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Abstract This paper examines the foundations of arbitrary contest suc-
cess functions (CSFs) in two distinct types of contests – unmediated and
mediated contests. In an unmediated contest, CSFs arise as the (interim)
players’ equilibrium beliefs of a two-stage game – the gun-butter game – in
which players choose an activity (appropriative vs. productive) in the first
stage, and apply effort to their activity in the second stage. In this view a
CSF is rationalizable if a contest is induced on the equilibrium path of the
gun-butter game. In the second approach, a CSF is the result of the opti-
mal design of an administrator. Here, the designer seeks to maximize his
utility by implementing a probability distribution on the set of contestants.
However, he is curbed by a disutility term which represents the underlying
institutional constraints or the designer’s preferences. Both approaches pro-
vide foundations for arbitrary CSFs with no restrictions on the number of
contestants.
Keywords: Induced contests · Gun-butter game · Control costs
JEL Classification Numbers: C72 · C73

1 Introduction

In many settings, economic agents compete by making irreversible invest-
ments before the probabilistic outcome of the competition is known. It oc-
curs in these seemingly diverse environments such as sport events, compe-
tition for promotion within a firm, in influence activities and rent seeking,
situations of war and peace to name just a few.
Central to these studies, is the mechanism that determines final success or
failure for each contestant. Most of the existing contest literature starts out
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by assuming a probabilistic choice function that translates an individual’s
effort into his probability of winning. This function called “technology of
conflict” or contest success function (CSF), translates the vector of efforts
into probabilities of winning for each contestant. A handful of theoreti-
cal frameworks have been independently proposed and studied to provide
some axiomatic and positive foundations for certain CSFs. In this paper,
we explore two different approaches to rationalize arbitrary CSFs, one that
involves strong game theoretic aspects and one in which win probabilities
are derived from an optimal contest design problem.
A formal description of a CSF is as follows. Given a vector of efforts, G, each
contestant i ∈ N ≡ {1, ..., n}, has a probability pi(G) of winning a prize.
So far, two prominent classes of CSFs have been postulated: the (general)
additive form,

pi(G) =
fi(Gi)∑n

j=1 fj(Gj)
for i = 1, ..., n (1)

where Gi denotes the i’s choice of effort and fi(·) is a non-negative, increas-
ing function called effectivity function which measures the impact (or merit)
of effort level Gi in the contest. A second class of popular CSFs are the so-
called difference form CSFs, initially introduced by Hirshleifer (1989). This
class of CSFs is built on the idea that only differences in effort should matter
(see e.g., Baik (1998) Che and Gale (2000) and Alcalde and Dahm (2007)).
An example of CSF in this class is the logit form proposed by Hirshleifer
(1989) where, given a positive scalar σ,

pi(G) =
expσGi∑n

j=1 expσGj
for i = 1, ..., n. (2)

In order to give some justifications to these popular CSFs and produce new
ones, we propose two different approaches that we term unmediated and
mediated contests, respectively.
In the unmediated approach, the CSF and the contest itself emerge from a
purely non-cooperative environment e.g., a state-of nature. Inspired by the
Hirshleifer style-theoretical models of conflict, we suggest that the origin of
a CSF and the ensuing contest stem from the fundamental tradeoff ana-
lyzed in this literature between producing goods (productive activities) or
grabbing what others have produced (appropriative activities). This trade-
off is usually referred to as a “guns/butter” choice such that investing in
appropriative activities leads to a decrease in production and eventually in
consumption.
In the present paper we shall capture this tradeoff as follows: first, we assume
that each player has to choose between two mutually exclusive activities (ap-
propriative vs. productive activities), second it is only after the choice of
an activity (appropriative vs. productive) that the corresponding player’s
input (guns vs. butter) may come effectively to light.
Typically, this represents situations in which agents are endowed of an ini-
tial resource that can be allocated in only one sort of activity. For instance,
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one may think of the agents as endowed of a primary indivisible resource
e.g., a resource provided by nature, the reputation of a politician, etc. Al-
ternatively, one may imagine that because of the nature of activities, the
entire resource is needed to elicit eventually an acceptable level or “decent
quantum” of butter or gun. There are many situations where this, in fact,
is the case. For instance think of the funds needed to develop a large-scale
medical infrastructure vs. the financial resources required to possess nuclear
weapons.
In the present setup it is then natural to think of Gi as the effort intensity
exerted to exploit the benefits afforded by specialization in a given activity.
For example, when a state chooses to invest in heavily-armed “self-defense
forces”, then Gi might be thought of as measuring its degree of expertise in
military tactic and strategy.
We study a two-stage game that models these situations.
The first-stage of this game may represent the interaction between some
individuals in an initial state choosing simultaneously to unilaterally com-
mit to a particular activity “appropriative” or “productive” that irreversibly
determines the nature of the effort intensity, Gi, applied in the second stage
(i.e., exerting effort to grab others’ output or putting in effort in a pro-
ductive activity). We call the two-stage game thus defined the gun-butter
game.1

In this setup, the CSF arises as the interim players’ equilibrium beliefs of
the second stage of the gun-butter game. This suggests that i’s probability
of winning, pi(G), can also be interpreted as the result of the (equilibrium)
player’s belief that others engaged (unilaterally and irreversibly) in pro-
ductive/defensive (i.e., butter) rather than choosing to specialize in seizing
others’ output (i.e., guns) in the first stage, conditional on the amount of
effort/guns, Gi that each player i can apply in the second stage. Hence, in
our setup, a contest is induced because each player contemplates the possi-
bility (as an equilibrium behavior) that the others might devote in usefully
productive activities, hence yielding all their output to those choosing the
gun activity. This interpretation agrees remarkably well with the conflict lit-
erature that has long held that uncertainty is a central cause of war among
states (e.g., Wittman 1979, Fearon 1995).
In our second approach, we consider situations where the technology of
conflict (i.e., the CSF) is determined by a contest administrator. For this
reason we refer to these situations as mediated contests. Here, the admin-
istrator who allocates the prize to the agents has a (deterministic) ranking
over the set of contestants, one for each vector of efforts, G. For instance,
the administrator may value the effort produced by the agents and/or care
about the probability with which the most skilled/influential, contestant
wins. However, the designer also faces institutional constraints. Hence, he
cannot effortlessly designate the desired winner of the contest with certainty.

1 When we refer to commitment, we follow the terminology used in Schelling ’s
seminal contribution (1960).



4 Yohan Pelosse

To capture this, we then assume that he has to incur a cost called a control
cost. This idea is inspired by a decision-theoretic foundation for some game
theoretic models of bounded rationality, initially proposed by Mattson and
Weibull (2002) and van Damme and Weibull (2002). In these papers, they
model the noise in games as endogenously determined tremble probabili-
ties. To do so, they assume that with some effort players can control – via
a disutility term called control cost – the probability of implementing the
intended strategy.
Although it has a completely different motivation, this modeling assumption
seems particularly reasonable in many contests. The designers of contests
are usually concerned about aggregate efforts (investment, influence activ-
ities, campaign contributions, rent seeking efforts, lobbying outlays) made
by the contestants. For example, politicians or any public regulator who
allocate rents may want to maximize the rent-seeking expenditures (see,
e.g., Epstein and Nitzan (2007)). But, in reality, some constraints are of-
ten imposed, either at the constitutional or at the legislative stage of the
political process. In this case, the disutility term may capture a political-
economic environment that has a lower tolerance for rent seeking (influence
activities are awarded less in such an environment).2 Clearly, unlike the
aforementioned models, in the present approach, the (win) probabilities are
the outcome of an optimal design from a fully rational decision maker i.e.,
the administrator, with the view of attaining various objectives.
Related literature
Foundations for CSFs are well-known and we make no attempt to summa-
rize it here. It has been thoroughly reviewed by Córchon (2007), Garfinkel
and Skaperdas (2007) and Konrad (2007). The most systematic approach
is axiomatic and the seminal paper is that by Skaperdas (1996). To our
knowledge, Córchon and Dahm (2008) and Skaperdas and Vayda (2008)
are the first to derive some CSFs from a positive point of view. Skaperdas
and Vayda derive some well-known CSFs as an inferential process. They
interpret a CSF as a probability of persuading an audience. Our approach
is more closely related to Córchon and Dahm. Our paper should be consid-
ered as complementary to their results in the following sense. In our first ap-
proach (i.e., the unmediated case), we provide foundations for popular CSFs
within a purely non-cooperative environment. Hence, this complements the
unmediated approach of Córchon and Dahm, in which they produce CSFs
in a purely cooperative setup by linking the problem of assigning win prob-
abilities in contests to bargaining, claims and taxation problems.
Our two approaches yield foundations of CSFs for any number of contes-
tants. However, in the unmediated approach, some restrictions on players’
beliefs are called for when more than two players are involved. In our second
approach i.e., the mediated contest, no particular restrictions are required:
the contest designer can choose among an arbitrary set of contestants, who
can be sorted according to their effort and or any other relevant character-

2 See e.g., Che and Gale (1997).
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istics in the administrator’s eyes. Finally, note that our both approaches are
susceptible to rationalize any arbitrary CSFs. In particular, even CSFs that
fail to be continuous when Gi = 0 for all i, (a property shared by many
popular CSFs) enter our study.
Our first approach is also related to the economics literature of conflict in
two important aspects. First, as noted above, we strengthen the basic trade
off between production and appropriation – between producing and taking
away the production of others or between guns and butter – by an “uncon-
ditional commitment”3 of each player to a given activity. Second, our setup
seeks to model the interaction between individuals in the state-of-nature.
In such a pristine state, the threat of conflict, through the production of
“guns” or “arms”determining an individual’s position relative to others can-
not be imposed from the outset. Unlike classical models of conflict (see e.g.,
Skaperdas (1992), Grossman and Kim (1995), Hirshleifer (1995), and Este-
ban and Ray (1999)), we do not presume that players need necessarily to
use force to obtain valuable resources. In our framework players can choose
– non-cooperatively – whether they want to unilaterally commit to devote
their effort to productive activities rather than appropriative ones.
To the best of our knowledge, there is no paper that connects the control-cost
models in game theory with the optimal design of CSFs in mediated contests
as we do in our second approach. The differences with these bounded ra-
tionality models and the present paper are thus crystal clear. These models
have been used to justify the logit response model assumed in game theory
as the outcome of a myopic optimization. By contrast, in our setup, the
designer is fully rational and the disutility term captures the institutional
environment. In addition, we derive some new choice probability forms i.e.,
CSFs, by introducing some new control-cost functions i.e., disutility terms.4

Hence, as in Córchon and Dahm (2008), another aspect of our second ap-
proach is to connect two seemingly disparate setups. 5

2 Unmediated contests

Consider an environment populated by n identical, risk-neutral players,
N = {1, 2, ..., n} , who participate in a two-stage game called the gun-butter
game. In the first stage each player takes an action θi interpreted as an activ-
ity. Each agent in our model has access to a binary set

{
θ, θ

}
≡ Θ of activ-

ities. Activity, θi = θ is appropriative/aggressive and activity θi = θ is pro-

3 This notion has been introduced by Schelling (1960). It can be defined as
“a definite commitment to a pure strategy,” (Schelling, p184), regardless of the
strategies of others.

4 This literature has only used a disutility term of the entropic form in order
to provide a foundation for the “quantal-response” approaches (see e.g., Blume
(1993)).

5 Córchon and Dahm (2008) interprets CSFs as sharing rules and establishes a
connection to bargaining and claims problems.
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ductive/defensive.6 Let θ = (θ1, ..., θn), and θ−i = (θ1, ..., θi−1, θi+1, ...θn).
It will be convenient to write θ−i = (θ1, ..., θi−1, θi+1, ..., θn) and θ−i =
(θ1, ..., θi−1, θi+1, ..., θn). Lastly, we denote the set of all possible profiles
θ−i as Θ−i. In the second stage, each player i ∈ N chooses how much he
expends effort (i.e., intensity) Gi, to production or into appropriation as
dictated by their choice of an activity, θi ∈ Θ, determined in stage one. As
a convention, we shall denote G−i = (G1, ..., Gi−1, Gi+1, ...Gn).
To summarize, we consider the following sequence of events.

1. Players simultaneously choose an activity θi of appropriation/defense or
production/aggression.

2. Given the choice of an activity in the first stage, players choose an effort
they apply to the activity. For each activity, θi, the information set of
player i is Ii(θi) = {(θi, θ−i)}θ−i∈Θ−i

.

This sequential game is a simple way to enhance the primitive trade-off
between production and appropriation as initially highlighted in Haavelmo
(1954, pp. 91-98) and considered more recently in, for example, Hirshleifer,
(1988), Garfinkel (1990), Skaperdas (1992), and Grossman and Kim (1995).

2.1 Payoffs

The overall utility of player i depends on the decisions that player i and
its adversaries make about the choice of an activity – production or appro-
priation – and its intensity G = (Gi, G−i). However, whether the nature of
effort is of a welfare enhancing or appropriative nature, it is not costless.
Therefore the choice of an activity along with G, in turn, delivers a utility
to each player i, Ui(θi, θ−i,G), given by

Ui(θi, θ−i,G) = Wi(θi, θ−i,G)− Ci(Gi)

where Wi(θi, θ−i,G) is player i’s gross revenue, subject to the players’ choice
of a vector of activities, θ = (θi, θ−i), with the ensuing players’ effort inten-
sity profile G. Ci(Gi) is the cost of expending effort intensity Gi borne by
player i regardless of his choice of an activity θi. We consider the class of
cost functions, Ci : R+ → R+. It seems reasonable to require that the class
of gross output functions, Wi, fulfill the following intuitive properties:

1. Wi(θi, θ−i,G) = Vi(G) for all G.
2. Wi(θi, θ−i,G) = 0 for all G.

3. Wi(θi, θ−i,G) ≤ 0 for all G.

4. Wi(θi, θ−i,G) ≥ 0, for all G.
5. Let θ−i(k) be the activity profile where the number of players choos-

ing θ is exactly k. Then, Wi(θi, θ−i(k),G) is monotonically increas-
ing (resp. decreasing) in k = 1, ..., n − 2 whenever θi = θ (resp. θi =

6 The model is formulated in general terms such that different interpretations
for the underlying structured environment are possible.
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θ) with Wi(θi, θ−i,G) < Wi(θi, θ−i(k),G) (resp. Wi(θi, θ−i(k),G) <
Wi(θi, θ−i,G) ) for all G.

The intuitions behind these properties are as follows. Property (1) means
that if player i chooses to appropriate others’ production with an effort Gi

while other players exert G−i in a joint production process , then player i
obtains a prize, Vi(G). Property (2) indicates that when all players choose
the gun activity, all players bear the cost of conflict and there is no produc-
tion to seize. Property (3) means that when a player i chooses productive
activities while others engage in appropriative activities, then he cannot de-
fend what he himself has produced. In this case anarchy prevails and player
i cannot prevent the rest of the players from seizing his output. Property
(4) represents a situation where all players chose θ in the first-stage and
“peace” necessarily prevails among the players in the second-stage. In this
case, players need not worry about the distribution of output: it coincides
with the compensation that he would receive in a world where institutions
of governance and enforcement is perfect so that any claim can be settled
peacefully. Lastly, (5) simply indicates that the gun-butter game resembles
a “Participation game” in which each player chooses whether to participate
in an activity, and payoffs depend on the number of players who do so.
Typically, participation games have a monotonicity property: payoffs either
always decrease with the number of participants or always increase.
Thereafter we say that the list of payoff functions {Ui(θ,G)}i∈N = U sat-
isfies the consistency properties if each Wi meets properties (1)-(5) for all
i.

2.2 Strategies and beliefs

Let Γ (N,U) (for short, Γ ) be the gun-butter game described above. Be-
havioral strategies are defined as usual. In particular, our analysis con-
centrates on behavioral strategies wherein each player i in Γ is a pair
(pi, Ĝi) ≡ xi where pi specifies a (possibly degenerate) probability distri-
bution, pi ∈ ∆(Θ) taken in stage 1 and a pure effort level Ĝi(θi) ∈ R+ for
each information set Ii(θi) in stage 2. Accordingly, x = (x1, ..., xn), denotes
a strategy profile and x−i = (x1, ..., xi−1, xi+1, ...xn).
Perfect Bayesian equilibrium (PBE) is our solution concept. In a perfect
Bayesian equilibrium (equilibrium, in short), each player maximizes his ex-
pected payoff at each information set at the beginning of stage 2 given
his beliefs. For a particular strategy profile x, we require that, for each
player i, and at each of her information sets Ii(θi), player i has beliefs
µi(θ−i | θi,G) about his opponents’ choice of an activity profile, θ−i, when
he picked activity θi conditionally on a continuation strategy profile G. The
map, µi(· | ·,G) ≡ µ̂i(G) specifies a probability distribution on Θ−i for each
choice of an activity θi of player i. The n-tuple µ = (µ̂1(G), ..., µ̂n(G)) rep-
resents the belief profile.
In their mediated approach, Córchon and Dahm underly the difficulty to
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rationalize arbitrary CSFs when there are more than two players. In the
present model, we exploit the present game theoretic framework to ren-
der our analysis amenable to an arbitrary number of players. For n > 2, we
make a restriction on the strategy-belief profiles (x, µ) and suppose that each
player i believes that other players’ choice of an activity, θi, is correlated.
More precisely, we suppose player i’s beliefs are probability distributions
over the set of joint pure activities,

{
θ−i, θ−i

}
i.e., for all i, µi(· | θi,G) is

required to be an element of ∆(
{
θ−i, θ−i

}
) for any (θi,G). We motivate

and discuss this assumption in Section 2.3.

2.3 Induced contest and rationalizability

A (general) contest is a n-player strategic-form game, 〈N, (Gi,Πi)i∈N 〉 , with
Gi ⊆ R+ the set of actions available to player i, and Πi : ×i∈NGi → R the
payoff function of player i defined by Πi(Gi, G−i) = pi(Gi, G−i)Vi(G) −
Ci(Gi) with player i’s valuations for winning and pi(Gi, G−i) the contest
success function defined such that pi(Gi, G−i) ≥ 0 and

∑
i∈N pi(Gi, G−i) =

1 for all (Gi, G−i).

Definition 1 We say that the gun-butter game, Γ (N,U), induces the con-
test, 〈N, (Gi,Πi)i∈N 〉 , if the interim correlated belief profile, (µ∗i (· | θi,G))i∈N ,
supporting an equilibrium path, induces for player i in the continuation game
ΓG(N,U) starting at information set I(θi), a conditional expected payoff∑

θ−i∈Θ

µ∗i (θ−i | θi,G)Ui(θi, θ−i,G) = pi(G)Vi(G)− Ci(Gi) ≡ Πi(G)

for all G and i ∈ N.

A central concept of this paper is the concept of a rationalizable CSF in the
gun-butter game, which we now define.

Definition 2 The CSF {p1(G), p2(G), ..., pn(G)} is rationalizable (in the
gun-butter game Γ ) if there exists a list of payoff functions {Ui(θ,G)}i∈N =
U satisfying the consistency properties such that in the continuation game
ΓG(N,U) starting at information set I(θi), then it holds that,

(i) for all G, player i’s interim (correlated) beliefs, µ∗i (θ−i = θ | θi,G) =
pi(G) at Ii(θi) and;

(ii) Γ (N,U) induces a contest 〈N, (Gi,Πi)i∈N 〉 .

Several remarks are worth making.
First, notice that our rationalizability concept implies that one can think of
a contest as the induced (continuation) game of the two-stage gun-butter
game. Condition (i) is also very intuitive: it simply requires that player
i form beliefs about the probability that all other players have chosen to
engage in the productive activity. More precisely, this requirement tells us
that a rationalizable win probability for player i must coincide with i’s
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equilibrium belief that all other players have chosen to devote their effort
to usefully productive activities, conditional on player i having chosen to
grab others’ output. Thus, in our setup, a CSF arises as the probability
that each player i successfully appropriates others’ output when he chooses
to do so. This interpretation of a CSF is thus in line with the traditional
probabilistic interpretation of a “winner-take-all-contest”, whereby a player
is able to claim the entire production of others as his prize, leaving nothing.
Further, in condition (i) we assume that players hold correlated beliefs. Cor-
relation is a standard game theoretic assumption (see Bernheim, 1984) e.g.,
in the equivalence between undominated and optimal strategies in games
with more than two players. More importantly, as argued by e.g., Aumann
(1987) and Brandenburger and Friedenberg (2007), it does not imply that
players have to use a correlation device to correlate their choices on an given
activity profile.7 For instance, in the present environment, each player may
think that all other players’ choose productive/defensive activities, simply
because he thinks that they all have experienced war and its consequences in
the past e.g., considerable destruction/losses.8 Hence, one might be tempted
to think of a CSF as the players’ (equilibrium) beliefs about the likelihood
that peace prevails among members of the nation-state.9

Finally, let us point out that our rationalizability concept does not presume
the existence of a PBE (in behavioral strategies) of Γ. In fact, the existence
of a PBE in the gun-butter game follows, for a given rationalizable CSF,
from the existence and uniqueness of the Nash equilibrium in the induced
contest. For example, if the list of payoff functions U of the gun-butter
game fulfills the properties given in Szidarovsky and Okuguchi (1997) (i.e.,
Vi(G) = 1 for all G, the fi(·)’s are twice differentiable, strictly increasing,
and concave and Ci(Gi) = Gi for all i), then for rationalizable CSFs like (1),
the gun-butter game admits a unique (non-symmetric) PBE in behavioral
strategies.

2.4 Results

Our first application of this concept of a rationalizable CSF concerns (1).
In fact, many papers dealing with contest models in the literature assume a
CSF which is a special case of the functional form (1) in which the outcome
of contests depends on the ratio of efforts (Nitzan 1994; Konrad 2007).

7 In particular, Brandenburger and Friedenberg (2007) show that even if players
choose strategies independently, correlation is possible because some aspect of who
the players are (their hierarchies of beliefs) may be correlated.

8 The short-run vs. long run incentives to go to war have been analyzed in
Garfinkel and Skaperdas(2000).

9 Traditionally, the theory of alliances presumes that peace prevails among mem-
bers of the nation-state. See e.g., Alesina and Spolaore (2000).
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Proposition 1 When the list, {Ui(θ,G)}i∈N = U, satisfies the consistency
properties with,

Ui(θ,G) =


∑

j∈N\{i} fj(Gj) + Vi(G)− Ci(Gi) if (θi, θ−i) = (θ, θ);
−fi(Gi)− Ci(Gi) if (θi, θ−i) = (θ, θ);
Vi(G)− Ci(Gi) if (θi, θ−i) = (θ, θ);
−Ci(Gi) if (θi, θ−i) = (θ, θ),

and each player i believes other players’ choices of θ−i are correlated, then
the (general) additive CSF (1) is rationalizable.

Proof
Conditional on continuation strategies G, let ΓG(N,Θ,U) be the simul-
taneous game of stage 1 wherein each player chooses θi ∈ Θ. To econo-
mize on notations, denote (pi(G), p−i(G)) ≡ (pi, p−i) with pi ∈ ∆(Θ) and
p−i ∈ ∆(Θ−i) as the strategy profile of ΓG(N,Θ,U) whenever each player
assumes that other players correlate their strategies. At a PBE, restricted
to strategy profiles , x, sequential rationality requires that assuming that
the play continues according to G and that each player i believes that
other players’ strategy choices are correlated, the profile (pi, p−i) forms a
Nash equilibrium of ΓG(N,Θ,U). It is easy to check that under the con-
sistency properties 1-5 and correlation, this simultaneous game has three
Nash equilibria: (θ, θ), (θ, θ) and a Nash equilibrium in mixed strategies
(p∗i , p

∗
−i) such that p∗−i(θ−i) = Ui((θ,θ),G)−Ui((θ,θ),G)

Ui((θ,θ),G)−Ui((θ,θ),G)+Ui((θ,θ),G)−Ui((θ,θ),G)
.

Using the payoff conditions given in Proposition 1, it is then easy to see
that p∗−i(θ−i) = fi(Gi)

fj∈N (Gj)
. Moreover, at a PBE, the Bayesian updating re-

quires that beliefs are correct, thereby inducing that i’s interim beliefs ver-
ify µ∗i (θ−i = θ | θi,G) = p∗−i(θ−i). Hence condition (i) for rationalizability
is met. Last we check (ii). Since (p∗i , p

∗
−i) is the mixed Nash equilibrium

of ΓG(N,Θ,U), player i must be indifferent between θ and θ at a PBE.
Hence, at a PBE, when he holds beliefs µ∗i (· | θi,G) his conditional expected
payoff Ui(θi, µ

∗
−i |G) ≡

∑
θ−i∈Θ µ∗i (θ−i | θi,G)Ui(θi, θ−i,G) boils down to

fi(Gi)∑
j∈N fj(Gj)

(Vi(G) − Ci(Gi)) + (1 − fi(Gi)∑
j∈N fj(Gj)

)(−Ci(Gi)) which readily

simplifies as fi(Gi)∑
j∈N fj(Gj)

Vi(G)− Ci(Gi). ut
Several remarks are worth doing. First notice that we here obtain the ad-
ditive CSF for any number of contestants. The upshot is therefore that
Proposition 1 can be seen as the non-cooperative counterpart of Córchon
and Dahm (2007)(see Proposition 5).
Second, Proposition 1 reveals an additional striking property of our first
approach : while purely non-cooperative, it turns out to be in line with the
non-probabilistic interpretation, which views the winning probabilities as
sharing rules or consumption shares as in the classical approach (see e.g.,
Skaperdas (2006)). Let us consider the first interpretation of activities (ap-
propriation vs. production). In this case, fi(Gi) represents player i’s own
output, that i produces when he commits to the butter activity. Conse-
quently, at the equilibrium, pi(G), corresponds to the share of i in the total
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output, that she obtains at equibrium in the “Nirvana state”, when all play-
ers are engaged in the joint production process (i.e., all players pick θ). This
justifies the use of CSF for describing R&D contests (Fullerton and McAfee
(1999)).
Alternatively, when activities are thought of as defensive or aggressive,
fi(Gi) represents the different levels of arming of those potentially engaged
in conflict. Hence one can also revert the original interpretation of CSFs as
a technologies of conflict as the share of i in guns’ expenditure.
The second important popular class of CSFs builds on the idea that only
differences in effort matter. It has been proposed by Hirshleifer (1989) and
further studied in Skaperdas (1996), Baik (1998) and Che and Gale (2000).
In particular, Che and Gale (2000) postulate the following piecewise linear
difference-form

pi = max
{

min
{

1
2

+ (G1 −G2), 1
}

, 0
}

for p1 = 1− p2. (3)

where σ is a positive scalar. Our next result provides a foundation and a
possible generalization of (3).
Consider an ordered vector of effectivity functions f(G) = (f1(G1), f2(G2), ..., fn(Gn))
such that f1(G1) ≥ f2(G2), ...,≥ fn(Gn) holds for all G.

Proposition 2 Let n > 2, σ a positive scalar, σ0 = (2σ)−1 and σn−1 =
2σ/n. When the list, {Ui(θ,G)}i∈N = U, meets the consistency properties
as follows:
if G is such that G1−Gn ≥ σ0, then θ is a weakly dominant activity for all
players j ∈ J ≡ {3, 4, ..., n} with Wj(θ,G) = 0 for all θ and,
if G is such that 1

2 + σ(f1(G1)− f2(G2)) ≤ 1, then players i = 1, 2 obtain

Ui(θ,G) =


1
2 + σ(fj(Gj)− fi(Gi)) + Vi(G)− Ci(Gi) if θ = (θi, θj , θJ);
− 1

2 − σ(fi(Gi)− fj(Gj))− Ci(Gi) if θ = (θi, θj , θJ);
Vi(G)− Ci(Gi) if θ = (θi, θj , θJ);
−Ci(Gi) if θ = (θi, θj , θJ),

for all θJ ≡ (θ3, θ4, ..., θn). Otherwise, player 1 has the weakly dominant
action, θ with

W1(θ,G) =
{

V1(G) > 0 if θ = (θ1, θ2, θJ);
0 otherwise

for all θJ and player 2, the weakly dominant activity, θ with

W2(θ,G) =
{

W2(θ,G) > 0 if θ = (θ1, θ2, θJ);
0 otherwise

If G is such that G1 −Gn < σ0, then all players i ∈ N obtain

Ui(θ,G) =


n−1

n + σn−1(
∑

j 6=i fj(Gj)− (n− 1)fi(Gi)) + Vi(G)− Ci(Gi) if θ = (θi, θ−i);
− 1

n − σn−1(fi(Gi)(n− 1)−
∑

j 6=i fj(Gj))− Ci(Gi) if θ = (θi, θ−i);
Vi(G)− Ci(Gi) if θ = (θi, θ−i);
−Ci(Gi) if θ = (θi, θ−i),
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and each player i = 1, 2, ..., n believes other players correlate their choice on
an activity, then we obtain the following CSF which is a generalized version
of (2) defined by
If f1(G1) − fn(Gn) ≥ σ0 with σ0 = (2σ)−1, then p3 = p4 =, ...,= pn = 0
and

p1 = max
{

min
{

1
2

+ σ(f1(G1)− f2(G2)), 1
}

, 0
}

with p1 = 1− p2.

Otherwise,

pi =
1
n

+ σn−1((n− 1)fi(Gi)−
∑
j 6=i

fj(Gj)) with σn−1 = 2σ/n for all i = 1, ..., n

is rationalizable.

Proof
First, we begin with the case where G is such that G1 −Gn ≥ σ0. We con-
struct the following PBE. Under the payoffs conditions of proposition 2 any
j ∈ J has equilibrium beliefs, µ∗j (θ−i = θ | θj ,G) = 0 since θ is weakly dom-
inated for player j. On the other hand, this implies that µ∗i (θJ = θ | θi,G) =
0 since players i = 1, 2 must have correct beliefs at equilibrium. When G is
such that f1(G1)− fn(Gn) ≥ σ0, and 1

2 + σ(f1(G1)− f2(G2)) ≤ 1, players
i = 1, 2 play their mixed Nash equilibrium in ΓG(N,U) given by p∗1(θ) =
1
2 +σ(f1(G1)−f2(G2)) (here we use the formulae given in the proof of Propo-
sition 1). This in turn, means that 1’s equilibrium belief about θ−i = θ is
µ∗1(θ−1 = θ | θ1,G) = p∗2(θ) × Πj∈Jp∗j (θ). By the above remarks, we have
that µ∗1(θ−1 = θ | θ1,G) = p∗2(θ). A symmetric argument holds for player 2.
It remains to check that we indeed obtain an induced contest. First let us
compute the expected payoffs of players j ∈ J. At a PBE, when these play-
ers hold the above specified beliefs, their equilibirum continuation expected
payoff given by Ui(θi, µ

∗
−i |G) ≡

∑
θ−i∈Θ µ∗i (θ−i | θi,G)Ui(θi, θ−i,G) boils

down to −Cj(Gj) which follows since Wj(θ,G) = 0 for all θ. Let us turn
to players 1 and 2. At equilibrium, they must be indifferent between θ or θ.
Hence, player 1 and 2 obtain, p∗−i(θ)Vi(G)− Ci(Gi).
Now we turn to the case where G is such that G1 − Gn < σ0. Here,
when each player i thinks the other players correlate their activities, the
mixed Nash equilibrium strategies profile is (p∗i , p

∗
−i) and, using formulae

of Proposition 1, we get p∗−i(θ−i) = 1
n + σ(fi(Gi) −

∑
j 6=i fj(Gj)) for all

i = 1, ..., n. At a PBE, beliefs are necessarily correct, which implies that
µ∗i (θ−i = θ | θi,G) = p∗−i(θ−i) for all i ∈ N. That this induces a contest is
easily checked. This completes the proof. ut
Dahm and Alcade (2007) stress the importance of CSFs incorporating si-
multaneously an absolute and relative criterion. In the next proposition,
we derive the serial CSF of Dahm and Alcade for an arbitrary number of
contestants.
Consider an ordered vector of effectivity functions f(G) = (f1(G1), f2(G2), ..., fn(Gn))
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such that f1(G1) ≥ f2(G2), ...,≥ fn(Gn) holds for all G and w.l.o.g. denote
fh(G) = max {f1(G1), f2(G2), ..., fn(Gn)}.

Proposition 3 Let {Ui(θ,G)}i∈N satisfying the consistency properties with

Ui(θ,G) =


nfh(G)−

∑n
j=i

n
j (fj(Gj)− fj+1(Gj+1)) + Vi(G)− Ci(Gi) if (θi, θ−i) = (θ, θ);

−(
∑n

j=i
n
j (fj(Gj)− fj+1(Gj+1)) + Ci(Gi)) if (θi, θ−i) = (θ, θ);

Vi(G)− Ci(Gi) if (θi, θ−i) = (θ, θ);
−Ci(Gi) if (θi, θ−i) = (θ, θ),

then, the following extension of the serial CSF defined by Alcalde and Dahm
(2007), p∗i (θ) =

∑n
j=i

fj(Gj)−fj+1(Gj+1)
jfh(G) with fn+1(Gn+1) = 0 is rationaliz-

able.

Proof It is easy to verify that all conditions for rationalizability are ful-
filled. Players’ interim (correlated) equilibrium beliefs are given (using the
standard formulae given in the proof of Proposition 1) by

p∗i (θ) =

∑n
j=i

n
j (fj(Gj)− fj+1(Gj+1))∑n

j=i
n
j (fj(Gj)− fj+1(Gj+1))) + nfh(G)−

∑n
j=i

n
j (fj(Gj)− fj+1(Gj+1))

for i = 1, ..., n. This readily simplifies as p∗i (θ) =
∑n

j=i
fj(Gj)−fj+1(Gj+1)

jfh(G)

with fn+1(Gn+1) = 0. Condition (ii) of definition 1 is also verified by apply-
ing the same arguments as in the proof of Proposition 1, thereby implying
that µ∗i (θ−i = θ | θi,G) = p∗−i(θ−i) for all i = 1, ..., n at Ii(θi) on the
equilibrium path. ut

3 Discussion

Before presenting the second approach, two further remarks are worth mak-
ing. First, in the above model, players are assumed to simultaneously com-
mit to an activity in the first stage of the gun-butter game. The idea of
commitment is an essential insight of Schelling (1960). Alternatively, in the
present model, players may also be seen as ruling out some activities rather
than committing to a particular activity. This interpretation would conform
to many real life situations in which choosing simultaneously two different
options is either physically impossible or too costly to be considered.
Second, the variable Gi can be thought of the units of a generic/primary
effort variable applied to the two kind of activities. Alternatively, our setup
accommodates to the usual interpretation of Gi as the input contributed
by each player in an adversarial fashion against other players. An obvious
setting conducive to such an interpretation is where one player can choose
between a defensive or an aggressive position vis a vis their opponents. In
this case, Gi represents the appropriative (i.e., gun) effort of player i under
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both activities. 10 Hence, whether the nature of effort exerted by player i,
Gi, in the second-stage is endogenously determined by the actions chosen
in the first stage depends ultimately on the situation at hand.

4 Mediated contests

The other possibility to produce some CSFs is to consider that the con-
test is designed by an administrator. This second approach is inspired from
the control-cost models, developed by Mattson and Weibull (2002) and van
Damme and Weibull (2002). Hence, from this perspective our second ap-
proach also reveals a common thread that connects these two seemingly
disparate strand of literature.
Depending on the relative efforts and/or characteristics of contestants, it is
conceivable that the administrator will attempt, at some cost, to design the
rules for determining who wins so as to maximize his expected utility. In
this second approach, we model this type of situations.
First some notation. For any positive integer n, let ∆n denote the (n− 1)-
dimensional unit simplex in n-space. We consider an administrator who has
to decide to award a prize to one of n contestants. The designer has prefer-
ences over the set of contestants, N. Let Ui(θi, Gi) be the designer’s payoff
if the prize is awarded to contestant i ∈ N when he has characteristic θi and
exerts Gi. We represent the administrator’s choice by a probability distribu-
tion p = (p1, ..., pn) over the contestants {1, 2, ..., n} ≡ N . Suppose the de-
signer chooses p. Then,

∑
i∈N piUi(θ, Gi) represents the designer’s expected

utility of the administrator when n agents make efforts of (G1, ..., Gn) ≡ G
and the vector of the contestants’ characteristics is (θ1, ..., θn) ≡ θ. If the ad-
ministrator without cost or effort could implement any choice p ∈ ∆n then
he would assign unit probability to the subset of contestants N̂(G) ⊂ N

with maximal effectivity function where N̂(G) =
{

i ∈ N : fi(Gi) = f̂(Gi)
}

and f̂(Gi) = maxi∈N fi(Gi). Suppose, however, that there is a disutility
D(p,G) associated with every choice p ∈ ∆n and profile G. Formally, we
will consider the class of disutility functions D : ∆n × Rn

+ → R+ that are
continuous in the choice variable p for each profile G.
This disutility term might capture the various institutional constraints faced
by the administrator. For example, we may think of this disutility as the
effort expended by the designer to favor a particular contestant to influence
some voters, a court, consumers, fellow employees, the public at large, in his
favor. This can also be thought of as some bureaucratic friction (Kahana
and Nitzan (2002)), the organizer’s sensitivity to some ethical aspects (e.g.,
open discrimination), the cost of not complying with the law etc. Another

10 A defending player may be vulnerable at several points, and, to be successful,
may need to defend all these points successfully in order to win the war, whereas
an attacker may be victorious if he can surmount the defense lines of his rival
successfully at one point
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possible interpretation of this disutility is in term of “toleration level”. For
example, D could capture the fact that, beyond a point, the administrator’s
welfare loss outweighs the excellency/quality of the winner.
With this in mind, the designer’s (expected, total) utility associated with
any choice p is then defined by,

∑
i∈N piUi(θ,G)−σ(θ,G)D(p,G) ≡ V (p,G)

where σ(θ,G) is a positive scalar that represents the administrator’s relative
ability to design (or possibly influence the contest outcome) with respect to
the various institutional constraints that shape his environment/own pref-
erences. In this setup, the contest designer solves the following problem

[P ] max
p∈∆n

V (p,G) for all G.

Definition 3 The CSF {p1(G), p2(G), ..., pn(G)} is rationalizable if for any
arbitrary vector G the solution of [P], p∗(G) = arg maxp∈∆ V (p,G), is such
that p∗i = pi(G) for all i = 1, ..., n.

Next we apply this alternative notion of a rationalizability to several pop-
ular CSFs. This allows to obtain CSFs from a very different angle than
the approach of the previous section. Moreover it allows to produce new
meaningful CSFs.

Example 1 Suppose a quadratic disutility function, D(p) =
∑

j∈N p2
j with

σ(θ,G) =
∑

j∈N θjfj(Gj), and Ui(θi, Gi) = θifi(Gi) for all i such that
θi > 0 can be interpreted as the prior probability that agent i wins the
prize. Then it is readily shown that the solution of [P] induces the contest
success function proposed by Gradstein (1995), namely,

p∗i = pi(G) =
θifi(Gi)∑

j∈N θjfj(Gj)
.

Proposition 4 Suppose D(p) = 1
2

∑
j∈N p2

j with Ui(θi, fi(Gi)) = fi(Gi)
and σ a positive constant function for all i. Then the solution of [P] induces
a generalization of Che and Gale’s difference-form CSF to n contestants,
that is

p∗i = pi(G) = max

min

 1
n

+
1

nσ
(fi(Gi)−

∑
j∈N\{i}

fj(Gj))


 .

Proof.
V (p,G) =

∑
j∈N pjfj(G)−σ/2

∑
j∈N p2

j . For each G, a necessary condition
for an interior solution p to the decision program [M], for any effectivity
functions, is pi = fi(Gi)+λ

σ for i ∈ N where λ is the Lagrangian multiplier
associated with the constraint

∑
i pi = 1. An application of the constraint∑

i pi = 1 determines the Lagrangian, implying the unique solution p∗

defined in Proposition 4. ut
In the next result, we use the entropic disutility term introduced by Mattson
and Weibull (2002) to derive the multinomial logit model.
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Proposition 5 Suppose D(p) = lnn +
∑

j∈N pi ln pi with Ui(θi, fi(Gi)) =
fi(Gi) and σ(θ,G) = 1 for all (θ,G) and all i. Then the solution of [M] in-
duces the well-known (generalized) logit CSF proposed by Hirshleifer (1989),
that is

p∗i = pi(G) =
expfi(Gi)∑

j∈N expfj(Gj)
.

Proof Note that V (·) is continuously differentiable in p on the relative
interior of ∆n and it is convex. For each G, a necessary condition for an
interior solution p to the administrator’s program [P], for v, is thus, ln pi +
1 = fi(Gi) for all i. Therefore, pi = expfi(Gi)+λ−1 with λ the Lagrangian.
Under the constraint

∑
pi = 1, we obtain the unique solution p∗. ut

Example 2 Consider the following payoffs for the decider

V (p,G) =

 (2p1 + p2) exp

{
−(G1−G2−1)2

1−(G1−G2−1)2

}
− 1

2

∑
i p2

i if 1 > G1 −G2 ≥ 0;
p1(1 + G2

2 + 2G1G2) + 2p2G
2
1 − (1− (G1 −G2)2)p1 ln 2p1 if 1 ≥ G1 −G2 > −1;

p1(G1 −G2) + p2(G2 −G1) if G1 −G2 ≥ −1.

For 1 > G1−G2 ≥ 0, the first-order condition yields p1 = exp

{
−(G1−G2−1)2

1−(G1−G2−1)2

}
−λ

and p2 = 2 exp

{
−(G1−G2−1)2

1−(G1−G2−1)2

}
−λ. An application of the constraint p1+p2 =

1 determines the Lagrangian λ = 3/2 exp

{
−(G1−G2−1)2

1−(G1−G2−1)2

}
− 1

2 . This yields the

unique solution p1 = 1
2 + 1

2 exp

{
−(G1−G2−1)2

1−(G1−G2−1)2

}
.

For 0 ≥ G1 − G2 > −1, we set p1 = 1 − p2 and the first order condition
becomes 1 − (G1 − G2)2 − (1 − 2(G1 − G2)2)(ln 2p1 + 1) = 0. Straight-
forward manipulations show that the win probabilities are such that p1 =

1
2 exp

{
−(G1−G2)2

1−(G1−G2)2

}
. From this we obtain the smooth difference-form contest,

p1 =



1 if G1 −G2 ≥ 1;

1
2 + 1

2 exp

{
−(G1−G2−1)2

1−(G1−G2−1)2

}
if 1 ≥ G1 −G2 ≥ 0;

1
2 exp

{
−(G1−G2)2

1−(G1−G2)2

}
if 0 ≥ G1 −G2 ≥ −1;

0 if −1 ≥ G1 −G2.

considered by Córchon and Dahm (2007, example 5).

4.1 Distortion of win probabilities

Our definition of a rationalizable CSF considered so far can be easily gen-
eralized to capture many other interesting economic situations and produce
new CSFs.
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For instance, there is considerable empirical evidence that people overweight
low probabilities but underweight high probabilities see, e.g., Kahneman and
Tversky (1979) and Tversky and Kahneman (1992). Cumulative Prospect
Theory has gained a great deal of support as an alternative to Expected
Utility Theory as it accounts for a number of anomalies in the observed
behavior of economic agents. A key ingredient of this theory is to replace
probabilities by decision weights. We now show that one can derive some
new meaningful CSFs by extending our notion of rationalization notion to
capture these intuitions.

Example 3 Consider an organizer that is first and foremost concerned about
maximizing his expected total utility. However, when designing the contest,
he tends to overweight small probabilities and underweight large probabili-
ties. One way to model these distortions in the optimal design of the contest
is to consider an organizer who replaces the expected utility formula by a
“probability transformation” model

∑
i U(θi, Gi)Ω(pi) where Ω(pi) = pR

i

with 1 > R > 0. The function Ω is a special case of the Conditionally-

Invariant weighting function, Ω(pi) = γ exp{−R(1−pη
i )/η} with 0 < γ ≤ 1

introduced by Prelec (1998) when η = 0. Hence, this formulation captures
the fact that the administrator’s perception is “distorted” through a prob-
ability weighting function. As remarked by Wakker (1989), this formula-
tion can be thought of as a “separate-outcome probability transformation
model” or a variant of Prospect Theory. Moreover, the designer may also
have an auxiliary interest in making the more skilled agent win the con-
test, provided this does not have much adverse impact on the output. To
model this, we posit the following (reduced) disutility term, σ

∑
i pi ln pi

qi
.

Hence, the designer maximizes V (p,G) =
∑

i U(θi, Gi)pRi
i − σ

∑
i pi ln pi

qi

with 1 > Ri > 0. A necessary condition for an interior solution p to the
decision program [P], is ln pi = K(qi)+si(θi, Ri)pRi−1

i with K(qi) ≡ ln qi−1
and si(θi, Ri) ≡ 1

σ RiU(θi, Gi) Let W be the inverse of the function f de-
fined by f(w) = w exp(w) where w is any real number. Then, the first-order
condition can be rewritten as, (1 − Ri)si(θi, Ri) exp((Ri − 1)K(qi)(qi)) =
w exp(w) where w exp(w) = (1 − Ri)si(θi, Ri) exp((Ri − 1)K(qi)(qi)) and
w = (1−Ri)si(θi, Ri) exp((Ri − 1) ln pi). Hence, we get

W ((1−Ri)si(θi, Ri) exp((Ri − 1)K(qi)(qi)) = (1−Ri)si(θi, Ri) exp ((Ri − 1) ln pi).

Solving this last equation with the condition
∑

i pi = 1, we obtain the
following CSF,

pi =

[
W (Zi)

(1−Ri)si(θi,Ri))

] 1
1−Ri

∑
j∈N

[
W (Zj)

(1−Rj)sj(θj ,Rj)

] 1
1−Rj

for i = 1, ..., n

where Zi ≡ (1−Ri)si(θi, Ri) exp((Ri − 1)K(qi)) with W the Lambert func-
tion, si(θi, Ri) ≡ 1

σ RiU(θi, Gi) and K(qi) ≡ ln qi − 1.
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5 Concluding remarks

We consider the foundation of contest success functions (CSFs) in two dif-
ferent environments. Under the first view, the CSF and the contest itself
emerge as the outcome of a two-stage game wherein players commit unilater-
ally to appropriative or productive activities in a first stage and apply effort
in the second stage. This can be thought of as a (possible) game-theoretic
modeling of the usual tradeoff between guns and butter (i.e., appropriation
vs. production). In this approach CSFs arise from the interim players equi-
librium beliefs about other players engaging in these two activities. This
interpretation is much in line with the conflict literature that has long held
that uncertainty is a central cause of war among states.
Under the second view, a CSF arises from considerations about the optimal-
ity of a contest by an administrator. In this approach, the contest designer
assigns win probabilities among a set of contestants. The designer has a
deterministic ranking over the contestants but is curbed by the underlying
institutional constraints. In this view, CSFs come from the optimal design
of win probabilities for each possible vector of contestants’ efforts. This
approach is inspired from the bounded rationality models of Mattson and
Weibull (2002) and van Damme and Weibull (2002). Hence, this also shows
that producing new choice probability forms such as CSFs, is a theme of
wide-ranging application that runs like a leitmotif in several different con-
texts.
The two approaches provide some alternative views of CSFs, which we hope
are not without some utility.
The unmediated approach has deliberately abstracted from many of the
features of the dynamics that might help to explain why players hold corre-
lated assessment (beliefs) about the others’ choices to engage in productive
or appropriative activities. It must also be emphasized that rationalizable
CSFs for more than two players in the absence of correlation is far from
trivial. Natural extensions of the present analysis, left for future research,
then, would be to rationalize CSFs without this restriction.
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