p). Payoffs are stationary and depend on the contemporaneous
realization of the state of the world. Given the matrix D with non-negative elements Dy,
the dividend of asset k at time ¢ is defined as dj,(w) = D, , . We assume that the matrix
D is non-trivial, that is, for all k& (for all s) there exists a s (a k) such that Dg; > 0. The
first assumption implies that there are no assets with zero payoff in every state. The second
assumption rules out the possibility that the total wealth in a given period is zero. Since
payoffs are stationary one can also define K random variables over ¥ with dj(s) = Dsj and
then use dj+(w) = d. (wy).

Asset demands are modeled as wealth fractions to be allocated to each asset. We denote
with a};’t the fraction of wealth that at period ¢ agent 7 invests in asset k. Whereas previous
contributions have assumed investment decisions to depend on partial histories of w, we assume
they are functions of endogenous market variables, in particular current and past asset prices.

Assumption 1. The fraction of wealth agent 7 invests on asset k at time t, O‘Z,t’ is given by
Ozi:,t:&}iﬂ(pt) k= 17"'7K7 (21)

where the function o (-) is agent i-asset k investment rule and p; is the vector of current and
past, up to lag L, asset prices, that is, p; = (py, Py, . . ., pL) with p! = p;_;.2 The consumption
of agent 7 at time ¢ remains defined as af(p;) =1 — Zszl ot (pr). We further assume that for
any price vector p investment rules satisfy the following properties

P1 Each agent ¢ invests a positive fraction of her wealth and cannot borrow, that is, 0 <
K i .
2 k=1 0 (p) S 15

P2 Short positions are forbidden, that is, a(p) > 0 for every asset k and agent i, and
portfolios are sufficiently diversified, that is, Zszl al(p)Dsy > 0 for every agent i and
state of the world s;

P3 Demand is strictly positive for zero contemporaneous prices, that is, for every asset k
and agent 7, ot (p;) > 0 if p, = 0.

We shall name o' the vector valued investment rule adopted by agent ¢ and introduce the
shorter notation ai = o'(p;). We denote with A the set of vector valued rules complying to
P1-P3.

The role of Assumption 1 deserves a brief discussion. As common in this literature, we
model asset demand in terms of wealth shares allocated to each asset. We extend previous
works by assuming that shares @ may depend on current and past prices. P1 implies that
agents cannot borrow, may decide not to consume, but can never end up with zero wealth
by consuming it all. P2 guarantees that agents’ portfolios are sufficiently diversified so as to
avoid having zero wealth for some realizations of the stochastic dividend process. Notice that
if the dividend matrix D is diagonal (as in the case of Arrow securities) P2 reduces to the
condition o} (p) > 0. Rules that violate the constraints in P1-P2 will possess zero wealth
with probability one and we can safely neglect them. P3 is introduced to guarantee that
prevailing prices are strictly positive. Since each asset possesses a strictly positive expected

2The compact notation for lagged prices allows [ to be equal to 0, in which case trivially p? = p; and
0
Dkt = Pk,t-



payoff, any rule should consider it a valuable investment at a sufficiently low price. Notice
however that the as can be infinitesimally small so that we do not consider P3 as an actual
limit on investment behaviors.

Given a set of investment rules and an initial wealth distribution, market clearing and
intertemporal budget constraints determine the dynamics of asset prices and agents’ wealths
for all subsequent periods, that is, the time evolution of the market state variable z; = (wy, p;)-
In fact, given individual wealths, asset prices, and investment decisions at time ¢, each agent
wealth at time ¢ 4+ 1 is given by the scalar product of her individual asset holding with the
vector of asset returns corresponding to the state of the world just realized or

K

w =W (v w) = Z

k=1

T
QW

Pkt

dk(wt+1), 1= 1,...,_[. (22)

Given wealths and investment decisions at time time ¢ + 1, asset prices are computed by
aggregating asset demands and imposing market clearing which, upon normalizing asset supply
to 1, leads to

I I
Prt+1 = Zw§+1042,t+1 = Zwi(wtsw)@;c,tﬂ , k=1, K. (2.3)
i=1

i=1

As assets are short-lived, the total wealth in each period is given by the sum of asset
dividends payed for the state of the world just realized. We can thus use total wealth to
introduce a convenient normalization of dividends and individual wealths. This procedure
does not change equations (2.2-2.3) upon remembering that all variables are now understood
to be normalized, so that it holds

I K

wi = Y D=1, s=1,...5, teN, (2.4)
i=1 k=1

K I
Yoo = Y (I—abp)wi<1, teN (2.5)
k=1 i=1

The previous normalization is, in fact, equivalent to assuming from the beginning that total
wealth given by the sum of asset dividend for each realization of w; is equal to one so that, in
particular, there is no aggregate risk in the economy. This is consistent with the assumption
that investment rules are not state dependent. Notice that when normalizing total wealth in
each period, we are implicitly changing the shape of the investment rule by changing their
dependence upon prices into a dependence upon normalized prices. In particular we assume
that the components of the investment rules a are defined over the compact set [0, 1](FFDE,

If investment decisions do not depend on current prices, (2.3) uniquely determines the
vector of market clearing prices at time ¢t + 1. Conversely, when the dependence on contem-
poraneous prices is present in some of the as, prices are fixed by (2.3) through a system of
K implicitly defined functions. Continuity of investment rules is sufficient to guarantee the
existence of at least one vector of positive market clearing prices.

Theorem 2.1. If for every agent i = 1,...,1 it holds o € A and o € C°, then there always
exists a vector p* of positive prices satisfying (2.3), that is, clearing the asset market.



The uniqueness of the solution is in general not guaranteed, but smooth investment rules
with a mild dependence on present prices constitute a sufficient condition, see for instance
Theorem A.1 in the Appendix.

Since in the following sections our analysis will be mostly local, we are not particularly
bothered by the possibility that the market clearing price vector is not unique. However when
discussing the global dynamics, we shall assume that there exist K explicit global maps

Pri1 = flagw), k=1,... K. (2.6)

Summarizing, the market evolution can be written as a system of [ + K (L + 1) equations

wtlJrl = Wl(zyw)
W(xt;w) = : T
i w{+1 = WI@ES w)
Pit+1 = fl(xt;w)
pit+1 = Pt
Pi(zpw) = p%,t+1 = Pit
Flw)x, = T 2.7
(@) _p1L,t+1 = pftl (27)
Plryw) = :
Prt+1 = Ir ($t; w)
p}(,t—l-l = Pkt
Pr(ry;w) = Pkit1 = Py
i i _Pf{,tﬂ = p%(:fl

Let AX denote the K-simplex and

K
Afz{xERK Z:ngl and kaO,kzl,...,K}

k=1

denote the K-hyper-cube corner. Name Af and Aﬁ their respective subsets with all positive
components. Due to normalizations in (2.4-2.5) each F(w) maps the set X = AT x (A )L+
in itself. The component W characterizes the dynamics of agents’ wealth fractions, whereas
P fixes prices using market clearing and keeps track of their past values. For any given initial
state xg, the random dynamical system representing the market dynamics is defined iterating
F(w):

o(t,w,10) = F(O" 'w)o...0oF(Ow) o F(w)wo. (2.8)

Notice that, in general, price, wealth, and investment decisions defined by (2.8) are not
measurable with respect to the dividends process. In our framework, contrary to markets
where investment rules depend only on exogenous information (see e.g. Blume and Easley,
1992; Amir et al., 2005), the dependence on endogenously determined prices implies that the
map F does not need to preserve the properties of the stochastic process. As a result, even if we
assume an ergodic dividend process, it is not granted that the price and wealth process will be
ergodic, unless by imposing restrictions on the class of rules A. For this reason, and given the

7



arbitrariness of the dividend process, population size I, memory span L, we acknowledge that
the analysis of the global dynamics generated by (2.8) with rules in A cannot be performed
in total generality and shall concentrate on the local dynamics.

Moreover, having a multiple agent framework with heterogeneous investment behaviors,
not necessarily derived from an utility maximization given preferences and expectations, we
shall not apply the traditional rational expectation approach. In the present paper, instead,
our interest lies in characterizing whether long-run wealth distributions where one or many
agents have gained all the wealth exist and are stable.

Because of the stationary nature of the process governing the succession of states of the
world and the lack of aggregate risk due to (2.4), long-run economic equilibria are characterized
by constant prices and, in accordance with Assumption 1, constant investment shares. Owing
to the market dynamics and wealth normalization, constant investment decisions as and fixed
long-run asset prices imply a constant wealth distribution. Hence, we are naturally lead to
identify long-run market selection equilibria with the deterministic fixed points of the random
market dynamics in (2.8) as defined by the following

Definition 2.1. The state z* € X = (w*,p*) is a deterministic fixed point of the random
dynamical system ¢ generated by the family of maps F(w) if, for almost all w € Q, it holds

Fw)z* = a*, (2.9)

which implies

*

o(t,w,z*) = a* for every teN. (2.10)

Intuitively a deterministic fixed point can correspond to a single investor possessing the
entire wealth of the economy. In this case, according to (2.3), asset prices are equal to the vec-
tor of investment decisions of this investor. Alternatively, many investors could have positive
wealth at equilibrium. In this case the constraints imposed by the wealth dynamics require
that they all take the same investment decision at equilibrium prices (see Section 4).

In any case, not all deterministic fixed points represent interesting asymptotic states. In-
deed, in order for the market dynamics to actually converge to a deterministic fixed point
starting from a neighborhood of it, the point must be asymptotically stable.

Definition 2.2. A deterministic fixed point * of the random dynamical system ¢(t,w, )
is asymptotically stable if, for almost all w € Q and for all  in a neighborhood U(w) of z*,
limy oo |p(t, w, z) — z*|| — 0.

For some equilibria we will make use of the weaker notion of stability, which will be, in our
case, sufficient to guarantee that orbits do not diverge from deterministic fixed point when
initial conditions are sufficiently close to it.

Definition 2.3. A deterministic fixed point x* of the random dynamical system ¢(t,w, ) is
stable if, for any neighborhood V of x* and for almost all w € 2, there exists a neighborhood
U(w) CV of 2* such that lim; .., p(t,w,z) € V for all x in U(w).

Notice that in the previous definitions the neighborhood U might depend on the realization
of the process w. If a deterministic fixed point is neither asymptotically stable nor stable we
shall say that it is unstable. When characterizing deterministic fixed points and their local
stability the following terminology, describing the long-run wealth distribution, will be useful.



Definition 2.4. An agent 7 is said to survive on a given trajectory generated by the dynamics
(2.8) if limsup,_, ., w! > 0 on this trajectory. Otherwise, an agent n is said to vanish on a
trajectory. A surviving agent ¢ is said to dominate on a given trajectory if she is the unique
survivor on that trajectory, that is, liminf, .., w! = 1

Importantly, survival and dominance are defined only with respect to a given trajectory
and not in general. The reason is that we are going to work exclusively with local stability
conditions so that an agent may survive on a given trajectory (i.e., for certain initial conditions
or certain realizations of the process p) but vanish on another. A similar definition is given
in Blume and Easley (1992) for a stochastic system like ours® and in Anufriev and Bottazzi
(2010) and Anufriev and Dindo (2010) for deterministic systems.

Applying the previous definition to a deterministic fixed point, we shall say that agent ¢
survives at z* if her wealth share is strictly positive, w** > 0, while she vanishes if w* = 0.
Such taxonomy can be applied both to a stable or unstable deterministic fixed point, but the
implications are very different in the two cases. When the fixed point is stable, all trajectories
starting in a neighborhood of it will stay close to it, so that a survivor in the fixed-point will
also survive on all these trajectories. If, moreover, the agent is the unique survivor and the
fixed point is also asymptotically stable, the agent will dominate on all trajectories starting
inside a proper neighborhood. Conversely, when the fixed point is unstable, one is not able to
characterize survival and dominance for trajectories starting close to it. Both vanishing and
dominating agents at an unstable fixed point may survive as well as vanish on trajectories
started in any of its neighborhoods, and in absence of global results one, in general, cannot
say. In the rest of the paper we shall show that the constraints on the dynamics imposed by
the dividend process, the market clearing, and the wealth evolution are sufficient to uniquely
characterize the level of prices in the deterministic fixed points, to describe the corresponding
distributions of wealth among agents, and to derive local stability conditions.

3 A toy market

In this section we shall consider the simplest market dynamics where the implication of bring-
ing prices into the investment rule can be fully appreciated. In the discussion we will make
use of analytical results whose formal derivation is postponed to Section 4.

Even though our results apply to payoff dividend processes represented by any non-trivial
matrix D, in the following example we shall restrict our attention to a square identity matrix,
that is, Arrow securities. We do so for two reasons. First, it is already known that when D is
not a square matrix and/or has not full rank, that is, respectively, when states of the world
are not measurable with respect to the dividend process or when asset payoffs are not linearly
independent so that arbitrage opportunities may arise, market selection may reward different
agents at different prices and/or work against the best informed agent.? Showing that this
is the case also when Arrow securities are traded clarifies that the ultimate source of market
instability lies not in the structure of asset payoffs, but rather in the lacking of coordination
on price expectations. Indeed, the only difference between the complete market case analyzed
in Sandroni (2000) and Blume and Easley (2006) and the repeated market for Arrow securities

3Notice however that in Blume and Easley (1992) dominance is defined as liminf;_ ., wi > 0 so that, as
for survival, more than one rule may dominate on a given trajectory.

1See e.g. Section 3.3 in Evstigneev et al. (2009) and Section 5 in Blume and Easley (2006). Notice however
that, as characterized in Sandroni (2005), there exists a subset of non-trivial non-square matrices D for which
market selection does work.



we investigate here is that we do not assume a priori that the foresight of traders is perfect.®
Second, when trading Arrow securities, our bounds on investment rules o can be naturally
interpreted as no-bankruptcy conditions.

Consider an economy with two states of the world and two agents trading according to,
respectively, rules a! and a? both in A. Two Arrow securities are traded: security k € {1,2}
pays 1 if state of the world £ is realized and 0 otherwise. We assume that the rules adopted by
agents are continuously differentiable, that is o, o € €', and we initially consider investment
rules which depend only on the last observed price. In this case an unique price vector is
determined at each time step and the global dynamics is well defined. Using the notation of
the previous section we fix K =S =2, [ =2, L = 1. To simplify the discussion we further
assume that agents reinvest all their wealth. Because of wealth normalization and (2.5), both
agents’ wealth and asset prices add up to one in every period, so that we are left with a three
dimensional random dynamical system: the wealth fraction of agent 1, the price of asset 1,
and its first lag. Without loss of generality we shall assume that w is the realization of a
Bernoulli process: at every period t, w; = 1 with probability 7 and w; = 2 with probability
1—m.

Given the state of the market at time ¢, z; = (wy, p, p} = pi—1), and the diagonal structure
of the dividend payoff matrix the random dynamical system representing the market dynamics
can be written as the composition of the following map

( St i wen =1
Wir+1 = ( ) 1) )
l-a (pt) wt .
i w =2
o (3.1)
prr1 = ot (pwirr + P (p)(1 — wig)
\ ptl+1 = Dt

We are interested in characterizing long-run market equilibria. Let f; and f;_, stand for
the map in (3.1) when w = 1 and w = 2, respectively. The deterministic fixed points of the
system are the states x* such that

¥ = fr(z*) and z* = fi_(z").

Straightforward computations show that there are three types of deterministic fixed points,
namely

;= (w'=1p" =da'(p),p" =p"),
s = (w'=0,p"=a(p*),p" =p"),
ar, = (wp=a'(p*) =a?(p*),p" =p").

Either one agent has all wealth and dominates, which occurs at ] and z3, or both agents have
some wealth and survive, which occurs at z7,. In both cases prices are fixed points of the

5 Because of the missing assumption of rational price expectations on agents’ part, the market for Arrow
securities is, strictu sensu, incomplete. More precisely, our markets are “endogenously” incomplete rather than
“exogenously” incomplete as it happens when there are fewer independent assets than realized states. See also
the difference between endogenous and exogenous uncertainty in Chichilnisky (1999) and Hahn (1999). Other
authors refer to the repeated market for Arrow securities as sequentially complete but not necessarily complete,
see e.g. Dreze and Herings (2008).
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Figure 1: Investment rules o'(p) and a?(p) are plotted against the price of asset k = 1.
Equilibrium prices are given by the coordinate of their intersections with the EMC, that is,

points p4, pp and pc.

survivor’s investment rule, p* = a(p*), and each surviving agent receives the same earning in
both states of the world.®

It is useful to use a plot to visualize the location of fixed points. In Fig. 1 we plot two
generic investment rules as a function of the (lagged) price of the first asset p. The intersections
of each investment rules (demand) with the diagonal (supply), that is, points A, B and C, are
the different Walrasian equilibria corresponding to all possible deterministic fixed points of the
system. Using the terminology introduced in Definition 2.4, in A and C' agent 2 dominates and
agent 1 vanishes. These are single survivor equilibria. Conversely, the existence of multiple
survivor equilibria of the z7 , type, like the point B, in which both agents survive and neither
dominates nor vanishes, requires that the first and second agent’s investment rules intersect
the diagonal at the same point.

No matter the shape of the investment rules, both single survivor and multiple survivors
equilibria lie on the diagonal of the plot, that is, the function f(p) = p. For analogies with
previous works (Anufriev et al., 2006; Anufriev and Bottazzi, 2010; Anufriev and Dindo, 2010)
we name it the “Equilibrium Market Curve” (EMC) to stress that it is the locus of all long-run
market equilibria.

The stability of the deterministic fixed points of the simple system in (3.1) depends upon

61f the investment rules are derived from expected utility maximization, absence of aggregate risk implies
that equilibrium prices correspond, no matter the shape of the utility function, to the beliefs the surviving
agent assigns to the occurrence of each state.
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the values of the two quantities (c.f. Theorem 4.3 and Theorem 4.5)

e = (50 (i) )
(

AMw, p)

(3.3)

If both p(w*, p*) and modulus of A(w*, p*) are smaller than one, then the single survivor equi-
librium 2} with ¢ = 1,2 is asymptotically stable. In the case of multiple survivor equilibrium
7, if A(w*, p*) has modulus smaller than one then the equilibrium is stable (but not asymp-
totically stable). Conversely, if either p or |A| are grater than one, then the corresponding
equilibrium is unstable. Thus, there are two different sources of instability.

Regarding pu, consider the relative entropy of the investment rule of agent ¢ at price p,
(a(p), 1 — a’(p)), with respect to the distribution of prices (p, 1 — p), defined as

I—p
1 —ai(p)

It is immediate to realize that log(u(w*, p*)) is equal to the relative entropy of the survivor’s
rule minus the relative entropy of the rule of the vanishing agent, computed at equilibrium
prices. Thus, the deterministic fixed point can be asymptotically stable only if the surviving
agent is the one whose investment rules has, at equilibrium prices, the lowest entropy. The
intuition is that in this case the surviving agent invests, on average, better than the other
agent, and, consequently, her wealth share grows at an average positive rate. The fulfillment
of this condition can be directly appreciated in the EMC plot. In Fig. 2 all curves are the same
as in Fig. 1 with the addition on the horizontal line m equal to the probability of occurrence
of state 1. The distance between this line and o' at a given price p is monotonically related
to I:(a’,p). Consider the point C' where agent 2 dominates and 1 vanishes, that is, w* = 0
and p* = pc = o*(pc). Since the distance from the 7 line is larger for (pc, a?(pc)) than for
(pc, at(pe,)), it is I.(al,pe) < I.(a? pc) and this point is unstable. Conversely, in p4 the
curve nearest to the 7 line is o2, so that, at least according to this criterion, the point A is
stable.

Concerning the second quantity, A, it depends on the relation between past realized prices
and present investment decisions. When |A(w*,p*)| > 1 price feedbacks are too strong for
the dynamics to settle down, a form of deterministic overshooting similar to the instability
observed in price adjustment processes. At equilibrium, only the investment rules of the
surviving agents are relevant to define stability with respect to A\. Given the slope of a?(p)
at pa and pc, both A and C' are stable under past prices feedback.” Since A is also stable
when looking at the relative entropy, it represents an asymptotically stable single survivor
equilibrium and a possible outcome of the long-run market dynamics. In the example of Fig. 2
it is the unique single survivor stable equilibrium, but it is not the unique long-run equilibrium.
We have still to evaluate the stability with respect to past prices feedback of B, where both
agents survive. Locally, the market dynamics is equivalent to the one generated by a single
agent whose investment rule is the wealth weighed average of both surviving rules. Since
|0at (pg)| < 1 and [0a?(pg)| > 1, if w is large enough then, for continuity, |A(w*,p*)| < 1 and

I.(a',p) := 7 log + (1 —m) log (3.4)

a’(p)

"Given P1-P3 in Assumption 1 and upon continuity, each rule has at least one interior intersection with
the EMC with derivative lower than one in absolute value, so if one agent is alone in the market, there exists
at least one stable fixed point.
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Figure 2: The local stability of deterministic fixed points A, B, C' can be appraised graphically.
Let i denotes the surviving agent(s) and p* the equilibrium price, then p(w*,p*) is smaller
than one if o’(p) is, in p*, the nearest curve to the horizontal line 7, representing the dividend

payment probability, and [A(w*,p*)| is smaller than one if the slope of a’(p*) is not steeper
than the EMC.

the point is stable. Conversely, for smaller values of w, the over-reaction to price movement
of a? destabilizes the equilibrium. Notice at last that since in B investment decisions of
both agents are equal, the distance of their rules in terms of relative entropy is zero and
wu(w*, pp) = 1. For this reason if | \(w*, p*)| < 1 the fixed point is stable but not asymptotically
stable. A perturbation can indeed generate a permanent change in the distribution of wealth.
Prices will converge back to their equilibrium level pg but the system will end up in a fixed
point with a different value of w.

If investment rules depend only on current prices, the random dynamical system simplifies
to

ol (pr)wy Wep1 = 1
Pt
Wi+1 = ) ) (3:5)
—(l_oi_(g:))wt Wip1 = 2
where p;(w;) is a solution of
pe = o (pwy + & (p) (1 —wy) . (3.6)

As already discussed in Section 2, (3.6) can possess multiple solutions, so that the global
dynamics may be ill-defined. Concerning deterministic fixed points, however, they are the
same of the previous case. Moreover, as long as the intersections of the investment rules with
the EMC are isolated points, (3.6) possesses an unique solution in a neighborhood of any
fixed point. Due to the differentiability assumption of the as, it is sufficient to require that
w*dpat (p*) 4+ (1 —w*)9pa?(p*) # 1. Stability is now only decided by the value of u(w,p): since
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the investment rules do not depend on past prices there is no room for the destabilizing role
of price feedbacks.

Summarizing, irrespectively of the fact that price dependence is on past or present prices,
the market rewards agents whose equilibrium prices are “closest” (in entropy terms) to those
of the underlying asset dividend process. Notice however that, differently from the result in
Blume and Easley (1992, 2006), Sandroni (2000) or the works surveyed in Evstigneev et al.
(2009), in our framework this result applies only locally. It can well happen, like in the
example of Fig. 2, that multiple stable equilibria do exist or, alternatively, that none of the
deterministic fixed points is stable. In the latter case, Alice is doing better at Bob’s prices and
Bob is doing better at Alice’s prices so that neither Alice nor Bob prevail and market prices
fluctuates indefinitely. In both cases it is not granted that prices reflect the best available
information so that informational inefficiencies may arise.

4 Main results

This section is devoted to the formal investigation, in a more general case, of the possible
sources of market instability discussed in the simple toy model of the previous section. For
this purpose we consider a market populated by I investors trading K assets using investment
rules depending on a vector of current and past L prices. We derive results about the existence
and local stability of deterministic fixed points, or long-run market equilibria, for market
dynamics described by (2.8). In presenting our findings it is convenient to treat the case of
single survivor equilibria first and move to the multiple survivors case at a later stage.

4.1 Single survivor equilibria

While Theorem 2.1 guarantees, under mild conditions, the existence of a market clearing price
vector, one cannot in general assume its uniqueness. Since all our results about long-run
properties of the market are local, we are not very disturbed by this limitation. In what
follows, our first step will be to characterize the single survivor deterministic fixed points.
Then, we will provide sufficient conditions for the existence of a well-defined local dynamic
around them and for their asymptotic stability.

If an agent possesses all wealth, prices are fixed at the intersection of her investment
rule with the EMC, now the vector valued function f(p) = p, exactly as in the example in
Section 3. If no other rules intersect the EMC at the same prices, we have a single survivor
equilibrium.

Theorem 4.1. Consider a market for K short-lived assets with non-trivial payoff matriz D,
where I agents invest according to rules in A using L price lags. Assume agents’ wealths and
asset prices evolve according to ¢ in (2.8). If there exists an agent i € {1,...,1} and a price
vector p* such that o' (p*) = p* and o’ (p*) # p* for every j # i, where p* = (p*,...,p*), then
r* = (w*, p*) with w™* =1 and w* = 0 for j # i is a deterministic fized point.

The fixed point z* = (w*, p*) represents a single survivor equilibrium in which agent i
dominates. Given x*, a well-defined local dynamics exists for continuous differentiable invest-
ment rules provided that the excess demand function has an isolated zero in p*. Sufficient
conditions can be obtained using the implicit function theorem:

Theorem 4.2. Under the hypothesis of Theorem 4.1, let x* be a single survivor fixed point
where, without loss of generality, agent I-th dominates. Assume further that all investment
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rules i € {1,...,1} are continuously differentiable in a neighborhood of p*, o' € C'(p*). If the
matriz

(@) —1 ( {)2’0 (a1)>? (a1)™0
)10 al)20 _ )30 ol K0
g | b et ol e | )
()™ (&52)2’0 (o)™ ()™ =1
18 non-singular, where
(0l )i = aozk,l(p) . i=1,...,1, 1=01,....L, kh=1,... K, (4.2)
aph T*

then the dynamics is locally well-defined, that is, for every w € Q there exists a neighborhood
U(w) of x* where prices and wealths evolve according to (2.8).

Notice that when the investment rule of agent I does not depend on current prices it holds
H = —I and the non-singularity condition is trivially met.

Once the local dynamics in a neighborhood of a deterministic fixed point is well defined,
the crucial issue is to asses whether an agent dominating (or vanishing) in the fixed point is
also dominating (or vanishing) on all trajectories started close enough to it. The next theorem
provides sufficient conditions for the asymptotic stability or instability of a deterministic fixed
point when locally continuous differentiable investment rules are considered

Theorem 4.3. Under the hypothesis of Theorem 4.2, consider the fized point x* = (w*, p*)
Theorem 4.1 where w'* = 1 and o!(p*) = p* and assume that the matriz H defined in (4.
1s non-singular. Consider the I — 1 quantities

S K s
._ o (p”) o
1L ._H<Z ag(p*)Ds”“> L oi=1,...,]—1, (4.3)
s=1

k=1

of
1)

where s 1s the probability assigned by the invariant measure to state s, and the polynomial in

A of LKth degree

K
P(X Z Z/\LK >l ngn H D)7Rlok — X6y g 51%71’) (4.4)
hi=1  Ig=1 k=1
where
K
(@) = => {H Yeplap) 1=01,....L, kh=1..K,
k'=1

(al )M are defined in (4.2), and o are the permutation of the set {1,...,K}. If all y; and
all the roots of P(\) have module smaller than one, then the fixved point x* is asymptotically
stable. If, for some i, u; > 1 or if a root of P(\) has absolute value greater than one, then
the fived point x* is unstable. Moreover, if the k-th component of the I-th investment rule o
depends only on asset k prices, which we name no-cross-dependence condition, P(\) simplifies
to

1 (v S AL—«a,gw) , (45
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and each (al)™ to

I\h,l
i (og)" B B
) _W l—O,l,...,L, k‘,h—l,...,K’_

The quantity p; defined in (4.3) is the long-run average wealth growth rate of agent 4
when prices are determined by agent I.8 If its value is greater than one, the dominance of
agent I can be effectively challenged by an agent ¢ with an infinitesimal fraction of wealth
and, as a result, the fixed point is destabilized. Conversely, if its value is lower than one, the
exogenous transfer of a small amount of wealth from agent I to agent i would be naturally
reverted back by market forces. The origin of the us can be understood in terms of relative
entropy. When p; is smaller (greater) than one, the relative entropy of the dominating rule
with respect to the invariant measure of the dividend process is lower (greater) than the same
quantity for the competing rule 7. This is basically the same condition already found by
Blume and Easley (1992) and all subsequent works analyzing market selection between rules
depending on assets dividends. The relevant difference is that in their case the differences in
relative entropy are global, while in our case they are local and depend on prevailing prices.
Quantities pus implicitly take into account different consumption patterns. In fact, if agent ¢
invests at equilibrium proportionally to agent I, that is, if there exists a positive constant ¢
such that o’ = cal, then it holds i’ = c. As a result, if two agents have the same portfolio
rules, that is they split their investment across the different assets in exactly the same way,
but are characterized by different consumption rates, any single survivor equilibrium in which
the agent who consumes the most dominates is unstable. In other terms, with equal portfolio
rules the agent who consumes the most can never dominate the economy.

The second set of stability conditions pertains to the values of As. These are the roots of a
polynomial which depends on the derivatives of the surviving investment rule. The strength of
price feedback in this rule becomes a separate source of market instability, independent from
the relative entropy of the adopted strategy. Even though this polynomial is heavily simplified
under the no cross-dependence condition, a characterization of its root is only possible when
specific investment rules are given. In any case, by continuity, it holds that if investment rules
are rather flat functions of past prices, so that their partial derivatives are close to zero, the
fixed point is asymptotically stable. Indeed, as a straightforward application of Theorem 4.3
one has the following

Corollary 4.1. Under the hypothesis of Theorem 4.3, when the investment rule of depends
only on current prices the asymptotic stability of x* depends only on the wvalue of of us as

defined in (4.3).

4.2 Multiple survivors equilibria

Similar results can also be obtained for fixed points where more rules have positive wealth,
or multiple survivors equilibria. These equilibria are associated with prices at which multiple
investment rules intersect, at once, the EMC. In this case, at equilibrium, all surviving agents
take the same investment decision. These equilibria are in general not isolated points, but lay
on a differentiable manifold with dimension equal to the number of potential survivors minus
one.

8When the matrix D has not full rank, arbitrage opportunities might arise and the wealth of agent i might
grow or shrink deterministically at each time step. This is not possible if D has full rank.
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Theorem 4.4. Consider a market for K short-lived assets with non-trivial payoff matriz D,
where I agents invest according to a rule in A using L price lags. Assume agents” wealths and
asset prices evolve according to ¢ in (2.8). If there exists a price vector p* and M agents, say
the last M, such that o'(p*) = p* for [ — M +1 < i < I and o'(p*) # p* fori < I — M,
with p* = (p*,...,p"), then the set of non-negative wealth shares w™M* ... w!* such that
an:I_MH w™ =1 defines a manifold of deterministic fizred points x* = (w*,p*) where the
last M agents possess all the wealth and the first I — M agents have zero wealth and vanish,
that is w™* =0 fori < I — M.

Surviving agents fix asset prices at their common intersection with the EMC. Each common
intersection defines a manifold of fixed points z* because each reallocation of wealth among
surviving agents does not change the equilibrium prices and is still a fixed point. As a result,
in principle, some potentially surviving agents can possess a zero wealth share. The manifold
of multiple survivor equilibria is isomorphic to AM. We turn now to the specification of the
sufficient conditions for the stability or instability of z* = (w*,p*). The following theorem
generalizes both Theorem 4.2 and 4.3 to the present case.

Theorem 4.5. Consider the manifold of fixed points x* = (w*, p*) of Theorem 4.4 and assume
that all investment rulesi € {1,..., I} are continuously differentiable in a neighborhood of p*,
o' € CYp*). Sufficient conditions for the existence of a well-defined local dynamics in a
neighborhood of x* and for the stability or instability of x* are the same as those specified,
respectively, in Theorem 4.2 and 4.3 provided that

(i) condition (4.3) is checked only for the first I — M rules,
(ii) in the definition of (ax)™, H, and thus P()\), the expression (al)™! is replaced by

M
()™ = Y (o)™ 1=0,1,...,L, kh=1,... K, (4.6)

m=1—M+1

Intuitively, results for multiple survivors fixed points mimic those for a single survivor
with a rule equal to the weighted average of all surviving rules, with weights equal to their
equilibrium wealth shares. Notice that if at a fixed point x* all I agents take the same
investment decision, all generalized eigenvalues p will be equal to one, so that the only binding
necessary condition for local stability will be given by the roots of the polynomial P(\),
representing the strength of the “average” price feedback. This is exactly what happened in
the two agents toy market encountered in the example of Section 3 and what will happen
in the case considered in Section 5.3. Notice also that while the statement in Theorem 4.3
concerns asymptotic stability, the conditions of Theorem 4.5 only assure stability. This is the
obvious consequence of the fact that multiple survivor fixed points are non-isolated points.

5 Swurvival, ordering, learning: examples

In the remaining part of the paper we shall illustrate some implications of our results by
considering three specific issues. Firstly, in Section 5.1 we characterize the rule o, or S-rule,
as the rule that never vanishes when trading against any rule in A for which the stability
analysis of Section 4 can be applied. Notwithstanding the existence of such a special rule,
in Section 5.2 we show with a counter example that the survival relation on the set of rules
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is not transitive and thus rules cannot be ordered according to their “survivability”. Last,
in Section 5.3 we consider the specific class of investment rules which depend on some given
statistics of past prices, as in the case in which agents use the observed average past prices
and its variance to forecast future asset performances, and compare their ability to survive in
a market populated by o investors. Before we start it is convenient to be specific about the
survival relation. We consider an ecology of strategies whose behavior is sufficiently smooth for
their local dynamics to be analyzed using the theorem developed in the previous section. These
strategies are confronted pairwise to inspect their relative asymptotic behavior. Formally,

Definition 5.1. For any o € A, let E(a) be the set of intersections of the strategy a with
the EMC. Consider an ecology & C A such that if @ € & then a € C'(Ugee F(B)), that is,
for any intersection of any strategy in € with the EMC there exists a neighborhood in which
all strategies in & are continuously differentiable. The ordered couple (a!, a?) belongs to the
relation = C € x &, or a! = o?, if when rules ! and a? are competing alone in the market,
for almost all initial conditions zy € X and almost all w € Q, an agent using rule o' either
dominates or survives but does not vanish.

Since the set € is clearly not unique, many different relations can be built. Moreover, while
A and € depend only on the number of assets K, price lags L, and matrix D, the relation >
depends also on the process governing the states of the world so that different market settings
are characterized by different relations.”

5.1 A special rule

Given the local stability analysis of the previous section, we are able to characterize the
investment rule o that never vanishes against any given rule. On the set AZ x AKX define

the function

s K
«
I.(a,p) = — E s log ( E —sz,k> ,
=1 =1 Pk

where D is a non-trivial dividend payoff matrix and 7 a given invariant measure. The quantity
I.(a, p) is the relative entropy of the (investment) vector a with respect to the (price) vector
p: a generalization of (3.4) to the case of a generic non-trivial payoff matrix D and possibly
defective probabilities a and p. Fix now the asset structure, that is, 7 and D. We define o,
or S-rule, as the price dependent investment rule that minimizes the exponential of I (a, p)
for each given price vector p. Even if the S-rule cannot be in general explicitly derived,
its existence and continuity is assured by the compactness and convexity properties of the

minimization problem as shown by the following

Theorem 5.1. For any given probability measure m and non-trivial matriz D, there exists a
continuous vector function o (p) : AL — AK also named S-rule, solving

o (p) = argmin {exp I(a,p)} . (5.1)

aceAK

For internal solutions, that is, when o € Af, o is of class CL. Moreover, o®(p) = p if and
only if pr = 25521 wsDsy for every k =1,... K.

9For each given dividend process one could consider the relations on & as s sub-sets of an analogous relation
defined over A. The latter cannot however be analyzed in whole generality due to the differentiability conditions
required by Theorems 4.3 and 4.5
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As a result of the maximization, the S-rule implies zero consumption. Importantly, in
order to invest according to the S-rule, an agent must possess a perfect knowledge about the
invariant measures 7™ on the states of the world. In case of a normalized diagonal matrix D
(Arrow securities) the S-rule coincides with the so called Kelly rule, that is, a5 (p) = 7,. It is
so in the toy market analyzed in Section 3, where the S-rule coincides with the line 7 plotted in
Fig. 2. For more general payoff matrices D, the S-rule depends on prices and can be interpreted
as a generalization of the Kelly rule.!? For example for D = (1}2” 1(/]2) and m = (0.4,0.6) the
S-rule can be easily found to be a(p) = 1 for p < 5/8 and o®(p) = 0.4p/(2p — 1) otherwise,
where « is the fraction to be invested in the first asset and p is its price.

The central result of this section is that a® never vanishes against any other rule for which
our local stability analysis can be applied, that is,

Theorem 5.2. Given an ecology € as in Definition 5.1, if a® € & then a® = a for every
ac .

The previous theorem exploits the local analysis of Section 4 to infer properties of the
global dynamics: on every trajectory the S-rule does not vanish, because otherwise the system
would converge to an equilibrium in which the other rule dominates, which is shown to be
impossible. Since Theorem 5.1 guarantees that a® is of class €' when strictly positive, and
in particular at its intersection with the EMC, the set of ecologies €& where the theorem 5.2
can be applied is not trivial. However, the same reasoning cannot apply in a market with
more than two rules. Still, in the latter case, the local analysis reveals that the S-rule always
survives in any stable long-run equilibrium and fixes the price of assets according to their
fundamental values.

Theorem 5.3. Consider an ecology € as in Definition 5.1, with o € &. All deterministic
fized points x* = (w*,p*) where o vanishes are unstable. Moreover, there exists at least one

stable deterministic fized point in which o survives and long-run asset prices are equal to
pi =35 Dy, forallk=1,...,K.

Notice at last that one can define an S-rule associated with any consumption level oy by
conditioning the minimization in (5.1) with the constraints 30 o = 1—ag. It is easy to see
that this rule will still satisfy Theorems 5.2 and 5.3 if the ecology of strategies € is restricted
to the rules having the same (or higher) consumption rates.

5.2 Dominance and ordering

Having shown the special role of o for the relation =, the next question is whether > induces
an order relation on the set €. To this purpose, consider a repeated market with 2 states of the
world with equal probability to occur and 2 Arrow securities. Consider further the following
zero-consumption investment rules expressed as fraction of wealth to be invested in the first
asset (the rest is invested in the second) whose price is denoted as p:

0.9 p <0.2

. <0.
a'(p) =03, ap)={ 15-3p 02<p<03 , oz?’(p):{oiol p;g;’
0.6 p>0.3 p=%L p~0

ONotice, however, that the S-rule is different from the generalized Kelly rule, akK = Zle msDs 1 for all

k =1,...,K, defined in e.g. Evstigneev et al. (2009). It is true, however, as shown in Th. 5.1, that the
intersections of the two rules with the EMC coincide.
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It is immediate to see that all these three rules belong to the same ecology €. Let us start
from the case in which only rules 1 and 2 compete on the market. The market dynamics is as
in Section 3 with (3.5) updating market state variables and with prices implicitly set by (3.6).
Naming w the wealth fraction of strategy 1 and solving (3.6) for market prices gives:

Pt = 0.6 — 0311}15 .

The price of asset 1 is always between 0.3 (when w = 1) and 0.6 (when w = 0). Plugging
this price equation in (3.5) one obtains the 1-dimensional dynamical system describing the
evolution of the market. It is straightforward to check (e.g. by plotting al(p) and a?(p) on
the EMC plot) that there exist two single survivor equilibria: one with w* = 1 and p* = 0.3, so
that rule 1 dominates, and one with w* = 0 and p* = 0.6, so that rule 2 dominates. According
to Theorem 4.3 only the second equilibrium is asymptotically stable, that is, rule 2 dominates
on all trajectories starting in a neighborhood of w = 0. Importantly, for almost all initial
conditions and for almost all realizations of the dividend process the market dynamics will
never converge to w = 1, so that a? never vanishes. As a result a? > al.

Next consider the case in which rules 1 and 3 are trading. Market clearing price as a
function of w, the wealth fraction of rule 1, reads

Pt = 0.2 + Olwt y

and is bounded between 0.2 and 0.3. As in the previous case, one single survivor equilibrium,
the one associated with w* = 1, is asymptotically stable whereas the other is unstable. As a
result we have a! = o3.11

Finally, consider the case in which rule 2 and 3 are present in the market. The dynamics
is now slightly more complicated. The price of asset 1 as a function of agent 2 wealth fraction
w reads

0.2 4+ 1.3w, clo 1

_— w —

1+ 3w, 4]

b = .
1 1

0.7 — 0— w; € (—, 1

W 4 |

which is always between 0.2 (for w = 0) and 0.6 (for w = 1). As before, only single survivor
equilibria exist and it is easily checked that the fixed point is asymptotically stable when w = 0
whereas it is unstable when w = 1. As a result it will never happen, unless for the measure
zero initial condition w = 1, that rule 3 vanishes so that o = 2.

As the previous example makes clear, the relation > is not transitive: a? = o', a' > a3,
but it is not true that o? > o®. Hence, > is not an order relation. This result does not
depend on differences in the consumption rates, as we assumed the same consumption (zero)
for all agents, nor on “exogenous” incompleteness, as agents are trading Arrow securities. Its
ultimate reason is that, with price-dependent rules, only local results can be established so
that long-run dominance may differ at different prices. In fact, the same relation would be
transitive, and thus could be used to order investment rules, in the special case of investment
rules not depending on asset prices. In this case local results become global.

HTn these first two examples, since for all possibly realized prices one rule has a lower relative entropy than
the other, we can infer that the locally stable single survivor equilibrium is also globally stable. In fact, one
could also define a stricter relation > based on the global dominance of one strategy on the other and have
a? = ol and ! = a?.
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5.3 Learning from prices

In Section 5.1 we have established that the S-rule, not being dominated by any other rule, never
vanishes. Is it the S-rule rule the unique rule having this property? The answer is negative.
Indeed one can construct many different rules by working on the local stability conditions
derived in Section 4. In this section we concentrate on one such example by considering a
rule that, in using only market information given by past prices, “adapts” to any other rule
and thus is never dominated, in particular not even by the S-rule. We first characterize the
properties of this price learner and then use them to appraise its survivability when competing
against the S-rule.

Consider a rule o of class @' such that, given D and 7, the ecology & = {al,a”}
is well defined. Assume further that a* depends on some statistics, like mean or variance,
computed on a finite number, say L, of past realized prices'?, satisfies the no-cross-dependence
condition, prescribes the reinvestment of all the wealth, and is consistent, that is, a¥(p) = px,
k =1,...,K for any constant price vector p = (p,...,p). If the statistics on which the
strategy ol assigns equal weights to the L past prices, as in the case of moving averages,
then all partial derivatives computed at the fixed points are equal. This implies a substantial
simplification in the expression of (4.4) which in turn leads to the following

Theorem 5.4. Consider a deterministic fived point x* in which only the agent using rule o
survives. Assume that the agent investment rule does not depend on present prices, satisfies

the no-cross-dependence condition, is consistent and, moreover, for every k = 1,..., K, all
partial derivatives are equal, or
(abFyel = (oY for every 1I'=1,....L k=1,... K. (5.2)

Define (ak),+ the common value of the partial derivative of investment rule k at the fized point
x*. All the roots of polynomial P(\) defined in Theorem 4.3 are inside the unit circle provided
that

1
(af)ee € (—17 z) , forevery k=1,....K. (5.3)

The extension of the previous result to the multiple survivors case is straightforward: con-
ditions are not on partial derivatives (aX)®! but on convex combinations of partial derivatives
of the type (aj)"". In this case the equilibrium could be stable for some mixtures of strategies
and unstable for others. When this is the case, the stability condition can be re-written in
terms of which wealth distributions among survivors guarantee stability.

We can now apply the previous result to a market populated by a price learner and an agent
using the S-rule, whose wealth fraction is denoted by w. Consider a fixed point z* = (w*, p*),
with p* = o®(p*), where both agents survive. Then, under the assumptions of Theorem 5.4,
one has the following

Corollary 5.1. Given z* = (w*, p*), with p* = a°(p*), let (o).« be the partial derivatives
of the k-th investment rule of the price learner with respect to price. If for every k =1,... K

w* > 11— ol L when (g )y >0, (5.4)
1
w* > 1————  when (af) <0, (5.5)
(@ )as ’

128everal so called “technical” rule of chartist inspiration, like trend detection, ceiling or floor crossing
etcetera fall in this category.
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then the fized point x* is stable.

The intuition behind this result is simple. Given a value of (aF),« there always exists an
appropriate bound on the fraction of wealth of the S-rule agent which assures that the portfolio
of a price learner asymptotically approaches the market portfolio, whose wealth is constant
and thus never vanishes, at an exponential rate. As a result, a price learner never vanishes
when trading with an agent using the S-rule, in that there always exists a finite wealth fraction
of the former that stabilizes the deterministic fixed point. Since it is never the case that the
S-rule dominates a price learner, we have established that o > «°.'* The assumption of
zero-consumption is essential to the proof. Indeed any rule with a positive consumption rate
would vanish against the S-rule.

6 Conclusion

We have investigated wealth-driven selection and market behavior in a repeated market for
short-lived assets where demands are expressed as a fraction of wealth and depend on the
vector of current and past prices. We have derived local stability conditions of long-run
market equilibria where a rule, or a group of rules, dominate and asset prices are fixed to
a constant value. Our results show that instability of these long-run market equilibria is a
common phenomenon that might lead to asset mis-pricing and informational inefficiency. We
have identified two different sources of price endogenous fluctuations, namely investment rules
having too strong past prices feedbacks and relative entropy of the dominating rule being too
high with respect to some other rule at the equilibrium prices it determines.

Our results cast doubts on the working of market selection, and thus on the validity of the
“as if” statement when applied to exchange economies with uncertainty. On the one hand our
results imply that if a trader has perfect knowledge regarding the underlying dividend process
and exploits it at best using the S-rule, the fixed points in which she survives are the unique
stable equilibria, and prices correctly reflect, in the long run, asset’s fundamental values. This
is the same result found also in previous works where market selection was tested on investment
rules depending on exogenous asset dividends. On the other hand, when an investor using the
S-rule is not present in the market, it is not anymore the case that the market selects for the
best informed trader, and informational inefficiencies due to endogenous fluctuations emerge
as a generic market property.

A Appendix: Proofs

A.1 Section 2

Proof of Theorem 2.1 According to (2.3) prevailing prices p; are set by the implicit
equation

bt = A(Pt)

where A is the vector valued function with components A, = Zle wia}‘c’t. Due to assumptions
of the theorem, A is a continuous function from the convex compact set [0, 1]¥ into itself. Then

BBIn fact, along the same lines, it is straightforward to show that a” > «a for every a of class @! at its
equilibria.
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the proposition follows from Brouwer’s Theorem. Moreover, due to P3 in Ass. 1, zero prices
can never be an equilibrium.

Theorem A.1l. If for every agenti = 1,...,1 it holds o' € A and o € C', and if for every
k=1,...,K o does not depend on current prices other than at most the one of the same
k-th asset, then the vector p* is unique provided that

‘0@};
Opi,

<1, i=1,....,] k=1,...,K. (A.1)

Proof of Theorem A.1 Using the notation of Theorem 2.1, a sufficient condition for the
uniqueness of the fixed point is that A represents a contraction mapping, that is, for each
couple of prices p and q = p + dp it is

|A(p) —A(Q)| < |p—qd| .

Due to the differentiability of A, the mean value theorem implies that

|A(p) — A(q)| = (0p)' Qdp,

where the matrix Q(p, 0p) is a positive semi-definite quadratic form defined starting from the
Jacobian matrix .J of the function A as

1 1
Q- / AT (p + 1, 6p) / dt2J(p + 5 6D)
0 0

The function A is a contraction if for every couple p and q, the matrix () does not possess
eigenvalues greater than one. This is trivially the case if the investment rules as, and conse-
quently the function A, do not depend on contemporaneous prices (in this case all eigenvalues
of @ are equal to zero).

If only the k-th contemporaneous price enter as a variable in the investment rules relative
to asset k, the matrix @) is diagonal, with elements

1 2
Qii = (/ dty Jii(p + 5P)> :
0

For the triangle inequality, if |J;;(p)|] < 1 for any p, then Q;; < 1 and the proposition
follows. Il

A.2 Section 4

Proof of Theorem 4.1 The result follows from substitution of z* in (2.7). W(z*;w) = w*
holds because, for every w, for every i # I w™ = 0 is a fixed point of W/(-,w) and, since
by assumption p; = al(p*) for every k = 1,..., K, w!* = 1 is a fixed point of W!(-,w).
P(z*;w) = p* holds because, regarding the current price, it is only agent I who fixes prices (all
other agents have zero wealth) and p} = «f(p*) holds by assumption for every k = 1,..., K.
Regarding lagged prices, at any fixed point they are all equal by definition. O]

Proof of Theorem 4.2 After noting that prices are implicitly defined by the set of K
equations in (2.3) with w/,; =1 and wj , = 0 for i # I, the result immediately follows from
the implicit function theorem. O
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Proof of Theorem 4.3 Consider the reduced system in [0, 1]/~ x (0, 1)X+D of dimension
I — 1+ K(L + 1) obtained by substituting w! =1 — Zf;ll wi. With an abuse of notation we
will keep using the same names for the map f, and thus also F, even though its definition has
actually changed. In particular the definition of f given in (2.6) becomes

(T w ZW’ T w) (O gy — Mhpr) T gy, k=1,...,K. (A.2)

F defined in (2.7) and x* vary accordingly, in particular z* = (0,...,0,p*). The Jacobian
J(w, x) of F can be written as

oW oW

w 9P

J(w,z) = (?w W) : (A.3)
oW 8P

or, subdividing the part relative to price determination, with obvious notation,

aw oW oW
oW oPr T 0Pk
0P 0Py 9P
oW orr T 0Pk
Jway=|"" 7 e (A4)
6SPK 8?}( 83DK
[2A%% oPr T 0Pk

The element 7, j of each block matrix is the partial derivative of the i-th component of the

numerator with respect to the j-th component of the denominator.
In each sub-block OW /0P, the first column reads

SW (ai, )kt iy .
—_— = dpr(w — ’ wy, it=1,...,1—1,
{&Pk }i,l (Z Dr w () (Pk,)?di(wig1) !

k/

while for [ > 1 it is

oW (ad, )1 o
OO o (O (wi) wl, =1, T—1, L=2.. L+1.
{5Tk}zl>1 ( k! Pt k( t+1) !

Since w* = 0 if j # I, the previous expressions at z* reads

{a_{yx*

As a result, the Jacobian matrix evaluated at x*, J*(w) = J(w, x*), is lower block triangular
and the eigenvalues of J*(w) are those of the left-upper, OW/OW, and right-lower, 0P /9P,
blocks. These blocks turn out to have a peculiar structure at z*. Let us start from the
left-upper block. Taking the partial derivatives of wealth fractions gives

oW OWY( mt, akt o
— = 0;, —d w i,7=1,....,1—1
{8\/\7}1., 8wt Z k(Weg1) J

} =0 forall 4¢,j.
1,]
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so that the block computed in z* = (0,...,0, p*) becomes diagonal and reads

M1 (Wt+1) 0 0
0 p2(wey1) 0
oW
) 0 0 . 0 A5
OW|,. : : - : ’ (45)
0 0 coo o1 (wisn)

where, using the fact that prices are fixed by agent I’s rule,

pilwen) = oi(p )dk(wt+1) : (A.6)

Concerning the right-lower block 9P/, in a neighborhood of the fixed point z* it holds
that

0P 0 ;
{_k‘} _ fk:(:fjalw) l:17 .,L+1,
0P )y, Wy ..
(A.7)
K
= - Z Hy o () My g
k=1
where H=! is the inverse of the matrix Hyp(z;) = Yo wi,i(ak(piy1))¥!, which is non-

singular due to the continuous differentiability of the as and the assumption of Theorem 4.2
and

I—-1

oW . . ’

M =3 ({37} gy (o) - (aw’”)) + ()™ (A8)
=1 s

Substituting in (A.7) the expression of (A.8) computed at z* and using the matrix defined in
(4.1) leads to

ov,
0Py,

and {0P,/0Py|s}1.0+1 = 0. The other rows are all zero but for the diagonal blocks which
have a “Jordan” form, that is,

{ 0Py, } _ apgc,t+1($t; w)
i>1,

K
} ==Y Hp(op)" = (@)™, 1=1,...,L (A.9)
xz* 7 1,1 k=1

= 0pnlitri, ¢=2,...,L+1 I=1,...,L+1.

Py Al
As a result
@M @) ... @ o
0Pl _ 5]8h 51?,}1 . 8 8 kh=1,... K (A.10)
| : T R EaLy .
0 0 Sen 0



The eigenvalues associated with the price blocks are obtained from the characteristic polyno-
mial defined as the determinant

oM
% %—)\[

where I stands for the (L+1) x (L+1) identity matrix. The last zero columns in each column-
block is responsible for a factor A\. This generates an eigenvalue 0 of multiplicity K. Once the
associated K columns, and their corresponding rows, have been removed one remains with a
residual matrix of dimension K L. This matrix has K rows filled with as. Each other row is
zero but for two elements 1 and —\. Using the Laplace formula iteratively, the final expression
of the characteristic polynomial of the lower-right block becomes

(@B — Agy, (@l)2te o (&)
k ZL: EL: LE=Y.1 (aé)l’ll (&2)2 2 )\51 do e (dg)K’lK
)\) = )\ e A —2.5Y% ‘ . | | |
=1 lg=1 : : . :
(al)th (al )2t (@) A

which, using the Leibniz formula for the computation of the determinant, and dropping the
factor A, reduces to (4.4).

Consider now the iteration, for any 7', of the stochastic linear map defined by the Jacobian
computed in the fixed point

J(T,w) = J (07 w) ... J*(0w)J* (w) .

According to the Oseledec’s multiplicative ergodic theorem (see Young, 1995, Th. 2.1.1) the
eigenvalues of J*(7T,w) can be used to compute the Lyapunov spectrum of the iterated linear
map provided that the integrability condition is satisfied, that is, as long as

Elog™ ||J*|| :zZlog+||J*(w)||7r(w) < 00, (A.11)

weN

where log™ a = Max{loga,0}. In our case, the ergodic nature of the process guarantees that,
component by component,

Elog [[{7"}i 1l = D log [[{J" (@)}l |m(w Zlogﬂl s)||ms -
weN

Due to assumptions P1-P2 the element of J* are finite for any realization of the process, so
that (A.11) immediately follows.

Since the integrability condition is satisfied, the Lyapunov spectrum of the iterated linear
map reduce to

1 .
A log [{7(T, w) il -
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Moreover, since J*(w) is block triangular for every w, so it is J*(7,w), which can be written

as
OW T
ow| 0
T (T,w) = <(6W ) . T) , (A.12)
where
T—1 T—t—1 t
- 8W) (‘3? (@)
— opP/) ’
T—1

S OW(Tw)  OW(0 W) 0P(0'w) OP(0 W) OP(w) A13)
T oW oW oW 0P 9P ‘

This implies that the eigenvalues of J*(T',w) are given by the union of the eigenvalues of the
T-iteration of the 2 diagonal blocks of J*(w).
The left-upper block is diagonal and for any realization of the stochastic process it is

pi(Tyw) = piwerr) - pi(Wer2) pa(Weg) i=1...,1-1,

which, using the expression in (A.6) and the ergodic property of the process to take the limit
T — 00, converges to

eI

s=1 \k=1

Concerning the right-lower block, the matrix in (A.10) does not depend upon the realization
of the random variable. This implies that the eigenvalues of the T-product of right-lower block
are just the T" power of the eigenvalue of 9P/0%P.

Summarizing the list of exponential of the Lyapunov exponents of the iterated linear map
is

MNT,w) = {p(Tw), .., i (Tow)} U {0, AT, A L) {0, K, ) (A1)

where the lambdas are the LK roots of (4.4). The fact that the elements of (A.14) are, in
absolute value, lower than one is a sufficient condition for the stability of the iterated linear
map.

Since the random dynamical system ¢ is €' (because F in (2.7) is C') and we proved above
that the integrability condition of the Multiplicative Ergodic Theorem is satisfied, the Local
Hartman-Grobman theorem (see Coayla-Teran and Ruffino, 2004, Th. 4.2) ensures that the
asymptotic stability results of the stochastic linear map J(w,z) carry over to the system ¢,
and the first part of the theorem is proved.

The polynomial (4.4) is heavily simplified when the investment rule of agent I in asset
k depends only on current and past prices of asset k itself. In this case all off-diagonal

price/price blocks (A.10) have zero entries, and the characteristic polynomial of each diagonal
block £k =1,..., K is given by

P(A) = A (AL—Z/\L (a )W)) ,

=1

that is, one eigenvalue is equal to zero while the other L eigenvalues are the zeros of (4.5). [

27



Proof of Theorem 4.5 The proof proceeds along the same lines of that of Theorem 4.3.
It is still convenient to omit the state variable w! by using w! =1 — Zf;ll wi. Consider the

Jacobian J*(w), of ¥ computed at the fixed point z*. The components of the off-diagonal
wealth /price and price/wealth blocks read

oW
P,

0 i=1,....1-M
ﬁLJ T rdelwen)  i=I-M+1.I-1"

(A.15)

P

o ] | 1=1,.... 1 —M (A16

{‘wk x*}i,j>1 BRI z: (O‘;c/)k’]_ldk'(th) i=l-M+1,....I—-1" 16)
o9, _J mlwn) @) —p)  j=1l. 0= M

(Gl ={ I o A
P .

{8_'\/\]; gj*}i>17j =0 J = 1’ "'>[_ 17 (A18)

for k = 1,..., K and where p;(wt41) is defined as in (A.6). Diagonal blocks have a similar
structure to that found for the single survivor case. In particular the wealth/wealth block is

ul(wt+1) 0 0O ... 0

oW . 0 /L[,M.(thrl) 0 O
ow| . 0 0 1 ... 0] (A.19)

0 0 0 ... 1

where each p;(wyi1) is defined in (A.6) and 1s comes from the fact that u;(wii1) = 1 for all
i=I—M+1,...,I—1. Price/price blocks are obtained from (A.7) with the substitution of
the derivatives of the I-th investment rule with the average of the derivative of all surviving
rules, weighted with the associated equilibrium wealth shares. Defining (H), (M), (a), as
in, respectively, (4.1), (A.8) and (A.9) replacing (o)™ with (ay)™" defined in (4.6), each
price/price blocks is given by

(@)™ (ap)™ . (@)™ 0
Ok.i 0 e 0 0
0Py Y
L 0 Okj - 0 0 k,h=1,....K A20
P, . v A (4.20)
0 0 .. Op; O
The resulting Jacobian matrix has the structure
W 0 0
J'wy=(0 I A, (A.21)
B 0 P

where (V' 9) is the wealth/wealth block (A.19), in particular W is the (I — M) x (I — M) upper
diagonal block and I is the (M — 1) x (M — 1) identity matrix, P is the K(L+1) x K(L+1)
price/price block built using (A.20), Ais a (M — 1) x K(L + 1) matrix with elements defined
by (A.15-A.16), B is a K(L + 1) x (I — M) matrix with elements defined by (A.17-A.18),
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and 0 denotes, case by case, a matching null matrix. It is a trivial algebraic result that the 7'
products of (A.21) possess the structure

wT 0 0
JF(Tw=|c 1 4],
B 0 PT

where the exact form of the matrices A’,B’,C’ depend on the choice of T' and is not relevant
for our analysis. It then follows that the determinant of J*(7T,w) can be easily computed as
the product of the determinants of its diagonal blocks W1 and PT. As a result, sufficient
conditions for stability can be derived along the same lines of the proof of Theorem 4.3, where
diagonal blocks have changed from (A.5) and (A.10) to (A.19) and (A.20), respectively.

Notice that, also in the case of multiple survivors, the stochastic component enters only in
the diagonal wealth/wealth block. For multiple survivors, however, the characteristic polyno-
mial of the wealth/wealth block possesses a unit root with multiplicity M — 1. Consequently,
the fixed point is non-hyperbolic, and thus not asymptotically stable. We shall show that each
fixed point z* = (w*, p*) belonging to the manifold where

M
Z w([—M—l—m)* -1

m=1

is nevertheless stable. For any realization w of the process, the direct sum of the eigenspaces
associated with each unitary eigenvalue is the linear space V; spanned by the M — 1 vectors
emn, m =1 —M+1,...,1 —1 of the canonical base of RI=1+K(I+1)  Ag the direction of
each vector e,, corresponds to a change in the relative wealths of the m-th and I-th survivor,
each small enough perturbation v € V; away from x* push the dynamics to a new point
™ = a* + v = (w™*, p*) where the wealth distribution w'™ differs from w* for the reallocation
of wealth among the M surviving agents corresponding to v*. Since x™ is a deterministic
fixed point, when perturbations are restricted to V; the original point x* is stable. For the
more general case notice that any perturbation h can be written as h = b’ + h* with A’ € V7,
ht € Vi and that 2’ is asymptotically stable for perturbations h* along the stable manifold
and stable for perturbations A’ along the center manifold. The fixed point is hence stable, but
not asymptotically stable. O

B Section 5.1

Proof of Theorem 5.1 Since I;(a, p) is defined for vectors p € Aff , we can change variables

from oy to xp = g—: for every k =1,..., K. Thus solving (5.1) is equivalent to finding
x%(p) = argmax {exp —I.(x)} . (B.1)
x€B(p)

where B(p) = {x € R¥|z;, > 0 forevery k = 1,..., K, and x-p < 1}. Problem (B.1) is
the maximization of a continuous function on a compact set and thus has a solution for each
given p. Moreover such maxima will never be attained for those x where ), z;D,; = 0 for
some s. As a result we can equally solve

x%(p) = argmax {—I(x)} . (B.2)

xEB4(p)
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where B, (p) is the subset of B(p) where the function —I,(x) is well defined. Computing the
Hessian matrix H of —I;(x) one finds

S
Ds,mDs,n
{H}n,m = - Z Ts X 2 (B?))
s=1 (Zk:l SL’sz,k)

so that y - Hy, y € R¥ | is equal to

D..D 5
y Hy o Z YnYom Z T s,nt’sm Z
s=1 (ZkK:I kas,k> s=1

wDsn | . (B.4)
(= lxkpsk) (?‘” )

Since the former expression is always negative for non-trivial payoff matrices D, —I(x) is
strongly concave for all vectors x € B,(p). Adding to this continuity and non-satiation,
which are trivially proved, standard consumer theory theorems, see e.g. Proposition 2.8 in
Ginsburgh and Keyzer (1997), can be used to show that x*(p)-p = 1, which implies o (p) = 0,
and that 2°(p) (and thus a®(p)) is of class €° in A% and of class Gl when strictly positive.

Regarding the equilibria of o, by deriving the first order conditions of the maximization
problem (B.2), it is immediate to check that p, = Zle msDsy for all k = 1,..., K is the
unique vector of prices where x°(p) = 1, and thus where o®(p) = p.

Proof of Theorem 5.2 Let w; be the wealth share of the S-rule and assume a trajectory ¢,
exists such that along this trajectory lim;_ ., w; = 0. Then asymptotic prices converge toward
a single survivor equilibrium where the rule o dominates, that is lim; oo prx — ai(pr) = 0
for any k = 1,..., K and, consequently lim; .., I;(cz, p;) = 0. Since for construction o
minimizes I (c, p) it holds

tlim L(a? py) = hm IL(a? o) <0

This implies that the quantity p defined in (4.3) is never lower than one. When p is greater
than one, the trajectory w; converges towards an unstable deterministic fixed point. When p
is equal to one, the long-run prices are also an equilibrium of o®. In both cases the trajectory
w; on which the S-rule vanishes represent a zero measure set. Il

Proof of Theorem 5.3 The proof replicate that of Theorem 5.2 at each deterministic fixed
point where an agent, or a set of agents, survives. In particular when prices do not converge
to the equilibrium of a” the corresponding deterministic fixed point is unstable. Thus the
only possible stable deterministic fixed points have prices fixed by a”(p) = p whose unique
solution is p, = 25:1 msDsy for all k =1,..., K as shown in Th. 5.1. Obviously at all these
fixed points o survives and at least one of such fixed points exists, namely, the one where o®
dominates.

C Section 5.3

Proof of Theorem 5.4 Since by hypothesis the price learner rule o does not depend on
contemporaneous prices and satisfies both the no-cross dependence condition and (5.2), the
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characteristic polynomial (4.5) reduces to

P =] (AL —(@)er Y AH) ,

k=1 =1

Notice that P(A) is the product of K polynomials having all one zero root and the same form
namely

P(z;a) :xL—ale.

The problem of determining whether the roots of P(\) are all inside the unit circle can thus
be solved by looking at P(z;«).

If & = 0 all roots are inside the unite circle. Assume that o > 0. On the unit complex
circle, |z| = 1, it holds

L-1 L-1
|2F — P(z;0)| = \&Zzll < O‘Z 2! = Lo .
1=0 1=0

It follows that if « < 1/L, |2L' — P(z;a)| < 1 = |2L] for |2| = 1. The latter inequality together
with Rouche’s Theorem (see e.g. Lang, 1993) imply that the polynomial P(z;«) and 2% have
has the same number of roots inside the unit circle. Moreover notice that if « > 1/L, it holds
both P(1;a) < 0 and lim,_, o P(z;a) = 400, implying the existence of a root greater or
equal to one. Provided « is positive, we have proved that o < 1/L is both a necessary and
sufficient condition for P(z; ) having all the roots inside the unit circle.

Take now o < 0. The complex polynomial P(z;«) can be rewritten as

L1
Zz — (1 —|al) Zzl

=0

and its roots are the solutions of

L
Zzl (1—1af) Zz
1=0

Multiplying left and right hand side by z — 1 (remembering we are adding the root z = 1) and
rearranging the terms leads to

|

z—(1—|o)|=—F

2= (1= )] =

provided z # 0 which we can always assume since zero is never a root. Assume now |a| < 1.

If a root with modulus bigger or equal than one, but different from z = 1, exists, one could
write

il

ol <[z = (A =laf)l = —F < laf,

|2

which is a contradiction. We have proved that |a| < 1 is a sufficient condition for all roots
being inside the unit circle. The condition is also necessary. Indeed, since the modulus of the
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constant in P(z;«), ||, is given by the product of the moduli of all the roots, when |a| > 1
there must exist at least a root with modulus bigger or equal to 1.

Interestingly, the role of the memory parameter L is different in the case of positive and
negative prices feedbacks. In general, for consistent estimators, partial derivatives depend on
the number of lags considered and scale with 1/L: the longer the agent’s memory, the lower
the partial derivative. Then if (af),~ < —1, by increasing the number of past observation,
that is, the memory, it is always possible to cross the bound of —1 and thus stabilize the
fixed point. Conversely, if (af),~ > 1/L, an increase in the memory of the strategy does not
improve the stability of the fixed point because the bound scales with 1/L as well. O]

Proof of Corollary 5.1 The corollary is easily proved by using results from Theorem 5.4
and upon realizing that the characteristic polynomial now depends on the convex combination
of partial derivatives, that is, (a), = (1 — w*)(af)~ k = 1,..., K, rather than on (),
k=1,..., K, since all partial derivatives of the S-rule are zero. O

32



References

Alchian, A. (1950). Uncertainty, evolution, and economic theory. The Journal of Political
Economy 58, 211-221.

Amir, R., I. Evstigneev, T. Hens, and K. Schenk-Hoppé (2005). Market selection and survival
of investment strategies. Journal of Mathematical Economics 41, 105-122.

Anufriev, M. and G. Bottazzi (2010). Market equilibria under procedural rationality. Journal
of Mathematical Economics 46, 1140-1172.

Anufriev, M., G. Bottazzi, and F. Pancotto (2006). Equilibria, stability and asymptotic dom-
inance in a speculative market with heterogeneous agents. Journal of Economic Dynamics
and Control 30, 1787 — 1835.

Anufriev, M. and P. Dindo (2010). Wealth-driven selection in a financial market with hetero-
geneous agents. Journal of Economic Behavior and Organization 73, 327-358.

Barberis, N. and R. Thaler (2003). A survey of behavioral finance. In G. Constantinides,
M. Harris, and R. Stultz (Eds.), Handbook of the Economics of Finance. North-Holland
(Handbooks in Economics Series), Amsterdam.

Blume, L. and D. Easley (1992). Evolution and market behavior. The Journal of Economic
Theory 58, 9-40.

Blume, L. and D. Easley (2006). If you are so smart why aren’t you rich? Belief selection in
complete and incomplete markets. Econometrica 74, 929-966.

Chiarella, C. and X. He (2001). Asset price and wealth dynamics under heterogeneous expec-
tations. Quantitative Finance 1, 509-526.

Chichilnisky, G. (1999). Existence and optimality of a general equilibrium with endogenous
uncertainty. In G. Chichilnisky (Ed.), Markets, Information, and Uncertainty. Cambridge
University Press, Cambridge.

Coayla-Teran, E. and P. Ruffino (2004). Stochastic versions of Hartman-Grobman theorems.
Stochastics and Dynamics 4, 571-593.

Dreze, J. and P. Herings (2008). Sequentially complete markets remain incomplete. Economic
Letters 100, 445-447.

Evstigneev, 1., T. Hens, and K. Schenk-Hoppé (2008). Globally evolutionary stable portfolio
rules. Journal of Economic Theory 140, 197-228.

Evstigneev, 1., T. Hens, and K. Schenk-Hoppé (2009). Evolutionary finance. In T. Hens
and K. Schenk-Hoppé (Eds.), Handbook of Financial Markets: Dynamics and Evolution.
North-Holland (Handbooks in Economics Series).

Fama, E. (1970). Efficient capital markets: a review of theory and empirical work. Journal of
Finance 25, 383-422.

Farmer, J. (2002). Market force, ecology, and evolution. Industrial and Corporate Change 11,
895-953.

33



Friedman, M. (1953). Essays in Positive Economics. Univ. Chicago Press.

Ginsburgh, V. and M. Keyzer (1997). The Structure of Applied General Equilibrium Models.
The MIT Press, Cambridge, Massachusetts.

Hahn, F. (1999). A remark on incomplete market equilibrium. In G. Chichilnisky (Ed.),
Markets, Information, and Uncertainty. Cambridge University Press, Cambridge.

Hommes, C. (2006). Heterogeneous agent models in economics and finance. In K. Judd and
L. Tesfatsion (Eds.), Handbook of Computational Economics Vol. 2: Agent-Based Compu-
tational Economics. North-Holland (Handbooks in Economics Series), Amsterdam.

Kelly, J. (1956). A new interpretation of information rates. Bell System Technical Journal 35,
917-926.

Lang, S. (1993). Complex Analysis. Springer, New York.

LeBaron, B. (2006). Agent-based computational finance. In K. Judd and L. Tesfatsion (Eds.),
Handbook of Computational Economics Vol. 2: Agent-Based Computational FEconomics.
North-Holland (Handbooks in Economics Series).

Levy, M., H. Levy, and S. Solomon (2000). Microscopic Simulation of Financial Markets.
Academic Press, London.

Sandroni, A. (2000). Do markets favor agents able to make accurate predictions. Economet-
rica 68(6), 1303-1341.

Sandroni, A. (2005). Market selection when markets are incomplete. Journal of Mathematical
Economics 41, 91-104.

Young, L.-S. (1995). Ergodic theory of differentiable dynamical systems. In Branner and
Hjorth (Eds.), Real and Complex Dynamics, pp. 293-336. Kluwer Academic Publisher.

34



