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Abstract

Volatility clustering is a well-known stylized feature of financial asset returns.

In this paper, we investigate the asymmetric pattern of volatility clustering on

both the stock and foreign exchange rate markets. To this end, we employ

copula-based semi-parametric univariate time-series models that accommodate

the clusters of both large and small volatilities in the analysis. Using daily realized

volatilities of the individual company stocks, stock indices and foreign exchange

rates constructed from high frequency data, we find that volatility clustering is

strongly asymmetric in the sense that clusters of large volatilities tend to be much

stronger than those of small volatilities. In addition, the asymmetric pattern of

volatility clusters continues to be visible even when the clusters are allowed to

be changing over time, and the volatility clusters themselves remain persistent

even after forty days.

Keywords: Volatility clustering, Copulas, Realized volatility, High-frequency data.

JEL Classification: C51, G32.
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1 Introduction

One of the best known stylized features of financial asset returns is volatility clustering.

That is, a high (or low) volatility movement is observed to be followed by a high (or low)

volatility movement. This volatility clustering captures the dynamics of volatility variation

of financial assets. Modeling this volatility clustering of a financial asset is important since

volatility values can directly impact prices of options and risks of stocks and portfolios.

So far and to the best of our knowledge, volatility clustering has mainly been analyzed

within the Generalized Autoregressive Conditional Heteroscedastic (GARCH) and Stochastic

Volatility (SV) models. Although each class of these models can well capture the symmetric

volatility clustering pattern of asset returns, both are somewhat limited in its ability to

model the possible asymmetric pattern of the volatility clustering. This asymmetry arises

from a frequent clustering of large volatilities of financial asset returns.

This paper contributes to the literature by investigating the possible asymmetry of volatil-

ity clustering of financial asset returns using a copula approach. In addition to modeling the

symmetric volatility clustering, copulas also provide us with a flexible way to capture the

possible asymmetry of the clusters of the volatilities. It is well known that copula is a multi-

variate distribution function of the standard uniform marginals. Due to Sklar’s theorem, the

dependence between variables can be modeled separately via certain copula functions and

their corresponding marginals. This provides certain flexibility in the modeling exercise. In

particular, different copulas are designed to capture different types of dependence structures:

symmetric or asymmetric, and linear or nonlinear. Copula approach can also accommodate
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various types of marginal distributions. Due to its flexibility, the copula approach has been

extensively applied in Finance in recent years. Just to mention a few, Chollete et al. (2006)

and Hu (2006) use copula approaches and find asymmetric extreme dependence among eq-

uity returns, which indicates that the stock markets tend to crash together but do not boom

together. Patton (2006) employs copulas to model the asymmetric dependence on the for-

eign exchange rate markets. He finds that both the Mark and Yen are more correlated when

they are depreciating against the U.S. dollar than when they are appreciating. Jondeau

and Rockinger (2006) use both the conditional and dynamic copula models to examine the

dynamic dependence of the US and European stock market returns. Rodriguez (2006) inves-

tigates market contagions via copulas. A recent survey on applications of copulas in finance

and economics can be found in Patton (2008).

While most applications of the copula approach are in the multivariate context, Chen

and Fan (2006) develop theoretical foundations for extending the copula approach to model

dependence of a univariate variable across time. Similar to that in Chen and Fan (2006), we

apply the copula approach for a single time series variable and a semi-parametric estimation

method to study the pattern of volatility clustering. The advantage of this method is that

we do not need to specify the marginal distribution of the volatility, instead, we estimate

the volatility with an empirical distribution function that is distribution-free. We focus on

the volatility clustering, i.e., the dependence between volatilities at time t and t − 1, using

parametric copulas. The copula parameters are estimated by a two-step maximum likelihood

method, also known as the Canonical Maximum Likelihood (CLM) method.
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We note that copulas possess a number of attractive properties for the purpose of study-

ing volatility dependence. First, copulas is designed to capture both nonlinear and linear

dependence in a time series. This is especially important in the investigation of the depen-

dence of the volatility clusters, which may not be linear. Second, copulas can accommodate

any types of continuous marginal distributions, including a family of skewed and fat-tailed

distributions, which can be used to characterize our volatility data with significant positive

skewness and large excess kurtosis. Third, copulas are invariant to a strictly increasing

transformation, including a nonlinear transformation. This feature is especially convenient

since very often our transformation of the data is increasing but not linear. For further

properties of copulas, see Joe (1997), Nelson (1999), Embrechts et al. (2002), and Cherubini

et al. (2004).

In this paper, the characteristics of volatility dynamic clustering are examined for the

returns from both the stock and foreign exchange rate markets. We construct daily realized

volatilities using high frequency data. We find that, in our sample data, volatility clustering

is mostly asymmetric, in the sense that volatility clustering is stronger for large volatilities

than for small volatilities. This asymmetric pattern also exists in the dynamics of volatility

clusters. This result reveals that, in addition to the volatility clustering found previously

in the GARCH and SV models, the structure of the volatility clustering exhibits asymme-

try, with an increasing tendency for clusters for large volatilities to occur than for small

volatilities. This, to the best of our knowledge, has not been documented in the literature

so far. This new result implies that consecutively highly volatile periods are more frequently
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observed on both the stock and currency markets than consecutively tranquil periods.

Our finding of asymmetric volatility clusters is consistent with the asymmetric leverage

effect and volatility feedback effect documented in recent studies. Notably, Bollerslev et

al. (2006) find a highly significant, prolonged leverage effect (i.e., volatility increases more

following negative returns than positive returns.) and an almost instantaneous volatility

feedback effect (i.e., an increase in volatility results in negative returns.) for the intra-daily

data. Thus, through the leverage effect, a negative return initially increases subsequent

volatility, and this, through the volatility feedback effect, induces a negative return. This

negative return then, in turn, through the leverage effect, increases the subsequent volatility.

The prolonged and asymmetric of these two effects implies a prolonged clustering of large

volatilities.

In addition, in this paper, we also investigate the duration of the volatility clustering in

the return series. Our results indicate that the clusters in most of the volatilities of the return

series examined in this paper tend to be highly persistent and do not appear to dissipate even

after forty days. This finding supports the long memory dependence in volatility documented

in the literature, see Engle and Bollerslev (1986), Bollerslev et al. (1992), Ray and Tsay

(2000) and among others.

The rest of the paper is organized as follows. Section 2 sets up the copula models for

the volatility clustering. Section 3 describes the sample data and the construction of the

realized volatility measures from the high frequency data. Section 4 presents and discusses

the empirical results and Section 5 concludes.
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2 The Methodology

Copula is a multivariate cumulative distribution function with the marginal distribution be-

ing uniform on the interval [0,1]. In this paper, we apply copulas in modeling the dependence

between consecutive volatilities of the return series. According to Sklar’s (1959) theorem,

there is a one-to-one relationship between a joint distribution and a copula. Chen and Fan

(2006) extend this property from the multivariate context to a univariate set-up. Let Yt and

Yt−1 be the consecutive volatility variables at time t and t−1 respectively. Then the cluster-

ing property of consecutive volatilities is completely characterized by their joint distribution,

H(yt, yt−1). In particular, based on Sklar’s theorem, there exists a copula C(.) such that

H(yt, yt−1) = C(u1, u2, θc). (1)

where u1 = G(yt) and u2 = G(yt−1) are the marginal cumulative distribution functions of

Yt and Yt−1, respectively and θc is the copula parameter vector. In other words, the copula

function is a joint distribution function of the transformed random variables u1 = G(yt) and

u2 = G(yt−1). One advantage of copula approach is that it can separate the dependence

from marginals, with the dependence completely captured in the copula function. Since our

focus is on the dependence between two consecutive volatilities, rather than their marginals,

we specify the copula function parametrically (but not the marginal distribution of the

volatility). As a consequence, this particular approach is free of any specification errors

for the marginals. This advantageous feature is highlighted in the simulation studies in

Fermanian and Scaillet (2005). In this paper, we follow the framework in Chen and Fan

(2006), which extends the method in Genest et al. (1995) from the i.i.d. multivariate
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time series to dependent univariate time series case, and use a semi-parametric estimation

method (CML). See also in Cherubini et al. (2004)) and Joe (1997). In essence, this is a

two-step procedure. In the first step, the marginal distribution function G(.) is estimated

non-parametrically via its re-scaled empirical cumulative distribution function (ECDF)

Ĝ(yt) =
1

T + 1

T∑
t=1

1{Yt < y}. (2)

The ECDF is re-scaled to ensure that the first-order condition of the copula’s log-likelihood

function is well defined for all finite T .1 By the Glivenko–Cantelli theorem, ĜY (yt) con-

verges to its theoretical counterpart G(yt) uniformly. In the second step, given the non-

parametrically estimated ECDF, Ĝ(yt) and Ĝ(yt−1), we can estimate the copula parameters

θc parametrically by the method of maximum likelihood, with

θ̂c = arg max
θc

L̃,

where L̃(θc) =
1

T

∑
log c(Ĝ(yt), Ĝ(yt−1); θc),

where c(.) is the copula density function. Joe (1997) proves that under a set of regularity

conditions, the two-step estimator is consistent and asymptotically normal. It is also pointed

out that the two-step method is highly efficient. In addition, as indicated in Patton (2008),

this method has the benefit of being computationally tractable. Importantly Chen and Fan

(2006) establish the asymptotic properties for this semi-parametric estimator.

Using copulas, we can measure the dependence at the extremes by the extent of the tail

dependence. A tail dependence measures the probability that both variables are in their

1See Genest et al. (1995) and Chen and Fan (2006) for a further discussion on this.
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lower or upper joint tails. Intuitively, an upper (lower) tail dependence refers to the relative

amount of mass in the upper (lower) quantile of their joint distribution. The lower (left) and

upper (right) tail dependence coefficients, λl and λr , in the context of volatility dependence

(clusters) are defined as:

λl = lim
u−→0

Pr[G(yt) ≤ u|G(yt−1) ≤ u] = lim
u−→0

C(u, u)

u
, (3)

λr = lim
u−→1

Pr[G(yt) ≥ u|G(yt−1) ≥ u] = lim
u−→1

1− 2u + C(u, u)

1− u
, (4)

respectively, where λl and λr ∈ [0, 1]. If λl or λr is positive, Yt and Yt−1 are said to be left

(lower) or right (upper) tail dependent. That is, λl measures the degree of clusters of low

volatilities while λr measures the degree of clusters of high volatilities. Since tail dependence

measures are derived from the copula functions, they possess all desirable properties of

copulas mentioned earlier.

Different copulas represent different dependence structures with the so called association

parameters θc which indicates the strength of the dependence. To capture the volatility

dependence, we need to use a copula that allows for both the left tail (to capture clusters of

small volatilities) and right tail dependence (to capture clusters of large volatilities). Thus

we use the Symmetrized Joe Clayton (SJC) copula that was first introduced and used in

Patton (2006). The SJC copula allows for asymmetric upper and lower tail dependence and

symmetric dependence as a special case. It is defined as

CSJC(u, v|λr, λl) = 0.5× (CJC(u, v|λr, λl) + CJC(1− u, 1− v|λl, λr) + u + v − 1), (5)

where CJC(u, v|λr, λl) is the BB7 copula (also called Joe-Clayton copula) of Joe (1997)
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defined as

CJC(u, v|λr, λl)

= 1− (1−
{[

1− (1− u)k
]−r

+
[
1− (1− v)k

]−r − 1
}−1/r

)1/k, (6)

where k = 1/log2(2 − λr), r = −1/log2(λl), and λl ∈ (0, 1), λr ∈ (0, 1). By construction,

the SJC copula is symmetric when λl=λr.

We also examine the possibility of dynamic or time varying tail dependence in the data.

In particular, following Patton (2006), we estimate the following ARMA-type process for tail

dependence:

λl,t = (1 + exp(−hl,t))
−1, λr,t = (1 + exp(−hr,t))

−1, (7)

hl,t = hl,0 + βlhl,t−1 + αl

p∑
j=1

|ut−j − vt−j|, (8)

hr,t = hr,0 + βrhr,t−1 + αr

p∑
j=1

|ut−j − vt−j|. (9)

This model contains an autoregressive term designed to capture persistence in dependence,

and a variable which is a mean absolute difference between u and v. The latter variable is

positive when the two probability integral transforms are on the opposite side of the extremes

of the joint distribution and close to zero when they are on the same side of the extremes.

The logistic transformation of the ARMA process guarantees that the tail dependence

parameters lie in the [0,1] interval.
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3 Data Description and Construction of Realized Volatil-

ity Measure

It is well-known that volatility can not be directly observed on the financial market. In this

paper, a model-free measurement for volatility is constructed by using the intra-daily high-

frequency data as a proxy for the volatility, which is known as realized volatility. Asymmetric

volatility clusters are then examined on both the stock and foreign exchange rate markets.

Our sample data set consists of five individual company stocks, including Yahoo (YHOO),

Amazon (AMAZ), Microsoft (MSFT), Costco (COST) and IBM (IBM); two stock indices,

including the S&P 500 (SPX) and Dow Jones Industrial Average (INDU) and four foreign

exchange rates, including Canadian dollar (CADA), Great British pound (GBPA), German

mark (DEMA) and Japanese yen (JPYA).2

A common model-free indicator of the daily volatility is a simple summation of squared

intra-day returns, see Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard

(2001) and etc. To set forth the notation, let pd,t be the logarithmic price at a certain

sampling frequency interval on day t. Consequently, the continuously compounded returns

with D observations on day t is defined as,

rd,t = 100(pd,t − pd−1,t) (10)

2All the currencies are in terms of the US dollars. The sample interval covers different periods depending

on the data availability. The company stocks data are from June 06, 2005 to September 19, 2008. The

foreign exchange rates data range from January 4, 1999 to December 30, 2005. The stock indices are from

January 2, 1998 to December 30, 2005. Our data source is www.tickplusdata.com.
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where d = 1, 2, ..., D and t = 1, 2, ..., T . When D = 1, the first subscript is ignored and rt

denotes the return series on a given day.

As mentioned earlier, a simple estimator of the daily volatility can be constructed by

summing up the squared intra-day returns when the market is open, i.e.,

RVt =
D∑

d=1

r2
d,t (11)

Under the assumptions that returns have zero mean, zero correlation and have finite

second moments, (11) can be considered as a consistent measure of the daily volatility

under an ideal market condition. However, in practice, there are two potential issues in

the construction for the realized volatility. Due to a rapid development in the computer

technology, the financial transaction data have become available at the ultra high frequency

level. In particular, the transaction price nowadays can be recorded at a very fine time scale,

such as transaction by transaction (tick-by-tick), one minute, five minute and etc. This raises

the question of which set of discrete time series data we should choose as a measure of the

realized volatility. The choice of the sampling frequency is not trivial. Intuitively, a larger

data set should always contain more information. As the sampling interval approaches zero,

the realized volatility can be equivalently considered as an integrated estimator. However,

there is an important trade-off for choosing the observation frequency due to the presence of

the market microstructure contaminations. In other words, financial asset prices diverge from

their ”efficient values” due to a variety of market frictions. Recently, increasing attention

has been focused on the analysis of the realized volatility measures, see for instance Zhang

et al. (2005), Hansen and Lunde (2006), van Dijk and Martens (2007), Andersen, Bollerslev
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and Diebold (2007), Maheu and McCurdy (2009) and etc. See also a recent survey paper on

this topic by McAleer and Medeiros (2008). In this paper, we follow most of the literature

and simply use 5-minute sampling intra-day data because the 5-minute interval is considered

as the frequency at which the transaction prices are less distorted from the microstructure

noises.

Another non-trivial issue in the construction of (11) is the non-trading period effect. In

the real market and to the extent that the markets are open only during a certain period of

the trading days. (11) only measures the open-to-close volatility. This ignores information

from the non-trading hours (e.g., overnight). To accommodate this overnight effect, Martens

(2002), Koopman, Jungbacker and Hol (2005) and Hansen and Lunde (2006) propose a

scaling (weighting) volatility estimator based on (11). The basic idea of this is to incorporate

non-trading hours information into the construction of the variable. In this paper, we follow

Martens (2002) and introduce an informative weighting factor in (11). In particular, we

construct the measure of realized volatility as:

RVt = δ

D∑

d=1

r2
d,t, (12)

where δ = 1 + w1

w2
, with w1 = 1

T

T∑
t=1

1002(pD,t − p0,t)
2 and w2 = 1

T

T∑
t=1

1002(p0,t − pD,t−1)
2.

Then we use (12) to construct the measure of realized volatilities based on the 5-minute

sampling frequency.

The summary statistics of the volatilities are presented in Table 1. We note that the

constructed realized volatilities are all right-skewed, indicating a longer right tail than the

left one. The kurtosis ranges from 13.5 to 127.9, showing a significant fat-tail property
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of the return distribution. It is important to stress that the dependence of non-normally

distributed variables can not be properly measured by a linear correlation method. The

copula approach, on the other hand, which allows for any continuous marginal distributions,

is expected to provide a more accurate measure for this type of dependence in the data.

4 Empirical Results

In this section, we discuss the results obtained from applying the approach described in

section 2 to our realized volatility series. First, we consider the linear correlation measures

of the consecutive volatilities in the first row of Table 2. The reported correlation coefficients

range from 0.22 to 0.69, reflecting a modest linear dependence between the consecutive

volatilities of the return series. This represents a stylized feature of the volatility clustering

of the returns on both the stock and foreign exchange rate markets.

Next, we examine the dependence structure between volatility Yt at t and Yt−1 at t − 1

via the SJC copula, in which the tail dependence parameters are estimated directly. The

results are presented in Table 2. First, both the left and right tail dependence parameters

are observed to be highly, statistically significant, indicating the existence of both the left

and right tail dependence of the consecutive volatilities; this means the probability of the

clusters of small volatilities with small volatilities, and large volatilities with large volatilities.

Second, for each asset, the left tail dependence parameter is always smaller than the right

tail dependence parameter. This represents the probability of the clusters of small volatili-

ties is smaller than the probability of the clusters of large volatilities. In other words, large
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volatilities tend to cluster more often than small volatilities. This result reveals that, in ad-

dition to the volatility clustering previously found in the GARCH and SV models, volatility

clustering is highly asymmetric, with a higher tendency of clusters of large volatilities than

small volatilities. To the best of our knowledge, this result has not been documented in the

literature. The calculated t-statistics for the null hypothesis that the left tail dependence

parameter is equal to or greater than the right tail dependence against the alternative hy-

pothesis that the left tail dependence parameter is smaller than the right tail dependence is

strongly rejected in all cases as indicated by the small p-values. We interpret this result as

evidence that the left tail dependence parameter is significantly smaller than the right tail

dependence parameter. Therefore, the volatility clustering is significantly asymmetric, i.e.,

there is a significantly higher tendency for clusters of large volatilities to occur than small

volatilities.

The asymmetry in the volatility clustering is consistent with the leverage effect and the

return-volatility feedback effect documented in the literature, notably in Bollerslev et al.

(2006) for intra-daily volatilities. Based on the leverage effect, a negative return, is more

likely to be followed by a higher volatility, than a positive return, then through the volatility

feedback effect, the higher volatility is likely to be accompanied by a negative return, which,

in turn, through the leverage effect again, is followed by another high volatility.... Thus such

a process would suggest clusters of large volatilities. On the other hand, the leverage effect

also suggests that a positive return is less likely to be followed by an increase of volatility,

suggesting a lower tendency of clusters of small volatilities.
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Interestingly, when comparing the results across different groups of assets, we find that

the asymmetry of volatility clusters tend to be the strongest for the large company stocks,

followed by the exchange rates and then the stock indices. This might be related to the fact

that the stock indices are normally considered to be more stable than the single stocks or

exchange rates.

Another interesting question is whether the asymmetric pattern of volatility clusters of

the returns series is time varying. To answer this question, we estimate the dynamic tail

dependence model specified in equations (7)-(9). The result is presented in Table 3. From

this table, we note that the parameters that control the dynamics of the tail dependence

are generally statistically significant, providing some evidence of time variation in the degree

of volatility clustering in the return series. However we find that in 8 out of 11 cases, the

values of the AIC are slightly smaller, while the values of the BIC are larger, in the dynamic

models than in the static models. Based on this evidence, we conclude that overall, the

static models perform as well as the dynamic models.

To visually assess how the volatility clusters change over time, we plot the dynamics of

the volatility tail dependence parameters for the single stocks, exchange rates, and the stock

indices in Figure 1, 2, and 3 respectively. In all the figures, the solid line plots the dynamics

of the right tail dependence (which is the probability of clusters of large volatilities), the

dotted line is the dynamics of the left tail dependence (which is the probability of clusters

of small volatilities), while the dashed line is the average of the difference between the right

and left tail dependence. First, the right tail dependence line generally lies above the left
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tail dependence line. Thus, over time, the tail dependence is asymmetric, in the sense that

large volatility clusters more often than small volatility. This is also visible on the dashed

line, which is above the x axis.

It is well documented that the volatility clustering at the daily or weekly interval is

strongly persistent and has a long memory, See Bollerslev et al. (1992) for a survey of this

literature for ARCH models and Ray & Tsay (2000). Thus it would also be interesting to

investigate how long the memory lasts and how slowly the volatility clusters die out. To

do this, we examine the clusters of volatilities of the return series from the first lag to the

40th lag. We present the results in Table 4. From the table, we first observe that the

degree of volatility clusters decreases gradually as the lag increases. This is reflected in

generally smaller tail dependence parameters and larger values of AIC and BIC with the

increase of the lag. Second, even after 40 days, the clusters in large volatilities are still

statistically significant in most of the cases, indicating a strong persistence in the clusters

of large volatilities. Finally, the clusters decay at a slower speed for the exchange rate

volatilities than for the stocks and stock indices. Thus volatility clusters are more persistent

in foreign exchange markets than stock markets.

To visualize the decaying patterns of the clusters, we plot the left and right tail depen-

dence parameters against the lags for each group in Figure 4 , 5 and 6. These figures confirm

that the clusters decay very slowly, showing a strong degree of the clustering persistency. In

addition, these figures also show that the decay could alternate in size. For instance, in the

case of the GBPA return, the right tail dependence between volatilities of the past 5 days is
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larger than that of the past 4 days.

In summary, we find a strong persistence in the clusters of large volatilities. This is

consistent with the long-memory of volatilities documented in the literature. Anderson and

Bollerslev (1997) explain the source of the volatility persistence by considering the volatility

as a mixture of numerous heterogeneous short-run information arrivals, and the aggregation

of these information flow processes may lead to the long memory dependence.

5 Conclusions

In this paper, we have analyzed the volatility clustering of a number of return series by using

the copula approach with the realized volatility constructed from the high frequency data.

The copula approach has made it possible to detect the asymmetry in the clusters of large

and small volatilities. The availability of the high frequency data, and, thus, the ability to

construct the realized volatility, make it convenient for us to use the copula approach directly.

We found that the volatility clusters in the return series are asymmetric, in the sense that

large volatilities tend to cluster more often than small volatilities. This asymmetric volatility

clusters were visible even when we allowed for the time variation in the volatility clusters.

Finally, we found that the clusters are both strongly persistent and durable in the sense that

they do not die out even after a one month period.
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Figure 1: Dynamics of Stock Volatility Clusters
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The solid, dotted, and dashed lines plot the dynamics of the right, left tail dependence,

and the average of the difference between the right and left tail dependence respectively.

Figure 2: Dynamics of Exchange Rate Volatility Clusters
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The solid, dotted, and dashed lines plot the dynamics of the right, left tail dependence,

and the average of the difference between the right and left tail dependence respectively.
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Figure 3: Dynamics of Stock Indices Volatility Clusters
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The solid, dotted, and dashed lines plot the dynamics of the right, left tail dependence,

and the average of the difference between the right and left tail dependence respectively.

Figure 4: Persistence of Stock Volatility Clusters
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The x axis marks the day lags, the y-axis is for the volatility tail dependence between

day 1 and day T marked on x axis.
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Figure 5: Persistence of Exchange Rate Volatility clusters
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The x axis marks the day lags, the y-axis is for the volatility tail dependence between

day 1 and day T marked on x axis.

Figure 6: Persistence of Stock Indices Volatility clusters
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The x axis marks the day lags, the y-axis is for the volatility tail dependence between

day 1 and day T marked on x axis.
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