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Abstract

This paper investigates the learning foundations of economic models of social learning. We

pursue the prevalent idea in economics that rational play is the outcome of a dynamic process of

adaptation. Our learning approach offers us the possibility to clarify when and why the prevalent

rational (equilibrium) view of social learning is likely to capture observed regularities in the field.

In particular it enables us to address the issue of individual and interactive knowledge. We argue

that knowledge about the private belief distribution is unlikely to be shared in most social learning

contexts. Absent this mutual knowledge, we show that the long-run outcome of the adaptive process

favors non-Bayesian rational play.

Keywords: Social Learning; Informational herding; Adaptation; Analogies; Non-Bayesian updat-

ing.

JEL Classification: C73, D82, D83.

1 Introduction

Does learning by observing others lead to information revelation and efficient social outcomes? To

answer this question, early economic models of social learning have analyzed situations in which

Bayesian rational individuals are endowed with private signals about a payoff-relevant state of Nature

and choose irreversible actions in an exogenous order after having observed their predecessors’ actions.

Payoff externalities are absent and private signals are discrete but unbiased meaning that the pooled

information of individuals reveals the most profitable action. If individuals choose from a continuum

of actions and are rewarded according to the proximity of their chosen action to the most profitable

action then social learning is efficient (Lee, 1993). The answer to the above question is therefore pos-

itive for sufficiently rich action spaces which is obvious since actions perfectly reveal private signals.

This conclusion is not entirely satisfactory as there are many economically relevant situations in which

individuals cannot fine-tune their actions to their information (Bikhchandani, Hirshleifer, and Welch,
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1998; Gale, 1996). In situations where the action space is discrete, an informational cascade eventually

occurs in which individuals choose actions which do not convey private information and herd on a

wrong action with positive probability (Banerjee, 1992; Bikhchandani, Hirshleifer, and Welch, 1992).1

Assuming a finite number of actions turns the positive answer into a negative answer even though

informational cascades do not arise for most atomless distributions of private signals (Chamley, 2004b,

chap. 4) and the correct action is chosen asymptotically when private signals are unbounded (Smith

and Sørensen, 2000). Indeed, from a social welfare point of view, it matters little whether incorrect

herds arise or whether information is fully revealed but extremely slowly. Both phenomena are mani-

festations of the self-defeating property and both phenomena result from the presence of informational

externalities (Vives, 1996). Learning by observing others is self-defeating for Bayesian rational indi-

viduals because the more information has been accumulated in predecessors’ decisions the less weight

is given to private information in the current decision which in turn yields to a lower increase in pub-

lic information. Learning by observing others involves informational externalities because Bayesian

rational individuals do not take into account the informational effects of their decisions on successors.

The self-defeating property and the existence of informational externalities are robust properties of

economic models of social learning which imply that the answer to the above question is unequivocally

negative whenever actions are discrete (social learning is also inefficient when individuals choose from

a continuum of actions but the observation of actions is noisy; see Vives, 1993). This conclusion

extends to situations in which individuals choose endogenously the time of their irreversible action

(Chamley, 2004a) and, albeit with some qualification, to situations with flexible prices (Vives, 2008).

In addition to being robust, the self-defeating property and the presence of informational exter-

nalities are sensible properties which are likely to be consistent with observed regularities in many

field environments. Since economic models of social learning possess both properties, they have the

potential to deepen our understanding of real-world phenomena like social epidemics. However, several

features of the Bayesian rational view of social learning in its current form seem unrealistic or extreme.

Most importantly a particularly strong level of sophistication on the part of individuals is assumed

which renders them capable of perfectly inferring the degree of information conveyed by any observed

action. More precisely any individual is not only assumed to know the structure of everyone’s private

information, but also the decision model of every other individual including the underlying complete

system of beliefs. In other words the social learning context and Bayesian rationality are assumed

to be commonly known. This assumption has some implications which are unsound and which limit

the behavioral relevance of the model. Fully rational individuals correctly take into account that the

weight of public information slows down social learning. Therefore even after having observed one

thousand identical decisions the average individual is not extremely confident about the appropriate-

ness of the chosen action. When endowed with a sufficiently precise private signal which points in a

different direction fully rational individuals overturn the accumulated evidence from many previous

actions. According to the overturning principle (Smith and Sørensen, 2000), the belief of the average

individual is drastically revised after the observation of such a contrarian action which implies that

society eventually learns the truth in rich-enough signal spaces. These conclusions stand in sharp con-

tradiction to the experimental evidence on social learning (Ziegelmeyer, Koessler, Bracht, and Winter,

2010; Weizsäcker, 2010) and they have been criticized by recent models of boundedly rational social

1Though individuals choose from a continuum of actions in Banerjee (1992), the model shares the properties of a

discrete choice model due to degenerate payoffs.
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learning (Eyster and Rabin, 2010; Guarino and Jehiel, 2009).

Though we are sympathetic to the bounded rationality approach, we are also convinced that the

assumption of fully rational behavior may be justified if it can be proven to arise as the outcome of a

dynamic process of learning, or adaptation. In this paper we thus investigate the learning foundations

of economic models of social learning. Our premise is that any interactive knowledge in a game must

be acquired during repeated play of this or similar games. This perspective enables us to rigorously

evaluate the assumptions of common knowledge of both the social learning context and the decision

model of each individual.

Our first main result establishes conditions on the adaptive process under which individuals ulti-

mately arrive at rational behavior. These “perfect learning opportunities” (sufficiently many repe-

titions of a fixed social learning game) are standard in the literature on adaptation and learning in

games. Yet, a recurrent issue in this literature is that players will rarely encounter exactly the same

game a great number of times. This renders problematic the focus on results in the long run of the

adaptive process. One argument in favor of preserving the long run perspective asserts that any sort

of learning involves extrapolation across environments which are considered similar (Fudenberg, 2006;

Fudenberg and Levine, 1998). Accordingly what matters is how often players encounter similar games.

In this paper we not only investigate whether rational play can be justfied as the outcome of some

process of adaptation, but we also analyze the robustness with regard to the conditions which need to

be imposed. Indeed our main message is that while perfect learning opportunities might justify the

assumption of fully rational behavior, limited learning opportunities such as adaptation taking place

across contexts introduce systematic biases into players’ inferences from observed actions. We then

show how these biases in turn induce suboptimality of Bayesianism. Hence, in an environment which

offers limited learning opportunities individuals who are not Bayesian rational in responding to biased

inferences may achieve a higher expected payoff.

The experimental literature on social learning has established systematic deviations of subjects’

behavior from Bayesian rational decision making especially in situations where the private informa-

tion and the history of public action are conflicting. Indeed subjects generally show a strongly inflated

tendency to follow their private information. The results of this paper suggest a reinterpretation of

these findings when combined with the idea of rule rationality (Aumann, 1997, 2008). Rule rationality

asserts that individuals, rather than deriving an optimal strategy in each strategic context separately,

behave according to rules which apply and are optimally adapted to a class of contexts. If one ac-

cepts that behavior in real-world environments arises as the outcome of adaptation subject to limited

learning opportunities our results show that strategies which do not combine public and private in-

formation in a Bayesian way may be payoff maximizing. Rule rationality in turn gives a rationale for

why subjects may apply such strategies in simple laboratory social learning settings. Consequently,

subjects’ behavior in social learning experiments may be an artifact of players’ adjustment to more

complex real-world environments and deviations from rational play do not constitute conclusive evi-

dence against rational social learning.

In Section 2 we start with a simple example which illustrates the adaptive process, the distinction

between adaptation in a single context and adaptation across contexts, our main result regarding

the outcome of the adaptive process in both cases, and how learning across contexts may facilitate

non-Bayesian rational strategies. We also employ this example in order to discuss the restrictiveness
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of some of our main assumptions.

The framework of social learning is introduced in Section 3 with arbitrary (finite) number of players,

binary action and state space and general distribution of private information modeled in the form of

private beliefs. We briefly discuss the standard approach which assumes Bayesian rational players and

common knowledge of both the structure of the model and Bayesian rationality. We show that these

assumptions uniquely characterize the outcome of the social learning game for all but a negligible

subset of parameters which implies that rational behavior might in fact be educed by players.

In Section 4 we set up the adaptive process. We first define the rules governing repeated play of

the social learning game including the feedback players receive after each round of playing the entire

social learning game (after player n). Our most important assumption is that private beliefs of players

are never publicly revealed while the state of Nature in general is revealed at the end of the round. We

then specify how players learn to assess the informational content of sequences of others’ choices from

feedback of previous rounds. For this purpose we stick closely to the ideas of fictitious play (Brown,

1951): Players assess conditional probabilities of histories (sequence of previous actions) conditional

on the realized state of Nature by counting frequencies with which history-state-combinations occurred

in previous rounds. Players then respond to these assessed probabilities myopically combining them

with private information in a Bayesian way and maximizing the resulting expected payoff.

Section 5 is devoted to studying the outcome of the adaptive process under the standard assump-

tions that the same fixed social learning game is repeated an arbitrarily large number of times. We

show that in this case assessments become correct and behavior approaches rational play. This re-

sult is shown to arise as the consequence of a more general one on convergence of fictitious play in

dominance-solvable games (Milgrom and Roberts, 1991). A simple implication is that under adap-

tation in a single context generically the highest expected payoff can only be attained by Bayesian

rational individuals.

In Section 6 we turn to the outcome of the adaptive process if the standard assumptions are not

satisfied. Primarily we analyze the effect of players learning across multiple social learning games.

We restrict ourselves to settings which differ only in the distribution of private information. Under

this restriction, in addition to considerations regarding the learning horizon, considerations regarding

learning costs, naivety of players, and feedback constraints may provide further justification for learn-

ing across settings since players do not possess sufficient information to distinguish settings. We then

show that in the long run behavior of players is captured by an analogy-based expectations equilibrium

(Jehiel, 2005; Jehiel and Koessler, 2008) of the “global” social learning game in which the distribution

of private information is randomly determined before the standard social learning game commences.

We demonstrate that generically this behavior does not maximize a player’s expected payoff in the

global social learning game indicating possible benefits for non-Bayesian rational strategies.

We complement the results in the second part of the section by modelling explicitly social learning

within a finite number of repetitions. Under this assumption assessments must remain noisy estimates

of their true counterparts. We show that noise in assessments causes Bayesian posteriors to in ex-

pected terms underweight private information. Furthermore we verify again that the combination of

Bayesianism and best response is outperformed by other strategies. In particular we indicate that

overweighting of private information tends to imply a higher expected payoff.

We discuss the paper’s relationship to the literature and possible extensions of our results in Sec-

tion 7. Some concluding remarks are contained in Section 8. The appendix collects various additional
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material and most of the proofs.

2 A Basic Illustration

In this section, we illustrate the main results of the paper with the help of two simple examples.

Example 1: Social Learning in a Single Context

Consider a setting where two players, Anna and Bob, face similar investment decisions under uncer-

tainty. Players decide in sequence with Anna deciding first and Bob deciding second after having

observed Anna’s decision. Payoffs from investing and rejecting are the same for both players. The

investment payoff is denoted by the random variable θ̃ with possible realizations 0 and 1 which are

equally likely. θ denotes the true (realized) payoff of the investment. The cost of an investment is

c = 1/2 and the payoff to rejecting is zero. Each player has (imperfect) private information about the

true value of the investment. More precisely each player i ∈ {A,B} is endowed with a private belief

bi, the estimated probability that the true payoff of the investment is 1.2 bA and bB are conditionally

independent realizations of the random variables b̃A and b̃B where b̃i, i = A,B is distributed on a

finite subset B of (0,1) according to probabilities Pr (b̃i = bi ∣ θ̃ = θ) given the true payoff of the in-

vestment θ. We assume that private beliefs satisfy the proportional property (Chamley, 2004b, p.31)

Pr (b̃i = bi ∣ θ̃ = 1) /Pr (b̃i = bi ∣ θ̃ = 0) = bi/ (1 − bi) for each i.3

In the following, we first characterize players’ behavior predicted by the standard model of rational

social learning. It is captured by the unique rationalizable outcome (Bernheim, 1984; Pearce, 1984).

Next we show that a (boundedly rational) process of adaptation leads to the same outcome.

Rationalizable Social Learning

Previous models of rational social learning have relied explicitly or implicitly upon three major as-

sumptions: First, Anna and Bob are Bayesian rational which means that they translate all available

information into beliefs about the profitability of the investment using the laws of conditional proba-

bility and take decisions which maximize expected payoff.4 Second, Anna’s and Bob’s decision model

is commonly known. We refer to this type of knowledge as (common) strategic knowledge. In the

social learning context we consider common strategic knowledge is equivalent to common knowledge

of Bayesian rationality (see below; in the illustration it is sufficient if Bob knows that Anna is Bayesian

rational). Finally, the social learning context, i.e. the payoff structure and the information structure

(i.e. conditional distribution of private beliefs) is commonly known (in the illustration it is sufficient

2Hence bi = Pr (θ̃ = 1 ∣ Ii) where Ii denotes the information of player i.

3The proportional property derives from players whom given private information update a prior in a Bayesian way. A

weaker assumption which would allow for an interpretation of private beliefs to be partially shaped by personal opinion

is for instance given by Pr (b̃i = bi ∣ θ̃ = 1) /Pr (b̃i = bi ∣ θ̃ = 0) ≤ Pr (b̃i = b′i ∣ θ̃ = 1) /Pr (b̃i = b′i ∣ θ̃ = 0) if bi < b′i. The results

of the example hold if the influence of objective information is sufficiently large.

4Hence, players are Bayesian rational in the sense of Tan and Werlang (1988). Bayesian rationality in this sense does

NOT comprise knowledge about the rationality of other players. We employ this definition since we desire to separate the

two notions. Said differently Bayesian rationality comprises strong instrumental rationality but not necessarily strong

cognitive rationality.
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if Bob knows that Anna knows). We refer to this type of knowledge as structural knowledge.5 We now

derive behavior given these three assumptions.

Anna’s belief is straightforwardly given by her private belief bA. Therefore Anna’s expected payoff

from investing is given by E[θ̃ ∣ bA] − 1/2 = bA − 1/2. Hence, Anna’s dominant strategy is to invest if

bA > 1/2, i.e. if she believes it more likely that the true payoff of the investment is 1, and to reject

if bA < 1/2.6 Accordingly, Anna’s choice does not depend upon her knowledge about Bob’s decision

model or the distribution of his private information.

Bob, the second player, in addition to holding a private belief observes Anna’s investment decision

captured by the history hB ∈ {invest, reject}. Letting Pr (θ̃ = 1 ∣ bB, hB) denote Bob’s belief given

his private belief bB and the history hB it is clear that Bob invests if Pr (θ̃ = 1 ∣ bB, hB) > 1/2 or

equivalently if his likelihood ratio

λ(bB, hB) =
Pr (θ̃ = 1 ∣ bB, hB)
Pr (θ̃ = 0 ∣ bB, hB)

= bB
1 − bB

∗
Pr (h̃B = hB ∣ θ̃ = 1)
Pr (h̃B = hB ∣ θ̃ = 0)

is strictly greater than 1. Since Bob knows that Anna is Bayesian rational (strategic k.) he can

“educe” her dominant strategy. Moreover, Bob knows the probabilities that bA > 1/2 (resp. bA <
1/2) conditional on the true payoff of the investment (structural k.). Since Pr (bA > 1/2 ∣ θ̃ = 1) >
Pr (bA > 1/2 ∣ θ̃ = 0) and Pr (bA < 1/2 ∣ θ̃ = 1) < Pr (bA < 1/2 ∣ θ̃ = 0)7 Bob’s strategy is straightfor-

wardly derived: If Bob’s private belief confirms Anna’s decision (Anna invests and bB > 1/2 or Anna

rejects and bB < 1/2) then Bob follows his private belief or equivalently imitates Anna’s decision. On

the other hand if Anna invests and bB < 1/2 Bob invests (imitates Anna’s decision) if

(1 − bB) /bB < Pr (bA > 1/2 ∣ θ̃ = 1) /Pr (bA > 1/2 ∣ θ̃ = 0)

and rejects (follows his private belief) otherwise. Equivalently if Anna rejects and bB > 1/2 Bob

rejects (imitates Anna) if (1 − bB) /bB > Pr (bA < 1/2 ∣ θ̃ = 1) /Pr (bA < 1/2 ∣ θ̃ = 0) and invests (follows

his private belief) otherwise. This is the dominant strategy for Bob given that Anna has a dominant

strategy.

In conclusion Bayesian rationality and strategic and structural common knowledge jointly charac-

terize a unique rationalizable and hence eductively stable (Guesnerie, 1992) outcome which is therefore

also the equilibrium outcome.

Adaptive Social Learning

Contrary to the eductive justification of equilibrium, an adaptive approach does not assume that

players are endowed with individual and interactive knowledge before the adjustment process starts.

This will be our premise for the remainder of this section. We maintain the assumption that players

are Bayesian rational. We assume repeated interactions in the same (fixed) social learning setting and

epistemic learning (or beliefs-based learning) which means that players monitor others’ decisions across

repetitions and extrapolate their future strategies from past decisions using pragmatic boundedly

5See Brandenburger (1996) for a distinction between strategic and structural uncertainty upon which our distinction

between strategic and structural knowledge relies.

6If bA = 1/2, Anna is indifferent between investing and rejecting. By neglecting this indifference case, we strengthen

our conclusion.

7See e.g. Milgrom (1981).
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rational rules.8 To simplify exposition, we do not provide much details on the learning-theoretic model.

Instead, we simply assume that players do not entertain any strategic repeated play considerations and

we abstract from learning costs and discounting. Therefore each time they interact players myopically

maximize their expected payoff from the current interaction. The adaptive process is fully exposed in

Section 4.

Concretely, let Anna and Bob repeatedly interact in a fixed social learning context (i.e. fixed payoff

and information structure). In each round of interaction the investment payoff and both players’ pri-

vate beliefs are drawn anew independently from previous realizations. Furthermore after both Anna

and Bob have decided the investment payoff is revealed. Then in each repetition Anna myopically

follows her private belief (i.e. invests if bA > 1/2 and rejects if bA < 1/2) which implies that she

invests more often in rounds with an investment payoff of 1. More precisely, the conditional rela-

tive frequency of Anna investing given an investment payoff of 1 (0) approaches Pr (bA > 1/2 ∣ θ̃ = 1)
(Pr (bA > 1/2 ∣ θ̃ = 0)). Assume that across repetitions Bob keeps track of the relationship between

Anna’s choices and the true payoff of the investment. Given sufficiently many rounds Bob will learn

the correct conditional relative frequencies and accordingly learn to infer the same information from

Anna’s decision as he would “educe” when endowed with strategic and structural knowledge. Myopic

behavior then induces Bob to eventually play his unique rationalizable strategy.

In conclusion, adaptive learning also leads to the rationalizable outcome.

Our first example suggests that Bayesian rational social learning can be viewed as the long-run outcome

of a dynamic process of adjustment. This example is however misleading. Indeed, learning-theoretic

models build on the assumptions that the learning horizon is infinite and that there is a large number of

players who interact relatively anonymously (to prevent repeated play considerations). The validity of

these two assumptions is questionable when learning takes place in a single context.9 Accordingly, we

further investigate the learning-theoretic foundations of Bayesian rational social learning in a second

example where players adapt across social learning contexts.

Example 2: Social Learning in Multiple Contexts

We assume that there are two different social learning settings which differ only in the distributions

of private beliefs. Concretely, in setting k ∈ {H,L} the distributions of Anna’s private belief satisfy

Pr (bA > 1/2 ∣ θ̃ = 1, k) = πkA > 1/2 and 1/2 > Pr (bA > 1/2 ∣ θ̃ = 0, k) = 1 − πkA10, Bob’s private belief

takes one of two possible values 0 < 1 − bkB < 1/2 < bkB < 1 and we assume that bkB > πkA.11 Therefore

if Anna and Bob would only interact in one of the settings (or equivalently if Bob would distinguish

settings whilst adapting) Bob would eventually play his unique rationalizable strategy and follow his

8Apparently this process takes place in real time.

9Fudenberg and Levine (1998, p. 4) argue that “our presumption that players do extrapolate across games they see

as similar is an important reason to think that learning models have some relevance to real-world situations.”

10We assume symmetry only for the ease of exposition. πkA then denotes the probability that Anna chooses the more

profitable action given the true payoff of the investment. The results straightforwardly extend to the asymmetric case.

11We discuss the opposite case at the end of the section.
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private belief irrespective of Anna’s decision.12 We assume in addition that πHA > πLA and bHB > bLB and

accordingly we call k = L (k =H) the low (high) information setting.

As before our premise is that players’ strategic and structural knowledge is acquired over time

(again it is enough to focus on Bob). Anna and Bob interact repeatedly and Bob keeps track of the

same information as before (the relationship between Anna’s decision and the realized payoff of the

investment). Furthermore as before players myopically maximize the expected payoff of the current

interaction. The complication we introduce is that the setting may switch from round to round.

Concretely, we assume that each repetition is equally likely to take place in either the low or high

information setting.13 If Bob were able to identify the setting in each round he could simply keep

track of Anna’s choices in each setting separately. But in general this would require him to possess

a significant degree of structural knowledge before the adaptive process starts.14 In particular, Bob

would have to know (or believe) that there exists a correlation between the strength of his private

belief and the strength of the information he can derive from Anna’s decision. In line with our premise

we assume that Bob does not possess this kind of knowledge. We discuss the restrictiveness of this

assumption at the end of the section.15

The fact that Bob does not distinguish the two settings implies that he learns across them. Con-

cretely, in each round Bob uses all the evidence he has accumulated about the relationship between

Anna’s choice and the investment payoff. Since Anna always follows her private belief and since each

setting is equiprobable, Bob eventually infers the following conditional relative frequencies

Pr (hB = invest ∣ θ̃ = 1) = Pr (hB = reject ∣ θ̃ = 0) = πA =
πLA + πHA

2
, and

Pr (hB = invest ∣ θ̃ = 0) = Pr (hB = reject ∣ θ̃ = 1) = 1 − πA.

Based on these frequencies, Bob adopts the following strategy: In the high information setting, Bob

follows his private belief independent of Anna’s decision (πLA < πA < πHA < bHB ); in the low information

setting, Bob follows his private belief irrespective of Anna’s decision if πA < bLB but he imitates Anna’s

decision irrespective of his private belief if πA > bLB. In summary, if πA > bLB then Bob suffers an

expected loss in the low information setting as he would be better off by following his private belief

in this setting as well.

Our second example shows that adaptation across settings may lead Bayesian rational Bob to a

suboptimal strategy. Obviously, our assumption that Bob is Bayesian rational was made only for

convenience. A more reasonable learning-theoretic framework allows for the adjustment of updating

rules since players resort to active experimentation in order to test unusual strategies. We conclude

12Since λ(bB , invest) = bB
1−bB

∗ πk
A

1−πk
A

> 1 ⇔ bB > 1 − πkA ⇔ bB = bkB and λ(bB , reject) = bB
1−bB

∗ 1−πk
A

πk
A

< 1 ⇔ bB <
πkA ⇔ bB = 1 − bkB .

13Our results straightforwardly extend to the non-symmetric case.

14By identification of the setting we mean the identification of its information structure. Obviously, social learning

contexts differ not only according to their information structure. For instance, the nature of the investment is idiosyncratic

to the social learning context. However, unless one is willing to assume that such physical cues are correlated with the

information structure our arguments remain valid.

15Strictly speaking in this simple example Bob can discriminate the two settings according to the strength of his private

belief.

8

ha
ls

hs
-0

05
72

52
8,

 v
er

si
on

 2
 - 

2 
M

ar
 2

01
1



our second example by showing that non-Bayesian rational learning emerges in such an extended

framework.

Remember that Bayesian rational Bob invests if his likelihood ratio λ(bB, hB) is strictly greater than

1 or equivalently if log ( bB
1−bB ) + log (Pr(h̃B=hB ∣θ̃=0)

Pr(s̃h=hB ∣θ̃=1) ) > 0. Accordingly, Bayesian rational Bob weights

equally his private belief and the information he derives from Anna’s decision. Assume alternatively

that (non-Bayesian rational) Bob invests provided

β ∗ log ( bB
1−bB ) + log (Pr(h̃B=hB ∣θ̃=0)

Pr(s̃h=hB ∣θ̃=1) ) > 0

where β > 0 captures the weight of the private belief relative to the weight of the information inferred

from Anna’s decision. In this case Bob’s strategy is characterized as follows: In each setting k ∈ {L,H},

there exists β∗k such that Bob follows his private belief irrespective of Anna’s decision provided β > β∗k
and Bob imitates Anna’s decision irrespective of his private belief provided β < β∗k .16 β∗L > β∗H implies

that Bob follows his private belief irrespective of Anna’s decision in either setting provided β > β∗L.

Therefore, a non-Bayesian rational Bob whose relative weight on his private belief is strictly greater

than β∗L achieves higher fitness than a Bayesian rational Bob if β∗L > 1.

In conclusion, if Bob cannot distinguish between the two settings then he is not able to infer the

correct magnitude of information that Anna’s decision conveys in each setting. In other words, the

complete resolution of uncertainty (strategic and structural) is not possible in the presence of large

structural uncertainty.17 It may then be beneficial for Bob not to form his belief in a Bayesian way.

We conjecture that our result holds for most adaptive processes though a proof of this assertion is left

for future research.

Discussion

In our second example, Bob has the possibility to straightforwardly discriminate the two settings

according to the strength of his private belief. This is not possible in an extended framework. Assume

that Bob can be weakly (bB ∈ {1 − bLB, bLB}) or well informed (bB ∈ {1 − bHB , bHB }) in both settings but

that he is more likely to be weakly informed in the low information setting. Concretely, assume that

in the low (high) information setting the probability that Bob is weakly (well) informed is given by

α > 1/2. In this case it is optimal for Bob to follow an extreme private belief bB ∈ {1 − bHB , bHB } since

πLA < bLB < πHA < bHB and it is optimal for him to follow a less extreme private belief bB ∈ {1 − bLB, bLB}
provided bLB > απLA + (1−α)πHA .18 In particular απLA + (1−α)πHA < πA since α > 1/2 and there exists

a set of parameters such that απLA + (1 − α)πHA < bLB < πA, i.e. such that Bob given a less extreme

private belief imitates Anna’s decision although he should optimally follow his private belief. Hence,

16β∗k = log (πA/ (1 − πA)) / log (bkB/(1 − bkB)).

17Large structural uncertainty prevails in field environments since the generating process of players’ private beliefs is

rarely commonly known (see Dekel and Gul, 1997, p. 101). This being said, real-world situations with low structural

uncertainty also exist. Assume for instance that the payoff of the investment is determined by the uncertain amount of

oil in some tract and that players’ private beliefs result from each of them taking a soil sample (Hendricks and Kovenock,

1989). Published experiments provide a thorough understanding of both the prior likelihood of oil and the distribution

of samples as a function of the oil in the tract. In this situation, (common) knowledge of the distribution of private

beliefs is easily justified.

18Pr (θ̃ = 1 ∣ bLB , hB) = αbLB Pr(hB ∣θ̃=1,L)+ (1−α) b
L
B Pr(hB ∣θ̃=1,H)

αbL
B
Pr(hB ∣θ̃=1,L)+ (1−α) b

L
B
Pr(hB ∣θ̃=1,H) + α (1−b

L
B
)Pr(hB ∣θ̃=0,L)+ (1−α) (1−b

L
B
)Pr(hB ∣θ̃=0,H)

and equiva-

lently for Pr (θ̃ = 1 ∣ 1 − bLB , hB).
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we reproduce the result that learning across settings may lead to suboptimal behavior for Bayesian

rational players.

Bayesian rational Bob could still insist on distinguishing between the two settings and he would

eventually arrive at the optimal strategy.19 In assuming that Bob does not condition on his own

quality of information we thus assume that he learns imperfectly from feedback. Hence, Bob is naive

akin to players in Esponda (2008a). Yet, we doubt that perfect learning from feedback is always a

sensible assumption. Miettinen (2010) argues that own types may not be remembered over time, in

particular if they are not part of inherent personal characteristics. Additionally, memory, information

processing and feedback constraints may restrain the number of categories a player can separate while

learning.

Finally, if players rely on the adaptive process to assess both their own information and uncertainty

then Bayesian rationality eventually yields the strategy with the highest fitness. We find this argument

unconvincing. Social learning occurs in situations where informed players (though imperfectly) try to

learn from observing others’ decisions.

3 Preliminaries

3.1 The Social Learning Stage Game

A finite number of players i = 1,2, . . . , n choose an action, in that exogenous order, from the set

A = {0,1}. Each player’s payoff depends on the realization of an underlying state of Nature and the

chosen action. The state of Nature is given by the random variable θ̃ distributed on Θ = {0,1}, over

which players share a common prior belief. Without loss of generality, the prior is assumed to be

flat, with both states equally likely. Players’ payoffs are given by the mapping u ∶ A × Θ → R where

u(1, θ) = θ − 1
2 and u(0, θ) = 0 for each θ ∈ Θ. In the following, player i’s action ai = 1 (resp. ai = 0)

is sometimes referred to as “invest” (resp. “reject”) and the cost of the investment is set equal to
1
2 merely to simplify the exposition (our results straightforwardly extend to any cost in the interval

(0,1)). In a similar vein, both the underlying state of Nature and the action set are binary to simplify

the exposition (our results extend to any finite number of actions and states but at significant algebraic

cost).

The realized state θ is unknown and each player is endowed with some (imperfect) private infor-

mation about the realized state. Before any action is taken, player i’s imperfect knowledge about

the realized state is called her private belief and is denoted by b(s̃i,∅). This endowment of player i

is a probability estimate of the state of Nature which can be interpreted as resulting from the prior

probability of the state and player i’s private signal s̃i. In the following, we often identify s̃i (resp. si)

with the private belief (resp. realization of the private belief) b(s̃i,∅) (resp. b(si,∅)). Conditional

on the realized state, (s̃i)ni=1 is an i.i.d. sequence generated according to the c.d.f. Gθ(s). G0 and

G1 satisfy the standard assumptions meaning that they have common support whose convex hull is

given by [b, b] and their Radon-Nikodym derivative is such that dG1

dG0
(s) = s

1−s . We assume that b > 0

19To see this note that across the subset of repetitions such that bB ∈ {1 − bHB , bHB } (bB ∈ {1 − bLB , bLB}) the relative

frequency with which Anna invests when the true payoff of the investment is 1 and the relative frequency with which she

rejects when the true payoff of the investment is 0 each approaches the true conditional probability απHA + (1 − α)πLA
(απLA + (1 − α)πHA ) conditional on Bob holding a high (low) quality of information.
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and b < 1 i.e. private beliefs are bounded. Note that the property on the Radon-Nikodym derivative

implies that G0 and G1 satisfy the property of first-order stochastic dominance: G1(s) < G0(s) for

each s ∈ (b, b).
Though player i cannot observe the private belief of any other player, she observes the complete

history hi = (a1, . . . , ai−1) ∈ Hi = Ai−1 of previous actions with h1 ≡ ∅. In fact, we assume that

history hi is observed by all players i, i + 1, . . . , n and that this knowledge is common to all players.

Hn+1 = An denotes the set of complete histories with element hn+1 = (a1, . . . , an) and H = ⋃ni=1Hi.

Given a sequence of actions (a1, . . . , ai−1), the probability estimate of the state of Nature that is based

solely on the public information is called the public belief and is given by b(∅, hi) = Pr (θ̃ = 1 ∣ hi) =
Pr (hi ∣ θ̃ = 1) / (Pr (hi ∣ θ̃ = 1) + Pr (hi ∣ θ̃ = 0)) with b(∅, h1) = 1/2.

We denote by ⟨n,A,u,Θ, (G0,G1)⟩ the social learning game. Smith and Sørensen (2000) study

a non-straightforward generalization of the social learning game where players have heterogeneous

preferences which are private information and some of them have state independent preferences with

a single dominant action. In subsection 6.2, we discuss how our results extend to this generalized

social learning game.

We conclude this subsection with a definition (Smith and Sørensen, 2000).

Definition 1. A property is generic or robust if it holds for an open and dense subset of parameters

of the social learning game.

3.2 Bayesian Rational Play

We now define rational play in the social learning stage game. Without loss of generality we model

players’ behavior in the social learning game by behavioral strategies σi ∶ [b, b]×Hi →∆ (A), i = 1, . . . , n,

where σi (si, hi) denotes player i’s probability of investment given realized private belief si and realized

history hi. We denote by Σi the strategy set of player i. Furthermore as is standard we let Σ = ⨉ni=1 Σi

denote the set of strategy profiles and Σ−i = ⨉j≠iΣj denote the set of strategy profiles of player i’s

opponents.

In order to derive rational predictions for the social learning game we rely on the following three

assumptions. First, players are Bayesian rational in the sense of Tan and Werlang (1988, Axioms (B)

and (B.R.)). This means that players are Bayesian and make decisions which maximize their expected

payoffs. Second, Bayesian rationality is commonly known. We refer to this as strategic (common)

knowledge. Finally, the structure of the social learning game, more precisely its information structure,

its payoff structure, and players’ preferences, are common knowledge among players. We refer to this

as structural (common) knowledge.

As made clear by Tan and Werlang (1988) the premises above restrict players to iteratively undom-

inated strategies or equivalently correlated-rationalizable strategies (see also Bernheim, 1984; Pearce,

1984; Perea, 2001). In Proposition 1 below we characterize these strategies in terms of Bayesian

consistent beliefs bi ∶ [b, b] ×Hi → [0,1] where

bi (si, hi) = Pr (θ̃ = 1 ∣ b(s̃i,∅) = si, h̃i = hi)

and associated sequential best responses. For this purpose player i’s ex-ante expected payoff of strategy
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σi given strategy profile σ−i of the opponents is given by

Ui (σi, σ−i) =
1

2
∑
θ∈Θ

∑
hi∈Hi

Pr (hi ∣ θ̃ = θ, σ)
b

∫
b

∑
a∈A

σi (a ∣ s, hi) u(a, θ)dGθ(s). (1)

Strategy σi ∈ Σi is strictly dominated if there exists σ′i ∈ Σi such that Ui (σ′i, σ−i) > Ui (σi, σ−i) for each

σ−i ∈ Σ−i. Iterated elimination of strictly dominated strategies is defined accordingly. We say that a

strategy profile is iteratively undominated if any of its components survives the elimination procedure.

Proposition 1. To any iteratively undominated strategy profile σ there exists a belief system {bi}ni=1

such that (i) beliefs are formed according to Bayes’ rule, i.e. for each i = 1, . . . , n

b∗i (si, hi) =
si Pr (hi ∣ θ̃ = 1, σ∗)

si Pr (hi ∣ θ̃ = 1, σ∗) + (1 − si) Pr (hi ∣ θ̃ = 0, σ∗)

provided Pr (hi ∣ θ̃ = θ, σ∗) > 0 for some θ ∈ Θ where Pr (hi ∣ θ̃ = θ, σ∗) = ∏j<i ∫
b
b σ

∗
j (aj ∣ sj , hj)dGθ(sj),

aj = hi(j) and hj ⊂ hi, and (ii) behavioral strategies are sequentially rational, i.e. for each i =
1, . . . , n

σ∗i (si, hi) =
⎧⎪⎪⎨⎪⎪⎩

1 if b∗i (si, hi) >
1
2

0 if b∗i (si, hi) <
1
2

.

Barring non-genericities all iteratively undominated strategy profiles yield the same unique outcome

of the game.

The proof of this proposition is relegated to the appendix. In the following we denote by σ∗ the

strategy profile satisfying properties (i) and (ii) of the proposition. Note that iterated dominance does

not restrict players’ behavior in case of a tie, i.e. whenever b∗i (si, hi) = 1/2 or equivalently bi (si,∅) =
1 − b (∅, hi). However, as shown in the proof the occurrence of ties with strictly positive probability

is a non-generic property of a social learning setting. Therefore w.l.o.g. we assume henceforth that

the social learning setting does not allow for ties which implies that there is no need to commit to a

specific tie-breaking rule. Absent ties iterated dominance yields a unique outcome which is therefore

also the unique Bayesian equilibrium outcome.

4 The Adaptive Process

The rational benchmark derived in the previous section presupposes a substantial amount of informa-

tion on the part of players both about the environment and about others’ degree of rationality. In this

section we describe a learning process according to which myopic players who do not possess a priori

all necessary information might learn to play rationally the social learning game. First, we discuss the

properties of the learning environment. Second, we detail the rules guiding players’ learning by link-

ing our approach with fictitious play. Finally, we discuss how our approach relates to other learning

approaches.

4.1 Environment

We consider an extended social learning game ⟨n,A,u,Θ, (G0,G1) ,R⟩ where players play the social

learning game repeatedly in rounds r = 1,2, . . . ,R. For the sake of clarity, we assume that the social
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learning game is known by all players (this assumption is relaxed in section 5.2). Though we assume

mutual knowledge of the social learning game, we refrain from assuming any higher-order interactive

knowledge. Since the elements of the social learning game, most importantly the distribution of private

beliefs, remain unchanged across rounds we call this environment stable.

The following additional assumptions govern repeated play of the social learning game. First,

in each round a player’s position in the sequence is determined randomly and independently from

previous rounds according to a uniform distribution. Hence in each round any player is equally likely

to act in any period i ∈ {1, . . . , n}. Second, the state of Nature as well as every player’s private belief

is drawn anew each round independently from respective realizations in previous rounds. With this

assumption we rule out that learning about the state confounds strategic learning as our focus is on

the latter.20 Finally, payoffs are realized immediately at the end of each round.

In order to give players the chance to learn from repeated play players receive feedback at the end

of each round of play. Our most important assumption which will be kept throughout is that private

beliefs are never publicly revealed (notice that obviously a player may always recall her own private

belief realization). Hence, at the end of a round a player may learn at most the realized state of Nature

and the actions of all other players. In a first step we will assume that in each round every player

indeed receives this maximal feedback. Formally, for each i = 1, . . . , n and each r = 1, . . . ,R player i’s

feedback in round r is given by yi(r) = (hn+1(r), θ(r)) where hn+1(r) denotes the complete history

of choices and θ(r) the realized state of Nature in round r. We discuss how adaptation is affected if

feedback is further constrained in Section 7.

4.2 Mechanism

We now detail the rules governing players’ learning. We stick closely to the ideas underlying the

concept of fictitious play (Brown, 1951).

Denote by y(r) the vector of feedback players receive at the end of round r. In each round r,

y(r) ∈ Y = An × Θ. Let ζr = (y(1), . . . ,y(r − 1)) denote the collection of feedback at the beginning

of round r. Clearly, ζr ∈ Zr = Y r−1 where Z1 = ∅. We call ζr a realized learning path in round r.

Accordingly ζ∞ ∈ Z∞ = Y ∞ denotes an infinite learning path.

Non-revelation of others’ private beliefs rules out the opportunity for players to learn others’ com-

plete behavioral strategies σ ∶ [b, b] × H → [0,1]21 given that we abstract entirely from eductive

reasoning at this point. Yet, in the absence of payoff externalities players care about others’ strategies

only insofar as to be able to draw inferences from observed choices about the realized state of Nature.

More precisely in order to learn from observing others’ choices it is sufficient for players to know

conditional probabilities of histories Pr (h ∣ θ̃ = θ) conditional on the realized state of Nature.

Let y(r) (resp. ζr) denote feedback (resp. learning paths) for a fixed representative player. As in

fictitious play we assume that players learn via a frequentist approach. That is players keep track of

20For instance if to the contrary the state were fixed once and for all in round 1, a player receiving new private

information each round would eventually learn this state as R → ∞. More generally any correlation of states across

rounds confounds learning about the state and about other players’ strategic behavior.

21Notice that contrary to the one-shot variant in the extended social learning game the random assignment of positions

requires every player’s strategy to determine behavior at all possible histories.
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frequencies of histories conditional on the realized state. Formally, let

κ (hi, θ ∣ ζr) = ∣{1 ≤ ρ ≤ r ∶ {hi, θ} ⊆ y(ρ)}∣ (2)

for i = 1, . . . , n denote the number of times across rounds ρ = 1, . . . , r along learning path ζr that history

hi occured when the observed state was θ. Players then use these frequencies to form estimates

of the state-contingent probabilities of histories. Formally for i = 1, . . . , n we define assessments

ϕ̂i ∶ Θ ×
∞
⋃
r=1

Zr →∆ (Hi) recursively via ϕ̂1 (h1 ∣ θ; ζr) = 1 for each r = 1, . . . ,R, ζr ∈ Zr and θ ∈ Θ and

ϕ̂i (hi ∣ θ; ζr) =
κ (hi, θ ∣ ζr) + ε ∗ ϕ̂i−1 (hi−1 ⊂ hi ∣ θ; ζr)

∑
h′i∈Hi

[κ (hi, θ ∣ ζr) + ε ∗ ϕ̂i−1 (hi−1 ⊂ hi ∣ θ; ζr)]
(3)

for each i = 2, . . . , n, each hi ∈ Hi, and each r = 1, . . . ,R, ζr ∈ Zr, and θ ∈ Θ. Notice that contrary to

fictitious play we do not assume that players have initial weights κ(h, θ ∣ ∅) > 0 for each h and θ since

we also study the process with finite repetitions where the influence of such weights is not negligible.

We deal with the entailing problem of degeneracy by relying on the idea of trembles: as long as a

player cannot rely on accumulated evidence she attaches a small probability ε > 0 to each observation

she cannot rule out a priori. We then study the limit as ε→ 0. Accordingly players attach probability

zero to histories never observed before. On the other hand beliefs at such histories are well-defined:

Choices in a history observed for the first time are treated as uninformative about the state.22

In defining players’ responses to assessments we return to the fictitious play approach. In particular

we assume that players in any round take into account their current observations in a myopic way. In

other words players do not engage in strategic repeated play considerations, an assumption justified for

instance in large population models. To determine myopic response to observations fix an assessment

ϕ̂ and denote by σ̂ ∶
∞
⋃
r=1

Zr → Σ a strategic response. σ̂ is myopic Bayes-rational iff

σ̂(s, h ∣ ζr) =
⎧⎪⎪⎨⎪⎪⎩

1 if b(s,∅) > 1 − b̂(∅, h ∣ ζr)
0 if b(s,∅) < 1 − b̂(∅, h ∣ ζr)

(4)

where

b̂(∅, h ∣ ζr) =
ϕ̂(h ∣ 1; ζr)

ϕ̂(h ∣ 1; ζr) + ϕ̂(h ∣ 0; ζr)
(5)

is the assessed public belief at history h along learning path ζr. Assuming myopic Bayes-rational

responses also means that we abstract from learning costs i.e. players maximize the undiscounted

sum of expected payoffs in each repetition. We do this to give best chances to the emergence of the

rationalizable outcome. In subsection 6.2 we return briefly to the issue of learning costs.

4.3 Limit Outcome

Ultimately, we are interested in assessments and strategic responses in the adaptive process after a

sufficient number of repetitions. More precisely we wish to study the relationship to their counterparts

22Sometimes it is more convenient to work with conditional choice probabilities Pr (ai ∣ hi, θ). We thus define in

a slight abuse of notation ϕ̂ (ai ∣ hi, θ; ζr) = ϕ̂i+1 ((hi, ai) ∣ θ; ζr) /ϕ̂i (hi ∣ θ; ζr). This incorporates the assumption that

players’ assessments obey independence across periods which is weak given the structure of the social learning stage

game considered. It is straightforward to restate equation (3) in terms of these assessments using choice frequencies

κ(a, h, θ ∣ ζr) defined in the obvious way.
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in the (unique) outcome of rational play. Accordingly it is necessary to define ideas of closeness for

both assessments and strategies.

We let σ∗ denote some iteratively undominated strategy profile with associated assessments ϕ∗ =
(ϕ∗i ) where ϕ∗i (hi ∣ θ) = Pr (hi ∣ θ̃ = θ, σ∗) for i = 1, . . . , n, hi ∈Hi and θ ∈ Θ.23 We then start by noting

that assessments can be interpreted as a matrix, i.e. ϕ ∈ [0,1](2n−1)×2. It is thus natural to measure

distance of assessments using the metric on the associated space of matrices induced by some matrix

norm where w.l.o.g. we take the max norm. With regard to strategies we follow Jackson and Kalai’s

(1997) notion of ε-like play. In the appendix (lemma D.1 in appendix D) we show that both notions

of closeness are mutually dependent.

Definition 2. Fix player i and let ε > 0. On learning path ζr in round r of the adaptive process

• assessments ϕ̂i (⋅ ∣ ⋅; ζr) are ε-close to rational assessments ϕ∗i if

max{∣ϕ̂i (hi ∣ θ; ζr) − ϕ∗i (hi ∣ θ)∣ ∶ hi ∈Hi, θ ∈ Θ} < ε,

• strategic response σ̂i plays ε-like σ∗i at hi ∈ Hi if there exists Bε ⊆ [b, b] such that

[G0 (Bε) +G1 (Bε)] /2 > 1 − ε and ∣σ̂i (si, hi) − σ∗i (si, hi)∣ < ε for each si ∈ Bε.

Given the objective distributions over the state of Nature and private beliefs the adaptive pro-

cess defined above gives rise to a probability distribution over learning paths ζ̃R where R ∈ N ∪ {∞}.

We will denote this distribution by P. All our probabilistic results are with respect to this distribution.

We conclude this subsection with a definition.

Definition 3. If R →∞ (resp. R < ∞) then the learning horizon is said to be infinite (resp. finite).

4.4 Relationship to Other Approaches

As discussed in the introduction we place ourselves into a huge literature on learning in games. In

particular the adaptive process set up above takes up ideas from the “fictitious play” model (Brown,

1951) and adjusts them to a social learning setting and the associated likely restrictions upon players

feedback after each round of play. Our model is thus very specific in its decription of how players reach

decisions given their experience from previous rounds of play. More general models of learning which

are significantly less specific about players’ decision processes have been developed for instance by

Milgrom and Roberts (1991) for normal-form games and Fudenberg and Kreps (1995) for extensive-

form games. In the lemma below (proven in appendix D) and in appendix A we establish that

the adaptive process defined above can be seen as a special case of either of these more general

approaches. The convergence result for the standard setting (Proposition 2 in the next section) can

thus be extended to a general class of adaptive processes. In particular dominance-solvability of the

game (in the generic case) implies that our result follows straightforwardly from the lemma below,

Proposition 1 and Theorem 5 in Milgrom and Roberts (1991). Still, we consider our focus on an

explicit adaptive process useful as it permits us to take into account specificities of the social learning

game at hand. Indeed it is not at all clear that the process with limited feedback on others’ strategies

should satisfy consistency with adaptive learning as defined by Milgrom and Roberts (1991).

23Notice that ϕ∗ is the same for any iteratively undominated strategy profile σ∗ since we rule out ties.
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Lemma 1. With infinite learning horion the sequence of strategy profiles σ̂ (ζr) generated by the

adaptive process is almost surely consistent with adaptive learning as defined by Milgrom and Roberts

(1991).

5 Perfect Learning Opportunities

This section presents the first of our key results: If the environment is stable and the learning horizon

is infinite then the learning process eventually approaches the equilibrium outcome. We also argue

that this does not depend on knowledge about the primitives of the model. A simple consequence is

that under such “perfect” learning opportunities, Bayes-rational responses to posteriors maximize the

(ex-ante) expected payoff.

5.1 Learning Conditions for Rational Play

Proposition 2. Assume perfect learning opportunities, i.e. a stable learning environment and an

infinite learning horizon. Along almost any learning path ζ∞ and for each ε > 0 strategic responses

eventually play ε-like any iteratively undominated strategy at all histories occurring with strictly positive

(uniquely defined) probability under such strategies. Equivalently along almost any learning path ζ∞

and for each ε > 0 assessments are eventually ε-close to rational assessments.

While the proof of this proposition is a direct consequence of Proposition 1 and Lemma 1 and Theo-

rem 5 in Milgrom and Roberts (1991) we re-prove it here in the specific form stated above.

Proof. The proof uses a similar inductive argument as employed already in the proof of Proposition 1:

In period 1 no inferences from others can be drawn. Therefore assessments for the first period are

equal to rational assessments by definition and play of the dominant strategy follows straightforwardly

from the assumption of myopic Bayesian rational strategic responses. A version of the law of large

numbers (SLLNCE, see e.g. Walk, 2008, and the references therein) then implies that assessments in

the second period converge to their rational counterparts. In the appendix (Lemma D.1) we establish

that given Bayesian rationality this is sufficient to guarantee that strategies eventually play ε-like

any iteratively undominated strategy at all histories occurring with strictly positive probability under

this strategy (recall that besides in non-generic settings probabilities of all histories and behavior at

histories occurring with strictly positive probability are uniquely defined by iterated dominance). This

argument can be inductively extended to all positions i > 1 using again the law of large of numbers and

the conversion established in Lemma D.1 that if chosen strategies play ε-like iteratively undominated

strategies in all periods j < i then assessments in period i derived from these strategies must be close

to rational assessments.

Perfect learning opportunities correspond to the necessary24 and sufficient conditions that permit

beliefs and choices to approach their rational counterparts during the adaptive process. The following

result is a straightforward consequence of the proposition above.

24Necessity is shown in the next section.
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Corollary. With perfect learning opportunities, for each period i = 1, . . . , n the Bayes-rational strategy

σ∗i almost surely eventually maximizes the (ex-ante) expected payoff and uniquely so in some social

learning games.

5.2 Ex-ante Knowledge

So far we have assumed that the primitives of the game are known by the players a priori. Under perfect

learning opportunities this assumption seems overly restrictive.25 Indeed it can be argued that with

perfect learning opportunities even completely uninformed players may learn to play rationalizable in

a social learning game.

Recall that the structure of the social learning game comprises the state space and the prior, the

distribution of each player’s private information, every player’s action set, and the utility function.

We first notice that the adaptive process is such that a player cannot and need not learn private

belief distributions of her opponents. Furthermore we maintain the assumption that a player is

informed about her own action set a priori to abstract from learning about strategy spaces (see e.g.

Fudenberg and Levine, 1998, Section 4.9). In line with the adaptive process we assume that players use

frequentist models. That is in each round elements (states, private belief realization, . . .) which have

previously occured are attached 1−ε times their relative frequency while mass ε is attached to previously

unobserved elements26. With this assumption it is immediately clear that players can fully explore

the true state and private belief space. Second, learning the associated (conditional) distributions is

the classical statistical problem of learning from i.i.d. data by frequentist statisticians. Formally, our

adaptive process is easily extended in this direction defining frequencies κ(θ ∣ ζr) and κ(B,θ ∣ ζr) for

B ⊂ [0,1] and assessments φ̂(θ ∣ ζr) = (1−ε)∗κ(θ ∣ ζr)/r and φ̂(B ∣ θ; ζr) = (1−ε)∗κ(B,θ ∣ ζr)/κ(θ ∣ ζr)
and noting that a player may always use (assessed) conditional probabilities to update her (assessed)

prior given her realized private belief in a Bayesian way.27 The law of large numbers then guarantees28

that assessed private beliefs approach their true counterparts. Third, it is easy to show using the

sequential structure of the game that any action which is played with strictly positive probability at

some history in the rationalizable outcome will be played. Therefore players will explore others’ action

spaces. Finally, the infinite learning horizon permits players to experiment sufficiently often in order

to explore the structure of their utility function.

25We discuss consequences of a lack of ex-ante knowledge in the absence of perfect learning opportunities in Section 6.

26We recognize that this is a vague argument which omits specifying formally the prior assumptions of players. Yet, it

reflects the idea that players’ learning cannot be overthrown by unanticipated realizations. Formally it may be modelled

by players having non-degenerate priors on appropriate underlying spaces, but choice of the latter remains an open

question.

27Formally b̂(s,∅ ∣ ζr) = φ̂(1;ζr) φ̂(s∣1;ζr)

φ̂(1;ζr) φ̂(s∣1;ζr) + φ̂(0;ζr) φ̂(s∣0;ζr)
.

28In a recent paper, Al-Najjar (2009) shows that successfully learning from i.i.d. data might be hard in some settings.

More precisely if the underlying space is discrete infinite and the σ-algebra of all subsets has to be learned, learning the

correct probability is impossible. Since in our case the state space is binary and the private belief space bounded, his

results do not apply to this setting provided we consider well-behaved subsets B, e.g. B = [0, b] for some 0 < b < 1.
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6 Limited Learning Opportunities

6.1 Adaptation across Games

Our convergence result (Proposition 2) requires that players play the same social learning game a great

(infinite) number of times. In the real world this will rarely be the case. It has however been argued

that “any sort of learning involves extrapolation from past observations to settings that are deemed

(implicitly or explicitly) to be similar, so what matters is how often agents have played ’similar’ games”

(Fudenberg, 2006, p. 701). As discussed in the introduction this idea is prevalent in economics but

until recently has rarely been modeled explicitly. We now extend our setting in order to investigate

which strategic behavior emerges in a social learning game if adaptation takes place across contexts.

Throughout this subsection we maintain the assumption that the learning horizon is infinite.

Extension of the Adaptive Process

We consider an (extended) global social learning game ⟨n,A,u,Θ, (Gk0,Gk1)
K

k=1
,π(,R)⟩. For each k =

1, . . . ,K, ⟨n,A,u,Θ, (Gk0,Gk1)⟩ is a standard social learning game. The global game differs from

this game only by an additional move of Nature taking place before the start of the standard game

which determines randomly the relevant distribution of private beliefs (Gk0,Gk1). The random draw is

according to probability vector π ∈ [0,1]K29, independent of all random draws within the standard

game and unobserved by players. Furthermore in the extended version of the game players repeatedly

play the global game where in each repetition (round) the relevant private belief distribution is drawn

anew and independently from the distribution in previous rounds.

As before we assume that players do not possess all relevant information a priori but instead try

to infer (learn) optimal behavior from past experience. Therefore players receive feedback about

play at the end of each repetition. We maintain our previous assumption, i.e. private beliefs are

not revealed and at the end of each round each player observes the entire sequence of actions and

the state of Nature. However, we will now assume in addition that the private belief distribution

chosen in a round is not part of any player’s feedback. We thus add another source of uncertainty

regarding the social learning setting and we will frequently refer to such an environment as one with

fundamental structural uncertainty. We further discuss this assumption below. Finally, as before

players are assumed to keep track of frequencies κ (hi, θ ∣ ζr) across all repetitions, form assessments

according to (2) for ε→ 0 and myopically Bayes rationally respond to these assessments as defined by

(4).

Motivation and Interpretation

The assumptions above entail that players do not distinguish between social learning settings (i.e.

private belief distributions) while adapting. More precisely neither is the relevant distribution in a

round revealed to players, nor do players try to derive it from available information, nor do players

form a subjective belief about it which they update over time. In the beginning of this subsection

we have raised our main argument in favor of these assumptions: The prevalent concern that a single

29Hence, wlog πk > 0 for each k = 1, . . . ,K and ∑Kk=1 πk = 1.
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setting does not offer sufficient opportunities for successful adaptation. Further arguments in favor of

our assumptions may be raised.

Notice first that we have restricted ourselves to a set of social learning settings which differ only

in the private belief distributions. More generally one could assume that settings differ in other

fundamentals as well. We decided to focus on the private belief distribution since it seems the element

which is hardest to identify.30 Indeed we have serious doubts about players knowing the distribution

from which other players draw their private beliefs or being able to pin down a set of likely distributions

and form a prior about it.

Secondly, it is not clear how direct feedback about the distribution of private beliefs can be provided

unless as argued before one is willing to assume that physical cues are correlated with the information

structure. Players would therefore have to rely on indirect measures. Indeed, the best indicator of

the realized distribution is provided by a player’s own private belief.31 It might thus be argued that

in an extended global social learning game one should assume players to condition their assessments

on their own private beliefs as well. However, this would require players to keep track of the complete

sequence of (own) private beliefs across repetitions. This is for instance not possible if adaptation takes

place in a population model with new players interacting each round if beliefs are not transmitted to

subsequent generations.32 Additionally players need to be believe that own private beliefs constitute

an important source of information when learning about the informativeness of others’ decisions.

Naivety in the spirit of Esponda (2008a) may preclude such beliefs and lead players to deliberately

ignore own private beliefs when forming assessments.

Analogy-Based Expectations Equilibrium

In order to discuss convergence of the process we now introduce the concept of analogy-based expec-

tations equilibrium proposed in Jehiel (2005) for multi-stage games with (almost) perfect information

and later on extended to static (Jehiel and Koessler, 2008) and dynamic (Jehiel and Ettinger, 2010)

games of incomplete information.

We note first that in the global social learning game tree a node of player j is characterized by

a tuple (k, θ, s1, . . . , si, hi) where k is the social learning setting, θ is the realized state of Nature,

s1, . . . , si is the sequence of private beliefs up to and including player i and hi is the history of

previous choices. Let Xj denote the set of nodes for player j. Representation of player j’s information

sets (sj , hj) as collections of such nodes is straightforward. In general an analogy partition Ai for

player i ∈ {1, . . . , n} is a partition of the set {(j, xj) ∶ j ≠ i, xj ∈Xj} into subsets αi called analogy

classes.33 (Ai)ni=1 denotes a profile of analogy partitions. We will consider a single specific such

30This does not reflect a conviction, that players will necessarily be able to identify the other properties of the game.

Indeed, it is not clear, how a player might identify the correct environment when she is about to act.

31In some environments it may also be possible to identify the setting from differences in behavior. The arguments

raised below extend to such possibilities as well.

32This is the learning framework considered in recurring games (Jackson and Kalai, 1997) and employed for instance

by Jehiel and Koessler (2008) to motivate their equilibrium concept. Note however Miettinen (2010) argueing for the

standard learning framework that own types may not be remembered over time in particular when these are not linked

to personal characteristics.

33A partition of a set X is a collection ob subsets Yk ⊆X such that ⋃k Yk =X and Yk ∩ Yk′ = ∅ for k ≠ k′.
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profile. In particular for each player i Ai = {αi (θ, hj) ∶ hj ∈ ⋃j<iHj , θ ∈ Θ} where formally αi (θ, hj) =
{(k′, θ′, s′1, . . . , s′j , h′j) ∈Xj ∶ θ′ = θ, h′j = hj}. Hence, players differentiate others’ nodes according to the

state of Nature and the observed history of previous choices, but not according to the social learning

setting or the player’s private belief. We refer to this specific profile of partitions as the information-

anonymous analogy partition.

An analogy based expectation for player i is given by a mapping σ̄i∶Ai → ∆(A) assigning to each

analogy class a probability measure on action space A. In a slight abuse of notation we let σ̄ (h, θ)
denote the probability of investment expected in class αi (θ, hj). Given that the social learning setting

is not revealed to players behavior is captured as in the standard social learning game by behavioral

strategies σi∶ ⋃Kk=1 supp (Gk1)×Hi →∆(A) where σi (si, hi) denotes player i’s probability of investment

at private belief si and history hi. A profile of strategies is denoted by σ. In equilibrium players will

be required to choose strategies which are (sequential) best responses to beliefs derived from analogy-

based expectations in a Bayesian way. Accordingly, beliefs of player i are given by the mapping

b̄i∶ ⋃Kk=1 supp (Gk1) ×Hi →∆(Θ) where b̄i (si, hi) denotes the estimated probability that the true state

of Nature is 1 given private belief si and history hi.

Definition 4. A strategy profile σ is an Analogy-based Expectations Equilibrium with information-

anonymous analogy partition (ABEE) if and only if there exist analogy-based expectations (σ̄i)ni=1 and

a system of beliefs (b̄i)
n

i=1
satisfying

(i’) Bayes’ rule: b̄i (si, hi) / [1 − b̄i (si, hi)] = si ϕ̄i (hi ∣ 1) / (1 − si) ϕ̄i (hi ∣ 0)
for each i = 1, . . . , n, each si and each hi satisfying ϕ̄i (hi ∣ θ) > 0 for some θ ∈ Θ where

ϕ̄ (h1 ∣ θ) = 1 and ϕ̄i ((hj , aj) ∣ θ) = ϕ̄i (hj ∣ θ) ∗ σ̄i (aj ∣ θ, hj)

for each θ ∈ Θ and each 1 < j < i, hj ∈Hj and aj ∈ A,

(ii’) Consistency of analogy-based expectations: for each i = 1, . . . , n, hj ∈Hj and θ ∈ Θ

σ̄i (θ, hj) =
K

∑
k=1

∫
supp(Gk

θ
)

νσ (k, dsj ∣ hj , θ) σ (sj , hj)

where νσ is the distribution on tuples (k, sj , hj , θ) induced by σ and the fundamentals,

(iii’) Sequential Best Response: σi (si, hi) =
⎧⎪⎪⎨⎪⎪⎩

1 if b̄i (si, hi) > 1/2
0 if b̄i (si, hi) < 1/2

.

In the appendix we prove the following characterization of analogy-based expectations equilibria.

Proposition 3. For any ABEE σA it holds for each i = 1, . . . , n, each hj ∈Hj and each θ ∈ Θ

ϕ̄i (hj ∣ θ) = ϕ̄ (hj ∣ θ) =
K

∑
k=1

πk ϕ
k (hj ∣ θ)

where for each k = 1, . . . ,K and each hj, aj and θ

ϕk (h1 ∣ θ) = 1 and ϕk ((hj , aj) ∣ θ) = ϕk (hj ∣ θ) ∗ ∫
sj∈supp(Gk

θ
)
σAj (sj , hj) dGkθ (sj) .

The set of ABEE is the set of strategy profiles which are iteratively undominated with respect to the

ex-ante expected utilities Ui (σi, σ̄) derived from analogy-based expectations. Furthermore besides in a

non-generic class of global social learning games the ABEE outcome is unique.
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Subsequently we refer to the probabilities {ϕ̄ (h ∣ θ)}h∈H,θ∈Θ as analogy-based assessments. Further-

more we denote an ABEE strategy profile by σA. As before we admit to neglect those non-generic

settings in which ties arise. Therefore probabilities ϕ̄ (h ∣ θ) and strategic behavior σA (s, h) at histories

satisfying ϕ̄ (h ∣ θ) > 0 for some (each) θ ∈ Θ are uniquely defined.

Convergence

The standard interpretation of ABEE is as the limiting outcome of a learning process possibly involving

imperfect feedback about others. Our next Proposition (proven in the appendix) corroborates this

interpretation.

Proposition 4. Take an extended global social learning game and let the learning horizon be infinite.

Along almost any learning path ζ∞ of the extended adaptive process and for any ε > 0 eventually

assessments are ε-close to analogy-based assessments and strategic responses play ε-like the ABEE

strategy profile at all histories occurring with strictly positive probability.

ABEE and Rational Play

Corollary. Generically for some k ∈ {1, . . . ,K} the ABEE strategy differs from the rational strategy

for the standard social learning game ⟨n,A,u,Θ, (Gk0,Gk1)⟩.34

The corollary ascertains that Bayesian rational players which adapt across social learning settings

will generically not achieve maximal expected payoff in each setting. In the appendicized proof we

provide a generic example for this assertion. Yet, Bayesian rational responses may still eventually

lead to optimal behavior taking into account the restricted structural knowledge of players. Our main

result below (proven in the appendix) invalidates this claim. Bayesian rational players who adapt

across settings may arrive at a suboptimal strategy even in the global game.

Lemma 2. Given the vector of assessments (ϕ1, . . . , ϕK) the benchmark strategy σ∗ given by

σ∗E (s, h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if
K

∑
k=1

αk ϕ
∗
k (h ∣ 1)dGK1 (s) >

K

∑
k=1

αk ϕ
∗
k (h ∣ 0)dGk0(s)

0 if
K

∑
k=1

αk ϕ
∗
k (h ∣ 1)dGk1(s) <

K

∑
k=1

αk ϕ
∗
k (h ∣ 0)dGk0(s)

maximizes expected payoff Ui(σ ∣ ϕ1, . . . , ϕK) on Σ for each i = 1, . . . , n.

Proposition 5. Generically the ABEE strategy does not coincide with the benchmark strategy at all

histories reached a non-vanishing fraction of the time.35

34That is σA(s, h) ≠ σ∗k(s, h) for some h ∈H and each private belief s in some subset B ⊆ supp(Gkθ) where ∫B dG
k
θ(s) > 0

and ϕ(h ∣ θ) + ϕ∗k(h ∣ θ) > 0 for some θ ∈ Θ.

35That is σA(s, h) ≠ σ∗(s, h) for some h ∈ H and each b(s,∅) in some B ⊆
K

⋃
k=1

[bk, bk] where
K

∑
k=1

πk ∫
s∈B

dGkθ(s) > 0 and

K

∑
k=1

πk ϕ
k(h ∣ θ) > 0 for some θ ∈ Θ.
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ABEE and Non-Bayesian Strategies

Proposition 5 demonstrates how Bayesian rational players when forced to adapt across settings may

be led to a suboptimal strategy. An implication of this result is that Bayesian rationality itself is

subject to challenge in such environments. For instance players who experiment actively may discover

non-Bayesian rational strategies which perform better. Alternatively evolutionary forces may select

such strategies.36 The nature of behavior which may outperform the Bayesian rational one is thus of

interest and we aim at shedding more light on this issue.

For shortness of the exposition we relegate a detailed discussion to the appendix (Appendix C). Our

analysis focuses on a restricted class of simple strategies related to an extended model of social learning

suggested recently (March and Ziegelmeyer, 2009) with the aim to reconcile theoretical predictions

and experimental evidence. In this model players differ with respect to the weight they place upon

their private information relative to the information derived from observed actions of others when

forming beliefs. Formally, a player with private information weight β forms beliefs according to

b(s, h, β) = [b(s,∅)]β b(∅, h)
[b(s,∅)]β b(∅, h) + [1 − b(s,∅)]β [1 − b(∅, h)]

. (6)

Accordingly, if β = 1 the player is Bayesian, while if β > 1 (β < 1) the player overweights (underweights)

her private information. March and Ziegelmeyer (2009) show how the extended model is able to capture

the experimental evidence if sufficiently many overweighters are present in the population. We consider

a finite set of parameters β symmetric around β = 1 and investigate numerically the limiting outcome

of the discrete replicator dynamics for a population over this set. Our analysis therefore contributes

to an explanation of the experimental results, a point which we return to later.

Our results are summarized in the following result. For a more detailed exposition of the results

and a discussion of the underlying main assumptions we refer the interested reader to the appendix.

Result 1. When adaptation takes place across games both moderate over- and underweighting robustly

survive in the evolutionary process. In particular moderate overweighters of private information are

more likely to be present in a population (i) the shorter the social learning sequence, (ii) the larger

the precision of private signals, and (iii) the larger the difference of the basic social learning settings.

On the other hand moderate underweighters are more likely to be present, the longer the sequence, the

lower the signal precision, and the larger the difference between settings.

6.2 Finite Learning Horizon

Despite individuals learning across a variety of games the medium run of a learning process may still be

a more relevant predictor of behavior. First, many strategic environments do not remain unchanged

in the very long term. Second, active learning is costly which means that players will likely stop

experimenting and settle on a strategy after a finite number of repetitions. Third, the structure of

social learning games implies that decision nodes late in the sequence will be encountered exponentially

less frequently than nodes at the very beginning.37 Hence, even if enough information has been

accumulated in order to make optimal decision in early periods, players will still be weakly adapted

36That is provided expected payoffs and evolutionary fitness are sufficiently correlated.

37There exist 2i different history-state-pairs in period i of the social learning game.
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in later periods. Finally, cognitive abilities are costly as well which means that individuals may be

better characterized by finite memory and information processing capabilities (see for instance Jehiel,

1995; Rubinstein, 1986; Young, 1993). For instance Samuelson (2004, 2006) argues that endowing

humans with better information processing capabilities is prohibitively costly. In this subsection we

will therefore explicitly study adaptation with a finite horizon. Since we have addressed adaptation

across games previously we focus on the case of a single, fixed social learning game.

We invoke the following main assumption: For any history h ∈ H−1 = H/H1
38 each player holds

a noisy assessments of the public belief given by the distorted public belief b′(∅, h) = b(∅, h) + ε̃h.

Distortions ε̃h are independent across histories h ∈ H−1 and normally distributed with mean zero and

standard deviations (ηh)h∈H−1
such that Pr (0 < b′(∅, h) < 1) ≈ 1 for each h.

To defend this formalization notice that public beliefs satisfy b(∅, h) = E [θ̃ ∣ h]. This relation

justifies a reinterpretation of the learning process. In particular players can learn public beliefs by

calculating sample means

b′(∅, h) = θ̄(h, ζR) =
1

κ(h ∣ ζR)
∑

r≤R;h∈y(r)
θ(r)

where κ(h, ζR) denotes the number of occurrences of history h in super-history ζR. By the central limit

theorem (see for instance Shao, 2003) θ̄(h, ζR) is asymptotically normally distributed with mean b(∅, h)
and variance η2

h = b(∅, h) (1 − b(∅, h))/κ(h ∣ ζR). Accordingly, with a finite number of repetitions

assessments of public beliefs remain noisy (η2
h > 0).

The existence of simple white noise in assessments remains our only assumption. Our first result

proven in the appendix shows how this assumption affects Bayesian posterior beliefs.

Proposition 6. 39 For any history h ∈H−1 and private belief b(s,∅) , if ηh > 0,

Eε̃h [b
′(s, h)] =

⎧⎪⎪⎨⎪⎪⎩

> b(s, h) if b(s,∅) < 1
2

< b(s, h) if b(s,∅) > 1
2

Due to the convexity (resp. concavity) of the Bayesian updating rule in the domain b(s,∅) < (resp.

>) 1
2 , contradictory information is weighed more heavily than confirmatory information. Since noisy

public beliefs are equally likely to differ from correct ones in either direction, posteriors are biased in

the direction of the public information. In other words players’ posteriors (in expected terms) lean

more towards the public information, i.e. players underweight private information.

In a world with rich action space were players are rewarded for stating posteriors, the Lemma above

implies that noisy assessments favor overweighting of private information.40. With coarse action set

A = {0,1}, this implication is not true. Our main result of this subsection more generally proves that

Bayes-rationally responding to noisy assessments is not the optimal strategy.

In order to establish this result let ⟨n,Θ,A, u, (G0,G1) ,η⟩ denote the noisy social learning game

where η = (ηh)h∈H such that ηh1 = 0 is the vector of standard deviations and we identify the normal

distribution with mean and standard deviation zero with the (discrete) Dirac measure at zero. The

noisy social learning game differs from the standard game by the restriction that players instead of

38Obviously, there is no room for noisy assessments in the first period.

39Appendix B derives a similar result for a setting with normally distributed state and private signals which is more

closely related to the literature on learning in rational expectations.

40See Appendix B.
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histories h ∈H observe realizations of b′(∅, h) = b(∅, h)+ ε̃h. Accordingly behavioral strategies of play-

ers are given by mappings ση ∶ [b, b] × [0,1] → [0,1] where ση(s, x) = Pr (a = 1 ∣ b(s,∅), b′(∅, h) = x).
Hence, we presume that a player’s public information is completely captured by her (distorted) public

belief. In particular if a player’s perceived public belief is the same at different histories in (possibly)

different periods she has to employ the same strategy mapping private beliefs into actions. Taking

into account that players are assigned randomly to periods a player’s (ex-ante) expected payoff to

strategy σ given probabilities Pr(h ∣ θ)41 is then given by

Uη(σ) =
1

4n

b

∫
b

∑
h∈H

1−b(∅,h)

∫
−b(∅,h)

ση (s, b(∅, h) + ε) [Pr(h ∣ 1)dG1(s) − Pr(h ∣ 0)dG0(s)] φh(ε)dε

where b(∅, h) = Pr(h ∣ 1)/ [Pr(h ∣ 1) + Pr(h ∣ 0)], and φh denotes the density of N(0, ηh)42.

Lemma 3. Given probabilities Pr(h ∣ θ) for θ = 0,1 let

t(x ∣ η) =
∑
h∈H

Pr(h ∣ 0)φh (x − b(∅, h))

∑
h∈H

[Pr(h ∣ 0) + Pr(h ∣ 1)] φh (x − b(∅, h))
.

The benchmark strategy σ∗η given by σ∗η(s, x) = 1 if s > t(x ∣ η) and σ∗η(s, x) = 0 if s < t(x ∣ η)
maximizes expected payoff.

Let Bayesian rational strategy be given by σ∗ where σ∗(s, x) = 1 if s > 1 − x and σ∗(s, x) = 0 if

s < 1 − x. As in the previous subsection we show that generically this strategy does not maximize

expected payoff.

Proposition 7. Generically for sufficiently large η the Bayes-rational strategy σ∗ does not coincide

with the benchmark strategy σ∗η at all histories reached a non-vanishing fraction of the time.43

Proposition 7 provides the counterpart to Proposition 5 in the previous subsection. A similar

discussion regarding the nature of alternative behavior as the one following the result there is thus

equally relevant at this point. Again we refer the reader to appendix C for a detailed analysis of this

issue and restrict ourselves here to stating the main result.

Result 2. If the learning horizon is finite such that players’ assessments remain noisy, both over-

and underweighting of private information robustly survive in an evolutionary process. In particular

settings which involve a shorter learning horizon and a lower precision of private information are

more favorable to overweighting while underweighting is favored by a longer learning horizon, higher

precision of private information, and longer social learning sequences. In addition a finite learning

horizon may favor extreme forms of overweighting.

41Notice that these probabilities in general depend on the distribution of strategies in the population.

42Notice that φh1(0) = 1 and φh1(x) = 0 for x ≠ 0.

43That is σ∗(s, x) ≠ σ∗η(s, x) for each x ∈ X ⊆ [0,1] and each b(s,∅) ∈ B ⊆ [b, b] where X and B satisfy ∫B dGθ(s) > 0

and ∫X ∑h∈H Pr(h ∣ θ)φh (x − b(∅, h)) dx > 0 for some θ ∈ Θ.
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7 Discussion

7.1 Related Literature

The paper is related to several strands of literature. First, it extends the literature on social learning

which developed mainly in the last two decades beginning with Bikhchandani, Hirshleifer, and Welch

(1992) and Banerjee (1992). Those papers have given rise to a huge body of both theoretical and

experimental literature. As discussed in Section 3 the majority of theoretical studies is characterized

by a particularly strong view of Bayesian rationality.44 On the other hand the experimental literature45

establishes systematic deviations of subjects’ behavior from rational play especially in situations where

private and public information are conflicting. Indeed most subjects behave as if they overweight their

private information.

Recently, the apparent gap between the findings of the theoretical and experimental literature on

social learning has led to the development of alternative models which deviate from the prevalent

Bayesian rational view46. Most of these models directly introduce biases into the decision process of

players without providing a formal justification. They thus differ from the learning-oriented approach

pursued in this paper.47 In particular the focus of this paper is to investigate the learning founda-

tions of economic models of social learning. The analysis of an alternative model of social learning

which directly invokes the findings presented here can be found in a companion paper (March and

Ziegelmeyer, 2009).

The paper also connects to the literature on learning in games (see Fudenberg and Levine, 1998,

2009, for an overview). In general learning models can be classified into three categories – rational,

epistemic (or beliefs-based), and behavioral learning (see Walliser, 1998; Hart, 2005). Our adaptive

process is strongly motivated by ideas developed in the fictitious play approach (Brown, 1951) and

belongs to the class of epistemic learning models. Notice that unlike standard normal-form game

applications of fictitious play we study adaptation in an extensive-form game with feedback constraints.

Epistemic learning assumes a moderate degree of individuals’ sophistication. Individuals are less

sophisticated in behavioral learning models where they stochastically choose strategies according to

their performance in the past. Conceptual differences aside it has been shown (Hopkins, 2002; Camerer

and Ho, 1999) that epistemic and behavioral learning models are close from a mathematical point of

44Smith and Sørensen (2000) provides the most comprehensive and exhaustive analysis of rational social learning in

situations where players observe the full sequence of past decisions and the timing of decisions is exogeneous. More

general settings are for instance studied in Chamley (2004a) and Acemoglu, Munther, Lobel, and Ozdaglar (2010).

Chamley (2004b) and Vives (2008) provide comprehensive overviews.

45The experimental literature on social learning starts with the seminal paper by Anderson and Holt (1997). A

collection of contributions to this literature can be found in the recent meta-study by Weizsäcker (2010).

46Bernardo and Welch (2001); Kariv (2005); Eyster and Rabin (2010); Guarino and Jehiel (2009); Bohren (2010).

47Exceptions are Guarino and Jehiel (2009) and Bernardo and Welch (2001). Guarino and Jehiel (2009) also invokes

the concept of ABEE interpreted as arising from a learning process with limited feedback. Our paper differs in that we

provide a formal proof for the convergence of an adaptive process to the equilibrium. Bernardo and Welch (2001) study

the persistence of overweighters in a model of group selection for a standard social learning setting. Since overweighters’

actions tend to convey valuable private information the presence of such types can increase the expected payoff to the

group. Bernardo and Welch establish conditions under which these benefits outweigh the costs to overweighters from

choosing a suboptimal strategy. In contrast we demonstrate that overweighting may be individually optimal as a response

to limited learning opportunities.
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view. Moreover given that we are interested in conditions which prevent players from approaching

fully-rational play, choice of a more sophisticated epistemic learning model would not seem to work

to our advantage.

On the other hand epistemic learning is still rather naive in the way conjectures are updated and

responded to. In the direction of higher sophistication alternative models permit active experimenta-

tion with suboptimal strategies or have players update beliefs in a Bayesian way (rational learning).

We do not think that our main result – the fact that the presence of both strategic and structural

uncertainty may prevent players from learning to behave optimally – is sensitive to the choice of the

adaptive process. For instance assume that players are endowed with a prior on the strategy space and

a prior on the space of the unknown parameters of the model (the space of private belief distributions)

and across repetitions update these priors in a Bayesian way in the light of the feedback received.

Assume that a history becomes less informative. This change may either be attributed to a different

distribution of strategies (more non-strategic players) or a different distribution of private beliefs (less

informative). The feedback we have discussed does not permit players to distinguish between these

effects. Therefore some uncertainty must prevail and by similar arguments as below this may lead

to systematic and severe mistakes in the outcome of the learning process. While we leave a thor-

ough investigation of this conjecture for future research we address the idea of experimentation in an

extension of our learning process presented in Appendix A.

A standard assumption in learning models is the focus on a single, fixed game. Yet, as discussed

before many authors argue that learning models should be understood as describing learning across

similar games. In this paper we study explicitly learning across games. Few other studies address this

issue. Steiner and Stewart (2008) study learning in a large class of simultaneous-move games with

action sets fixed across games. Players receive feedback in the form of signals and players learn by

extrapolating from similar past situations where similarity is measured by a fixed similarity function

operating on payoffs. The authors show that extrapolation may lead to contagion of actions across

games and unique long-run outcomes. Mengel (2009, see also Grimm and Mengel, 2009) studies

reinforcement48 learning in a multiple strategic-form games environment with fixed action sets where

players not only learn which actions to choose but also how to partition the set of games. Distinguishing

games is costly, i.e. players incur a cost from partitioning the set of games which is larger the finer

the partition. Mengel shows that generically players do not distinguish all games which in turn may

(de)stabilize Nash equilibria which are (un)stable to learning in a single game. In addition learning

across games may help to explain certain experimental phenomena. The difference between the two

papers and ours is that we study an extensive-form game of incomplete information and define games

to be similar if they differ only in the information structure. Moreover we justify learning across games

by players’ limited feedback which does not permit them to easily distinguish games.

In order to describe the long-run outcome of our adaptive process when adaptation takes place

across games, we have used the concept of analogy-based expectations equilibrium (Jehiel, 2005;

Jehiel and Koessler, 2008; Jehiel and Ettinger, 2010). This has a close relationship to other equilibrium

concepts like self-confirming equilibrium (Fudenberg and Levine, 1993a; Dekel, Fudenberg, and Levine,

2004) or conjectural equilibrium (Battigalli, 1997, see also Kalai and Lehrer, 1993). A common feature

these concepts share is that they are commonly interpreted as the limit outcome of a learning process

48It is shown that the results hold as well for stochastic fictitious play.
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where players are subject to feedback constraints. The main difference of our paper is that we explicitly

provide such a learning process and prove its convergence.49

7.2 Feedback and Player Heterogeneity

We have assumed so far that at the end of each round every player’s feedback is given by the complete

sequence of choices and the realized state of Nature. Therefore a player’s feedback is independent of

both the position the player occupies and the player’s own choice. Both these assumptions can be

relaxed.

Formally, let yi(r) = yi (hn+1(r), θ(r), s1(r), . . . , sn(r)) denote the feedback received by the player

acting at position i in round r where yi(r) is a deterministic function of the sequence of choices,

the state of Nature and the sequence of realized private beliefs. Unlike before we now allow for

different feedback depending on the position a player occupies.50 Fix player i and write x ∈ yi(r) if

x is comprised in yi(r). We distinguish two cases: First, while clearly hi+1(r) ∈ yi(r) it is not clear

whether a player will observe at the end of the round actions chosen after her own choice as well.

We therefore make the distinction between complete feedback if hn+1(r) ∈ yi(r) and partial feedback

if (ai+1(r), . . . , an(r)) ∉ yi(r). Second, since a player always recalls her own choice and payoffs are

realized at the end of each round it cannot be ruled out that a player knows the state of Nature at

the end of a round (since at least some action’s payoff must strictly depend on the realized state of

Nature). Yet, given the specific form of the payoff function this is not necessarily the case in every

round. More precisely, if the player rejects absent further information she does not know the true

payoff investing would have yielded. We therefore distinguish unconditional feedback if θ(r) ∈ yi(r)
for any i from conditional feedback given by θ(r) ∈ yi(r) iff ai(r) = 1.51

Another restrictive assumption we have made concerns the Nature of private beliefs. In particular

we have assumed that in each round (respectively each round the same game is played) every player’s

private belief is drawn from a single fixed private belief distribution. Independent repeated draws from

a single distribution effectively average out all differences in players’ information. But heterogeneity

of players’ information is a reasonable assumption since a player’s quality of information is likely

to be endogeneously determined e.g. via her cognitive or material resources. More importantly for

the questions addressed in this paper a player’s information quality may also decisively influence her

learning opportunities. For instance a player with constantly very informative private beliefs will

create more deviations from herds than a player with constantly less informative beliefs.

In order to take this into account we propose the following extension on the distribution of private

49Indeed, convergence of a learning process in games other than complete information normal-form games is rarely

investigated. Notable exceptions are Fudenberg and Levine (1993b) for Bayesian learning and Beggs (1993) for a variant

of behavioral learning in Bayesian games with binary actions in which players adjust their cutoff-straegies over time.

50Notice that this assumption is in line with a model of learning within a large population of players governed by

a random matching mechanism which we will frequently refer to. For an explanation and a discussion of alternative

modeling assumptions see e.g. Fudenberg and Levine (1998, section 1.2).

51Our distinctions are comparable to Esponda’s (2008b) in the context of auctions. Obviously further restrictions

are possible. For instance if players observe only aggregated frequencies of actions together with the realized state of

Nature, the learning process may be expected to approach the coarse analogy-based expectations equilibrium (Guarino

and Jehiel, 2009). Yet, since our main focus is a different one, we leave a complete characterization of the outcome of

the learning process in dependence upon players’ feedback for future research.
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beliefs applying the signal quality structure model of Smith and Sørensen (2008b, section 5.2): Each

player is told one of two signals s̃ ∈ {0,1} where Pr (s̃ = θ ∣ θ̃ = θ) = q̃ denotes the signal precision. We

let q̃ be a random variable, distributed on the set (1
2 ,1) according to the measure Q. For instance

the Dirac measure on some q ∈ (0.5,1) yields the specific model of Bikhchandani, Hirshleifer, and

Welch (1992). We now assume that each individual is characterized by her measure Q which is private

information and fixed across rounds. Accordingly, the population is characterized by a (finite discrete)

probability distribution Q on the set ∆ ((1/2,1)) of all measures Q satisfying

∫
Q∈∆((1/2,1))

1

∫
q=1/2

∑
s∈{0,1}

Pr(s ∣ θ, q)1A ( Pr(s ∣ 1, q)
Pr(s ∣ 1, q) + Pr(s ∣ 0, q)

) Q(dq)Q(dQ) = ∫
s∈A

dGθ(s)

for each A ⊆ [b, b] with 1A the indicator function of the set A. We distinguish a homogeneous support

of private beliefs if Q is a Dirac measure on some Q ∈ ∆((0.5,1)) from a heterogeneous support of

private beliefs if it is not.

Proposition 8. Propositions 2 and 4 continue to hold with partial and conditional feedback and

heterogeneous support of private beliefs.

Proof. Both propositions assume an infinite learning horizon. A player will thus play (in every game)

in position n an infinite number of times. Moreover even with the least informative support of private

beliefs each round each player is endowed with a private belief b(s, h) > 1
2 favoring investment with

strictly positive probability. Therefore a finite sequence of players are all endowed with such beliefs

with strictly positive probability each round as well. Hence, independent of her private belief support

each player will infinitely often invest at period n in which case she observes both, the state of Nature

and the complete sequence of choices and neither feedback constraints nor heterogeneity of private

beliefs matter.

As will be shown below feedback constraints and heterogeneous support of private beliefs become

crucial in a setting with endogeneous timing.

7.3 Preferences

We have so far restricted ourselves to a simple social learning game. In more general settings it may

be a argued that the adaptive process is even less likely to resolve all uncertainty completely. This in

turn questions even more profoundly the optimality of Bayesian rational responses.

Consider for instance a world with heterogeneity in preferences as introduced by Smith and Sørensen

(2000). They distinguish rational types whose payoff decisively depends upon the realized state of

Nature from crazy types who always choose the same action and thereby introduce noise into the

social learning process. Additionally, Smith and Sørensen (2000) assume common knowledge of the

distribution of preference types. As before from an individual learning perspective this assumption is

disputable. In particular it would require players to receive feedback about payoffs of other players.

Without this information identification of single environments is not possible and adaptation takes

place across settings. Therefore presence of multiple social learning settings which differ in their

distribution of preferences may trivially explain deviations from rational behavior in single settings.

However, it can be shown that absent differences in private belief distributions the Bayes-rational

strategy remains optimal if no player can distinguish settings.
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Yet, differences in preferences may reinforce suboptimality of the Bayes-rational strategy in the

presence of multiple private belief distributions. To see this consider a world composed of two simple

social learning games occurring with equal probability. In each game, k ∈ {1,2}, Θ = A = {0,1}.

Furthermore in each game every player may receive one of two possible private beliefs si ∈ {1− qk, qk}
where Pr(s̃i = 1 − qk ∣ θ̃ = 0) = Pr(s̃i = qk ∣ θ̃ = 1) = qk and 1 > qk > 1/2. We assume that q2 > q1. In

addition the games differ in their utility function. In particular in game 1 all players have standard

preferences maintained so far (i.e. u(1, θ) = θ − 1/2 and u(0, θ) = 0) while in game 2 only a fraction

(1 − 2 ξ2) of players have these preferences while a fraction of each ξ2 > 0 are noise types which

always invest or always reject respectively. In particular assume that ξ2 is sufficiently large such

that players should optimally follow private information even after observing the first two players

making the same choice. If players learn across these environments absence of noise in game 1 leads

Bayes-rational players in game 2 to infer too much from the first players’ decisions and may cause

them to suboptimally imitate in period 3. On the contrary it can be shown that there robustly exist

settings where overweighters of private information outperform Bayesian rational players by avoiding

this mistake (see appendix D).

While noise players are an extreme form of preference heterogeneity similar arguments apply to

the case of several rational types as has been most impressively demonstrated by the confounding

outcomes of Smith and Sørensen (2000). In general heterogeneity in preferences complicates learning

from others’ actions by significantly reducing the amount of information single decisions convey. This

brings into focus the problem of imperfect learning within a finite number of repetitions much more

than in the simple settings studied so far. If heterogeneity confounds the opportunities to learn by

observing others and imperfect learning opportunities add another source of noise, the process of

social learning may break down alltogether. Moreover as discussed above the inability of players

to distinguish social learning environments may spread such complications across settings. Even if

a single environment gives best chances to learning from others, these may be thwarted by player’

adaptation across settings and their limited time to do so.

In conclusion imperfect learning opportunities may have much more drastic influence in settings

where players must learn from subtle differences since these are most vulnerable to the introduction of

any kind of noise. Accordingly such settings may be particularly favorable to non-Bayesian strategies.

7.4 Endogeneous Timing of Decisions

A different complication is introduced if players need to choose the timing of their decisions. In this case

the very simple structure of the game which for instance drives our convergence result (Proposition 2)

is lost. More precisely endogeneous timing of decisions requires players to not only derive information

from past choices but also foresee future social learning opportunities. By choosing the timing of

decisions players may then significantly influence their possibilities for individual learning. Moreover

the importance of further restrictions of learning opportunities such as heterogeneous support of

private beliefs, partial feedback on choices or conditional feedback on the state of Nature increases.

Consider for instance a setting where the costs of investing are large such that only sufficiently

strong favorable information may induce a player to invest (e.g. u(1, θ) = θ − 2/3). Assume further

conditional feedback on the state of Nature, i.e. a player receives feedback about the profitability

of the investment (the state of Nature) if and only if she invests herself. Suppose finally that some

players are restricted to a limited quality of information such that neither of them will ever invest
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conditional on private information alone. In the simple adaptive process this group of players will

not be able to learn how to infer information from others’ choices. Consequently neither of them will

ever invest. Overweighting of private information may then be profitable not only because sometimes

investing must yield a positive payoff but also because it would allow players to learn how to take

others’ actions into account in future interactions.

While this constitutes a rather extreme example, it fascilitates how an endogeneous timing of

decisions complicates the task of learning from others and players’ opportunities to adapt to this

task. At least it shows how individual experimentation and self-confirming equilibria are much more

important than in the present context.

7.5 Rule Rationality and Experimental Findings

According to our main result when players adapt across games they may develop alternative strate-

gies which apply well to the multiple games environment. This idea has become prominent by the

term rule rationality (Aumann, 1997, 2008, the opposite notion is act-rationality). In single decision

tasks rule rational choices may lead to severe and systematic errors as demonstrated for instance in

the corollary of section 6.1. Rule rationality is thus frequently employed to explain the divergence

of theoretical predictions and experimental observations in both individual and strategic choice con-

texts.52 Most commonly, rules are identified with simple heuristics (or “rules of thumb”) which arise

in and are subject to selection through learning, imitation, or evolution. In this spirit our results in

appendix C demonstrate how non-Bayesian rules which for instance comprise the overweighting of

private information may arise in a social learning context. As discussed above a stable finding in the

experimental literature on social learning is that many players indeed behave as if they overweight

their private information. Our results thus provide a new interpretation of these results. Subjects’

behavior may deviate from rational behavior in the laboratory because these subjects employ rules

well adapted to field enviroments where large uncertainty and limited learning opportunities persist.

8 Conclusion

This paper is a first attempt to discuss the learning foundations of rational play in social learning

games. Our results suggest that too much structural knowledge has been assumed in standard eco-

nomic models of social learning. Though in the absence of fundamental structural uncertainty and

with an infinite learning horizon epistemic learning leads to Bayesian rational play, the same learning

process favors non-Bayesian play whenever players do not know the distribution of private beliefs. As

a consequence, further economic models of social learning should allow for the presence of fundamental

structural uncertainty and learning models should inform those economic models about the nature

and scope of the structural uncertainty.

52Proponents of this idea are e.g. Tversky and Kahnemann (1974), Myerson (1991), and more recently Al-Najjar and

Weinstein (2009). Consider also the work on robustness to model misspecification in macroeconomic risk models. In

these models having decision-makers take into account possible misspecifications of their model of the world induces

model uncertainty premia on equilibrium prices of risk. Hansen (2007) for instance provides a nice overview of these

results and discusses furthermore how model uncertainty can arise as the outcome of imperfect learning about a complex

statistical problem.
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Assuming that fundamental structural uncertainty is unavoidable, our theoretical study also sug-

gests that rule rationality rather than act rationality is the appropriate benchmark for discussing

rational social learning. If players lack structural knowledge then they are likely to develop rational

rules of social learning rather than trying to act in a Bayesian rational way in each single social

learning environment. This, in turn, seriously questions the informativeness of the existing experi-

mental evidence on rational social learning. Indeed, the validity of the rational view of social learning

should be tested in contexts that are familiar to economic actors, i.e. contexts with fundamental

structural uncertainty. As far as we know, all existing experimental studies on social learning have

considered laboratory settings which correlate strongly with the standard economic models of social

learning. Though we understand that such simple settings with full control of information flows were

the natural candidates for testing the existing economic models, we fear that the field environments

in which social learning mainly takes place differ substantially from those laboratory settings. As a

consequence, existing laboratory settings might be perceived as artificial by subjects and the fact that

laboratory behavior systematically deviates from rational play in those settings might not come as a

surprise and does not constitute conclusive evidence against rational social learning.

Our results therefore suggest a re-evaluation of both the experimental and the theoretical research

in social learning. First, new laboratory experiments should be designed to test the rational view of

social learning in more familiar contexts. Aspects of the field environment which are likely to strongly

influence social learning (e.g. structural uncertainty) have to be incorporated in those laboratory

settings. Second, theoretical models with players lacking structural knowledge are likely to provide

a better understanding of real-world social learning. Notice that allowing for structural uncertainty

in economic models of social learning does not necessarily increase the complexity of these models as

shown for instance by March and Ziegelmeyer (2009).

Viewed from a broader perspective, our results also offer new insights for behavioral economists.53

Despite a regular exchange between experimentalists and theorists over the past two decades, there

is no satisfactory behavioral model of social learning. Previous attempts have imported psychological

insights (e.g. judgmental biases, limited depth of reasoning) into existing economic models of social

learning. These behavioral models acknowledge the cognitive limitations of economic actors by relaxing

the assumption of Bayesian rationality in the direction of greater psychological realism. Though we are

sympathetic to this approach, we show that a thorough investigation of the modeling assumptions may

straightforwardly yield an alternative model of identical complexity but with increased explanatory

power. We believe that our approach is likely to be fruitful not only in social learning. Economic

models which accommodate the fact that field environments provide limited learning opportunities to

players are likely to generate more accurate predictions without diminished tractability and in this

sense they complement other models which incorporate more realistic psychological foundations.

53In recent years the field of economics has witnessed an increased emergence of behavioral models, many of them

designed to explain experimental phenomena not captured by standard notions of equilibrium or rationality (see e.g.

Advances in Behavioral Economics Camerer, Loewenstein, and Rabin, 2004). While these models usually better accom-

modate the evidence, a common critique concerns their lack of foundations (see e.g. Fudenberg, 2006).
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A More Sophisticated Learning

In this addendum we extend the learning process to allow for players who are more sophisticated.

We follow a general approach suggested by Fudenberg and Kreps (1995, FK henceforth). Since most

of the concepts apply primarily to the long run we assume an infinite number of repetitions throughout.

For the adaptive process introduced in the main part of the text we have assumed that each player

holds a single assessment ϕ̂(ζ̃r) which she updates over time given evidence ζr. More generally one may

assume that a player considers possible several models of others. Hence, let Φ = {ϕ ∶H ×Θ→ [0,1]}
denote the set of possible assessments. Define a general assessment rule54 as γ̂ ∶

∞
⋃
r=1

Zr → ∆ (Φ)
attaching to each learning path ζr a probability distribution on Φ. Within the general approach the

updating of these general assessments over time is not modelled explicitly. This allows it to encompass

various more specific models. Most importantly as shown by FK (Section 3.2) it encompasses Bayesian

inference. Instead of defining explicit updating rules the general approach places conditions upon the

relationship between assessments and evidence in the long run. For this purpose define for each

r = 1,2, . . ., each ζr ∈ Zr and each h s.t. κ(h, θ ∣ ζr) > 0

ϕ̄(h ∣ θ; ζr) =
κ(a, h, θ ∣ ζr)
κ(a, θ ∣ ζr)

.

Definition 5. The general assessment rule γ̂ is asymptotically empirical if for every ε > 0, every

ζ and for every θ ∈ Θ and h ∈H such that lim inf
r→∞

κ(h,θ∣ζr)
r > 0,

lim
r→∞

γ̂(ζr) ({ϕ ∶ ∥ϕ(h ∣ θ) − ϕ̄(h ∣ θ; ζr)∥ < ε}) = 1

A second cornerstone of our adaptive process are players’ myopic responses to assessments. Apart

from repeated play considerations this is also restrictive because it rules out the possibility that

players experiment. For instance one can argue (see FK for an exhaustive discussion of this issue)

that in extensive-form games a player’s action affects what she learns about others’ behavior. Hence,

a more general approach should allow for experimentation of players. We take this into account as

follows. For general assessment γ and some i ∈ {1, . . . , n}, let Ui(σ ∣ γ) = ∑
hi∈Hi

∫
b
b σ(s, hi)U(s, hi ∣

γ) where U(s, h ∣ γ) = ∫ϕ∈Φ [ϕ(h ∣ 1)dG1(s) − ϕ(h ∣ 0)dG0(s)] γ(dϕ). The strategic response σ̂ is

asymptotically myopic with regard to γ̂ if there exists a sequence of non-negative numbers {εr}∞r=1

such that lim
r→∞

εr = 0 and, for each r and ζr, and each i = 1, . . . , n

Ui (σ̂(ζr) ∣ γ̂(ζr)) + εr ≥ max
σ∈Σ

Ui (σ, γ̂(ζr)) .

Asymptotic myopia permits players to choose suboptimal strategies where the suboptimality vanishes

over time. In particular players may choose slightly suboptimal strategies with larger probabilities

or grossly suboptimal strategies with small probabilities (see (Fudenberg and Kreps, 1993)). Thus

while at early dates depending on the sequence {εr}∞r=1 the player may consciously experiment with

suboptimal strategies, she eventually has to confine herself to random experimentation with decreasing

overall probability. In this regard asymptotic myopia it still restrictive. A more general notion is the

following

54This is not to be confused with the “rules” we discuss in connection with rule rationality.
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Definition 6. The strategic response σ̂ is asymptotically myopic with calendar-time limita-

tions on experimentation with respect to γ̂ if there exist

(i) a sequence {εr}∞r=1 s.t. εr > 0 for each r = 1,2, . . . and lim
r→∞

εr = 0,

(ii) a sequence {δr}∞r=1 s.t. δr ≥ 0 and δr+1 ≥ δr for each r = 1,2, . . . and lim
r→∞

δr/r = 0,

(iii) an asymptotically myopic strategic response σ̂opt,

(iv) a strategic response σ̂exp s.t. for every ζ, r and every s and h, σ̂exp(a ∣ s, h; ζr) > 0 if and only

if κ (a, h ∣ ζr) < δr where κ (a, h ∣ ζr) is the number of times the player associated with σ̂ chose

action a at history h along ζr,

(v) a mapping α̂ ∶
∞
⋃
r=1

Zr ×H → [0,1] s.t. α̂(ζr, h) < 1 only if κ (a, h ∣ ζr) < δr for some a ∈ A

and if for each r = 1,2, . . ., ζr ∈ Zr, s and h ∈H

σ̂(s, h ∣ ζr) = α̂(ζr, h) ∗ σ̂opt(s, h ∣ ζr) + [1 − α̂(ζr, h)] ∗ σ̂exp(s, h ∣ ζr).

An individual learning model for the social learning stage game is an array of assessment rules

and strategic responses, one each for each player. It is conforming, if each player’s assessment rule is

asymptotically empirical and each player’s strategic response is asymptotically myopic with calendar-

time limitations on experimentation with respect to the assessment rule.

Definition 7. A strategy profile σ∗∗ is locally stable, if there exists some conforming learning model,

such that P (limr→∞ σ̂opt(ζr) = σ∗∗) > 0 where σ̂opt denotes the non-experimental part of the array of

strategic responses.

Proposition 9. In the social learning game independent of feedback and private belief support a

strategy profile is locally stable if and only if it is iteratively undominated.

Proof. First a similar argumentation as in the proof for the more basic learning process applies, i.e.

every player infinitely often observes the complete sequence of choices together with the state of Nature

whatever the specification of feedback and private belief support. We thus concentrate on the case

with complete feedback on choices, unconditional feedback on the state and homogeneous private

belief support.

The proof employs the same inductive argument as for the more basic case: In the first period

no inferences about others are necessary and thus assessments are rational by definition. Asymptotic

myopia wCTLE then guarantees that players’ strategies eventually play arbitrarily like some iteratively

undominated strategy σ∗ in period 1. We can then employ Lemma D.1 and the SLLNCE to show

that the empirical assessment ϕ̄2 (ζr) for period 2 becomes ε-close to the rational assessments for

this period almost surely eventually. It is then straightforward to show that asymptotic empiricism

of general assessment rules and asymptotic myopia with calender-time lim. on exp. imply that

eventually players must play arbitrarily like some iteratively undominated strategy in period 2 as well.

This argumentation can obviously be extended inductively to all periods i > 2.

To see finally that any iteratively undominated strategy can be locally stable (notice that besides

in non-generic settings these strategies differ only at histories reached with probability zero) notice

that a similar argument can be employed as in Fudenberg and Kreps (1993, Proposition 6.3) which
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constructs explicitly an asymptotically empirical assessment rule and an associated myopic strategic

response. The interested reader is referred to the paper above or chapter 2 of March (2010).

As a final remark notice that the Proposition (as its counterpart in the main part of the text) shows

that any iteratively undominated strategy profile might arise as the outcome of an adaptive process.

Indeed going beyond this result towards selecting a unique strategy profile seems to be challenging. In

fact even many refined equilibrium concepts (perfect, sequential) do not yield a significantly smaller set

of strategy profiles. However under mild additional conditions a unique strategy profile is selected in

the limit of a sequence of regular quantal response equilibria (QRE) as payoff disturbances approach

zero. We conjecture that this strategy profile may be selected by an adaptive process satisfying

some mild additional conditions. Notice that this selection must uniquely define behavior at histories

reached with probability zero. While adaptation takes place such histories may occur either because

players best respond to mistaken beliefs or because players experiment. However, in either case the

behavior is least costly if in line with a player’s private belief. Hence, it seems likely that choices while

occuring with probability zero in the limit reveal a player’s private belief in the medium run – which

is the property of limit QRE.
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B The Gaussian-Quadratic Model

In social learning settings more closely related to the classical model of learning in rational expectations

the following setting has become very popular (see for instance Vives, 1993). The state of Nature θ̃

is normally distributed with mean µ(θ) and variance σ2(θ). Furthermore for realized state θ private

signals are given by s̃i = θ+ ε̃ where ε̃ is a noise independent of θ and normally distributed around mean

0 with variance σ2
ε > 0. This information structure usually is combined with action space A = [0,1]

and the quadratic payoff (loss) function u(a, θ) = −(a − θ)2.

The beauty of the Gaussian model stems from the fact that conditional on a signal realization s by

Bayes’rule θ̃ is still normally distributed with updated mean and variance given by

σ2(θ ∣ s) = σ2(θ)σ2
ε

σ2(θ) + σ2
ε

,

µ(θ ∣ s) = σ2(θ)
σ2(θ) + σ2

ε

s + σ2
ε

σ2(θ) + σ2
ε

µ(θ).

This follows from the Bayesian formula f(θ ∣ s) = f(θ) gθ(s)/ ∫θ′ f(θ
′) gθ′(s)dθ′ by straightforward

calculations. Furthermore expected payoff is maximized by setting a(s) = µ(θ ∣ s). Hence, if µ(θ),
σ2(θ) and σ2

ε are known a perfectly reveals s and f(θ ∣ a) = f(θ ∣ s(a)) where s(a) is uniquely defined.

Assume as above that players attempt to learn f(θ ∣ a) for each a ∈ A in a statistical way.55 That

is players assume that conditional on a, θ̃ is still normally distributed56 and attempt at determining

µ(θ ∣ a) and σ2(θ ∣ a) via the sample mean θ̄(a) = 1
κ(a) ∑r∶a∈y(r) θ(r) and the sample variance S2(θ ∣ a) =

1
κ(a)−1 ∑r∶a∈y(r) [θ(r) − θ̄(a)]

2
respectively. Then θ̄(a) is normally distributed around mean µ(θ ∣ a)

with variance σ2(θ ∣ a)/κ(a) and S2(θ ∣ a) is asymptotically normally distributed around σ2(θ ∣ a)
with variance 2σ4(θ ∣ a)/

√
n. Furthermore by Cochran’s Theorem (Cochran, 1934) θ̄(a) and S2(θ ∣ a)

are independent. Using these measures for determining mean and variance of the updated normal

distribution of θ̃ conditional on private signal s and observation a players arrive at

µ̂(θ ∣ s, a) = S2(θ ∣ a)
S2(θ ∣ a) + σ2

ε

s + [1 − S2(θ ∣ a)
S2(θ ∣ a) + σ2

ε

] θ̄(a)

and σ̂2(θ ∣ s, a) = σ2
ε S

2(θ ∣ a)
σ2
ε + S2(θ ∣ a)

.

The mapping α(S) = S
σ2
ε+S

is strictly concave in S. Therefore by Jensen’s inequality E [α (S2(θ ∣ a))] ≤
α (E [S2(θ ∣ a)]) = α (σ2(θ ∣ a)) provided κ(a) < ∞. Independence of θ̄(a) and S2(θ ∣ a) then implies

that µ̂(θ ∣ s, a) is adjusted too little towards the signal s.

We adapt the specific model of heterogeneous belief updating studied in March and Ziegelmeyer

(2009) to this setting. That is

fβ(θ ∣ s) = [gθ(s)]β f(s)

∫θ′ [gθ′(s)]
β f(θ′)dθ′

for some β > 0. Then the posterior distribution of θ̃ given signal s is given by a normal distribution

55Clearly, since A is an interval this requires players to learn an uncountably infinite number of values. However, little

is lost by assuming that players partition A into a finite set of intervals Aj and learn f(θ ∣ Aj) for each j. If the partition

is sufficiently fine since µ(θ ∣ s(a)) is continuous in a, f(θ ∣ Aj) approximates f(θ ∣ a) for each a ∈ Aj .
56Equivalently, they could apply an appropriate statistical test which will be confirmed eventually.
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with biased mean and variance

µ̂β(θ ∣ s, a) = β S2(θ ∣ a)
σ2
ε + β S2(θ ∣ a)

s + [1 − β S2(θ ∣ a)
σ2
ε + β S2(θ ∣ a)

] θ̄(a),

σ2
β(θ ∣ s, a) = σ2

ε S
2(θ ∣ a)

σ2
ε + β S2(θ ∣ a)

.

Hence, if κ(a) < ∞ there exists β > 1 such that E [µ̂β(θ ∣ s, a)] = µ(θ ∣ s, a).
Finally, we show that with the quadratic payoff function this bias in posteriors implies non-optimal

choices of Bayesians and therefore fitness benefits of overweighters. Notice first that expected payoff

U(a ∣ s, x) = Eθ̃ [u(a, θ) ∣ s, x] where x is the observed action is strictly concave in a. Thus, it holds

Eε̃ [U(a ∣ s, x)] < U (Eε̃[a(s, x)] ∣ s, x). Furthermore U(a ∣ s, x) is maximized at a∗ = E[θ̃ ∣ s, x] = µ(θ ∣
s, x). The result above straightforwardly implies that Eε̃[a1(s, x)] = Eε̃ [µ̂1(θ ∣ s, x)] ≠ µ(θ ∣ s, x) while

for some β > 1 Eε̃[aβ(s, x)] = µ(θ ∣ s, x). Therefore U (Eε̃[a1(s, x)] ∣ s, x) < U (Eε̃[aβ(s, x)]).
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C Limited Learning Opportunities and Non-Bayesian Strategies

In this appendix we investigate in greater detail the relationship between limited learning opportuni-

ties and the advantage of non-Bayesian rational behavior. As shown in the main part of the paper

(Propositions 5 and 7) generically under limited learning opportunities the adaptive process does not

lead Bayesian rational individuals towards adopting the optimal (benchmark) strategy. This implies

that Bayesian rationality itself is subject to challenge by alternative ways of responding to informa-

tion gathered in the adaptive process. In particular experimentation or evolutionary forces may lead

individuals to non-Bayesian strategies which ultimately perform better. Our aim in this appendix is

to characterize and interpret such alternative strategies.

C.1 Preliminaries

Strategy Space

Apparently, one possible approach would be to study more closely the benchmark strategies derived

in Lemmas 2 and 3. Yet, while we can compute and picture these strategies for specific social learning

setups the helpfulness of such an illustration is questionable. On the one hand the interpretation of

these illustrations is highly ambiguous. More importantly we doubt the potential of the benchmark

strategies to capture behavior in real-world environments. Indeed in the main part of the text we argue

that non-Bayesian rational behavior which is optimal in field environments with high uncertainty and

limited learning opportunities may appear in simpler (laboratory) settings where it leads to systematic

errors because individuals do not adapt to each decision situation separately. In other words we rely

on the idea that individuals are rule rational and evolve “rules of thumb” (Aumann, 1997) which work

well in general. This seems contrary to the assertion that players will follow benchmark strategies

which are highly adjusted to specific social learning settings.57

The approach we pursue is therefore to investigate the performance of a restricted class of simple

strategies. This class derives from an extended model of social learning suggested recently (March and

Ziegelmeyer, 2009) to reconcile theoretical predictions with experimental evidence. Indeed a stable

finding in the experimental literature on social learning is the tendency of players to rely too strongly

upon their private information. The strategies we consider differ in the weight players put on their

private information in relation to the information derived from observed actions when forming beliefs.

More precisely strategies are parametrized by β > 0 and characterized as follows: Given private belief

s, history h, and assessments ϕ players form log-likelihood ratios (LLR) according to

`(s, h ∣ ϕ,β) = β log ( s

1 − s
) + log( ϕ(h ∣ 1)

ϕ(hi ∣ 0)
) (7)

and invest (reject) if `(s, h ∣ ϕ,β) > 0 (`(s, h ∣ ϕ,β) < 0). Accordingly, β is a private information

weight. A player overweights private information if β > 1, underweights private information if β < 1

and forms beliefs in a Bayesian way if β = 1. The class of strategies hence contains the Bayesian

rational strategy as a special case. Our approach therefore permits us to relate our results to both

the prevalent Bayesian rational perspective in the theoretical literature as well as the experimental

findings.

57See also Samuelson (2004) who argues that Nature facing prohibitively large costs of enhancing cognitive powers

may resort to information processing “short-cuts”.
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Evolutionary Approach

We consider an evolutionary setup where the population is characterized by a distribution W of simple

β-strategies (a distribution on the positive real axis). As shown by March and Ziegelmeyer (2009)

the behavior in an extended social learning game with a given distribution of βs is equivalent to

behavior in some standard social learning game with a distorted distribution of private information.

Therefore our results on the limiting outcomes of the adaptive process straightforwardly extend to this

setup. We assume that adaptation has taken place and players’ assessments are given by the limiting

outcome of the respective adaptive process (the long run outcome in the case of learning across

games respectively the outcome after a fixed finite number of repetitions). Under this assumption

expected payoffs of “strategy” β given population W can be straightforwardly derived under the two

restrictions of learning opportunities. In particular when learning takes place across games a player of

type β invests provided [s/(1 − s)]β > (∑k πkϕk(h ∣ 0)) / (∑k πkϕk(h ∣ 0)). Accordingly her expected

payoff is given by

UΓ,π(β ∣W ) =
K

∑
k=1

n

∑
i=1

∑
hi∈Hi

πk
n

{ϕk(hi ∣ 1,W ) [1 −Gk1 (cβ(hi ∣W ))] (8)

−ϕk(hi ∣ 0,W ) [1 −Gk0 (cβ(hi ∣W ))]}

where for each k and θ ϕk(h1 ∣ θ,W ) = 1 and

ϕk(h, a ∣ θ,W ) = ϕk(h ∣ θ,W ) ∗
⎧⎪⎪⎨⎪⎪⎩

∫β∈supp(W ) [1 −G
k
θ (cβ(h ∣W ))] W (dβ) if a = 1

∫β∈supp(W )G
k
θ (cβ(h ∣W )) W (dβ) if a = 0

for each h and cβ(h ∣W ) = 1/ [1 + (∑k πk ϕ
k(h∣1,W )

∑k πk ϕk(h∣0,W ))
1/β

] for each h. On the other hand when the learning

horizon is finite given private belief s and perceived public belief b′(∅, h) = b(∅, h)+ ε̃h a player of type

β invests if [s/(1 − s)]β > (1 − b(∅, h) − ε̃h) / (b(∅, h) + ε̃h) or equivalently if ε̃h > (1−s)β
sβ +(1−s)β − b(∅, h).

Accordingly, her expected payoff is given by

Uη(β ∣W ) = 1

n

n

∑
i=1
∫

b

b
∑
hi∈Hi

[1 −Φh (χβ(s, h ∣W ))] ∗ [ϕη(hi ∣ 1,W )dG1(s) − ϕη(h ∣ 0,W )dG0(s)]

(9)

where for each θ ϕη(h1 ∣ θ,W ) = 1 and

ϕη(h, a ∣ θ,W ) = ϕη(h ∣ θ,W ) ∗
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫β∈supp(W ) ∫
b
b [1 −Φh (χβ(s, h ∣W ))] dGθ(s)W (dβ) if a = 1

∫β∈supp(W ) ∫
b
b Φh (χβ(s, h ∣W )) dGθ(s)W (dβ) if a = 0

for each h, χβ(s, h ∣W ) = (1−s)β
sβ+(1−s)β − ϕη(h∣1,W )

ϕη(h∣1,W )+ϕη(h∣0,W ) for each s and h, and Φh denotes the cdf of

the normal distribution with mean zero and standard deviation ηh.

We have in mind an evolutionary process which selects strategies according to their relative fitness

where fitness of strategies is given by the above (ex-ante) expected payoffs. However, given the

complexity of the fitness expressions an exact theoretical analysis of the limiting outcome of such a

process is beyond the scope of this addendum. In contrast the simple recursive structure allows an easy

numerical computation. We therefore rely on numerical methods to illustrate the limiting outcomes.

More precisely we examine the relationship between the social learning environment and the surviving

strategies with the help of an implementation of the discrete-time replicator dynamics. In order to do

43

ha
ls

hs
-0

05
72

52
8,

 v
er

si
on

 2
 - 

2 
M

ar
 2

01
1



so we first discretize the strategy space (the positive real axis). The reduced strategy set is given by

B = {0.14,0.17,0.20,0.25,0.30,0.37,0.45,0.55,0.67,0.82,1.00, (10)

1.22,1.49,1.82,2.23,2.72,3.32,4.06,4.95,6.05,7.39} .58

Let Wt(β) denote the relative frequency of type β after t steps. We assume that type frequencies

evolve according to the replicator equation

Wt+1(β) =
1 + ∆Wt(β)U(β ∣Wt)

1 + ∆ ∑β∈B [Wt(β) ∗ U(β ∣Wt)]
.59 (11)

Here ∆ denotes the step size, i.e. length of the time interval. Given the size of the payoffs we will fix it

at ∆ = 100 in order to obtain convergence of the system within a reasonable number of steps. Finally,

we consider as starting distribution W0 the uniform distribution on B which puts all strategies on an

equal footing.

Social Learning Setting

The space of possible distributions of private information is huge and many stories can be told to justify

either. We stick with two extreme variants which have been frequently assumed in the literature:

The symmetric binary signal (SBS) distribution and the Gaussian signal distribution.60 The binary

signal distribution is characterized by a binary signal space S = {0,1} and conditional probabilities

Pr(s̃ = 1 ∣ θ̃ = 1) = Pr(s̃ = 0 ∣ θ̃ = 0) = q where 1/2 < q < 1 denotes the signal precision. On the other

hand the Gaussian signal distribution is given by signal space S = R such that conditional on θ s̃ is

normally distributed around mean θ with precision ρ > 0 (respectively standard deviation 1/√ρ). The

main advantage of these distributions is their dependence upon a single easily interpretable parameter.

In addition the associated private log-likelihood ratio `(s̃,∅) = log ( s̃
1−s̃) follows a shifted Bernoulli

(conditional on one of the states) respectively Gaussian distribution, something that will become

important in the context of learning across games. Finally, with these two distributions we consider

both a setting with bounded and one with unbounded private beliefs which enables us to investigate

the dependence of the results upon this crucial property.

Presentation of Results

Results will be presented in the form of arrays of bar charts. Each array will be identified with a

specific underlying distribution of private signals and a specific sequence length n (and in addition

in the case of adaptation across games the number of signals in one of the two basic social learning

games). Furthermore in each array the parameter of the underlying private signal distribution (q

respectively ρ) varies with the columns of the array and a parameter specific to the limit on learning

opportunities (the number of private signals L2 respectively the learning horizon R) varies with the

rows of the array. Finally, each bar chart depicts the distribution WT after a fixed number of steps T .

Figure 1 shows an example of such a chart.

Several properties are noteworthy. First, bars are sorted from left to right by increasing β (on the

set B). Second, charts are scaled such that the range of the y-axis is always the complete interval

59See for instance Fudenberg and Levine (1998, Section 3.11).

60See e.g. Chamley (2004b, Chapter 2).
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Figure 1: Example chart for the presentation of the numerical results.

[0,1]. Third, in order to facilitate distinction the range of possible values for each bar is framed.

In addition the area for β = 1 has a gray background. Fourth, the bars itself are colored differently

depending on whether they refer to underweighting of private information (β < 1, BLUE), Bayesian

updating (β = 1, YELLOW), or overweighting of private information (β > 1, RED). Finally, each chart

contains a graph depicting fitness of each type for the depicted population WT . This enables to get

an impression about the future evolution of the population in cases where convergence has not yet

taken place. The graphs are re-scaled such that lowest fitness is at y = 0 and highest fitness at y = 1.

In cases where all types have exactly the same fitness a straight line is given at y = 0.5.

We now discuss in turn the two approaches towards limited learning opportunities and present the

numerical results.

C.2 Adaptation across Games

We consider a class of global social learning games given by ⟨n,A,u,Θ, (Gk0,Gk1)
2

k=1
,π⟩ such that

A = Θ = {0,1}, u(a, θ) = a ∗ (2θ − 1), and π = (1/2,1/2). Hence, each of these global games is

comprised of two basic social learning games, equally likely, which differ only in the distribution of

private information. We restrict ourselves further in assuming that the underlying distribution of

private signals in both these basic games is the same. The games differ in the number of independent

private signals each player receives. Denote the number of signals received in (basic) game k ∈ {1,2}
by Lk where w.l.o.g. L1 < L2.61

Symmetric Binary Signals

Consider first an underlying binary signal distribution. Given L independent draws private beliefs are

distributed on the set

BL = {bj =
qj (1 − q)L−j

qj (1 − q)L−j + (1 − q)j qL−j
∶ j = 0,1, . . . , L}

61Again there is a myriad of modeling possibilities even when restricting to a narrow class of private belief distributions

and a two-game setting. Ideally one strives to capture properties of real-world environments. Our choice contrasts

distributions of private information which arise endogeneously determined only by the number of signals obtained by

each player. In a world with costly private signals failures of individuals to acknowledge correlation of (own and others’)

private information qualities may then be related to imperfect information about budget constraints and search costs.
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according to probabilities Pr(bj ∣ θ̃ = 1) = (L
j
) qj (1 − q)K−j and Pr(bj ∣ 0) = (L

j
) (1 − q)j qK−j .

Figures 2 and 3 depict the population after T = 5000 steps for different values of n when the number

of signals in game 1 is fixed at L1 = 3.62 In these figures columns capture different precisions q of

private signals while rows capture different numbers of signals L2 in game 2.

L2=7

L2=6

L2=5

L2=4

q=0.52 q=0.54 q=0.56 q=0.58 q=0.6

Figure 2: Population after 5000 steps when learning takes place across games, players receive binary

signals, L1 = 3, and n = 2.

62Similar results are obtained for L1 ∈ {2,4,5}.
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L2=7

L2=6

L2=5

L2=4

q=0.52 q=0.54 q=0.56 q=0.58 q=0.6

L2=7

L2=6

L2=5

L2=4

q=0.52 q=0.54 q=0.56 q=0.58 q=0.6

Figure 3: Population after 5000 steps when learning takes place across games, players receive binary

signals, L1 = 3, and n = 4 (TOP) respectively n = 6 (BOTTOM).
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As one can see while for n = 2 both (moderate) over- and underweighting may survive in the

evolutionary process, Bayesian updating (at least approximately given the discretization of the strategy

space) emerges as the limiting outcome of the replicator dynamics for larger n in many environments.

We now check the robustness of these results in a setting with normally distributed signals.

Gaussian Signals

As mentioned previously Gaussian private signals imply that the log-likelihood ratio `(s̃,∅) follows a

Gaussian distribution as well. In addition for a sequence (s1, . . . , sL) of L independent private signals

the LLR satisfies `((s1, . . . , sL),∅) = ∑Lj=1 `(sj ,∅). Since a sum of L independent normally distributed

random variables follows a normal distribution as well, the distribution of the LLR with L independent

private signals is easily calculated.

The population after T = 3000 steps is presented in figures 4 and 5 for various values of n and L1 = 1

signals in game 1. As before different columns (rows) of the array capture different signal precisions

q (number of signals L2 in game 2).

L2=11

L2=8

L2=5

L2=2

Ρ=0.25 Ρ=0.5 Ρ=0.75 Ρ=1. Ρ=1.25

Figure 4: Population after 3000 steps when learning takes place across games, players receive Gaussian

signals, L1 = 1, and n = 2.
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L2=11

L2=8

L2=5

L2=2

Ρ=0.25 Ρ=0.5 Ρ=0.75 Ρ=1. Ρ=1.25

L2=11

L2=8

L2=5

L2=2

Ρ=0.25 Ρ=0.5 Ρ=0.75 Ρ=1. Ρ=1.25

Figure 5: Population after 3000 steps when learning takes place across games, players receive Gaussian

signals, L1 = 1, and n = 4 (TOP) respectively n = 6 (BOTTOM).
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Given the results for both distributions of private signals we may now state the following result.

Result 3. When adaptation takes place across games both moderate over- and underweighting robustly

survive in the evolutionary process. In particular moderate overweighters of private information are

more likely to be present in a population (i) the shorter the social learning sequence, (ii) the larger

the precision of private signals, and (iii) the larger the difference of the basic social learning settings.

On the other hand moderate underweighters are more likely to be present, the longer the sequence, the

lower the signal precision, and the larger the difference between settings.

C.3 Finite Learning Horizon

We now consider the survival of strategies when learning takes place within a finite number of rounds.

As argued in the main part of the paper under this condition players’ assessments remain noisy and

players ultimately play a noisy social learning game ⟨n,Θ,A, u, (G0,G1) ,η⟩ where η = (ηh)h∈H with

ηh1 = 0 is the vector of standard deviations of the unbiased, normally distributed noise terms affecting

public beliefs. Clearly, η is uniquely determined by the learning horizon R, the structure of the social

learning game, and the specific learning path ζR. In line with our previous argumentation we make

the following assumption

ηh =
¿
ÁÁÀ 1

R

2ϕη(h ∣ 1,W )ϕη(h ∣ 0,W )
[ϕη(h ∣ 1,W ) + ϕη(h ∣ 0,W )]3

(12)

for each h where ϕη(h ∣ θ,W ) are the conditional probabilities of histories derived previously. This

assumption reflects the idea that players use sample means to estimate public beliefs. These are asymp-

totically normally distributed around the correct public belief b(∅, h) with variance

b(∅, h) [1 − b(∅, h)] /κ(h ∣ ζR) and we approximate the number of occurences of history h via the

expected number of occurences, i.e. κ(h ∣ ζR) ≈ R ∗ ϕη(h∣1,W )+ϕη(h∣0,W )
2 .

Notice that with this assumption we will in general strongly overestimate the precision of players’

assessments: While players in the first period behave according to the Bayesian rational strategy in

each round, players later in the sequence will in general behave suboptimally until their assessments

are sufficiently close to their true counterparts. This in turn leads assessments about these players’

strategies to be even further off target. In contrast our assumption requires that (noisy) assessments

result from R observations of game play were players are bound to their strategies given these (noisy)

assessments. As will be shown assuming less precise assessments would only strengthen our results.

Results are presented in figures 6 to 8. We depict populations after 3000 (resp. 1000) steps for

the binary (resp. Gaussian) signal distribution for different sequence lengths n (n = 2,4,6 with binary

signals and n = 2,4 with Gaussian signals), signal precisions q resp. ρ (columns of the arrays), and

learning horizon R (rows of the arrays).
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R=800

R=400

R=200

R=100

q=0.52 q=0.54 q=0.56 q=0.58 q=0.6

R=800

R=400

R=200

R=100

Ρ=0.1 Ρ=0.2 Ρ=0.3 Ρ=0.4 Ρ=0.5

Figure 6: Population after 3000 (TOP) respectively 1000 (BOTTOM) steps when the learning horizon

is finite, n = 2, and players receive binary (TOP) respectively Gaussian (BOTTOM) signals.
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R=800

R=400

R=200

R=100

q=0.52 q=0.54 q=0.56 q=0.58 q=0.6

R=800

R=400

R=200

R=100

Ρ=0.1 Ρ=0.2 Ρ=0.3 Ρ=0.4 Ρ=0.5

Figure 7: Population after 3000 (TOP) respectively 1000 (BOTTOM) steps when the learning horizon

is finite, n = 4, and players receive binary (TOP) respectively Gaussian (BOTTOM) signals.
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R=800

R=400

R=200

R=100

q=0.52 q=0.54 q=0.56 q=0.58 q=0.6

Figure 8: Population after 3000 steps when the learning horizon is finite, n = 6, and players receive

binary signals.

Again we find that both over- and underweighting of private information robustly survives. Remark-

ably though unlike in the case of adaptation across games overweighting seems to robustly outperform

other strategies in settings with low signal precision and short learning horizon even in longer social

learning games. Moreover more extreme forms of overweighting survive in such cases. Result 4 below

summarizes our findings.

Result 4. If the learning horizon is finite such that players’ assessments remain noisy, both over-

and underweighting of private information robustly survive in an evolutionary process. In particular

settings which involve a shorter learning horizon and a lower precision of private information are

more favorable to overweighting while underweighting is favored by a longer learning horizon, higher

precision of private information, and longer social learning sequences. In addition a finite learning

horizon may favor extreme forms of overweighting.
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D Omitted Proofs

Proof of Proposition 1. We show that all iteratively undominated strategy profiles satisfy con-

ditions (i) and (ii) and barring non-genericities generate the same unique outcome of the social learning

game. More precisely we show that all strategy profiles satisfying (i) and (ii) coincide except at histo-

ries which occur with probability 0 or at private beliefs which either occur with probability 0 as well

or whose occurence with strictly positive probability is a non-generic property of the social learning

context. This in turn implies that all histories occur with the same conditional probability under any

iteratively undominated strategy profile proving the claim.

We proceed by induction on the set of players. Notice that due to the sequential structure of the

game and the absence of payoff externalities the set of player i’s rationalizable strategies is determined

solely by her beliefs about her predecessors. In particular a strategy of player 1 is undominated if and

only if it maximizes

U1 (σ1, σ−1) = U1 (σ1) =
1

4

b

∫
b

σ1 (s1,∅) 2 s1 − 1

s1
dG1(s1)

where we have used that dG0(s)/dG1(s) = (1 − s)/s. Hence, any strategy of player 1 which is not

dominated must satisfy σ1 (s1,∅) = 1 if s1 > 1/2 and σ1 (s1,∅) if s1 < 1/2. On the other hand domi-

nance does not restrict player 1’s strategy at s1 = 1/2. However this case arises with strictly positive

probability only if the private belief distributions have an atom at 1/2 which is clearly a non-generic

property of the social learning setting. Therefore henceforth we assume that dGθ(1/2) = 0 for each

θ ∈ Θ. In this case player 1 has a unique strictly dominant strategy.

Let i ≥ 2 and assume that for each j < i each iteratively undominated σj satisfies properties (i)

and (ii) of the proposition and uniquely determines behavior except for a well-defined finite number

of private beliefs. Clearly that the common support of the private belief distributions contains atoms

at exactly these private beliefs is a non-generic property of the social learning setting. In any social

learning setting which does not have this property any profile σ∗<i of iteratively undominated strategies

for players j < i generates the same distribution of histories hi ∈ Hi. This follows directly from the

expression

Pr (hi ∣ θ̃ = θ, σ∗<i) =∏
j<i

b

∫
b

σ∗j (aj ∣ sj , hj) dGθ (sj)

for each θ ∈ Θ where aj = hi(j) and hj ⊂ hi. Player i’s ex-ante expected payoff against an iteratively

undominated strategy profile σ∗<i may then be written as

Ui (σi, σ∗<i) =
1

4
∑
hi∈Hi

b

∫
b

σi (si, hi) [si Pr (hi ∣ θ̃ = 1, σ∗<i) − (1 − si) Pr (hi ∣ θ̃ = 0, σ∗<i)]
1

si
dG1 (si)

where we have used once more the proportional property of private beliefs. For histories hi such that

Pr (hi ∣ θ̃ = θ, σ∗<i) > 0 for some θ ∈ Θ (and thus for each θ ∈ Θ since strategies depend on private

beliefs and private belief distributions have common support) it is easy to see that any iteratively

undominated strategy σ∗i of player i must satisfy σ∗i (si, hi) = 1 if si > 1 − b∗ (∅, hi) and σ∗i (si, hi) = 0
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if si < 1 − b∗ (∅, hi) where

b∗ (∅, hi) =
Pr (hi ∣ θ̃ = 1, σ∗<i)

Pr (hi ∣ θ̃ = 1, σ∗<i) + Pr (hi ∣ θ̃ = 0, σ∗<i)
.

Furthermore at such histories the player is tied only if the common support of private beliefs has an

atom at 1 − b∗ (∅, hi). Since Hi is finite this concerns only a finite number of points for player i and

is thus a non-generic property. On the other hand for histories such that Pr (hi ∣ θ̃ = θ, σ∗<i) = 0 for

each θ ∈ Θ any assignment σ∗ (si, hi) can be part of an iteratively undominated strategy. Notice that

properties (i) and (ii) of the proposition do not restrict σi in such cases either and are thus trivially

satisfied. However, since

Pr (hi+1 ∣ θ̃ = θ, σ<i, σi) = Pr (hi ∣ θ̃ = θ, σ<i) ∗
b

∫
b

σi (ai ∣ si, hi) dGθ (si)

Pr (hi ∣ θ̃ = θ, σ<i) = 0 implies Pr (hj′ ∣ θ̃ = θ, σ<i, σi, . . . , σj′−1) = 0 for hj′ ⊃ hi independent of the

behavior following such histories. Thus behavior of player i at such histories influences neither the

outcome of the game nor the iteratively undominated strategies of later players.

In conclusion absent ties iterated strict dominance uniquely characterizes the behavior of players

at all histories occurring with strictly positive probability and thus implies a unique outcome of the

social learning game. Moreover ties are a non-generic property of a social learning game since they

can be ruled out by removing a finite number of points from the support of private beliefs.

Proof of Lemma 1. We need to show that along almost any (infinite) learning path ζ∞ for each

i = 1, . . . , n, each ε > 0 and each R player i eventually ε-best responds only to strategies played in

repetitions r > R. Here player i ε-best reponds to a set of behavioral strategies T ⊆ Σ if and only if

σi ∈ Σ̂ε
i(T ) where

Σ̂ε
i(T ) = {σi ∈ Σi ∶ for each σ′i ∈ Σi∃σ−i ∈ T−i s.t. Ui (σi, σ−i) + ε > Ui (σ′i, σ−i)} .

Recall that

Ui (σi, σ−i) =
1

4
∑
hi∈Hi

b

∫
b

σi (si, hi) [si Pr (hi ∣ θ̃ = 1, σ−i) − (1 − si) Pr (hi ∣ θ̃ = 0, σ−i)]
1

si
dG1 (si)

where the probabilities Pr (hi ∣ θ̃ = θ, σ−i) only depend upon strategies σj for j < i. Fix learning path

ζ∞, ε > 0 and 0 < R < ∞ and let

TR,r = {σ−i ∶ σ−i = σ̂−i (ζρ) for some R < ρ < r where ζρ ⊂ ζ∞}

denote the set of strategies (hypothetically) chosen between periods R and r. Let κ (σ−i ∣ ζr) = ∣T1,r ∣
denote the number of times that strategy profile σ−i is chosen before round r (along learning path

ζ∞). Suppose for contradiction that there exists a strategy σ′i ∈ Σi such that for each r > R and each
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σ−i ∈ TR,r it holds Ui (σ′i, σ−i) > Ui (σ̂ (ζr) , σ−i) + ε. Then since κ (σ−i ∣ ζr) /r → 0 for each σ−i ∉ TR,r
there exists r∗1 such that for each r > r∗1 it must hold that

∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
4r

∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ′i (si, hi) [siϕ (hi ∣ 1, σ−i) − (1 − si) ϕ (hi ∣ 0, σ−i)]

> ∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
4r

∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr) [siϕ (hi ∣ 1, σ−i) − (1 − si) ϕ (hi ∣ 0, σ−i)] +
ε

2

(13)

where ϕ (hi ∣ θ, σ−i) = Pr (hi ∣ θ̃ = θ, σ−i). Let

κ (hi, θ, σ−i ∣ ζr) = ∣{1 ≤ ρ < r ∶ {hi, θ} ∈ y(ρ) and σ−i = σ̂−i (ζρ)}∣ .

By the strong law of large numbers for conditional expectation (SSLNCE) (see for instance Walk, 2008)

κ (hi, θ, σ−i ∣ ζr)
∑

h′i∈Hi
κ (h′i, θ, σ−i ∣ ζr)

→ Pr (hi ∣ θ̃ = 1, σ−i)

almost surely as r → ∞ for each hi ∈ Hi and each θ ∈ Θ. Notice that this relies crucially on the

fact that in a given repetition a player’s strategy cannot be correlated with the state of Nature or

the player’s private belief drawn in this repetition. Furthermore the SSLNCE holds even with partial

and/or incomplete feedback and heterogeneous private belief support taking appropriate subsequences

since each player will infinitely often decide at position n and given a history and private belief which

will incline her to invest. Therefore for almost any ζ∞ and any δ > 0 there exists r∗ such that

RRRRRRRRRRRRRRRRR

κ (hi, θ, σ−i ∣ ζr)
∑

h′i∈Hi
κ (h′i, θ, σ−i ∣ ζr)

− Pr (hi ∣ θ̃ = 1, σ−i)

RRRRRRRRRRRRRRRRR

< δ

for each r > r∗. Hence for the particular learning path chosen there exists r∗2 > r∗1 such that

∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
4r

∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr) [siϕ (hi ∣ 1, σ−i) − (1 − si) ϕ (hi ∣ 0, σ−i)] +
ε

2

> ∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
4r

∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr)

⎡⎢⎢⎢⎢⎢⎢⎣

si

⎛
⎜⎜⎜
⎝

κ (hi,1, σ−i)
∑

h′i∈Hi
κ (h′i,1, σ−i)

− δ
⎞
⎟⎟⎟
⎠

− (1 − si)
⎛
⎜⎜⎜
⎝

κ (hi,0, σ−i)
∑

h′i∈Hi
κ (h′i,0, σ−i)

+ δ
⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

+ ε

2
(14)

= 1

4
∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr)

⎡⎢⎢⎢⎢⎢⎢⎣

si ∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
r

κ (hi,1, σ−i ∣ ζr)
∑

h′i∈Hi
κ (h′i,1, σ−i ∣ ζr)

− (1 − si) ∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
r

κ (hi,0, σ−i ∣ ζr)
∑

h′i∈Hi
κ (h′i,0, σ−i ∣ ζr)

− δ

⎤⎥⎥⎥⎥⎥⎥⎦

+ ε

2
(15)
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for each r > r∗2 . Now asymptotically for each θ ∈ Θ and each σ−i ∈ TR,r for r sufficiently large,

κ (σ−i ∣ ζr) /r = κ (σ−i, θ ∣ ζr) /κ (θ ∣ ζr) due to the independence of the strategy chosen in a round from

the drawn private belief in that round. Furthermore it holds ∑σ−i∈Σ−i
κ (hi, θ, σ−i ∣ ζr) = κ (hi, θ ∣ ζr).

Third ∑h′i∈Hi κ (h′i, θ ∣ ζr) ≈ κ (θ ∣ ζr) respectively ∑h′i∈Hi κ (h′i, θ, σ−i ∣ ζr) ≈ κ (θ, σ−i ∣ ζr) for r suffi-

ciently large taking appropriate subsequences. Finally recall that

ϕ̂i (hi ∣ θ; ζr) = κ (hi, θ ∣ ζr) /∑h′i∈Hi κ (h′i, θ ∣ ζr). In summary there exists r∗3 > r∗2 such that for each

r > r∗3

= 1

4
∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr)

⎡⎢⎢⎢⎢⎢⎢⎣

si ∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
r

κ (hi,1, σ−i ∣ ζr)
∑

h′i∈Hi
κ (h′i,1, σ−i ∣ ζr)

− (1 − si) ∑
σ−i∈Σ−i

κ (σ−i ∣ ζr)
r

κ (hi,0, σ−i ∣ ζr)
∑

h′i∈Hi
κ (h′i,0, σ−i ∣ ζr)

− δ

⎤⎥⎥⎥⎥⎥⎥⎦

+ ε

2

= 1

4
∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr) [si
κ (σ−i,1 ∣ ζr)
κ (1 ∣ ζr)

∑σ−i∈Σ−i
κ (hi,1, σ−i ∣ ζr)

κ (1, σ−i ∣ ζr)

− (1 − si)
κ (0, σ−i ∣ ζr)
κ (0 ∣ ζr)

∑σ−i∈Σ−i
κ (hi,0, σ−i ∣ ζr)

κ (0, σ−i ∣ ζr)
− δ] + ε

2
(16)

= 1

4
∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr) [si ϕ̂i (hi ∣ 1; ζr) − (1 − si) ϕ̂i (hi ∣ 0; ζr) − δ] +
ε

2
(17)

Note that σ̂ (ζr) best responds to (si, hi) at each hi occurring a non-vanishing fraction of the time

along path ζ∞. Hence, if σ′i ≠ σ̂ (ζr) for r > r∗3 there must exist a pair (si, hi) at which σ′i is worse than

σ̂i (ζr) in expected terms. Hence

1

4
∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ̂i (si, hi ∣ ζr) [si ϕ̂i (hi ∣ 1; ζr) − (1 − si) ϕ̂i (hi ∣ 0; ζr) − δ] +
ε

2

>1

4
∑
hi∈Hi

b

∫
b

dG1 (si)
si

σ′i (si, hi) [si ϕ̂i (hi ∣ 1; ζr) − (1 − si) ϕ̂i (hi ∣ 0; ζr) − δ] +
ε

2

(18)

for r > r∗3 . Combining equations (13) – (18) and noting that δ > 0 has been chosen arbitrarily yields

the desired contradiction.

Lemma D.1 (Remainder of the proof of Proposition 2). Let σ̂ denote a strategy with associated

assessments ϕ̂ (i.e. ϕ̂ is derived from σ̂ and σ̂ best responds to ϕ̂) and let (ϕ∗, σ∗) denote the rational

assessment and strategy.

For each i = 1, . . . , n and each ε > 0 there exists δ > 0 such that σ̂i plays ε-like σ∗i at any hi ∈ Hi such

that ϕ∗i (hi ∣ θ) > 0 for each θ ∈ Θ if ϕ̂i is δ-close to ϕ∗i .

Conversely for each i = 1, . . . , n and each ε > 0 there exists δ > 0 such that ϕ̂i is ε-close to ϕ∗i if for

each j < i σ̂j plays δ-like σ∗j at each hj such that ϕ∗j (hj ∣ θ) > 0 for each θ ∈ Θ.
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Proof. For the first statement let ϕ∗i (hi ∣ θ) > 0 for each θ ∈ Θ. Recall that σ̂i plays ε-like σ∗i at hi if

there exists a set of private beliefs Bε of (unconditional) probability mass at least 1 − ε such that for

each si ∈ Bε it holds ∣σ̂i (si, hi) − σ∗i (si, hi)∣ < ε. Since both σ̂i and σ∗i are cutoff strategies the holds

provided the respective cutoffs b̂ (∅, hi) and b∗ (∅, hi) span a private belief interval of (unconditional)

probability mass at most ε. Notice that since we rule out ties, the set {b∗ (∅, hi)} has mass zero.

Accordingly there exists ε1 > 0 such that the interval spanned by the cutoffs has probability mass at

most ε if ∣̂b (∅, hi) − b∗ (∅, hi)∣ < ε1. Cutoffs are respectively given by

b̂ (∅, hi) =
ϕ̂i (hi ∣ 0)

ϕ̂i (hi ∣ 1) + ϕ̂i (hi ∣ 0)
and b∗ (∅, hi) =

ϕ∗i (hi ∣ 0)
ϕ∗i (hi ∣ 1) + ϕ∗i (hi ∣ 0)

.

Assume that ∣ϕ̂i (hi ∣ θ)∣ < δ < min{ϕ∗i (hi ∣ 1) , ϕ∗i (hi ∣ 0)} for each θ ∈ Θ. Hence ϕ̂i (hi ∣ θ) > 0 for each

θ ∈ Θ and furthermore

∣̂b (∅, hi) − b∗ (∅, hi)∣ = ∣ ϕ̂i (hi ∣ 0)
ϕ̂i (hi ∣ 1) + ϕ̂i (hi ∣ 0)

−
ϕ∗i (hi ∣ 0)

ϕ∗i (hi ∣ 1) + ϕ∗i (hi ∣ 0)
∣

≤
ϕ̂i (hi ∣ 0) ∣ϕ∗i (hi ∣ 1) − ϕ̂i (hi ∣ 1)∣ + ϕ̂i (hi ∣ 1) ∣ϕ̂i (hi ∣ 0) − ϕ∗i (hi ∣ 0)∣

[ϕ̂i (hi ∣ 1) + ϕ̂i (hi ∣ 0)] + [ϕ∗i (hi ∣ 1) + ϕ∗i (hi ∣ 0)]

< δ

ϕ∗i (hi ∣ 1) + ϕ∗i (hi ∣ 0)
.

Accordingly since ϕ∗i (hi ∣ θ) > 0 for each θ ∈ Θ, σ̂i plays ε-like σ∗i at hi if ϕ̂i is δ-close to ϕ∗i for any

δ < min{ϕ∗i (hi ∣ 1) , ϕ∗i (hi ∣ 0) , ε1 ∗ [ϕ∗i (hi ∣ 1) + ϕ∗i (hi ∣ 0)]}.

For the conversion recall first that

∣ϕ̂i (hi ∣ θ) − ϕ∗i (hi ∣ θ)∣ =
RRRRRRRRRRRRRR
∏
j<i

b

∫
b

σ̂j (aj ∣ sj , hj) dGθ (sj) − ∏
j<i

b

∫
b

σ∗j (aj ∣ sj , hj) dGθ (sj)
RRRRRRRRRRRRRR
.

We distinguish two cases of histories. First assume that ϕ∗i (hi ∣ θ) > 0 for each θ ∈ Θ. Accordingly for

each hj ⊂ hi, j < i, and each θ ∈ Θ, ϕ∗j (hj ∣ θ) > 0. We proceed via induction. For h1 by definition

ϕ̂1 (h1 ∣ θ) = ϕ∗1 (h1 ∣ θ) = 1 for each θ ∈ Θ. Hence, assume that ϕ̂j is ε1/2-close to ϕ∗j for each j < i

provided σ̂k plays δk-like σ∗k for each k < j at each hk ⊂ hi. Let ak = ∫
b
b σ̂k (ak ∣ sk, hk) dGθ (sk) and

bk = ∫
b
b σ

∗
k (ak ∣ sk, hk) dGθ (sk) for ak ∈ hi and hk ⊂ hi. Then

∣ϕ̂i (hi ∣ θ) − ϕ∗i (hi ∣ θ)∣ = ∣∏
k<i
ak −∏

k<i
bk∣ ≤ ai−1 ∣ ∏

k<i−1

ak − ∏
k<i−1

bk∣ + ∣ai−1 − bi−1∣ ∏
k<i−1

bk.

By induction assumption ∣ ∏
k<i−1

ak − ∏
k<i−1

bk∣ < ε1/2. Furthermore there exists δi−1 such that if σ̂i−1

plays δi−1-close to σ∗i−1 at hi−1 ⊂ hi we can write

∣ai−1 − bi−1∣ ≤ δi−1Gθ (Bδi−1) + δi−1 ≤ 2 δi−1 < ε1/2

Finally for δi−1 sufficiently small 0 < ai−1 < 1. Hence, we can choose δ = minj<i δj to obtain the desired

result. On the other hand if ϕ∗i (hi ∣ θ) = 0 let j0 be the maximal j < i such that ϕ∗j (hj ∣ θ) > 0

for hj ⊂ hi. Then for each k ≤ j0, ϕ∗k (hk ∣ θ) > 0 and by the result above we can find δ > 0 such

that if σ̂k plays δ-close to σ∗k for each k ≤ j0 at each hk ⊆ hj0 then ϕ̂j0+1 (hj0+1 ∣ θ) is ε-close to

ϕ∗j0+1 (hj0+1 ∣ θ). Furthermore since ϕj0+1 (hj0+1 ∣ θ) = 0 for each θ ∈ Θ (since j0 was maximal) it must

be that ϕ̂j0+1 (hj0+1 ∣ θ) < ε. Finally, since ϕ̂i (hi ∣ θ) ≤ ϕ̂j0+1 (hj0+1 ∣ θ) the result follows for such

histories as well.
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Proof of Proposition 3. Fix some ABEE σ. We start by deriving the associated analogy-based

expectations σ̄. Fix some player i, some hj ∈ Hj and some θ ∈ Θ. For given setting k the probability

of history hj is straightforwardly defined via

ϕk (hj ∣ θ) =∏
`<j

∑
s`∈supp(dGk

θ
)
σ` (a` ∣ s`, h`) dGkθ (s`)

where a` = hj(`) and h` ⊂ hj . The probability measure νσ is thus given by

νσ (k, θ, sj , hj) = ϕk (hj ∣ θ) dGkθ (sj)
πk
2

and the associated conditional probabilities satisfy

νσ (k, sj ∣ hj , θ) =
πk dG

k
θ (sj) ϕ

k (hj ∣ θ)
K

∑
k′=1

πk′ ϕk
′ (hj ∣ θ) ∫

s∈supp(Gk
θ
)
dGkθ(s)

=
πk ϕ

k (hj ∣ θ)
K

∑
k′=1

πk′ ϕk
′ (hj ∣ θ)

dGkθ (sj) .

Hence, for each i = 1, . . . , n

σ̄i (hj , θ) =
K

∑
k=1

∫
sj∈supp(Gk

θ
)

πk ϕ
k (hj ∣ θ)

K

∑
k′=1

πk′ ϕk
′ (hj ∣ θ)

dGkθ (sj) σj (sj , hj) .

We now prove via induction that for each i ϕ̄ satisfies ϕ̄ (hi ∣ θ) = ∑Kk=1 πk ϕ
k (hi ∣ θ). For i = 1 this is

clear since ϕk (h1 ∣ θ) = 1 and ∑Kk=1 πk = 1. Assume that the claim holds for all j ≤ i. For hi ∈ Hi and

ai ∈ A we obtain

ϕ̄ ((hi, ai) ∣ θ) = ϕ̄ (hi ∣ θ) ∗ σ̄i (ai ∣ hi, θ)

=
⎡⎢⎢⎢⎢⎣

K

∑
k1=1

πk1 ϕ
k1 (hi ∣ θ)

⎤⎥⎥⎥⎥⎦
∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K

∑
k2=1

∫
si∈supp(Gk2

θ
)

πk2 ϕ
k2 (hi ∣ θ)

K

∑
k3=1

πk3 ϕ
k3 (hi ∣ θ)

dGk2θ (si) σi (ai ∣ si, hi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
K

∑
k2=1

πk2 ϕ
k2 (hi ∣ θ) ∫

si∈supp(Gk2
θ

)

σi (ai ∣ si, hi) dGk2θ (si)

=
K

∑
k2=1

πk2 ϕ
k2 ((hi, ai) ∣ θ) .

For the purpose of deriving the iteratively undominated strategies the ex-ante expected utility for

player i given analogy-based expectations σ̄ is given by

Ui (σi, σ̄) =
K

∑
k=1

πk ∑
hi∈Hi

∫
si∈supp(Gk1)

σi (si, hi) [si ϕ̄ (hi ∣ 1) − (1 − si) ϕ̄ (hi ∣ 0)] dG
k
1 (si)
si

= ∑
hi∈Hi

∫
si∈⋃k supp(Gk1)

σi (si, hi) [si ϕ̄ (hi ∣ 1) − (1 − si) ϕ̄ (hi ∣ 0)] ∑
K
k=1 dG

k
1 (si)

si
.

Clearly, the optimal response to assessments ϕ̄ requires σi (si, hi) = 1 if si ϕ̄ (hi ∣ 1) > (1 − si) ϕ̄ (hi ∣ 0)
and σi (si, hi) = 0 if si ϕ̄ (hi ∣ 1) < (1 − si) ϕ̄ (hi ∣ 0). Straightforward manipulations show that this is

equivalent to sequential best reponse. Moreover assessments ϕ̄ (hi ∣ θ) do only depend on strategies

for periods j < i. Therefore the strategy for period 1 does not depend on assessments and is uniquely
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defined except at si = 1/2 which occurs with strictly positive probability only in non-generic settings.

Therefore assessments for period 2 are uniquely defined yielding a uniquely defined strategy in period

2 (again outside non-generic settings). This argument is straightforwardly extended to all periods

proving the claim.

Proof of Proposition 4. The proof invokes the standard inductive argument: In the first period

assessments trivially coincide with analogy-based assessments and strategic responses are uniquely

defined by myopic Bayesian rationality in each repetition and coincide with both ABEE and rational

play (since assessments are trivial). Assume the claims hold for periods j < i. For some learning path

ζr and some settings k define frequencies κ (k, hi, θ ∣ ζr) in the obvious way. Assessments for period i

may then be decomposed as

ϕ̂ (hi ∣ θ; ζr) =
κ (hi, θ ∣ ζr)

∑h′i κ (h′i, θ ∣ ζr)
=

K

∑
k=1

κ (k, hi, θ ∣ ζr)
∑k′ ∑h′i κ (k′, h′i, θ ∣ ζr)

∗
∑h′i κ (k, h′i, θ ∣ ζr)

∑h′i κ (k, h′i, θ ∣ ζr)

=
K

∑
k=1

κ (k, hi, θ ∣ ζr)
∑h′i κ (k, h′i, θ ∣ ζr)

∗
∑h′i κ (k, h′i, θ ∣ ζr)

∑k′ ∑h′i κ (k′, h′i, θ ∣ ζr)
.

By induction assumption, an adaption of the second part of Lemma D.1 and the SLLN for conditional

expectations (SLLNCE) the first part of each summand converges to ϕk (hi ∣ θ) for each k = 1, . . . ,K

along almost any ζ∞. On the other hand the SLLNCE and independent draws of setting and state of

Nature imply that the second part converges to πk for each k along almost any ζ∞. In conjunction

with Proposition 3 this implies that ϕ̂ (hi ∣ θ; ζr) converges to ϕ̄ (hi ∣ θ) along almost any ζ∞ for each

hi ∈ Hi and each θ ∈ Θ. Hence, assessments almost surely eventually become arbitrarily close to

analogy-based assessments in period i as well. Induction and proof are finished by adapting the first

part of Lemma D.1.

Proof of the Corollary. We provide a generic example: For K = 2 let Gkθ , k = 1,2 be continuous

and satisfy G1
0(1/2)/G1

1(1/2) < G2
0(1/2)/G2

1(1/2) and let π1 = 1 − π2 = π where 0 < π < 1.

After a rejection in the first period (a1 = 0), second period’s assessments are given by

ϕ̄(0 ∣ θ) = πG1
θ(1/2) + (1 − π)G2

θ(1/2) and ϕ∗k(0 ∣ θ) = Gkθ(1/2) for k = 1,2. Accordingly public

beliefs satisfy

b2∗(∅, (0)) = G2
1(1/2)

G2
1(1/2) +G2

0(1/2)

< πG1
1(1/2) + (1 − π)G2

1(1/2)
π (G1

1(1/2) + G1
0(1/2)) + (1 − π) (G2

1(1/2) + G2
0(1/2))

= b̄2(∅, (0))

< G1
1(1/2)

G1
1(1/2) +G1

0(1/2)
= b1∗(∅, (0)).

Accordingly, in ABEE by continuity of private belief distributions players eventually imitate the first

player’s rejection too often in environment E1 and too seldom in environment E2.

60

ha
ls

hs
-0

05
72

52
8,

 v
er

si
on

 2
 - 

2 
M

ar
 2

01
1



Proof of Lemma 2. Fix period i. Given the vector of assessments (ϕ1, . . . , ϕk) the expected payoff

to strategy σ is given by

Ui (σ ∣ ϕ1, . . . , ϕK) = 1

4

K

∑
k=1

πk ∑
hi∈Hi

1

∫
0

σ(s, hi) [ϕk(hi ∣ 1)dGk1(s) − ϕk(hi ∣ 0)dGk0(s)]

= 1

4
∑
hi∈Hi

1

∫
0

σ(s, hi)
K

∑
k=1

πk [ϕk(hi ∣ 1)dGk1(s) − ϕk(hi ∣ 0)dGk0(s)] .

Obviously, this expression is maximized on Σ by selecting σ(s, hi) = 1 whenever U(s, hi) = ∑Kk=1 πk [ϕk(hi ∣
1)dGk1(s) − ϕk(hi ∣ 0)dGk0(s)] > 0 and σ(s, hi) = 0 whenever U(s, hi) < 0. This straightforwardly yields

the optimal strategy σ∗.

Proof of Proposition 5. We provide a generic example with K = 2. For k = 1,2, Gkθ is continu-

ously distributed on supp(Gkθ) = [1 − ak, ak] according to conditional densities gk0(s) = 2 (1−s)/2ak − 1

and gk1(s) = 2 s/(2ak − 1). W.l.o.g. a1 < a2. The benchmark strategy σ∗ can be straightforwardly

derived as σ∗(s, h) = 1 if s > 1 − b̌(∅, h ∣ ϕ1, . . . , ϕK) and σ∗(s, h) = 0 if s < 1 − b̌(∅, h ∣ ϕ1, . . . , ϕK)
where the benchmark public belief is given by

b̌(∅, h ∣ ϕ1, . . . , ϕK) =

K

∑
k=1

πk
2ak −1 ϕ

k(h ∣ 1)

K

∑
k=1

πk
2ak −1 [ϕk(h ∣ 1) + ϕk(h ∣ 0)]

.

On the other hand in the ABEE players invest if s > 1−b(∅, h ∣ ϕ1, . . . , ϕK) and reject if s < 1−b(∅, h ∣
ϕ1, . . . , ϕK) where the ABEE public belief is given by

b(∅, h ∣ ϕ1, . . . , ϕK) = ∑Kk=1 πk ϕ
k(h ∣ 1)

∑Kk=1 πk [ϕk(h ∣ 1) + ϕk(h ∣ 0)]
.

As before continuity of private beliefs implies that ABEE and benchmark strategy differ unless at

all histories occurring with strictly positive probability ABEE and benchmark public belief either

coincide or lie both strictly within the same cascade set. By straightforward algebraic transformation

we obtain

b(∅, h ∣ ϕ1, . . . , ϕK) − b̌(∅, h ∣ ϕ1, . . . , ϕK) =
2 (a2 − a1) [ϕ2(h ∣ 1)ϕ1(h ∣ 0) − ϕ1(h ∣ 1)ϕ2(h ∣ 0)]

(2a2 − 1) (2a1 − 1)
.

Therefore ABEE and benchmark strategy coincide if and only if for each history occurring a strictly

positive fraction of the time either ϕ1(h ∣ 1) ∗ ϕ2(h ∣ 0) = ϕ2(h ∣ 1) ∗ ϕ1(h ∣ 0), or ABEE and

benchmark public belief lie strictly within a cascade set. Generically this is not satisfied. For instance

in period 2

ϕk(a1 = 1 ∣ θ) = 1 −Gkθ(1/2) =
⎧⎪⎪⎨⎪⎪⎩

1
4 + ak

2 if θ = 1
1
4 + 1−ak

2 if θ = 0

which implies that b(∅, (1) ∣ ϕ1, ϕ2) − b̌(∅, (1) ∣ ϕ1, ϕ2) = (a2−a1)2
(2a2−1) (2a1−1) > 0 and b(∅, (1) ∣ ϕ1, ϕ2) =

1
4 + π a1 +(1−π)a2

2 ∈ (1− a1, a2) since a1 < π a1 + (1−π)a2 < a2 and a2 > a1 > 1/2. A similar result holds

for h2 = (0).
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Proof of Proposition 6. We calculate the second derivative of

b̌(s, h, ε) = b(s,∅) [b(∅, h) + ε]
b(s,∅) [b(∅, h) + ε] + [1 − b(s,∅)] [1 − b(∅, h) − ε]

with respect to ε. We obtain

∂2 b̌(s, h, ε)
∂ ε2

= 2 b(s,∅) [1 − b(s,∅)] [1 − 2 b(s,∅)]
[b(s,∅) [b(∅, h) + ε] + [1 − b(s,∅)] [1 − b(∅, h) − ε]]3

.

Obviously, ∂2 b̌(s, h, ε)/∂ ε2 > 0 if b(s,∅) < 1/2 and ∂2 b̌(s, h, ε)/∂ ε2 < 0 if b(s,∅) > 1/2. Therefore

b̌(s, h, ε) is strictly convex in ε if b(s,∅) < 1/2 and strictly concave in ε if b(s,∅) > 1/2. Furthermore

clearly, b′(s, h) = b̌(s, h, ε̃h). Thus if ηh > 0 by Jensen’s inequality for b(s,∅) < 1/2,

Eε̃h [b
′(s, h)] > b̌ (s, h,Eε̃h[ε̃h]) = b̌(s, h,0) = b(s, h)

and for b(s,∅) > 1/2
Eε̃h [b

′(s, h)] < b̌ (s, h,Eε̃h[ε̃h]) = b̌(s, h,0) = b(s, h).

Proof of Lemma 3. Rewrite expected payoff in the noisy social learning game of strategy σ given

probabilities Pr(h ∣ θ) as

Uη(σ) =
1

4n

b

∫
b

1

∫
0

σ(s, x) [f(x ∣ 1)dG1(s) − f(x ∣ 0)dG0(s)] dx

where

f(x ∣ θ) = ∑
h∈H

Pr(h ∣ θ)φh (x − b(∅, h))

is the probability density function of the random variable b′(∅, h̃). A similar separability argument as

we have used before then implies that the optimal strategy σ∗η ∈ Ση is given by

σ∗η(s, x) =
⎧⎪⎪⎨⎪⎪⎩

1 if b(s,∅) > ∑h∈H Pr(h∣0)φh(x−b(∅,h))
∑h∈H [Pr(h∣1)+Pr(h∣0)]φh(x−b(∅,h))

0 if b(s,∅) < ∑h∈H Pr(h∣0)φh(x−b(∅,h))
∑h∈H [Pr(h∣1)+Pr(h∣0)]φh(x−b(∅,h))

.

Proof of Proposition 7. We show that generically the first derivative of

t(x ∣ η) =
∑
h∈H

Pr(h ∣ 0)φh (x − b(∅, h))

∑
h∈H

[Pr(h ∣ 1) + Pr(h ∣ 0)] φh (x − b(∅, h))

with respect to η2
h is different from zero provided ηh′ is sufficiently large for some h′ ∈H. This in turn

implies that for generic η, t(x ∣ η) ≠ 1 − x.
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As a first step we calculate

∂ φh (x − b(∅, h))
∂ η2

h

= 1√
2π

exp(− (x − b(∅, h))2

2η2
h

)
⎛
⎜
⎝
− 1

2η2
h

√
η2
h

⎞
⎟
⎠

+ 1
√

2π η2
h

exp(− (x − b(∅, h))2

2η2
h

) (x − b(∅, h))2

2η2
h η

2
h

= φh (x − b(∅, h ∣ ϕ∗))
(x − b(∅, h))2 − η2

h

2 [η2
h]

2
.

This implies that ∂ φh (x − b(∅, h)) /∂ η2
h ≠ 0 whenever

x − b(∅, h) ≠ ηh (19)

and φh (x − b(∅, h ∣ ϕ∗)) > 0 which is approximately satisfied if

∣x − b(∅, h ∣ ϕ∗)∣ < 3ηh. (20)

Denote by N = ∑h∈H [Pr(h ∣ 1) + Pr(h ∣ 0)] φh (x − b(∅, h)). The derivative of t(x ∣ η) with re-

spect to η2
h is then given by

∂ t(x ∣ η)
∂ η2

h

= 1

N2
{Pr(h ∣ 0) ∂ φh (x − b(∅, h))

∂ η2
h

∗ ∑
h′∈H

[Pr(h′ ∣ 1) + Pr(h′ ∣ 0)] φh′ (x − b(∅, h′))

− [Pr(h ∣ 1) + Pr(h ∣ 0)] ∂ φh (x − b(∅, h))
∂ η2

h

∑
h′∈H

Pr(h′ ∣ 0)φh′ (x − b(∅, h))}

= 1

N2

∂ φh (x − b(∅, h))
∂ η2

h

∑
h′∈H

φh′ (x − b(∅, h)) [Pr(h′ ∣ 1)Pr(h ∣ 0) − Pr(h ∣ 1)Pr(h′ ∣ 0)] .

From the argumentation above ∂ t(x ∣ η)/∂ η2
h ≠ 0 can only hold for x satisfying (19) and (20). On

the other hand the summand for h in the sum in the last line is zero. Hence, a necessary condition

for the sum to be different from zero is existence of at least one h′ ≠ h such that φh′ (x − b(∅, h′)) ≠ 0

for at least one x satisfying (19) and (19). Since generically b(∅, h′) ≠ b(∅, h) this requires that ηh′ is

sufficiently large. Conversely, existence of such a history h′ is generically also sufficient for the sum to

be different from zero. To see this assume first that there exists exactly one such history h′ ≠ h. In

this case ∂ t(x ∣ η)/∂ η2
h ≠ 0 if Pr(h′ ∣ 1)Pr(h ∣ 0) ≠ Pr(h′ ∣ 0)Pr(h ∣ 1). Not being an identity, this is

generically satisfied (see Smith and Sørensen, 2000, p.389). More generally if more than one h′ satisfy

the condition the sum is one of several generically non-zero terms each weighted by φh′ (x − b(∅, h)).
Clearly, this sum will generically be different from zero.

Benefits of Overweighting with Heterogeneous Preferences (Section 7.3). We have

K = 2 and α1 = α2 = 1/2. The distribution of private beliefs in game k = 1,2, is given by supp(Gkθ) =
{1 − qk, qk} and Pr (b(s̃,∅) = qk ∣ θ̃ = 1) = Pr (b(s̃,∅) = 1 − qk ∣ θ̃ = 0) = qk where 1/2 < q1 < q2 < 1. Fur-

thermore in game 2 only a fraction (1−2 ξ2) has standard preferences while there exist ξ2 noise players

each which always invest or always reject respectively. In both environments in the first two periods
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players optimally follow private information. (In game 1 we make this assumption for simplicity. It

can be justified for instance by assuming a small positive fraction 0 < ξ1 ≪ ξ2 of noise players in this

game as well.) In the third period clearly imitating two similar decisions in period 3 is optimal in

game 1 while in game 2 following private information is optimal provided q2 and ξ2 jointly satisfy

[ξ2 + (1 − 2 ξ2) q2]2 (1 − q2) < [ξ2 + (1 − 2 ξ2) (1 − q2)]2 q2 ⇔ ( ξ2

1 − 2 ξ2
)

2

> q2 (1 − q2).

On the other hand in the mixed environment assessments in the third period are given by

ϕ∗((1,1) ∣ θ̃ = 1) = ϕ∗((0,0) ∣ θ̃ = 0) = [q1

2
+ ξ2

2
+ 1 − 2 ξ2

2
q2]

2

,

ϕ∗((1,1) ∣ θ̃ = 0) = ϕ∗((0,0) ∣ θ̃ = 1) = [1 − q1

2
+ ξ2

2
+ 1 − 2 ξ2

2
(1 − q2)]

2

.

Consider the heterogeneous updating rule model of March and Ziegelmeyer (2009). A player of type

β ∈ (0,∞) in game k imitates the first two decisions in period 3 iff ϕ∗((1,1) ∣ 1) (1− qk)β > ϕ∗((1,1) ∣
0) qβk and follows private information if the inequality is reversed. Accordingly provided

log (ϕ∗((1,1) ∣ 1)) − log (ϕ∗((1,1) ∣ 0))
log(q2) − log(1 − q2)

< β < log (ϕ∗((1,1) ∣ 1)) − log (ϕ∗((1,1) ∣ 0))
log(q1) − log(1 − q1)

the player correctly imitates in game 1 and correctly follows private information in game 2. Since

q1 < q2 this interval is well-defined. Furthermore the lower bound strictly exceeds 1 provided

q2 <
q2

1

q2
1 + (1 − q1)2

and
√
q2 (1 − q2) − 2 q2 (1 − q2)

(2 q2 − 1)2
< ξ2 <

2
√
q2 (1 − q2) − 2 q2 (1 − q2) − q2 (1 − q1) − q1 (1 − q2)

(2 q2 − 1)2
.

Hence, for these values of the parameters, overweighting is profitable with n = 3.
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