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Abstract

In this paper we examine the role played by heterogeneity in the popular “con-

nections model” of Jackson andWolinsky (1996). We prove that under heterogeneity

in values or decay involving only two degrees of freedom, all networks can supported

as Nash. Moreover, we show that Nash networks may not always exist. In the ab-

sence of decay, neither result can be found in a model with value heterogeneity.

Finally, we show that on reducing heterogeneity, both the earlier “anything goes”

result and the non-existence problem disappear.
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1 Introduction

The connections model of Jackson and Wolinsky (1996) is one of the most popular

models in network theory. In this model an agent acquires information from all the

agents she is directly or indirectly linked to and pays a fixed cost for all her direct

links. However, the model allows for partial transitivity of resources that an agent

obtains. First, the information she obtains from her direct links is weighted by a

decay parameter. Indirect links yield still lower benefits in the following manner –

from those who are two links away the information is weighted by the square of the

decay parameter, from those three links away by its cube, and so on. Since informa-

tion loses value as it travels along a sequence of links, the decay parameter captures

the idea that “it is better to have the facts straight from the horse’s mouth.” Bala

and Goyal (2000) studied Nash as well as strict Nash networks for the homogeneous

(values, costs of link formation and decay) parameters version of this model.1

In this paper we introduce heterogeneity in the model by first allowing for value

heterogeneity, keeping the link cost as well as the decay parameter same for all

links. A second version of the model allows for heterogeneity in the decay parame-

ter while keeping values and costs constant across all links. Heterogeneity of players

and links arise quite naturally in information networks. For example, some indi-

viduals are better informed which makes them more valuable as contacts. This can

be understood as heterogeneity of players in the model. Similarly the extent of

the communication between pairs of individuals can vary, since it is often easier to

communicate with some individuals than with some others. Thus the amount of

1A decay model for Nash networks has recently been analyzed by Hojman and Szeidl (2008). In

this model, costs of links are homogeneous and linear, while the benefit function is quite general. The

authors assume that the benefit function is strictly increasing and concave. Moreover, the benefits from

links further away go to zero at some threshold level of distance. The authors find that Nash networks

tend to have a core-periphery structure. Due to the nature of their payoff function however, we are

unable to compare our results with them. Instead, we restrict attention to the papers mentioned in the

introduction which utilize the linear payoff specification of Bala and Goyal (2000).
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information acquired will depend on the link(s) through which it travels, allowing

us to model this as link heterogeneity. The paper studies the existence and charac-

terization of (strict) Nash networks for these two types of heterogeneity.

Heterogeneity in Nash networks has been studied by Galeotti, Goyal and Kam-

phorst (2006) and Haller, Kamphorst and Sarangi (2007). Both these models in-

vestigate the consequences of heterogeneity for the full transitivity (or no decay)

model of Nash networks with homogeneous parameters introduced to the literature

by Bala and Goyal. In the Bala and Goyal model with no decay, each agent pays

only for her direct links and is able to acquire the full value of information of all

agents she is directly or indirectly linked to. Haller, Kamphorst and Sarangi intro-

duce heterogeneity in the value and cost parameters to study the existence of Nash

networks. Galeotti, Goyal and Kamphorst also introduce heterogeneity in values

and costs but focus on the characterization of strict Nash networks.

The contribution of this paper to the literature can be summarized in the follow-

ing manner. When decay and costs are homogeneous while the link between player

i and player j provides value Vi,j to player i we find that:

1. Nash networks may not always exist. This is in sharp contrast to Haller,

Kamphorst and Sarangi who find that in models of full transitivity, value

heterogeneity does not lead to non-existence. Non-existence occurs only with

cost heterogeneity. However, if we reduce heterogeneity by allowing Vi,j =

Vi, then it turns out that Nash networks always exist. This result is also

interesting for another reason. As a corollary it tells us that Nash networks

always exist in the homogeneous parameters model of Bala and Goyal (2000)

− an issue that these authors had left unresolved in their paper.

2. All networks can be supported as strict Nash networks. This result echoes

the full transitivity model of Galeotti, Goyal and Kamphorst with cost het-

erogeneity which shows that strict Nash networks must be minimal as well as

3
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its converse.2 We know that under full transitivity (regardless of parameters

values) with costly link formation, the set of potential strict Nash networks3

consists of networks without any links that do not provide access to new play-

ers. With cost heterogeneity, Galeotti, Goyal and Kamphorst show that the

set of strict Nash networks coincides with the set of potential strict Nash net-

works, i.e., the equilibrium set is maximal. We find that the same is true in

our model. Hence with partial transitivity value heterogeneity functions like

cost heterogeneity with full transitivity.

3. In general, we find that when we reduce the magnitude of heterogeneity or set

Vi,j = Vi, the “anything goes” results disappear. Moreover, in this case we

find that strict Nash networks must contain only one component. However,

unlike Galeotti, Goyal and Kamphorst where all players must belong to some

component, isolated players can exist in our model.

The model with heterogeneous decay and homogeneous cost and values yields

similar results. Therefore these results are presented very briefly in the paper.

The rest of the paper is organized as follows. Section 2 introduces the model.

Section 3 presents the results on Nash networks in models with decay and hetero-

geneity.

2 Model Setup

In this section we define the formal elements of the strategic form network formation

game. Let N = {1, . . . , n}, n ≥ 3, denote the set of players with generic elements

i, j, k.

Strategies. For player i a pure strategy is a vector gi = (gi,1, . . . , gi,i−1, gi,i+1,

. . . , gi,n) ∈ {0, 1}n−1. Since our aim is to model network formation, gi,j = 1 implies

2Minimal networks consist of components without any links that do not provide access to new players.
3That is the set of networks such that there exist parameters which allow these networks to be Nash.
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that there exists a direct link between i and j initiated by player i; this link is

denoted by i j. If gi,j = 0, then i does not initiate a link with j. Regardless of what

player i does, player j can always choose to initiate a link with i or set gj,i = 0.

Here we focus only on pure strategies. The set of all pure strategies of player i is

denoted by Gi and consists of 2n−1 elements. The joint strategy space is given by

G = G1 × · · · × Gn. Note that there is a one-to-one correspondence between G and

the set of all simple directed graphs (that is graphs with no loops and there is at

most one directed link from a player i to a player j) or networks with vertex set N .

Namely, to a strategy profile g = (g1, . . . , gn) ∈ G corresponds the graph (N,E(g))

where E(g) is the set of links which satisfies i j ∈ E(g) iff gi,j = 1. In the sequel,

we identify a joint strategy g by its corresponding graph and use the terminology

directed graph or network g for it.

Network definitions. The closure of g, denoted by g ∈ G, is defined by

gi,j = max {gi,j , gj,i} for i %= j. The closure of g is thus the undirected counter-part

of g. If gi,j = 1, then there is a non-directed link between player i and player j;

this non-directed link is denoted by [i j]. A path of length m in g ∈ G from player i

to player j %= i, is a finite sequence i0, i1, . . . , im of distinct players such that i0 = i,

im = j, and gik,ik+1 = 1 for k = 0, . . . ,m−1. We define a chain of length m between

player k and player j, j %= k by replacing gj!,j!+1
= 1 by gj!,j!+1

= 1. Let Ci,j(g)

be the set of chains between i and j in the network g, and let Ci,j(g) be a typical

element of Ci,j(g). To simplify we say that the non-directed link [! !′] belongs to a

chain Ci,j(g) if players ! and !′ belong to the chain and g!,!′ = 1. A network g is

connected if there is a chain in g between all players i, j ∈ N . Given a network g, we

define a component, D(g), as a set of players such that there is a chain between any

two players who belong to D(g), and there does not exist a chain between a player

in D(g) and a player who does not belong to D(g). We do not consider isolated

players (players who do not form and receive any links) as components. A network

g is connected if it contains only one component which consists of all players. It is

minimally connected if it is not possible to preserve connectivity whenever a link

5
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is removed. A network is minimal if every component is minimally connected. A

network g is called a star if there is a vertex is, such that for all j %= is, gis,j = 1

and for all k %∈ {is, j}, gk,j = 0. Moreover a star, where gis,j = 1 for all j %= is

is a center-sponsored star. Finally, a network g ∈ G is essential if gi,j = 1 implies

gj,i = 0.

Payoffs. Payoffs of player i are given by the difference between benefits Bi(g)

and costs ci(g). Hence the payoff of player i in network g is given by

ui(g) = Bi(g)− ci(g). (1)

Next we define two types of heterogeneity in networks by introducing costs and

different benefit formulations.

(i) Link Costs. Players incur costs only for the links they establish. The cost

of each link is assumed to be the same, and the cost of forming links for player i is

given by:

ci(g) =
∑

j #=i

gi,jc, (2)

with c > 0. In this paper we only use homogeneous costs. Note that in our con-

text heterogeneous costs would not improve anything because (i) they would only

increase the set of potential strict Nash networks, and (ii) they would weaken the

possibility of existence of Nash networks. This issue is discussed in detail in subse-

quent sections of the paper (see also Galeotti et al., 2006 for more on this).

(ii) Link Benefits. In the Nash networks setting, decay models were analyzed

by Bala and Goyal (2000) who assumed that the value of information, the costs of

link formation, and the decay parameter were identical across all players and links.

In other words, they analyzed the case of homogeneous decay. Here we propose two

different frameworks to study the interaction between heterogeneity and decay.

We denote byNi(g) = {i}∪{j ∈ N\{i} | there exists a chain in g between i and j},

the set of players that player i can access or “observe” in network g. Since player

6
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i can obtain resources from a player j with whom she is linked due to the chain, it

follows that there is two-way flow of information.

Decay with Heterogeneous Players. Here we use the homogeneous decay

assumption in conjunction with the heterogeneous players framework of Galeotti,

Goyal and Kamphorst (2006). Information received from j is worth Vi,j ≥ 0 to

player i. Let V M = max(i,j)∈N×N{Vi,j} and V m = min(i,j)∈N×N{Vi,j}. The bene-

fits function can be written as:

Bi(g) =
∑

j∈Ni(g)

δdi,j(g)Vi,j (3)

where δ is the decay parameter and di,j(g) is the geodesic distance in the shortest

chain between i and j in g. We set di,j(g) = ∞ if there is no chain between i and

j in g.

Decay with Heterogeneous Links. In this model we capture the fact that

the quantity of information a link can convey is not the same across all links under

decay. In other words, some channels of information or chains are “better” than

others.

We measure decay associated with a link i j by the parameter δi,j ∈ [0, 1]. For

this model we retain the symmetry assumption, that is δi,j = δj,i. Without loss of

generality we assume that the value of the resources of each player V = 1. Given a

network g, it is assumed that if player i has formed a link with player j, then she

receives information of value δi,j from j. The benefits of player i in the network g

is then given by:

Bi(g) =
∑

j∈Ni(g)




∏

[! k]∈C∗
i,j(g)

δ!,k



 , (4)

where C∗
i,j(g) = argmaxCi,j(g)∈Ci,j(g)

{∏
[! k]∈Ci,j(g)

δ!,k
}
.

Note that this expression fundamentally differs from the previous one because

it does not use the geodesic distance between players to determine the value of in-

7
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formation obtained.

Observe that in the model with heterogeneous decay, the amount of information

that passes through a link between any two players depends on the identity of the

players. On the other hand, with heterogeneous values the links between all players

have the ability to convey the same amount of information, but the value that is

acquired through a link now depends on the identity of the players.

Nash Networks. Given a network g ∈ G, let g−i denote the network that

remains when all of player i’s links have been removed. Clearly, g = gi ⊕ g−i,

where the symbol ⊕ indicates that g is composed of the union of links in gi and

g−i (similarly the symbol ) is used to indicate removal of links). A strategy gi is

a best response of player i to g−i if

ui(gi ⊕ g−i) ≥ ui(g
′
i ⊕ g−i), for all g′

i ∈ Gi.

Let BRi(g−i) denote the set of player i’s best responses to g−i. A network g =

(g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each i ∈ N . We define

a strict best response and a strict Nash network by replacing “≥” with “>”. Note

that if g ∈ G is a Nash network, then it must be essential. This follows from the

fact that each link is costly, and allows for two-way flow of information regardless

of who initiates (and pays for) the link.

3 Results

In this section we investigate Nash networks in the connections model with hetero-

geneity.

3.1 Decay with Heterogeneous Players

In this section we first examine the existence of Nash networks, then we characterize

strict Nash networks.

8
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I. Existence of Nash networks. Existence of Nash networks in two-way flow

models with decay has not been studied before in the literature. We know that the

introduction of full heterogeneity on the costs of setting links without any decay

can lead to non existence of Nash networks (see Haller, Kamphorst and Sarangi,

2007). Hence, we introduce heterogeneity in stages. We begin by showing that if

heterogeneity is not “too high”, more precisely if Vi,j = Vi for all i ∈ N , then a

Nash network always exists. It follows that there always exists a Nash network in

the model of Bala and Goyal (2000).

Proposition 1 If the benefits function satisfies equation (3) and, for all i ∈ N ,

Vi,j = Vi, for all j ∈ N \ {i}, then a Nash network always exists.

Proof. Let Z0 = {j ∈ N | δVj ≥ c} be the set of players who have an incentive to

form a link with any player j with whom they are not (indirectly) linked; and let

z be the maximal value player, that is the player such that Vz ≥ Vi for all i ∈ N .

Moreover, let Z1 = {j ∈ N | (δ − δ2)Vj ≥ c} be the set of players who have an

incentive to form a link with any player j with whom they are not directly linked.

Clearly if Z1 %= ∅, then z ∈ Z1. Further if Z1 = ∅, then no player i will form a link

with a player j in g whenever di,j(g) ≤ 2. If Z0 = ∅, then the empty network is a

Nash network. If Z0 %= ∅ and Z1 = ∅, then we let player z form links with all other

players. We obtain a center-sponsored star, gcs, which is a Nash network. Indeed,

the distance between all players i ∈ N \ {z} and j ∈ N \ {z, i} is 2 in gcs and we

know that Z1 = ∅. It follows that no player i ∈ N \ {z} has an incentive to form

a link with j ∈ N \ {z, i} in gcs. If Z0 %= ∅ and Z1 %= ∅, then we create network g

where player z forms links with all other players and where gj,i = 0 implies gi,j = 1

for all i ∈ Z1 and for all j ∈ N \ {z}. Clearly, g is Nash since player z ∈ Z1 has no

incentive to delete one of her links, each player i ∈ Z1 has no incentive to delete any

link by construction and no player i′ %∈ Z1 has any incentive to form an additional

link (otherwise she would belong to Z1). It follows that a Nash network always

exists.

9
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!

Although Bala and Goyal (2000) are able to provide a partial characterization of

strict Nash networks in the model with decay and homogeneous parameters model,

they do not tackle the existence question. Existence of strict Nash networks in the

homogeneous parameters model with decay is now an obvious corollary of Proposi-

tion 1.

Corollary 1 Let the payoff function be the one given in Bala and Goyal (2000,

pg.1210). Then a Nash network always exists.

Proposition 2 If the benefits function satisfies equation (3), then a Nash network

does not always exist.

Proof. The proof is given through an example. Let N = {1, . . . , 5} be the set of

players, and assume that:

1. V1,2

(
δ − δ4

)
+ V1,3(δ2 − δ3) > c, δV1,3 < δV1,2 < c, and for all j %= 2, δV1,j +

δ2
∑

k #=j V1,k < c.

2. V2,3

(
δ − δ4

)
+ V2,4(δ2 − δ3) < c, δV2,3 + δ2V2,4 + δ3V2,5 + δ4V2,1 > c, and for

all j %= 3, δV2,j + δ2
∑

k #=j V2,k < c.

3. (δ − δ2)V3,4 > c and δ
∑

k #=4 V3,k + δ2V3,4 < c.

4. (δ − δ2)V4,5 > c and δ
∑

k #=5 V4,k + δ2V4,5 < c.

5. (δ − δ2)V5,1 > c and δ
∑

k #=1 V5,k + δ2V5,1 < c.

These five points provide a list of the players with whom the others have no incen-

tives to form links, as well as those with whom they would like to form links. For

example, item 1 implies that player 1 will never form a link with players 3, 4 and 5.

Moreover, a Nash network must contain the links 3 4, 4 5, 5 1. From all of this, it

follows that there are four possible Nash networks: E(g1) = (3 4, 4 5, 5 1, 1 2, 2 3),

E(g2) = (3 4, 4 5, 5 1, 1 2), E(g3) = (3 4, 4 5, 5 1), E(g4) = (3 4, 4 5, 5 1, 2 3). We

know from item 2 that player 2 prefers the network g2 to the network g1, so g1 is

not Nash. Likewise, player 1 prefers the network g3 to the network g2 by point 1,

10
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so g2 is not Nash. Player 2 prefers the network g4 to the network g3 by point 2, so

g3 is not Nash. Finally, by point 1, player 1 prefers the network g1 to the network

g4. Hence g4 is not Nash. !

This result provides an interesting comparison with the findings of Haller, Kam-

phorst and Sarangi (2007). The authors show that in the model with no decay,

value heterogeneity (and homogeneous cost) does not lead to non existence (2007,

Proposition, pg.602) while cost heterogeneity does (2007, Example 2, pg.602). By

contrast however in a model with homogeneous costs and decay, Proposition 2 shows

that value heterogeneity can lead to non-existence.

II. Characterization of Strict Nash networks. We begin by showing that

the introduction of player heterogeneity dramatically increases the set of strict Nash

networks.

Theorem 1 Let g be an essential network. If the benefits function satisfies equation

(3), then there exist a link cost c > 0, a decay δ ∈ (0, 1), and an array V = [Vi,j ] of

values such that g is a strict Nash network in the corresponding network formation

game.

Proof. Suppose g is an essential network. Let V 1 = 1, c = (n− 3/2)/n2, δ = 1/n,

V 0 = 1/(3n). We construct a symmetric n × n-matrix [Vi,j ] of value as follows. If

i %= j and i and j are linked, i.e. gi,j = 1 or gj,i = 1 set Vi,j = V 1. Otherwise

set Vi,j = V 0. Now consider i %= j. Let gi,j = 0. Then, either gj,i = 1 or

gj,i = 0. In the first case, agent i receives zero marginal benefits but incurs an

additional positive cost when forming the link i j. It follows that gi,j = 0 is the

unique optimal choice for i given g−i. For gj,i = 0, Vi,j = V 0 = 1/(3n). If

player i forms a link with j, then she obtains at most marginal benefits equal to

δV 0 + (n − 2)δ2V 1. We show that δV 0 < c − (n − 2)δ2V 1. We have δV 0 =

1/(3n2) < 1/(2n2) = (n − 3/2)/n2 − (n − 2)/n2 = c − (n − 2)δ2V 1. Therefore

regardless of other links, not initiating the link i j is optimal for agent i. Now let

11
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gi,j = 1. Then by essentiality of g, gj,i = 0. Further, Vi,j = V 1. If player i removes

the link i j, then she obtains at most a payoff equal to δ2Vi,j from player j. It

follows that due to the link i j player i obtains marginal benefits equal to at least

V 1(δ − δ2) = 1/n− 1/n2 = (n− 1)/n2 > (n− (3/2))/n2 = c. Therefore regardless

of other links, player i has no incentive to remove the link i j. !

From the above proposition we can establish two things. First, consider the

following quote from Galeotti et al. (2006, pg. 360): “This shows that, in case of

general cost heterogeneity, the level of value heterogeneity plays no important role

in determining the network architecture.” This observation is not true for models

with decay where regardless of the level of cost heterogeneity, value heterogeneity

is important for determining the network architecture.

The second point is about how the role value heterogeneity in a model of partial

transitivity compares to the role cost heterogeneity in a model with full transitiv-

ity. We know that value heterogeneity with homogeneous cost and no decay leads

to strict Nash networks which are either the empty network, or minimal networks

in which every (non-singleton) component is a center-sponsored star (see Galeotti

et al., 2006, Proposition 3.1, pg.359). We also know that under cost heterogene-

ity and homogeneous value every minimal network can be supported as a strict

Nash equilibrium in the absence of decay (see Galeotti et al., 2006, Proposition 3.2,

pg.360). Since there is no decay, this model allows for full transitivity in information

acquisition. Consequently, every strict Nash network must be minimal regardless

of parameter value. Thus Proposition 3.2 of Galeotti et al. identifies the largest

permissible set of networks as strict Nash networks. The introduction of (homoge-

neous) decay however leads to partial transitivity in the model. In this situation, we

find that value heterogeneity alone has the potential to make every network strict

Nash, which coincides with the largest permissible set of networks. To borrow from

Galeotti et al., value heterogeneity “... is important in shaping both the level of

connectedness as well as the architecture of individual components.” Thus, in a

model of decay, value heterogeneity plays the same role as cost heterogeneity in a

model with full transitivity.
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With homogeneous players, strict Nash networks are either empty or connected

(see Bala and Goyal, 2000). A natural question that arises in the context of the

heterogeneous players model is when can such a result be found for this model? We

show next that with heterogeneous values it is possible to obtain this result if the

values of players are sufficiently close.

Proposition 3 Suppose benefits function satisfies equation (3) and that V M −

V m < δV m/(1 + (n − 3)δ). Then a strict Nash network is either empty or con-

nected.

Proof. Let D∗(g, i j) be the set of players ! ∈ N \ {i, j} such that the shortest

chain between i and ! goes through the link i j in g. Consider a strict Nash network

g. Suppose g is neither empty nor connected. Then there exist three agents i, j

and k such that i and j belong to one connected component D1 and k belongs to

a different component D2 in g. Moreover, wlog let gi,j = 1. Then the incremental

benefits to player i of having the direct link to j is given by:

∆M = (δ − δdi,j(g'i j))Vi,j +
∑

!∈D∗(g,i j)

(
δdi,!(g) − δdi,!(g'i j)

)
Vi,!

≤ δVi,j +
∑

!∈D∗(g,i j) δ
di,!(g)Vi,!

≤ δV M +
∑

!∈D∗(g,i j) δ
di,!(g)V M

with the convention δdi,!(g'i j) = 0, if ! %∈ Ni(g ) i j). Clearly, we have ∆M ≥ c.

If player k forms a link with player j, then the incremental benefits to player i

of having the direct link to j is:

∆m ≥ δVk,j + δ2Vk,i +
∑

!∈D∗(g,i j) δ
di,!(g)Vk,!

≥ δV m + δ2V m +
∑

!∈D∗(g,i j) δ
di,!(g)V m.

It is worth noting that:

∑

!∈D∗(g,i j)

δdi,!(g)V M −
∑

!∈D∗(g,i j)

δdi,!(g)V m ≤ (n− 3)δ2(V M − V m).

13
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Since V M − V m < δV m/(1 + (n − 3)δ), we have ∆m > ∆M ≥ c. It follows that

player k has a incentive to form a link with j and g is not strict Nash. !

Not surprisingly Proposition 3 also tells us that in the homogeneous parameters

model with decay not every network can be supported as a strict Nash network.

Indeed, it is easy to see that V M − V m < δV m/(1 + (n− 3)δ) is always satisfied in

the homogeneous model. Therefore, non-connected networks cannot be strict Nash.

In the above proposition we restrict heterogeneity by putting a bound on its

magnitude. Now we restrict the heterogeneity by assuming that Vi,j = Vi. Recall

that reducing heterogeneity in this manner has positive implications for the existence

of Nash networks. Below we show how it affects the set of strict Nash networks.

Proposition 4 Suppose payoff function satisfies equation (3) and for each player

i ∈ N , Vi,j = Vi for all j ∈ N . Then a strict Nash network contains at most one

component.

Proof. Suppose g is a strict Nash network and contains two components D and

D′. Let i, j ∈ D and i′, j′ ∈ D′ be such that gi,j = gi′,j′ = 1 and Vi ≥ Vi′ . Let

g0 = g) i′ j′, A = {! ∈ Ni′(g)|di
′,!(g) < di

′,!(g0)} and B = {! ∈ Ni′(g)|di
′,!(g−i′ ⊕

i′ j′) = di
′,!(g0)}. We have:

∆i′ = ui′(g)− ui′(g0) =
∑

!∈A(δ
di′,!(g) − δd

i′,!(g0))Vi′ − c,

with the convention δdi′,!(g
0) = 0, if ! %∈ Ni(g0). Since g is strict Nash, we have

∆i′ > 0.

Let g1 = g ⊕ i j′, we have:

∆i = ui(g1)− ui(g) =
∑

!∈A δd
i′,!(g)Vi +

∑
!∈B∪{i′} δ

di′,!(g)Vi

+
∑

!∈Ni′ (g)\(A∪B)(δ
di′,!(g)+1)Vi − c

Since g is strict Nash, we have ∆i < 0. We obtain a contradiction since ∆i′ ≤ ∆i.

!

14

ha
ls

hs
-0

05
74

25
8,

 v
er

si
on

 1
 - 

7 
M

ar
 2

01
1



Proposition 4 shows that when we reduce the heterogeneity by restricting player

i to acquire Vi from each of the players she observes, not every essential network

can be strict Nash. This sharply contrasts with the heterogeneous players case of

Theorem 1. Moreover, the model where values are given by Vi allows for strict

Nash networks that never arise in the homogeneous parameters model. Indeed, we

know by Proposition 3 that with low value heterogeneity (with the homogeneous

decay model being the limiting case) non-empty strict Nash networks contain one

component, say D, and all players belong to D. In the following example, we show

that when values are given by Vi, in a strict Nash network isolated players can also

co-exist with a single component.

Example 1 Consider N = {1, . . . , 5}, Vi = 1 for all i ∈ N \ {5} and V5 = ε. We

suppose that 4ε < δ < c, and δ + 2δ2 > c. Then the network g drawn in Figure 1

is a strict Nash network.

5

1 2 3

4

Figure 1: Network g

3.2 Decay with Heterogeneous Links

In this section we consider situations where players have homogeneous values while

the decay through each link is different.

I. Existence of Nash networks.

Proposition 5 Suppose the benefits function satisfies equation (4), then a Nash

network does not always exist.

Proof. The proof is given through a counter-example. Let N = {1, 2, 21, 3, 31, ..,

36, 4, 41} be the set of players. We assume that c = 0.95, δ1,2 = δ2,1 = 0.4,
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δ1,4 = δ4,1 = 0.319, δ4,3 = δ3,4 = 0.14, δ2,3 = δ3,2 = 0.1303, δ2,21 = δ21,2 = 1,

δ4,41 = δ41,4 = 1, δ3,k = δk,3 = 1, for all k ∈ {31, . . . , 36}, and δi,j = 0 for all re-

maining (i, j) ∈ N×N \{i}. Obviously, none of the links with δi,j = 0 will be estab-

lished, and all links i j such that δi,j = 1 will be established. From this observation

we know that in a Nash network g we have g2,21 = g3,31 = . . . = g3,36 = g4,41 = 1.

For candidate Nash networks, we consider the set A containing the following links:

{2 21, 3 31, . . . , 3 36, 4 41}. Although links 21 2, 31 3, ... are possible for the ar-

guments used below, the non existence result is not affected by them. Therefore

without loss of generality we focus on the set A. Moreover, straightforward com-

putations allow us to conclude that player 3 forms no links except with players

31, . . . , 36, players 2 and 4 cannot form a link with player 1. Similarly, it can be

checked that player 1 will not form a link with player 3. Likewise, player 2 and

player 4 will not form links with each other. In addition to the set of links in A, it

follows that the links that can be formed by players in a Nash network also belong

to the set B = {1 2, 1 4, 2 3, 4 3}. Therefore, the set of potential Nash networks

consists of networks for which the edge set is a subset of A ∪ B. In Figure 2 each

box contains the links associated with δ = 1. The other links are associated with

the non-zero values of δ.

1. Let g0 be a network such that E(g0) = A. Then g0 is not Nash since player

4 has an incentive to form a link with player 3.

2. We are now interested in networks which have |A| + 1 links. Straightforward

computations show that only g1, with E(g1) = A ∪ {4 3} is candidate to be

Nash. Indeed, in other networks with |A|+ 1 links, the player who forms the

additional link has no incentive to maintain it. Network g1 is not Nash since

player 1 has an incentive to form a link with player 4.

3. We are now interested in networks which have |A| + 2 links. Straightforward

computations show that only g2, with E(g2) = A ∪ {1 4, 4 3} is candidate to

be Nash. This network is not Nash since player 2 has an incentive to form a

link with player 3.
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4. We are now interested in networks which have |A| + 3 links. Straightforward

computations show that only g3, with E(g3) = A∪{1 4, 2 3, 4 3} and g4, with

E(g4) = A∪{1 2, 2 3, 4 3} are candidates to be Nash. Network g3 is not Nash

since player 1 prefers network g4. Network g4 is not Nash since player 2 has

an incentive to delete the link 2 3.

5. We are now interested in the network with |A|+ 4 links which is a candidate

to be a Nash network. In this network, player 1 has an incentive to remove

the link 1 4.

!

0.1303

36

31

3

4

41

2

21

1

0.4

1

1

0.14

0.319

1

1

1

1

Figure 2:

Note that when we set the decay parameter δi,j = δi it is easy to show that a

Nash network always exists.

II. Characterization of Strict Nash Networks. Results regarding strict Nash

networks in this model are similar to what we find in the previous model. The exact

analogue of Theorem 1 can be written for this model. Similarly, we can reduce the

magnitude of the decay parameter and find a result equivalent to Proposition 3.4

4Details can be found in the working paper version: http:\\bus.lsu.edu\mcmillin\Working Papers\

pap10 04.pdf
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4 Concluding Remarks

In this paper we investigate the implications of heterogeneity in the value parameter

and decay parameter in the connections model. We find that both types of hetero-

geneity are similar to cost heterogeneity in models of full transitivity, i.e. they

increase the size of strict Nash networks to the maximum possible and can lead to

non-existence of Nash networks. Moreover, value heterogeneity in the connections

model is different from value heterogeneity in the full transitivity model where it

does not dramatically increase the size of strict Nash networks, nor does it lead

to non-existence. Cost heterogeneity however has the same type of effect both in

models of full and partial transitivity.
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