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Testing Weak Form Efficiency on the Toronto Stock Exchange∗

November 16, 2009

Abstract

We believe that in order to test for weak form efficiency in the market a vast pool of individual

stocks must be analyzed rather than a stock market index. In this paper, we use a model-based

bootstrap to generate a series of simulated trials and apply a modified chart pattern recognition

algorithm to all stocks listed on the Toronto Stock Exchange (TSX). We compare the number of

patterns detected in the original price series with the number of patterns found in the simulated

series. By simulating the price path we eliminate specific time dependencies present in real data,

making price changes purely random. Patterns, if consistently identified, carry information which

adds value to the investment process, however, this informativeness does not guarantee profitabil-

ity. We draw conclusions on the relative efficiency of some sectors of the economy. Although, we

fail to reject the null hypothesis of weak form efficiency on the TSX, some sectors of the Cana-

dian economy appear to be less efficient than others. In addition, we find negative dependency of

pattern frequencies on the two moments of return distributions, variance and kurtosis.

I Introduction and Literature Review

Technical analysis is a financial market technique that claims the ability to forecast the future direc-

tion of security prices through the study of past market data, primarily price and volume. Technical

analysts may employ models and trading rules based on price transformations, moving averages, re-

gressions, inter-market and intra-market price correlations, cycles or recognition of chart patterns.

The patterns in market prices are assumed to recur, and thus, these patterns can be used to predict

future price movements. Critics argue that these patterns are simply random effects on which analysts
∗This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network

(SHARCNET:www.sharcnet.ca)
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impose causation, and bear no useful information, especially in the long term. Nonetheless, about 30

to 40 percent of practitioners appear to believe that technical analysis is important in determining

price movements in shorter time horizons which last up to six months1.

Taylor and Allen (1992), based on a survey among foreign exchange dealers in London, found that at

least 90 per cent of respondents place some weight on technical analysis. In addition, the results of

this survey revealed preference for technical, rather than fundamental, analysis at shorter time hori-

zons. Lui and Mole (1998) report the results of a similar survey conducted in 1995 among foreign

exchange dealers in Hong Kong. They found that over 85 per cent of respondents rely on both funda-

mental and technical analysis and, again, technical analysis was more popular at shorter time horizons.

Technical analysis relies on past market data to predict future movements and, thus, contradicts the

weak form of the efficient market hypothesis. If historical price (and volume) data may be used to

predict future movements of market prices, the market is said to be weak form inefficient.

The Efficient Market Hypothesis is one of the most important and widely disputed propositions in

finance. The claim is that prices fully reflect all available information in the market and any forecast-

ing of future price changes therefore is purely speculative. There is what Lo and MacKinlay (Lo and

MacKinlay (1999), p.4) call “a wonderfully counter-intuitive and seemingly contradictory flavor” to

the idea of informationally efficient markets: the greater the number of participants, the better their

training and knowledge and the faster the dissemination of information, the more efficient a market

should be; and “the more efficient the market, the more random the sequence of price changes generated

by such a market, and the most efficient market of all is one in which price changes are completely

random and unpredictable”.

If everyone believes the market is efficient, it will no longer be efficient since no one will invest actively.

In effect, efficient markets depend on investors believing that the market is inefficient and trying to

beat it. In reality, markets should neither be strictly efficient nor strictly inefficient. The question is

one of a degree - some markets are relatively more efficient than others.

We believe that in order to test for weak form efficiency in the market a vast pool of individual stocks

must be analyzed rather than a stock market index. In this paper, we use a model-based bootstrap to
1Park and Irwin (2004) pp 1-2.
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generate a series of simulated trials and apply a modified chart pattern recognition algorithm to stocks

listed on the Toronto Stock Exchange (TSX), Canada’s largest stock market. We compare the number

of patterns detected in the original price series with the number of patterns found in the simulated

series. By simulating the price path we eliminate specific time dependencies present in real data and

price changes are thus purely random. Patterns, if consistently identified, carry information which

adds value to the investment process, however, this informativeness does not guarantee profitability.

We draw conclusions on the relative efficiency of particular sectors of the economy. If the number

of patterns identified in the simulated series is the same as in the real price data, technical analysis

cannot be gainfully applied and the weak form of the efficient market hypothesis cannot be rejected.

Park and Irwin (2007) provide a comprehensive review of technical analysis studies. They categorize

the empirical literature into two groups, ’early’ (1960-1987) studies and ’modern’ (1988-2004) studies,

based on an overall evaluation of each study in terms of the number of technical trading systems

considered, treatment of transaction costs, risk, data snooping problems, parameter optimization, out-

of-sample verification, and statistical tests adopted. ’Modern’ studies are further classified into seven

groups on the basis of differences in testing procedures. Park and Irwin (2004, 2007) provide general in-

formation about each of these groups. ‘Standard ’ refers to studies that include parameter optimization

and out-of-sample tests, adjustment for transaction costs and risk, and statistical tests. ‘Model-based

bootstrap’ represents studies that conduct statistical tests for trading returns using the model-based

bootstrap approach introduced by Brock et al. (1992). ‘Reality check ’ and ‘genetic programming ’ in-

dicate studies that attempt to solve data snooping problems using White (2000)’s bootstrap reality

check methodology and the genetic programming technique introduced by Koza (1992). ‘Non-linear ’

indicates studies that apply non-linear methods such as feed-forward neural networks or nearest neigh-

bour regressions to recognize patterns in prices or estimate the profitability of technical trading rules.

‘Chart patterns’ refers to studies that develop and apply recognition algorithms for chart patterns as

in Lo et al. (2000); Dawson and Steeley (2003). Finally, ‘other ’ refers to studies that do not fit neatly

in any of the previous categories.

In general, the ’early’ studies showed limited evidence of the profitability of technical trading rules

when applied to stock markets and thus supported market efficiency. In contrast, among a total of 95

’modern’ studies reviewed in Park and Irwin (2007), 56 studies find positive results regarding technical

trading strategies, while 39 studies indicate mixed or negative results2.
2For a complete annotated summary of all studies, see Park and Irwin (2004).
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In an influential study, Brock et al. (1992) use a very long price history (from 1897 to 1986) and, for

the first time, apply the model-based bootstrap approach to draw statistical inference on technical

trading profits. In their approach, returns conditional on buy or sell signals from the original series

are compared to conditional returns from simulated return series generated by widely used models for

stock returns. Results indicate that buy (sell) signals from the technical trading rules generate positive

(negative) returns across all 26 rules and four sub-periods tested. All the buy–sell differences are pos-

itive and outperform the buy-and-hold strategy. It should be noted, however, that their results have

recently been challenged by Sullivan et al. (1999). These authors argue that trading rules are subject

to selection bias as only those that have been perceived to perform well continue to be examined. If

these trading rules are only a small subset of all trading rules available, then almost certainly some

trading rules will appear to outperform.

The paper by Lo et al. (2000) is one of the first papers to automate a process of chart pattern recog-

nition. The authors identify 10 reversal patterns based on a set of consecutive local extrema points

that would fit a particular geometrical form. These authors apply their methodology to a large set of

stocks traded on the NYSE/AMEX and NASDAQ during the 1962-1996 period as well as the market

indices on these U.S. exchanges. To support claim that the technical patterns do provide incremental

information, the authors perform a goodness-of-fit test to compare the quantiles of returns conditioned

on these technical patterns with those of unconditioned returns.

Dawson and Steeley (2003) replicate and extend the work of Lo et al. (2000) using data on the UK stock

market and the same set of reversal patterns. In addition, when comparing whether the same patterns

found for the US market also exist in the UK market and whether returns distributions are influenced

by them, they find that, overall, the frequency of patterns in both markets is very similar. However,

different patterns occur with different frequencies within the UK market and in different relativities

to the frequencies found in the US market. Similar to Lo et al. (2000), they find that the distributions

of returns conditioned on these technical patterns can be significantly different from unconditional

returns distributions. It should be noted, however, that the means of conditional and unconditional

returns are not significantly different from each other, yet the distributions are statistically different

from each other. This may be due to differences in higher order moments of these distributions.

Successful pattern identification relies on past price performance. Technical analysis suggests that a
4



particular price pattern can be recognized and a future price can be predicted based on past price(s).

Thus, by simulating series using a model-based bootstrap we eliminate specific time dependencies

present in real data and any pattern identified is thus purely random. If the number of patterns

identified in the simulated series is the same as in real price data, then technical analysis cannot be

gainfully applied and the weak form of the efficient market hypothesis cannot be rejected.

Our methodology is to find the number of reversal patterns in the price time series of a chosen asset.

We then generate a number of random time series (in particular we construct an asset price path with

the same distribution characteristics as the underlying asset) and find the number of reversal patterns

in the simulated data. Comparing the results from the original and simulated series enables us to draw

inferences on weak form efficiency in the market and its sectors. The weak form efficiency hypothesis

will be rejected in the event of significantly larger number of reversal patterns in the real price series

than in the simulated series.

II The Data

Our data consist of daily closing prices (adjusted for splits and dividends) for 1336 Toronto Stock

Exchange (TSX) securities. The time period covered is June 1983 (where available) through June

2008 - a span of 25 years.

Data were obtained from Datastream, Thomson-Reuters’ financial statistical database. Each of the

security listed is categorized into one of the thirty eight sectors of the Canadian economy. We con-

struct ten additional categories of securities: stocks listed on the TSX Composite Index3; stocks listed

on each of the nine iShares ETFs. Our assertion is that securities listed in these indices are more

likely to be followed by a large number of market participants, resulting in the faster dissemination of

information, thus increasing efficiency.

We adopt the following notation throughout the report:

P
(R)
i,t , t = 0..Ti - adjusted daily close prices for stocks listed on the TSX, where i refers to each individual

3The S&P/TSX Composite Index is composed of the largest companies on the Toronto Stock Exchange as measured

by market capitalization. The Toronto Stock Exchange-listed companies in this index comprise about 71% of the market

capitalization for all Canadian-based companies listed on the TSX. The number of securities listed in the S&P/TSX

Composite Index as of June 28, 2008 was 251. The total number of stocks listed on the Toronto Stock Exchange on June

28, 2008 was 1336.
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security, and (R) denotes original data series.

P
(S)
i,t , t = 0..Ti - adjusted daily close prices for stocks listed on the TSX, where i refers to each individual

security, and (S) denotes simulated data series.

P
(R)
i,0 - beginning or base price

r
(R)
i,t , t = 0..Ti - log return series for security i where Ti is the number of return observations

for security i.

III Methodology

A Null Models: Data Generating Process

In this study we aim to answer the following question: is the number of reversal patterns identified in

the real time series of stock prices significantly greater than the number of patterns in the simulated

series?

The general goal of technical analysis is to identify regularities in the time series of prices by extract-

ing nonlinear patterns from noisy data. In order to perform a statistical inference, we would have to

compare the number of patterns identified in the original series with the simulated ones, based on a

particular model for generating the simulated series. One could argue that the results of this compar-

ison depend on the data generation process used in simulating the price series. Patterns uncovered

by technical rules might not be explained by autocorrelation or changes in volatility. Thus, in this

study, we use three null data generating models, each tailored to capture specific data characteristics

present in financial returns. Well known deviations from assumed distributions of returns (leptokur-

tosis, autocorrelation, conditional heteroskedasticity, changing conditional mean) will be addressed by

generating simulated series from the following null models for stock returns: (i) random walk with a

drift; (ii) ARMA(p,q); and (iii) EGARCH(p,q).

Random walk with a drift This model is particularly popular in the finance literature. With the

random walk with drift model time series are simulated by taking the returns from each of the 1336

stock return series and sampling them with replacement. Simulated samples will have the same drift

in prices and the same volatility as the original series. Returns will be independent and identically

distributed by construction. However, one of the downsides of this conventional approach is that it

assumes identical and independently distributed returns across time. It is evident, however, that such

distributions tend to underestimate serial correlation and volatility clustering normally present in fi-
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nancial time series data.

The model-based bootstrap methodology following Brock et al. (1992) is detailed below:

pi,t − pi,t−1 = µi + εi,t

ri,t = µi + εi,t

ε̂i,t = ri,t − µ̂i

r
(S)
i,t = µ̂i + êi,t

where pi,t = log (Pi,t), and êi,t is sampled with replacement from ε̂i,t.

ARMA(p,q) Our data reveal the presence of significant moving average, and, in some instances,

autoregressive component. Due to the presence of these effects we apply ARMA(p,q) as a null model

to obtain simulated series. In this procedure a model is fitted to each of the 1336 original return series

to obtain estimated parameters and residuals. The estimated residuals are then re-sampled with re-

placement and used with the estimated parameters to form a new representative series. Applying this

procedure, the residuals are not restricted to a particular distribution, and at the same time the data

generating process preserves autocorrelation and moving average properties of the underlying series.

rt = α+

p∑
i=1

φirt−i + +

q∑
j=1

θiεt−j + εt

The parameters p, q, φ, θ are chosen to minimize Akaike information criterion with a second order

correction for small sample sizes (AICc).

EGARCH(p,q) In addition, to account for heteroskedasticity present in the financial return series,

we need to model the conditional variance equation to account for volatility clustering. The most

popular models in the finance literature are ARCH and GARCH models4. However, both ARCH and

GARCH models do not address the leverage effect (or asymmetry) present in the return data and first

discovered by Black (1976). This effect occurs when an unexpected drop in price (bad news) increases

predictable volatility more than an unexpected increase in price (good news) of similar magnitude.

This makes a symmetric, constrained on conditional variance, function in past error terms inappropri-

ate.
4Bollerslev (1986); Bollerslev et al. (1992)
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Exponential GARCH has been proposed to capture this negative correlation between asset returns

and volatility (Nelson (1991)). EGARCH is able to capture most of the asymmetry (Engle and Ng

(1993)), however, the parametric nature of GARCH models makes it hard to capture highly irregular

phenomena such as market crashes, subsequent rebounds and other structural changes.

The mean equation used in our null model is:

rt = α+ γg (σt) + θεt−1 + εt

g (σt) = e
ht , εt = e1/2htzt, ht = log σ2

t

and the conditional variance equation:

ht = α0 +

p∑
i=1

αi
|zt−i|+ γizt−i

σt−i
+

q∑
j=1

βjht−j

zt ∼ N (0, 1)

if zt−i > 0 the total effect is (1 + γi) zt−i and if zt−i < 0 the total effect is (1− γi) |zt−i|, meaning that

bad news will have a bigger impact on volatility than good news. Parameters p, q are selected using

Bayesian information criterion (BIC).

B Model-based bootstrap

Using the bootstrap method allows us to estimate confidence intervals for the means and standard

deviations of chart pattern frequencies, which in turn, enables us to obtain a more rigorous insight into

the riskiness of these chart patterns. We use the following approach for our bootstrap resampling:

1. Model parameters and the residuals are estimated from original return series.

2. The residuals are then re-sampled with replacement

3. The null model is then used to generate the simulated return series using parameter estimates

and scrambled residuals to obtain r(S)
i,t , where (S) denotes the simulated series .

4. The base price is then used P (S)
i,0 ≡ P

(R)
i,0 together with r(S)

i,t to derive the simulated price series

P
(S)
i,t .
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C Prices: Pattern Recognition

Following Lo et al. (2000) we study 10 chart patterns, namely head-and-shoulders (HS), inverse head-

and-shoulders (IHS), broadening tops (BT), broadening bottoms (BB), triangle tops (TT) triangle

bottoms (TB), rectangle tops (RT), rectangle bottoms (RB), falling wedge (FW) and rising wedge

(RW).

These reversal patterns can be recognized based on five consecutive local extrema in the price path

and conditioned on the volume information corresponding to these 5 local extrema5. Blume et al.

(1994) show that volume provides some insight on information quality that otherwise cannot be de-

duced from price alone. However, according to Lo et al. (2000), volume trends appear to provide little

incremental information with only a few exceptions. These authors found that the difference between

the conditional distributions of increasing and decreasing volume trends was statistically insignificant

for most patterns in both NYSE/AMEX and NASDAQ markets.

D Data Smoothing

To be able to successfully identify chart patterns we require a vector of local extrema for each price

series. Since the price series are not differentiable functions we use the cubic B-spline method to

smooth the data to locate the vector of local extrema. We model the observed price time series as

Pit = fi (t) + εit where fi (t) is a smooth function and εit ∼ N
(
0, σ2

i

)
. The estimator is found by

minimizing:

f̂i (t) = arg min
f∈C2[1,Ti]

(
Ti∑
t=1

(Pit − fi (t))
2

+ λi

∫ Ti

1

(
f
′′

(x)
)2

dx

)
The solution fi (.) has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline

with knots at the unique data points6.

The smoothness of the function fi (.) is controlled through the coefficient of the integrated second

squared derivative penalty function, λi ≥ 0.

The optimal parameter λi (or equivalently df) can be obtained through ordinary cross validation,
5Please refer to Appendix for formal conditions and restrictions on pattern identification.
6de Boor (1978)
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however such an approach results in a highly under-smoothed estimate.

E Choosing optimal smoothing parameter

For a given original price series data we will:

1. Use a broad range of degrees of freedom (df or equivalently λi) to obtain vectors of smoothed

price series, {Pdfi}
T
i=1

2. Run the pattern identification algorithm on every vector in step 1 and calculate the number of

patterns identified for every vector.

3. Plot degrees of freedom vs. number of patterns identified (refer to Appendix D on page 26).

4. The optimal df is then chosen based on one of the criteria:

(a) assuming investors/technical analysts have rational expectations they will choose the smooth-

ing parameter which will result in the largest number of patterns identified7. One could

argue that this might pose a data mining problem. We propose yet another alternative,

(b) the number of reversal patterns identified in any price series will be zero for df=1 (i.e.

zero patterns for a straight line) and will tend to zero for df=T. Thus we would expect the

plot in step 3 to be a concave function which might exhibit periods of local stability (e.g.

the number of successfully identified reversal patterns is approximately constant for several

consecutive degrees of freedom).

Once the optimal smoothing parameter is chosen for an individual security, the same parameter(s) are

used in smoothing the simulated price series for this security.

F Reversal Patterns

We run an iterative algorithm to check whether any of the five consecutive local extrema fits a partic-

ular reversal pattern. For each of the three null models in this study we generate 999 random return
7A similar situation probably occurred in Lo et al. (2000)when the “chartists” were presented several graphs with

different smoothed series and were asked to choose the “most appropriate” ones. It is unnecessary to point out that the

most appropriate ones will be the ones with the seemingly largest number of patterns. Note, that identification conditions

for reversal patterns will prevent or severely restrict successful pattern identification in un-smoothed, lightly-smoothed

or under-smoothed series due to the particular geometrical restrictions on each pattern.
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samples of the same sample size as the underlying original return series8. The number of each of the

reversal patterns is then calculated for each of these simulations.

Together with rank statistics, order statistics are among the most fundamental tools in non-parametric

statistics and inference. We use order statistics to derive empirical distribution functions (EDFs) and

density histograms for every reversal pattern for every stock we study. We then calculate the percentile

of the number of patterns identified in the real price data of every stock. One can then infer whether

the number of patterns identified in the real data is significantly larger than the number of patterns

found in the randomly generated data.

Let Mij be a number of patterns identified for security i in simulation j, let Mi0 denote the number

of patterns identified in the original price series ∀j = 1..n [n = 999]. The weak form efficient market

hypothesis can then be stated as follows:

H0 : Mi0 ≤ M i

H1 : Mi0 > M i

where M i =
∑n
j=0Mij .

The amount of incremental information obtained through reversal patterns can be used to study the

relative efficiency of markets or sectors within a market.

IV Discussion of Results

We believe that the efficiency of the market (or a sector withing the market) can be evaluated by the

proportion of securities with significantly higher number of reversal patterns identified in the original

price series than the average number of patterns found in simulated data. If this proportion is high,

one would be able to make a judgment on efficiency in this market (or sector).

We perform analysis of 34 sectors of Canadian market9. In addition we perform analysis on all 1336

stocks listed on the TSX, as well as 251 stocks listed under the TSX Composite index and nine iShares
8Davidson and MacKinnon (2000)
9Sectors with the number of stocks less than or equal to three where excluded from the analysis. Excluded sectors:

Alternative energy (3) , Mobile telecommunications (2), Personal goods (2), Tobacco (1).
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ETFs10. We evaluate each of these subsets of stocks based on the proportion of securities with a sig-

nificantly high number of reversal patterns. We calculate these proportions for each of the 10 reversal

patterns, however, BT, BB, RW and FW were excluded from the set of evaluation criteria due to the

lack of variability in the proportions for these chart patterns.

Tables 1-3 in the Appendix contain the summary of the results. It is apparent from these results

that accounting for short-term dependencies in the returns, in our case through ARMA(p,q) and

EGARCH(p,q) models, we find fewer securities with a number of patterns significantly larger than the

average number of patterns identified in the simulated series.

The presence of a large percentage of stocks within a sector or a particular subgroup where the num-

ber of reversal patterns is persistently higher than the number of patterns identified on average in the

random series would point to inefficiency within this sector or subgroup. Although these results do

not necessarily imply that technical analysis can be used to generate excess trading profits in some

sectors, they do raise the possibility that technical analysis may add value to the investment process

in particular sectors of the economy.

We use a total order ranking method for interpretation of our results11. Total order ranking methods

are multicriteria decision making techniques used for the ranking of various alternatives on the basis

of more than one criterion. Let us consider a K -dimensional system, with an associated (S×K ) data

matrix. To each of the S sectors (or subsets) of securities a set of K evaluation criteria is associated.

As one can see from results in Tables 1-3, the criteria are not always in agreement, they are, at times,

conflicting, motivating the need to find an overall optimum that can deviate from the optima of one

or more of the single criterion. Total order ranking methods are based on an aggregation of the cri-

teria in a scalar function, i.e. an order or ranking index, which allows us to sort elements according

to their numerical values. Several evaluation methods which define a ranking parameter generating a

total order ranking are used: desirability functions, utility functions, dominance functions and absolute

reference method.

10Namely iShares XEG (45), XFN (23), XGP (15), XTR (48), XMA (43), XRE (11), XIT (5), XCG (57), XCV (65).

Note: figures in parentheses signify the number of stocks listed under each index.
11Full description of total order ranking methods can be found in Pavan and Todeschini (2008).
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Various sectors of the Canadian market and several commonly referred indices have been analyzed

and compared on the basis of multiple criteria, the aim being to find out the most (in)efficient set

of securities among all the sectors analyzed. To illustrate, Table 5 shows the ranking results for the

EGARCH(p,q) null model based on the dominance function as a reference. Most “efficient” sectors

are assigned high ranking, and most “inefficient” sectors are the ones with low ranking. We use a set

of all securities (All 1336 ) as a reference for the market efficiency on average and compare the rest of

the sectors to this benchmark. As expected, most of the iShares listed securities are more efficient on

average than the market. The banking sector, stocks listed under the TSX composite index, as well

as the Care Equipment and Services, Gas Water and Utilities, Oil Equipment and Services, Life In-

surance, Oil and Gas producers are among the most efficient sectors. On the other hand, Real Estate,

and stocks listed under iShares Real Estate index, as well as Media, Industrial Engineering, Travel and

Leisure, Electricity, Financial Services, Food Producers and Aerospace&Defense sectors are among the

most inefficient sectors of the Canadian economy.

Another interesting fact is that we find a strong negative dependency between the average number of

pattern occurrence per year and two moments of the underlying return series, namely variance and

kurtosis (refer to Appendix C). The first relation seems to be intuitive: as the variance of a stock

increases, it becomes increasingly difficult to forecast the future price path or to fit a particular re-

versal pattern to the price series. The negative relation between the number of reversal patterns and

kurtosis is harder to interpret. Higher kurtosis means more of the variance is due to infrequent extreme

deviations, as opposed to frequent modestly-sized deviations. Thus, patterns with a relatively large

number of extreme observations tend to have few reversal patterns in their price paths.

Although, we fail to reject the null hypothesis of weak form efficiency on the TSX, some sectors of the

Canadian economy appear to be less efficient than others. A further breakdown of data into 5 year

periods and subsequent analysis of each of these periods might reveal a different result. The data we

collected on the number of reversal patterns identified through a pattern recognition algorithm were

aggregated over all 25 years. However, over this period, economic conditions as well as the technolog-

ical advances which enable today’s markets to share information instantly and across several trading

floors have changed. Thus, analysis of the market efficiency would be more complete if done within

smaller sub periods.
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A Appendix

A Data Smoothing

The estimator is found by minimizing:

f̂i (t) = arg min
f∈C2[1,Ti]

(
Ti∑
t=1

(Pit − fi (t))
2

+ λi

∫ Ti

1

(
f
′′

(x)
)2

dx

)

The solution fi (.) has an explicit, finite-dimensional, unique minimizer which is a natural cubic spline

with knots at the unique data points12. The smoothness of the function fi (.) is controlled through

the coefficient of the integrated second squared derivative penalty function, λi ≥ 0.

However, for our purpose we chose instead to control for degrees of freedom. There is a direct rela-

tionship between the two, as was shown by Hastie et al. (2001):

The above criterion is reduced to

RSS (θ, λ) = (y −Nθ)
T

(y −Nθ) + λθTΩNθ

Where {N}ij = Nj(x), {ΩN}jk =
∫
N
′′

j (t)N
′′

k (t) dt, and Nj(x) are an N-dimensional set of basis

functions for representing the family of natural splines and f (x) =
∑N
j=1Nj(x)θj .

The solution can then be written in the following form:

θ̂ =
(
NTN+λΩN

)−1
NTy

And

f̂ (x) =

N∑
j=1

Nj(x)θ̂j

Or

f̂ = N
(
NTN+λΩN

)−1
NTy=Sλy

Where f̂ is the N-vector of fitted values f̂ (xi) and Sλ is a smoothing matrix. Then the corresponding

effective degrees of freedom is given by:
12de Boor (1978)
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dfλ = trace (Sλ)

Since dfλ = trace (Sλ) is monotone in λ for smoothing splines13, we can invert the relationship and

specify λ by fixing df. Using df in this way provides a uniform approach to compare many different

smoothed prices series for different levels of smoothing parameters.

The optimal parameter λi (or equivalently df) can be obtained through ordinary cross validation14,

however such an approach results in a slightly under-smoothed estimate. For a number of knots

equal to the unique data points15 the solution exhibits more smoothing but less accuracy in satisfying

Pit = fi (t) when df are set smaller then the optimal CV value.

B Pattern identification conditions

Based on the five consecutive local extrema points, E1, ..., E5, we identify a set of ten reversal patterns.

In our algorithm we have chosen the following parameters:C = 0.03; S = 0.03; F = 0.015; R = 0.0075.

These values are consistent with the original simulation in Lo et al. (2000). However, the additional

restriction on the distance between the two consecutive extrema has been added to concentrate on

short-term reversal patterns. This condition prevents pattern identification based on two consecutive

local extrema longer than eight trading days apart.

Head-and-Shoulders (HS)
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Head and Shoulders

Time

P
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e

E1 > E2 ensures that E1 is a local maximum

E3 > E1 head is larger than left shoulder

E3 > E5 head is larger than right shoulder

|E1−E5|
(E1+E5)/2

≤ C E1 and E5 are within C% of their average

|E2−E4|
(E2+E4)/2

≤ C E2 and E4 are within C% of their average

E3−E1
E3

≥ S
ensures that the head of the pattern is

significantly larger than the shoulders

13Hastie et al. (2001) p.134
14One can also look at the integrated square predictor error (ISPE) function, but overall the CV is approximately

unbiased as an estimate of the ISPE function.
15In our procedure we choose to set the number of knots equal to the length of the time series.
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Inverse Head-and-Shoulders (IHS)
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|E1−E5|
(E1+E5)/2

≤ C E1 and E5 are within C% of their average

|E2−E4|
(E2+E4)/2

≤ C E2 and E4 are within C% of their average

E1−E3
E3

≥ S
ensures that the head of the pattern is

significantly smaller than the shoulders

Broadening Top (BT)
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E1 > E2 ensures that E1 is a local maximum

E1 < E3
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E2 > E4

Conditions below make sure that fluctuations are significant

and most probably not just noise :

|E1−E2|
E1+E2

≥ F, |E2−E3|
E2+E3

≥ F, |E3−E4|
E3+E4

≥ F, |E4−E5|
E4+E5

≥ F

Broadening Bottom (BB)
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E1 < E2 ensures that E1 is a local minimum

E1 > E3
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E2 < E4

Conditions below make sure that fluctuations are significant

and most probably not just noise :

|E1−E2|
E1+E2

≥ F, |E2−E3|
E2+E3

≥ F, |E3−E4|
E3+E4

≥ F, |E4−E5|
E4+E5

≥ F
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Triangle Top (TT)
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Triangle Bottom (TB)
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E1 < E2 ensures that E1 is a local minimum

E1 < E3

E3 < E5

E2 > E4

Conditions below make sure that fluctuations are significant

and most probably not just noise :

|E1−E2|
E1+E2

≥ F, |E2−E3|
E2+E3

≥ F, |E3−E4|
E3+E4

≥ F, |E4−E5|
E4+E5

≥ F

Rectangular Top (RT)
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Conditions below ensure that E1, E3, E5 and E2, E4 are

within R of their average :∣∣∣∣Ei−
E1+E3+E5

3

∣∣∣∣
(E1+E3+E5)/3

≤ R, for i = 1, 3, 5∣∣∣∣Ei−
E2+E4

2

∣∣∣∣
(E2+E4)/2

≤ R, for i = 2, 4

Conditions below make sure that fluctuations are significant

and most probably not just a noise :

|E1−E2|
E1+E2

≥ F, |E2−E3|
E2+E3

≥ F, |E3−E4|
E3+E4

≥ F, |E4−E5|
E4+E5

≥ F

min (E1, E3, E5) > max (E2, E4)
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Rectangular Bottom (RB)
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E2+E4
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(E2+E4)/2

≤ R, for i = 2, 4

Conditions below make sure that fluctuations are significant

and most probably not just a noise :

|E1−E2|
E1+E2

≥ F, |E2−E3|
E2+E3

≥ F, |E3−E4|
E3+E4

≥ F, |E4−E5|
E4+E5

≥ F

max (E1, E3, E5) < min (E2, E4)
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Table 1. Random walk model: Proportions of securities with significantly large number

of chart patterns.

This table shows the percentages of stocks whose number of patterns identified in the original price

series is significantly16 larger than the average number of patterns identified in the simulated price

series, based on the random walk data generation null model. N is the total number of securities

within each subcategory or sector.

16The bootstrap method enables us to construct confidence intervals for chart pattern counts. If the number of patterns

identified in the original data is outside of this confidence interval, we conclude that the number of patterns identified

in the original price series is significantly different than the average number of patterns identified in the simulated price

series.
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Table 2. EGARCH(p,q) model: Proportions of securities with significantly large number

of chart patterns.

This table shows the percentages of stocks whose number of patterns identified in the original price

series is significantly17 larger than the average number of patterns identified in the simulated price

series, based on the EGARCH data generation null model. N is the total number of securities within

each subcategory or sector.

17The bootstrap method enables us to construct confidence intervals for chart pattern counts. If the number of patterns

identified in the original data is outside of this confidence interval, we conclude that the number of patterns identified

in the original price series is significantly different than the average number of patterns identified in the simulated price

series.
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Table 3. ARMA(p,q) model: Proportions of securities with significantly large number of

chart patterns.

This table shows the percentages of stocks whose number of patterns identified in the original price

series is significantly18 larger than the average number of patterns identified in the simulated price

series, based on the ARMA data generation null model. N is the total number of securities within

each subcategory or sector.

18The bootstrap method enables us to construct confidence intervals for chart pattern counts. If the number of patterns

identified in the original data is outside of this confidence interval, we conclude that the number of patterns identified

in the original price series is significantly different than the average number of patterns identified in the simulated price

series.
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Table 4. Random walk model: Total ranking report.

In this table dominance was used as a sorting function, however, results based on desirability, utility

and absolute reference (reference object: Chemicals) are also reported19. Ranking order is from more

efficient to less efficient.

19Desirability, utility, dominance and absolute reference ranking indices are evaluated based on degeneracy, discrimi-

nation power and stability. (Pavan and Todeschini (2008)).
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Table 5. EGARCH(p,q) model: Total ranking report.

In this table dominance was used as a sorting function, however, results based on desirability, utility

and absolute reference (reference object: iShares XFN ) are also reported20. Ranking order is from

more efficient to less efficient.

20Desirability, utility, dominance and absolute reference ranking indices are evaluated based on degeneracy, discrimi-

nation power and stability. (Pavan and Todeschini (2008)).
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Table 6. ARMA(p,q) model: Total ranking report.

In this table dominance was used as a sorting function, however, results based on desirability, utility

and absolute reference (reference object: Health Care Equipment & Services) are also reported21.

Ranking order is from more efficient to less efficient.

21Desirability, utility, dominance and absolute reference ranking indices are evaluated based on degeneracy, discrimi-

nation power and stability. (Pavan and Todeschini (2008)).
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C Dependency of pattern frequencies on the moments of return distribu-

tion

We find a strong dependency of a frequency of technical pattern occurrence on the second

and fourth moments of return distributions22. It is difficult to interpret these higher order

moments in terms of market efficiency.

22We use robust measures of skewness and kurtosis as suggested in Kim and White (2004)
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D Selection of optimal smoothing parameter

Number of Head-And-Shoulders patterns identified for Bank of Nova Scotia and plotted vs. degrees

of freedom of the bi-cubic spline. (for illustrative purposes only)
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