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Applied macroeconomists interested in identifying the
sources of business cycle fluctuations typically have no
more than 40 or 50 years of data at a quarterly frequency.
With sample sizes that small, identification may not be
possible even if the analyst has a correctly specified
representation of the data. In this article, I investigate
whether small samples are indeed a problem for some
commonly used statistical representations applied to
the same prototype business cycle model. The business
cycle model is a prototype in the sense that many mod-
els, with various frictions and shocks, are observation-
ally equivalent to it.

The statistical representations that I consider differ
in the amount of theoretical detail that is imposed a
priori, but all are correctly specified. In other words, if
we had a sample of infinite length, all representations
would correctly identify the sources of business cycles
and the contributions of different shocks to economic
fluctuations. I compare three representations: (a) a vec-
tor autoregressive moving average (VARMA), (b) an
unrestricted state space, and (c) a restricted state space.
All are consistent with the same prototype business
cycle model, but the VARMA imposes few restrictions
based on the underlying economic environment, and
the restricted state space imposes many. In particular,
the VARMA representation is a system of equations in

reduced form, whereas the restricted state space repre-
sentation uses specific details about the incentives and
trade-offs that economic agents face in the theory.

I find that the identifying assumptions of the VARMA
and unrestricted state space representations are too
minimal to uncover statistics of interest for business
cycle research with sample sizes used in practice. |
demonstrate this by simulating 1,000 data sets of length
200 quarters using the prototype business cycle model.
For each data set and each of the three statistical repre-
sentations of the data, I apply the method of maximum
likelihood to estimate parameters for that representation
and then construct statistics of interest to business cycle
analysts. The statistics include impulse responses, vari-
ance decompositions, and second moments of filtered
data. For the VARMA and unrestricted state space rep-
resentations, 1 find that many of the predictions are
biased and have large standard errors. The errors are so
large as to be uninformative.

Since the restricted state space representation relies
on specific details of the economic environment, the
maximum likelihood parameters are economically in-

*I thank Elmar Mertens, Ed Prescott, and Warren Weber for their com-
ments. Codes to replicate the results of this article are available at my web-
site (http://minneapolisfed.org/research/economists/emcgrattan.html).
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terpretable and can be constrained to lie in economically
plausible ranges. In practice, business cycle research-
ers may put further constraints on the ranges of these
parameters using independent micro or macroevidence.
I also do this and compare results across experiments,
varying constraints on the possible ranges of the maxi-
mum likelihood parameters. Interestingly, I find that
the main results—which are the statistics of interest for
business cycle analysts—are not sensitive to varying
the constraints if they are confined to the economically
plausible range.

In a related study, Kascha and Mertens (2009) com-
pare the small sample performances of the VARMA
and unrestricted state space representations with that
of a structural vector autoregression (SVAR). (See Box,
“Structural VARs with Long-Run Restrictions,” for
some background.) They do not consider restricted state
space representations, which impose much more theory.
They find that the VARMA performs about as well as
SVARs, and the state space representation performs
slightly better than the SVARs. However, none of the
representations they consider yield precise estimates for
the statistics that these authors highlight.

In the following section, I lay out the prototype busi-
ness cycle model. Then I summarize the three statistical
representations. The method of maximum likelihood
used to estimate parameters of the three representa-
tions is described, and I report on the business cycle
statistics computed for each representation. The final
section concludes.

The Prototype Business Cycle Model
[ use a prototype growth model as the data-generating
process for this study. The model is a prototype in
the sense that a large class of models, including those
with various types of frictions and various sources of
shocks, are equivalent to a growth model with time-
varying wedges that distort the equilibrium decisions
of agents operating in otherwise competitive markets.
(See Chari, Kehoe, and McGrattan 2007.) These
wedges are modeled like time-varying productivity,
labor income taxes, and investment taxes. Since many
models map into the same configuration of wedges,
identifying one particular configuration does not
uniquely identify a model; rather it identifies a whole
class of models. Thus, the results are not specific to
any one detailed economy.

Households in the economy maximize expected util-
ity over per capita consumption ¢, and labor/,,

e | (e=1)) " -1
(1) Eogo,ﬂ i) [

subject to the budget constraint and the capital accu-
mulation law,

Q@ ¢ +(l+7y,)

3) (1+gn) w1 =1=0)k, +x,,

Xy z(l_Tlt)tht +rk +T,

where k, denotes the per capita capital stock, x, per
capita investment, w, the wage rate, 7, the rental rate
on capital,  the discount factor, & the depreciation rate
of capital, N, the population with growth rate equal to
1+g,, and 7, the per capita lump-sum transfers. The
series 7, and 7, are stochastic and stand in for time-
varying distortions that affect the households’ intratem-
poral and intertemporal decisions. Chari, Kehoe, and
McGrattan (2007) refer to 7, as the labor wedge and
7., as the investment wedge.

The firms’ production functionis F(X,,Z,L,), where
K and L are aggregate capital and labor inputs and Z,
is a labor-augmenting technology parameter which is
assumed to be stochastic. Chari, Kehoe, and McGrattan
(2007) call Z, the efficiency wedge and demonstrate an
equivalence between the prototype model with time-
varying efficiency wedges and several detailed econo-
mies with underlying frictions that cause factor inputs to
be used inefficiently. Here, I assume that the process for
log Z, is a unit-root with innovation logz,.The process
for the exogenous state vector s, =[logz,,,,7,,] is'

4 s, =Fy+Ps,_; +Q¢,

= 1—P11 0 p Ostl
(1- 0 0 p,
0
0
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o 0
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"The assumption that the shocks are orthogonal is unrealistic for many actual
economies, but adding correlations makes it even more difficult for atheoretical
approaches.
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Structural VARs with Long-Run Restrictions

I'have not included a commonly used statistical representation
known as the structural vector autoregression (SVAR) in this
study. Although SVARs are widely used by business cycle ana-
lysts, considerable debate has been generated recently about
their usefulness. One critique leveled by Chari, Kehoe, and
McGrattan (2008) (hereafter, CKM) is discussed here and can
be addressed by using a VARMA representation, as is done in
the article. However, given the wide use of SVARSs, reviewing
the substance of the critique may be helpful.

The Procedure. [ will focus attention on the SVAR procedure
with long-run restrictions, which is a simple time series tech-
nique that uses minimal economic theory to identify the pattern
of responses of economic aggregates to possible shocks in the
economy. Following this procedure, the analyst estimates a
vector autoregression, inverts it to get a moving average (MA)
representation, and imposes certain structural assumptions
about the shocks hitting the economy. (See Blanchard and
Quah 1989.)

To be more precise, let ¥, be an N-dimensional vector con-
taining observations at time period . The first step is to estimate
a vector autoregression (VAR) by regressing Y, on p lags,

(1) Y,=Ag+ AV + AY 5+ AY, 4V,

The second step is to invert this VAR to get the corresponding
moving average,

2) Y=v,+Byv,_ +Byv,_,+...,

where v, is the residual in (1) with Ev,v; = Q. Mechanically,
it is easy to recursively compute the B coefficients given es-
timates of the 4 coefficients in (1). An estimate of the matrix
Q is easily constructed from the VAR residuals.

One more step is needed to derive the structural MA—one
that has interpretable shocks. The structural MA is given by

3) Y =Cie, +Cie_ +Che,_, +...,

where Eee, =3, e,=C;'v,, and C;=B,C, for j21.
The elements of v, are simple residuals in a VAR, but the
elements of e are the shocks of interest. To provide these
shocks with an economic interpretation, we need to impose
“structural” restrictions on the elements of C;, and ..

An Application. To better understand these restrictions, it
helps to describe a specific example. I will use one that has
been at the center of the recent debate concerned with the use-
fulness of SVARs. In this case, Y, is a two-dimensional vector
containing the change in the log of labor productivity and

QR

the log of hours. The lag length p in (1) is set equal to 4. In
practice, analysts choose small values for p because they have
sample sizes of roughly 200 quarters. For the structural shocks,
assume the first element of e, is a “technology” shock and the
second element a “demand” shock.

Next, we need restrictions to identify elements of C,
and Y. Seven restrictions typically used are as follows.
Three come from equating variance-covariance matrices
(Cy XC; =Q). Three come from assuming that the shocks
are orthogonal (X = I). The last comes from the assumption
that demand shocks have no long-run effect on labor produc-
tivity (£, C;(1,2) = 0). SVAR users call this last restriction a
long-run restriction. It assumes that technology shocks have
a permanent effect on the level of labor productivity, whereas
demand shocks do not.

The SVAR Claims. The main finding of the recent SVAR
literature is that a positive technology shock leads to a fall in
hours. (See Gali and Rabanal 2005.) This finding has led these
researchers to conclude that a certain class of business cycle
models, referred to as real business cycle or RBC models, is
not promising for the study of business cycles, since most RBC
models predict a positive response in hours. They further claim
that sticky price models are more promising because these
models can produce the fall in hours after a technology shock.

The CKM Critique. Users of the SVAR procedure claim that
it is useful because it can confidently and correctly distinguish
between promising and unpromising classes of models with
minimal assumptions about the economic environment. CKM
evaluated this claim with a very simple test. They generated data
from an RBC model, drawing a large number of samples with
the same length as is available in U.S. data. With these artificial
data, they repeatedly apply the SVAR procedure and find that it
cannot confidently and correctly uncover the truth.

Two problems are associated with the SVAR procedure
that lead to biased and uninformative results. The source of
the first problem is truncation bias. Theoretical business cycle
models currently in use cannot be represented by a finite-order
VAR. In other words, p in (1) is infinity. But our data sets have
finite length and, as a result, p must be finite. The source of the
second problem is small sample bias. Most statistical proce-
dures do poorly if sample sizes are not sufficiently large. The
ultimate question, though, is what constitutes “sufficient.”

Avoiding Truncation Bias. One easy adaptation of the SVAR
procedure is to use a VARMA representation that allows for
moving average terms. This is what is done in this study. Using
VARMAS takes care of the problem of truncation bias. Then, I
can determine the extent of the problem of small sample sizes.
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where ¢, =[¢_,,¢,,¢,,] is the vector of shocks hitting
the economy at date ¢.

Approximate equilibrium decision functions can be
computed by log-linearizing the first-order conditions
and applying standard methods. (See, for example, Uh-
lig 1999.) The equilibrium decision function for capital
has the form

Q) log kH—l =Yk logkt t7y, log Z YTy
+ yxTxt + yO
=7 log k, +ygs, +7,,

where k, =k, / Z,_, is detrended capital. From the static
first-order conditions, I also derive decision functions
for output, investment, and labor which I use later,
namely,

(6)  logj, =4, logk, +4s,
(7) 10g )’et = ¢xk log lgt + ¢):sst
(8)  logl =@, logk, +d.s,,

where y,=y,/Z,, x,=x,/Z,, and the coefficient
vectors @, ¢, and ¢ that multiply s, in equations
(6)—(8) are three-dimensional. The coefficients in equa-
tions (5)—(8) are functions of the underlying parameters
of preferences and technology that appear in the original
household objective function, equation (1), and con-
straints, equations (2)—(3).

Observables

In all representations later, I assume that the economic
modeler has data on per capita output, labor, and invest-
ment. Because output and investment grow over time,
the vector of observables is taken to be

Y, =[Alogy, /1, logl, logx, /y,] .

The elements of Y are the growth rate of log labor pro-
ductivity, the log of the labor input, and the log of the
investment share.? All elements of Y are stationary.
For the prototype model, these observables can be
written as functions of S, =[log k,,s,,s,_;,1]". To see
this, note that the change in log productivity is a function
of the state today (log k,,s,,1) and the state yesterday
(logk,_,,s,_;,1). The capital stock at the beginning of

the last period log k,_; can be written in terms of logk,
and s,_; by equation (5). The other observables depend
only on today’s state (log k,,s,,1). Thus, all of the ob-
servables can be written as a function of S,, which is
an 8x1 vector.

Three Statistical Representations

I use the form of decision functions for the prototype
model to motivate three different but related statistical
representations of the economic time series.

A Restricted State Space Representation
The state space representation for the prototype model
has the form

©) S, =A©)S,+B(O)c,,,, Ece =1
Y, =C(©)S,,

where the parameter vector is

/’

G):[iagn’gza55991//)aarlarxap]9pxaa]90x] .

Here, i is the interest rate and is used to set the discount
factor f=exp(g.)° /(1+i). 1 use © to compute an
equilibrium and then construct

Ye 7o 0 % 0
a0 a@=| " 70 Bl pe=|?
1o 17 0 of 1o
0 0 0 0
C(O)=
(¢yk _¢1k)(1 _I/Vk) O Do — Py
¢)’)s _¢l; +1 ¢[’s ¢':s _¢),/s

8, + G (G =)yl /v 00
(¢yk—¢1k)7/o/7k Pro ¢x0_¢y0_

where 1 1is a 31 vector with 1 in the first element and
zeros otherwise, and 0 is a 3x1 vector of zeros. Recall
that P and Q are 3x3 matrices. Thus, A(®) is an 88
matrix, B(©) an 8x3,and C(O©) a 3x8. Elements of

’I have chosen variables that business cycle researchers typically do, but other
variations that I tried—such as using output growth rather than labor productivity
growth—did not affect my results.
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these matrices are functions of coefficients in equations
(H-®).

Estimates © are found by applying the method of
maximum likelihood. The exact likelihood function
is computed using a Kalman filter algorithm. (See, for
example, Hamilton 1994.)

For the restricted state space representation, I con-
sider three sets of restrictions on the parameter space.
In what I refer to as the “loose constraints” case, I as-
sume that the parameters in ® can take on any value
as long as an equilibrium can be computed. In what |
refer to as the “modest constraints” case, I assume that
the parameters in © are constrained to be economi-
cally plausible. Finally, I consider a “tight constraints”
case with some parameters fixed during estimation.
The parameters that are fixed are those that are least
controversial for business cycle theorists. They are the
interest rate i, the growth rates g, and g_, the deprecia-
tion rate O, the capital share 0, and the mean tax rates
7, and 7. In the tight constraints case, I only estimate
the parameters affecting key elasticities, namely, v and
o, and parameters affecting the stochastic processes
for the shocks. There is no consensus on the values for
these parameters.

An Unrestricted State Space Representation
In the restricted state space representation, all cross-
equations restrictions are imposed. This necessitates
making many assumptions about the economic environ-
ment. Suppose instead that I assume only that the state
of the economy evolves according to (4) and (5), and
that decisions take the form of (6)—(8).

In this case, I need not provide specific details of
preferences and technologies. I do, however, need
to impose some minimal restrictions that imply the
parameters of the state space are identified. Let S, =
[logk,.5,.5, ], where

k, = (log 12, - loglg) /(7.0.)

. =(logz, —logz) /o,

( )

and 5, =[logZz,,7;,,T,, | Then the unrestricted state space
representation can be written as

QR

(1) S, =4,(T)S, +B.e,,, Ege/=1
Y,=C,()S,
with
F7k1771 77)(000—
00 0 0 000
0 0 p 0 000
(12) 4,(T)=[0 0 0 p. 0 0 Of,
01 0 0 000
0 0 1 000
(0 0 0 00 0]
[0 0 0]
100
010
B,=0 0 1
000
000
0 0 0]

and C,(I') unrestricted (except for zero coefficients
on 5,_, in the second and third rows). The (1,3) element
of 4,(T") is y,=y,0,/(y,0,). The (1,4) element is
Ve =70,/ (7.0.).

The vector to be estimated, T, is therefore given by

F=[yk,77,,;7x,p,,px,vec(Cu )’]’

where the vec(C,)’ includes only the elements that are
not a priori set to 0. As in the case of the restricted state
space representation, estimates are found by applying
the method of maximum likelihood. From this, I get
I

ProrosiTiON 1. The state space representation, equation
(11), is identified.

Proof. Applying the results of Wall (1984),° if
(4),B!,C)) and (42,B2,C?) are observationally

us"u’ us>-u

3See Burmeister, Wall, and Hamilton (1986), Proposition 2.
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equivalent state space representations, then they are
related by A2=T"'A'T, B2=T"'B., and C?=C!T.
Identification obtains if the only matrix 7 satisfying
these equations is 7 =1. It is simple algebra to show
that this is the case for the unrestricted state space rep-
resentation (11). Q.E.D.

It is useful to compare the matrices for the restricted
state space representation in equation (10) and the unre-
stricted state space representation in equation (12). All
coefficients in (10) are functions of the business cycle
model’s “deep structural” parameters ® and must satisfy
the cross-equation restrictions imposed by the theory.
On the other hand, the only structure imposed on coef-
ficients of the unrestricted state space in (12) is zero
restrictions. I am not imposing anything more.

A Vector Autoregressive

Moving Average Representation

Starting from the state space representation, equation
(9), the moving average for the prototype model with
observables in Yis easily derived by recursive substitu-
tion. In particular, it is given by

(13)

Assume that CB is invertible and let ¢, = CBg,. Then I
can rewrite equation (13) as

Y,=CBe, + CABe, | +CA*Be, 5 +....

Y,=e,+CAB(CB) e, , + CA*B(CB) e, , +...
=e + Clet + Czet_z +....

Assuming the moving average is invertible, ¥ can also
be represented as an infinite-order VAR,

(14)

where Bj = Cj —Ble_l —...Bj_lCl.

ProposiTION 2. For the prototype economy, the implied
VAR in equation (14) has the property that M = B jBJ_._ll
and therefore can be represented as a vector autore-
gressive moving average representation of order (1,1),
namely,

(15)
with Y, = CBB'C".

Y,=BY_ +BY, ,+..+e,

Y, Z(Bl +M)Yt—1 +e,—Me,_,, Eetetlzz

Proof. See Chari, Kehoe, and McGrattan (2008). Q.E.D.

Let A denote the vector of parameters to be esti-
mated for the VARMA via maximum likelihood, which
are all of the elements of matrices B,, M, and X. If
I allow these parameters to take on any values, it is
possible that the system would be nonstationary or non-
invertible. [ reparameterize the VARMA as described
in Ansley and Kohn (1986) to ensure stationarity and
invertibility. I also need to check that B, has nonzero
elements and that [ B, + M, M | has full rank to ensure
that the matrices are statistically identifiable. (See
Hannan 1976.)

I now have three statistical representations that are
consistent with the prototype model: the restricted state
space representation, which makes explicit use of the
details of the underlying model and imposes these in
cross-equation restrictions; the unrestricted state space
representation, which imposes zero restrictions on the
state space but no cross-equation restrictions; and the
VARMA(1,1) representation, which uses only minimal
information about the reduced form of the system. For
all three, applying the method of maximum likelihood
is a straightforward procedure.*

Setting Up the Laboratory

Before applying the estimation procedure, I first gen-
erate 1,000 samples of data {Y,} using the prototype
business cycle model. Each sample is 200 quarters in
length, which is typical for actual applications. This is
done by randomly drawing sequences for the shocks
{varepsilon,}. These shocks, along with an initial value
of the state s,, imply a sequence of exogenous states
{s,} that satisty (4). With an initial capital stock &, and
the sequence {s,}, I can use (6)—(8) to generate data
for the business cycle model. For each sample, the true
parameters of the business cycle model are fixed and
given by

©=1.01,.0025,.005,.015,.33,1.8,1.0,...
25,.0,.95,.95,1,1,1] .
Using the restricted state space representation, I apply

the method of maximum likelihood to each of the 1,000
samples. This procedure yields 1,000 estimates © of

4Codes are available at my website. See Anderson et al. (1996) for more details
on estimating dynamic linear economies.
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the parameter vector. For each estimate, I can construct
the coefficients of the model’s equilibrium equations
(4)—(8). With numerical values for these coefficients,
I can then construct the statistics that business cycle
analysts care about, which will be discussed later.

Similarly, I can apply the method of maximum likeli-
hood in the case of the other two statistical representa-
tions. For the unrestricted state space, the procedure
ylelds estimates for I and, in turn, for A4 L) and

C,(I') of (11). For the VARMA(L,1), the procegiure
yields estimates for A and, in turn, B, M, and % of
equation (15). As before, once I have numerical values
for the coefficients in these equations, I can construct the
statistics of interest for business cycle analysts.

For the restricted state space representation, three
levels of constraints on the parameter vector are inves-
tigated. Recall that the only restriction in the “loose
constraints” case is that an equilibrium exists. In the
“modest constraints’ case, | assume that the parameter
constraints are © <© <O, where

(16)  ©=[.0075,0,.0025,0,.25,.01,.01,.15,

-.1,-1,-1,0,0,0]

©=[.0125,.0075,.0075,.025,.45,10,
10,.35,.1,1,1,10,10,10].

This implies an annual rate of interest between 3 and 5
percent; an annual growth rate of population between
0 and 3 percent; an annual growth rate of technology
between 1 and 3 percent; an annual depreciation rate
between 0 and 10 percent; a capital share between 25
and 45 percent; ¥ and o between 0.01 and 10; the mean
labor wedge between 0.25 and 0.35; the mean invest-
ment wedge between —0.1 and 0.1; serial correlation
coefficients between —1 and 1; and standard deviations
of the shocks between 0 and 10 percent. In the “tight
constraints” case, I fix the interest rate, the growth rates,
the depreciation rate, the capital share, and the means of
the tax rates during estimation and use bounds in equa-
tion (16) for the other parameters.

Business Cycle Statistics

Statistics of interest for business cycle analysts include
impulse response functions, variance decompositions,
autocorrelations, and cross-correlations. In this section,
I use the three representations (9), (11), and (15) to
construct these statistics.

QR

The first set of statistics are impulse responses of the
three observables—growth in labor productivity, the
log of labor, and the log of the investment share—to 1
percent shocks in each of the three shocks in ¢,. Here,
I report only the responses in the period of impact of the
shock. In the restricted state space representation, the
impact of the shock is summarized by the elements of
CB. Similarly, the impact responses are summarized by
C,B, for the unrestricted state space representation. For
the VARMA, one needs additional information to iden-
tify CB from the variance-covariance Y, = (CB)(CB).
A typical assumption made in the literature to identify
the responses to a technology shock (&) is to assume
that technology shocks have a long-run effect on labor
productivity, whereas demand shocks (g,,¢,) do not.
This assumption allows me to infer the first column of
CB. (See Chari, Kehoe, and McGrattan 2008.) How-
ever, it does not imply anything for the relative impacts
of ¢, and ¢,,. Since these are not identifiable, they are
not reported.

The impact coefficients of the impulse responses are
reported in Table 1. The first row shows the true value
of each statistic. For example, in the model, productivity
rises by 0.58 percent in response to a 1 percent increase
in ¢,,, labor rises by 0.27 percent, and the investment
share rises by 0.88 percent. Responses to shocks in ¢,
are shown in the middle three columns, and responses to
shocks in €, are shown in the last three columns.

In the next three rows, I report statistics based on
the restricted state space representation with varying
degrees of tightness in the constraints imposed during
maximum likelihood estimation. The last two rows are
the results for the unrestricted state space representa-
tion and the VARMA(1,1) representation. In each case,
the first number displayed is the mean estimate of the
statistic averaged over the 1,000 data sets. The second
number displayed below in parentheses is the root mean
squared error (RMSE), which is defined as

N

1 . 2
RMSE = NZ(; ¢

i=1

In this formula, {; is the ith estimate of the statistic,
i=1,...,N, and ¢ is the true value. If there is no bias
due to small samples, then { is equal to the mean of the
estimates ¢, i=1,..., N, and the RMSE is equal to the
standard deviation.
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Table 1

Impact Coefficients of Impulse Responses
(Means and Root Mean Squared Errors)

What Happens after 1% e, Shock?

What Happens after 1% €; Shock?

What Happens after 1% e, Shock?

Alog yi/t; - logl: logx;/ Y Alog yi/t; — logls logx;/ ¥ Alog y, /1y logl; log X,/ ¥;
True 58 27 .88 50 -1.52 -1.88 35 -1.06 -3.52
Restricted SS
Tight 59 25 84 50 -1.50 -1.86 34 -1.04 -3.47
constraints (.03) (.05) (18) (.05) (15) (.46) (07) (21) (31)
Modest 59 22 79 49 -1.53 -2.01 31 -97 -3.36
constraints (.04) (.08) (22) (07) (.18) (61) (10) (.30) (.45)
Loose 58 25 85 48 -1.48 -1.91 32 -.96 -3.28
constraints (.06) (16) (.35) (.08) (.29) (.96) (.16) (.44) (.63)
Unrestricted SS 42 19 70 35 -1.12 -1.46 28 -.83 -2.63
(.36) (.68) (1.44) (.36) (.75) (1.66) (.31) (.76) (1.63)
VARMA .31 22 58 — — — — — —
(52) (.96) (1.88)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-
ters are used to compute the impact coefficients reported in the table. The term Alog y, /(; is the growth in labor productivity, y; is output, [, is labor, and x; is investment.
“SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model of order (1,1). For the “Tight constraints” case of the restricted
state space model, only 4, o; and the stochastic processes of the exogenous shocks are estimated. For the “Modest constraints” case, all parameters are estimated, but
the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only restriction imposed is that an equilibrium can be computed. The
numbers in parentheses are the root mean squared errors. Some statistics are not reported for the VARMA representation because they are not identifiable.

It is clear from Table 1 that the differences in results
for the restricted state space and the other two repre-
sentations are large. Consider first the means of the
estimates. There is little bias in the estimates for the
restricted state space. This is especially true when tight
constraints are used during maximum likelihood estima-
tion. However, even in the case of modest constraints,
the means of the estimates are very close to the true
values shown in the first row. For the unrestricted state
space representation and the VARMA, the biases are
large. For example, all of the predicted responses fol-
lowing a technology shock are significantly below the
actual responses. In the case of the shocks to the labor
and investment wedges for the unrestricted state space
model, large biases are also evident.

Next consider the RMSEs that appear in parentheses
below the means. As I remove restrictions, these errors

grow large. Compare, for example, the errors of the re-
stricted state space representation with tight constraints
with those of the VARMA in columns 1 through 3. In
the latter case, the size of the errors indicates that the
impulse response predictions range from large negatives
to large positives. In other words, the VARMA predic-
tions are uninformative. Similarly, the unrestricted state
space has large RMSEs for all of the statistics reported in
Table 1 and, like the VARMA, is therefore uninformative
about impulse responses.

To generate tight predictions, we need to impose the
cross-equation restrictions and restrict parameter esti-
mates to lie in the economically plausible range. When
I allow all of the parameters to be completely free for
the restricted state space representation, I find that the
RMSE:s do get significantly larger. For example, one can
see a significant difference in the responses of labor and



FEDERAL RESERVE BANK OF MINNEAPOLIS

QR

Table 2

Variance Decomposition of Productivity Growth, Labor, and Investment Share

(Means and Root Mean Squared Errors)

What Fraction of Variance Is Due to €,?

What Fraction of Variance Is Due to €;?

What Fraction of Variance Is Due to €, ?

Alog y;/l;  log !l logx;/ y; Alog y;/t; - logl: log x;/ y; Alog yy /1 logls logx;/ y;
True 45 3.4 8.9 36 69 19 19 28 72
Restricted SS
Tight 46 3.4 9.4 35 68 20 19 29 71
constraints @.1) (9) (3.1) (7.0) 12) (8.5) (6.6) 12) 11
Modest 48 35 10 36 70 23 17 26 66
constraints 6.9) 1.9) (5.6) (8.0) (14) (14) (8.5) (14) 17)
Loose 46 5.6 12 34 68 25 20 27 63
constraints 9.3 8.2 (12) (10) (23) (22) (15) (19) (22)
Unrestricted SS 40 13 15 33 50 33 27 38 52
23) 1) 22) 24) (35) (30) (25) (30) (35)
VARMA 41 33 34 — — — — — —
(30) (40) (35)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-
ters are used to compute the impact coefficients reported in the table. The term Alogy; /L, is the growth in labor productivity, y; is output, {; is labor, and x; is investment.
“SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model of order (1,1). For the “Tight constraints” case of the restricted
state space model, only , o; and the stochastic processes of the exogenous shocks are estimated. For the “Modest constraints” case, all parameters are estimated, but
the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only restriction imposed is that an equilibrium can be computed. The
numbers in parentheses are the root mean squared errors. Some statistics are not reported for the VARMA representation because they are not identifiable.

the investment share.
The next statistics that I consider are variance decom-
positions. For a general state space system of the form

(17
(18)
with Ee,e, =2, the population variances of the ob-

servables in Y are the diagonal elements of the matrix
V, where

S =4S, + Be,,

Y,=Cs,

V =AVA + BLL'B’

and L is a lower triangular matrix that satisfies LL =Y.
In other words, the (7,7) element of Vis the variance of

the ith variable in Y. The variance decomposition sum-
marizes the contribution of the variances due to each of
the shocks in e,. To be specific, let J; be the contribution
of the variance of Y due to shock ;. This is given by

V,=AV,A'+BL® L'B,

where @ . is a matrix with the same dimensions as Y,
and one nonzero element, element ( /, j) that is equal
to 1. In this case, the (7,7) element of v, is the variance
of the ith variable in Y which is due to the jth shock.
Note that V"=, V.

In the case of the VARMA(1,1), I can rewrite the
system in (15) in the form of the state space above,
namely,

10
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Table 3

Standard Deviations and Correlations of HP-Filtered Output, Labor, and Investment

(Means and Root Mean Squared Errors)

Standard Deviations of HP-Filtered Series

Autocorrelations of HP-Filtered Series

Cross-Correlations of HP-Filtered Series

Outputand  Outputand  Labor and
Output Labor Investment Output Labor Investment Labor Investment  Investment
True 1.9 2.4 6.9 .70 .69 .69 .89 91 .92
Restricted SS
Tight 1.9 2.4 6.8 .69 .68 .68 .89 .90 .92
constraints (.086) (13) (:36) (.008) (011) (011) (013) (012) (011)
Modest 1.9 2.4 6.8 .69 .68 .68 .89 91 92
constraints (.097) (13 (.37) (.011) (.015) (.014) (.015) (.013) (.011)
Loose 1.9 2.4 6.8 .69 .68 .68 .89 .90 .92
constraints (.098) (13) (.38) (.012) (.017) (.016) (.019) (.013) (.011)
Unrestricted SS 1.9 2.3 6.7 .68 .67 .67 .89 .90 .92
(13) (17 (.47) (.035) (.034) (.035) (.020) (.017) (.014)
VARMA 1.9 2.4 6.9 .70 .69 .69 .89 .90 .92
(14 (.16) (.57) (.036) (.029) (.035) (.018) (.018) (.015)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-
ters are used to compute the second moments reported in the table. “SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model
of order (1,1). For the “Tight constraints” case of the restricted state space model, only ¢, o, and the stochastic processes of the exogenous shocks are estimated. For
the “Modest constraints” case, all parameters are estimated, but the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only
restriction imposed is that an equilibrium can be computed. The numbers in parentheses are the root mean squared errors.

B +M I 1
Sz+1= 0 0 St+ M €11

Y, = [1 O] Sps
where the coefficients on §, and e,,; can be mapped to
A, B, and C in equations (17)—(18).

In Table 2, I report the predictions of the population
variance decompositions. The ordering of results in
Table 2 is the same as in Table 1, with the most restrictive
appearing first and the least restrictive appearing last.
Comparing the means of the statistics with the actual
values, we again see large biases for the unrestricted
state space and VARMA representations, especially
for decompositions of labor and investment shares. In

terms of the RMSEs, the results for the unrestricted state
space and VARMA representations again show that the
predictions are not informative. In effect, the range of
variances for the VARMA representation is close to
everything in 0 to 100 percent.

The third set of statistics is very common in the real
business cycle literature that typically reports statistics
for filtered time series using the method of Hodrick and
Prescott (1997). Specifically, for each statistical repre-
sentation and each set of parameter estimates, I simulate
500 time series for output, labor, and investment of
length 200. In each case, the output and investment
data are filtered because they are nonstationary. I then
take averages of standard deviations, autocorrelations,
and cross-correlations over the 500 simulations. This is
done for each representation and for each of the 1,000

11
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Table 4

Variance Decomposition of HP-Filtered Output, Labor, and Investment

(Means and Root Mean Squared Errors)

What Fraction of Variance of
HP-Filtered Series Is Due to €,?

What Fraction of Variance of
HP-Filtered Series Is Due to €;?

What Fraction of Variance of
HP-Filtered Series Is Due to ex?

Output Labor Investment Output Labor Investment Output Labor Investment
True 33 2.1 1Al 47 67 30 23 33 62
Restricted SS
Tight 32 1.9 10 47 67 30 24 34 62
constraints (3.0) 0.7) (2.2) 8.2 (12) (10) (8.6) (12) 12)
Modest 31 1.6 10 50 70 35 21 30 58
constraints (4.9) (1.0 2.9 (12 (15) (16) 1) (15) (16)
Loose 33 2.6 1 48 67 35 22 32 56
constraints (8.9) (3.3 6.0) (19) (23) (24) (14) (21) (22)
Unrestricted SS 29 15 18 42 50 34 31 37 50
(22) (26) (25) (29) (37) (30) 27) (31) (34)
VARMA 32 28 25 — — — — — —
(28) 37 (29)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-
ters are used to compute the variance decompositions reported in the table. Tables do not necessarily sum to 100 percent because a two-sided filter is applied to the time
series. “SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model of order (1,1). For the “Tight constraints” case of the
restricted state space model, only ¢, o, and the stochastic processes of the exogenous shocks are estimated. For the “Modest constraints” case, all parameters are
estimated, but the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only restriction imposed is that an equilibrium can be

computed. The numbers in parentheses are the root mean squared errors.

maximum likelihood parameter vectors.

The implied statistics are reported in Table 3. Notice
that the bias and RMSEs of the predictions are small for
all representations. For example, in all cases, the dis-
tribution of cross-correlations of output and labor has a
mean of 0.89 and the largest RMSE is 0.02. Perhaps this
finding is not too surprising, given that we do not need
all of the details of a model to get an accurate prediction
for unconditional moments.

The final set of statistics is related to those reported in
Table 2. In Table 4, I report the variance decompositions
for the HP-filtered data. This exercise is similar to that
done in Table 2 but is included for easy comparison with
estimates in the business cycle literature. As before, the
RMSE:s for the unrestricted state space and the VARMA
representations are so large that they are uninformative.

In the restricted state space model, the estimates for
the technology shock are very informative. This is true
even for labor and investment, whose variation depends
little on technology shocks. The restricted state space
estimates for the labor shock imply that it contributes
significantly to all three variables. The restricted state
space estimates for the investment shock are the least
informative but still imply that ¢ has a big effect on
investment.

Conclusion

In this article, I conduct a simple small-sample study. I
ask how much can business cycle theorists learn from
actual time series if they impose very little theory when
applying their statistical methods. The answer is very
little.

12
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