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Abstract

Applied macroeconomists interested in identifying the sources of business cycle 
fl uctuations typically have no more than 40 or 50 years of data at a quarterly 
frequency. With sample sizes that small, identifi cation may not be possible even 
with correctly specifi ed representations of the data. In this article, I investigate 
whether small samples are indeed a problem for some commonly used statisti-
cal representations. I compare three—a vector autoregressive moving average 
(VARMA), an unrestricted state space, and a restricted state space—that are 
all consistent with the same prototype business cycle model. The statistical 
representations that I consider differ in the amount of a priori theory that is 
imposed, but all are correctly specifi ed. I fi nd that the identifying assumptions 
of VARMAs and unrestricted state space representations are too minimal: the 
range of estimates for statistics of interest for business cycle researchers is so 
large as to be uninformative.
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Applied macroeconomists interested in identifying the 

more than 40 or 50 years of data at a quarterly frequency. 

representation of the data. In this article, I investigate 
whether small samples are indeed a problem for some 
commonly used statistical representations applied to 
the same prototype business cycle model. The business 
cycle model is a prototype in the sense that many mod-
els, with various frictions and shocks, are observation-
ally equivalent to it. 

The statistical representations that I consider differ 
in the amount of theoretical detail that is imposed a 

would correctly identify the sources of business cycles 
and the contributions of different shocks to economic 

-

All are consistent with the same prototype business 
cycle model, but the VARMA imposes few restrictions 
based on the underlying economic environment, and 
the restricted state space imposes many. In particular, 
the VARMA representation is a system of equations in 

reduced form, whereas the restricted state space repre-

trade-offs that economic agents face in the theory.

and unrestricted state space representations are too 
minimal to uncover statistics of interest for business 
cycle research with sample sizes used in practice. I 
demonstrate this by simulating 1,000 data sets of length 
200 quarters using the prototype business cycle model. 
For each data set and each of the three statistical repre-
sentations of the data, I apply the method of maximum 
likelihood to estimate parameters for that representation 
and then construct statistics of interest to business cycle 
analysts. The statistics include impulse responses, vari-

data. For the VARMA and unrestricted state space rep-

biased and have large standard errors. The errors are so 
large as to be uninformative.

Since the restricted state space representation relies 

maximum likelihood parameters are economically in-

*I thank Elmar Mertens, Ed Prescott, and Warren Weber for their com-
ments. Codes to replicate the results of this article are available at my web-
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terpretable and can be constrained to lie in economically 
plausible ranges. In practice, business cycle research-
ers may put further constraints on the ranges of these 
parameters using independent micro or macroevidence. 
I also do this and compare results across experiments, 
varying constraints on the possible ranges of the maxi-

the main results—which are the statistics of interest for 
business cycle analysts—are not sensitive to varying 

plausible range.
-

pare the small sample performances of the VARMA 
and unrestricted state space representations with that 

“Structural VARs with Long-Run Restrictions,” for 

space representations, which impose much more theory. 

SVARs, and the state space representation performs 
slightly better than the SVARs. However, none of the 
representations they consider yield precise estimates for 
the statistics that these authors highlight.

In the following section, I lay out the prototype busi-
ness cycle model. Then I summarize the three statistical 
representations. The method of maximum likelihood 
used to estimate parameters of the three representa-
tions is described, and I report on the business cycle 

section concludes.

The Prototype Business Cycle Model
I use a prototype growth model as the data-generating 
process for this study. The model is a prototype in 
the sense that a large class of models, including those 
with various types of frictions and various sources of 
shocks, are equivalent to a growth model with time-
varying wedges that distort the equilibrium decisions 
of agents operating in otherwise competitive markets. 

wedges are modeled like time-varying productivity, 
labor income taxes, and investment taxes. Since many 

identifying one particular configuration does not 

any one detailed economy.

E
c l

Nt

t

t t
t0

0

1
1 1

1

subject to the budget constraint and the capital accu-
mulation law,

c x w l r k Tt xt t lt t t t t t1 1

1 11g k k xn t t t

where kt  denotes the per capita capital stock, xt  per 
capita investment, wt  the wage rate, rt  the rental rate 
on capital,  the discount factor,  the depreciation rate 
of capital, Nt  the population with growth rate equal to 
1+ gn , and Tt  the per capita lump-sum transfers. The 
series lt  and xt  are stochastic and stand in for time-
varying distortions that affect the households’ intratem-
poral and intertemporal decisions. Chari, Kehoe, and 

lt  as the labor wedge and 
xt as the investment wedge.

F K Z Lt t t where 
K and L are aggregate capital and labor inputs and Zt
is a labor-augmenting technology parameter which is 
assumed to be stochastic. Chari, Kehoe, and McGrattan 

Zt  the  and demonstrate an 
equivalence between the prototype model with time-

-
mies with underlying frictions that cause factor inputs to 

log Zt  is a unit-root with innovation log .zt The process 
for the exogenous state vector s zt t lt xt[log , , ]  is1
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1The assumption that the shocks are orthogonal is unrealistic for many actual 

approaches.
Households in the economy maximize expected util-

ity over per capita consumption ct  and labor lt ,
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I have not included a commonly used statistical representation 

study. Although SVARs are widely used by business cycle ana-
lysts, considerable debate has been generated recently about 
their usefulness. One critique leveled by Chari, Kehoe, and 

be addressed by using a VARMA representation, as is done in 
the article. However, given the wide use of SVARs, reviewing 
the substance of the critique may be helpful.

The Procedure. I will focus attention on the SVAR procedure 
with long-run restrictions, which is a simple time series tech-
nique that uses minimal economic theory to identify the pattern 
of responses of economic aggregates to possible shocks in the 
economy. Following this procedure, the analyst estimates a 

representation, and imposes certain structural assumptions 

To be more precise, let Yt  be an N-dimensional vector con-
taining observations at time period t

Yt  on p lags,

Y A A Y A Y A Y vt t t p t p t0 1 1 2 2 .

The second step is to invert this VAR to get the corresponding 
moving average,

Y v B v B vt t t t1 1 2 2 ,

where vt Ev vt t .  Mechanically, 
it is easy to recursively compute the B -
timates of the A

 is easily constructed from the VAR residuals.
One more step is needed to derive the structural MA—one 

that has interpretable shocks. The structural MA is given by

Y C e C e C et t t t0 1 1 2 2 ,

where Ee e e C vt t t t, ,0
1 and C B Cj j= 0  for j 1.

The elements of vt  are simple residuals in a VAR, but the 
elements of et are the shocks of interest. To provide these 
shocks with an economic interpretation, we need to impose 
“structural” restrictions on the elements of C0  and .

An Application. To better understand these restrictions, it 

been at the center of the recent debate concerned with the use-
fulness of SVARs. In this case, Yt  is a two-dimensional vector 
containing the change in the log of labor productivity and

the log of hours. The lag length p
practice, analysts choose small values for p because they have 
sample sizes of roughly 200 quarters. For the structural shocks, 

et  is a “technology” shock and the 
second element a “demand” shock. 

Next, we need restrictions to identify elements of C0
and . Seven restrictions typically used are as follows. 
Three come from equating variance-covariance matrices 
C C0 0  Three come from assuming that the shocks 

are orthogonal I  The last comes from the assumption 
that demand shocks have no long-run effect on labor produc-
tivity j jC 1 2 0  SVAR users call this last restriction a 
long-run restriction. It assumes that technology shocks have 
a permanent effect on the level of labor productivity, whereas 
demand shocks do not.

The SVAR Claims.
literature is that a positive technology shock leads to a fall in 

researchers to conclude that a certain class of business cycle 
models, referred to as  or RBC models, is 
not promising for the study of business cycles, since most RBC 
models predict a positive response in hours. They further claim 
that  models are more promising because these 
models can produce the fall in hours after a technology shock.

The CKM Critique. Users of the SVAR procedure claim that 

between promising and unpromising classes of models with 
minimal assumptions about the economic environment. CKM 
evaluated this claim with a very simple test. They generated data 
from an RBC model, drawing a large number of samples with 

Two problems are associated with the SVAR procedure 
that lead to biased and uninformative results. The source of 

truncation bias. Theoretical business cycle 

VAR. In other words, p
p

second problem is small sample bias. Most statistical proce-

Avoiding Truncation Bias. One easy adaptation of the SVAR 
procedure is to use a VARMA representation that allows for 
moving average terms. This is what is done in this study. Using 
VARMAs takes care of the problem of truncation bias. Then, I 
can determine the extent of the problem of small sample sizes.

Structural VARs with Long-Run Restrictions
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where t zt lt xt[ , , ]  is the vector of shocks hitting 
the economy at date t.

Approximate equilibrium decision functions can be 

-

has the form

ˆ log ˆ logk k zt k t z t l lt+ = + +1

   + +x xt 0

   k log ˆ ,k st s t 0

where ˆ /k k Zt t t 1  is detrended capital. From the static 

for output, investment, and labor which I use later, 
namely,

log ˆ log ˆ

log ˆ log ˆx k st xk t xs t

log loglt lk= ˆ ,k st ls t

where ˆ / ,t t t= ˆ / ,x x Zt t t=  and the coefficient 
vectors , xs ,  and ls that multiply st  in equations 

-

of preferences and technology that appear in the original 
-

Observables
In all representations later, I assume that the economic 
modeler has data on per capita output, labor, and invest-
ment. Because output and investment grow over time, 
the vector of observables is taken to be

t t t t t t

The elements of Y are the growth rate of log labor pro-
ductivity, the log of the labor input, and the log of the 
investment share.2 All elements of Y are stationary.

For the prototype model, these observables can be 
written as functions of St = [ log ˆ , , , ] .k s st t t 1 1  To see 
this, note that the change in log productivity is a function 
of the state today ( log ˆ , , )k st t 1  and the state yesterday 
( log ˆ , , ).k st t1 1 1  The capital stock at the beginning of 

the last period log k̂t 1  can be written in terms of log k̂t
and st 1
only on today’s state ( log ˆ , , ).k st t 1  Thus, all of the ob-
servables can be written as a function of St ,  which is 
an  vector.

Three Statistical Representations
I use the form of decision functions for the prototype 
model to motivate three different but related statistical 
representations of the economic time series.

A Restricted State Space Representation
The state space representation for the prototype model 
has the form

S A S B E It t t t t1 1

   Y C St t

where the parameter vector is

i g gn z l x l x l x, , , , , , , , , , , , .

Here, i is the interest rate and is used to set the discount 
factor = +g iz 1  I use  to compute an 
equilibrium and then construct

A
P P
I

B
Q

k s 0
0 0
0 0 0
0 0 0 1

0

0
0

0

0

C

1

0 0

0 0 0 0

,

where 1 is a 3 1
zeros otherwise, and 0 is a 3 1 vector of zeros. Recall 
that P and Q are 3 3 matrices. Thus, A  is an 
matrix, B  an , and C  a . Elements of 

2I have chosen variables that business cycle researchers typically do, but other 
variations that I tried—such as using output growth rather than labor productivity 
growth—did not affect my results.
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Estimates ˆ  are found by applying the method of 
maximum likelihood. The exact likelihood function 

For the restricted state space representation, I con-
sider three sets of restrictions on the parameter space. 
In what I refer to as the “loose constraints” case, I as-
sume that the parameters in  can take on any value 
as long as an equilibrium can be computed. In what I 
refer to as the “modest constraints” case, I assume that 
the parameters in  are constrained to be economi-
cally plausible. Finally, I consider a “tight constraints” 

controversial for business cycle theorists. They are the 
interest rate i, the growth rates gn and gz , the deprecia-
tion rate ,  the capital share , and the mean tax rates 

l  and x .  In the tight constraints case, I only estimate 
the parameters affecting key elasticities, namely,  and 

, and parameters affecting the stochastic processes 
for the shocks. There is no consensus on the values for 
these parameters.

An Unrestricted State Space Representation
In the restricted state space representation, all cross-
equations restrictions are imposed. This necessitates 
making many assumptions about the economic environ-
ment. Suppose instead that I assume only that the state 

preferences and technologies. I do, however, need 
to impose some minimal restrictions that imply the 

St =
[ log , , ] ,k s st t t 1 where

log logkt = ˆ log ˆ /)k kt z z

z z zt t z

   lt lt l l

   xt xt x x

and s zt t lt xt= [ ]log , , . Then the unrestricted state space 
representation can be written as

S A S B E It u t u t t t1 1,

   Y C St u t

with

Au

k l x

l

x

1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 11 0 0 0

,

   Bu

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

and Cu
on st 1
of Au  is l l l z z=

x x x z z=
The vector to be estimated, , is therefore given by

k l x l x uC, , , , , ,vec

where the Cu  includes only the elements that are 
not a priori set to 0. As in the case of the restricted state 
space representation, estimates are found by applying 
the method of maximum likelihood. From this, I get 
ˆ .

PROPOSITION 1. The state space representation, equation 
.

Proof. 3 if 
( , , )A B Cu u u

1 1 1  and ( , , )A B Cu u u
2 2 2  are observationally 

3
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equivalent state space representations, then they are 
related by A T A Tu u

2 1 1 , B T Bu u
2 1 1, and C C Tu u

2 1= .
T satisfying 

these equations is T = 1.  It is simple algebra to show 
that this is the case for the unrestricted state space rep-

Q.E.D.
It is useful to compare the matrices for the restricted 

-

model’s “deep structural” parameters  and must satisfy 
the cross-equation restrictions imposed by the theory. 
On the other hand, the only structure imposed on coef-

restrictions. I am not imposing anything more.

A Vector Autoregressive 
Moving Average Representation
Starting from the state space representation, equation 

observables in Y is easily derived by recursive substitu-
tion. In particular, it is given by

Y CB CAB CA Bt t t t1
2

2 .

Assume that CB is invertible and let e CBt t= . Then I 

Y e CAB CB e CA B CB et t t t
1

1
2 1

2

e C e C et t t1 2 2 .

Assuming the moving average is invertible, Y can also 

Y B Y B Y et t t t1 1 2 2 ,

where B C B C B Cj j j j1 1 1 1.
PROPOSITION 2. 
VAR in equation M B Bj j 1

1

and therefore can be represented as a vector autore-
gressive moving average representation of order

Y B M Y e Me Ee et t t t t t1 1 1,

with CBB C .

Proof Q.E.D.
Let  denote the vector of parameters to be esti-

mated for the VARMA via maximum likelihood, which 
are all of the elements of matrices B1, M, and . If 
I allow these parameters to take on any values, it is 
possible that the system would be nonstationary or non-
invertible. I reparameterize the VARMA as described 

invertibility. I also need to check that B1  has nonzero 
elements and that B M M1 +[ ],  has full rank to ensure 

I now have three statistical representations that are 

space representation, which makes explicit use of the 
details of the underlying model and imposes these in 
cross-equation restrictions; the unrestricted state space 
representation, which imposes zero restrictions on the 
state space but no cross-equation restrictions; and the 

information about the reduced form of the system. For 
all three, applying the method of maximum likelihood 
is a straightforward procedure.4

Setting Up the Laboratory
-

erate 1,000 samples of data { }Yt  using the prototype 
business cycle model. Each sample is 200 quarters in 
length, which is typical for actual applications. This is 
done by randomly drawing sequences for the shocks 
{ }.varepsilont  These shocks, along with an initial value 
of the state s0, imply a sequence of exogenous states 
{ }st k̂0 and
the sequence { },st
for the business cycle model. For each sample, the true 

given by

. , . , . , . , . , . , . ,

   . , . , . , . , , , .

Using the restricted state space representation, I apply 
the method of maximum likelihood to each of the 1,000 
samples. This procedure yields 1,000 estimates ˆ  of 

4

on estimating dynamic linear economies.
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the parameter vector. For each estimate, I can construct 
the coefficients of the model’s equilibrium equations 
(4)–(8). With numerical values for these coefficients, 
I can then construct the statistics that business cycle 
analysts care about, which will be discussed later.

Similarly, I can apply the method of maximum likeli-
hood in the case of the other two statistical representa-
tions. For the unrestricted state space, the procedure 
yields estimates for Γ̂  and, in turn, for Au( )Γ̂  and 
Cu ( )Γ̂  of (11). For the VARMA(1,1), the procedure 
yields estimates for Λ̂  and, in turn, ˆ ,B1  ˆ ,M  and ∑̂  of 
equation (15). As before, once I have numerical values 
for the coefficients in these equations, I can construct the 
statistics of interest for business cycle analysts.

For the restricted state space representation, three 
levels of constraints on the parameter vector are inves-
tigated. Recall that the only restriction in the “loose 
constraints” case is that an equilibrium exists. In the 
“modest constraints” case, I assume that the parameter 
constraints are Θ Θ Θ< <ˆ ,  where

(16)	 Θ = [. , , . , , . , . , . , .00 0 00 0 0 075 25 25 1 1 15,

			   − − − ]. , , , , ,1 1 1 0 0 0

		  Θ = [. , . , . , . , . , ,0 00 00 0 0125 75 75 25 45 1

			   1 35 1 1 1 1 1 10 0 0 0, . , . , , , , , .]
This implies an annual rate of interest between 3 and 5 
percent; an annual growth rate of population between 
0 and 3 percent; an annual growth rate of technology 
between 1 and 3 percent; an annual depreciation rate 
between 0 and 10 percent; a capital share between 25 
and 45 percent;    and   between 0.01 and 10; the mean 
labor wedge between 0.25 and 0.35; the mean invest-
ment wedge between −0 1.  and 0.1; serial correlation 
coefficients between −1 and 1; and standard deviations 
of the shocks between 0 and 10 percent. In the “tight 
constraints” case, I fix the interest rate, the growth rates, 
the depreciation rate, the capital share, and the means of 
the tax rates during estimation and use bounds in equa-
tion (16) for the other parameters.

Business Cycle Statistics
Statistics of interest for business cycle analysts include 
impulse response functions, variance decompositions, 
autocorrelations, and cross-correlations. In this section, 
I use the three representations (9), (11), and (15) to 
construct these statistics. 	

The first set of statistics are impulse responses of the 
three observables—growth in labor productivity, the 
log of labor, and the log of the investment share—to 1 
percent shocks in each of the three shocks in  t .  Here, 
I report only the responses in the period of impact of the 
shock. In the restricted state space representation, the 
impact of the shock is summarized by the elements of 
CB. Similarly, the impact responses are summarized by 
C Bu u  for the unrestricted state space representation. For 
the VARMA, one needs additional information to iden-
tify CB from the variance-covariance ∑ = ′( )( ) .CB CB  
A typical assumption made in the literature to identify 
the responses to a technology shock ( ) z  is to assume 
that technology shocks have a long-run effect on labor 
productivity, whereas demand shocks ( , ) l x  do not. 
This assumption allows me to infer the first column of 
CB. (See Chari, Kehoe, and McGrattan 2008.)  How-
ever, it does not imply anything for the relative impacts 
of  lt  and  xt .  Since these are not identifiable, they are 
not reported.

The impact coefficients of the impulse responses are 
reported in Table 1. The first row shows the true value 
of each statistic. For example, in the model, productivity 
rises by 0.58 percent in response to a 1 percent increase 
in  zt , labor rises by 0.27 percent, and the investment 
share rises by 0.88 percent. Responses to shocks in  lt 
are shown in the middle three columns, and responses to 
shocks in  xt  are shown in the last three columns.

In the next three rows, I report statistics based on 
the restricted state space representation with varying 
degrees of tightness in the constraints imposed during 
maximum likelihood estimation. The last two rows are 
the results for the unrestricted state space representa-
tion and the VARMA(1,1) representation. In each case, 
the first number displayed is the mean estimate of the 
statistic averaged over the 1,000 data sets. The second 
number displayed below in parentheses is the root mean 
squared error (RMSE), which is defined as 

		  RMSE
N i

i

N
= −( )

=
∑1 2

1

ˆ . 

In this formula, ̂ i  is the ith estimate of the statistic, 
i N= 1, , ,  and   is the true value. If there is no bias 
due to small samples, then   is equal to the mean of the 
estimates ˆ , i  i N= 1, , ,  and the RMSE is equal to the 
standard deviation.
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It is clear from Table 1 that the differences in results 
for the restricted state space and the other two repre-

estimates. There is little bias in the estimates for the 
restricted state space. This is especially true when tight 
constraints are used during maximum likelihood estima-
tion. However, even in the case of modest constraints, 
the means of the estimates are very close to the true 

space representation and the VARMA, the biases are 
large. For example, all of the predicted responses fol-

actual responses. In the case of the shocks to the labor 
and investment wedges for the unrestricted state space 
model, large biases are also evident. 

Next consider the RMSEs that appear in parentheses 
below the means. As I remove restrictions, these errors 

grow large. Compare, for example, the errors of the re-
stricted state space representation with tight constraints 
with those of the VARMA in columns 1 through 3. In 
the latter case, the size of the errors indicates that the 
impulse response predictions range from large negatives 
to large positives. In other words, the VARMA predic-
tions are uninformative. Similarly, the unrestricted state 
space has large RMSEs for all of the statistics reported in 
Table 1 and, like the VARMA, is therefore uninformative 
about impulse responses.

To generate tight predictions, we need to impose the 
cross-equation restrictions and restrict parameter esti-
mates to lie in the economically plausible range. When 
I allow all of the parameters to be completely free for 

Table 1

Impact Coefficients of Impulse Responses
(Means and Root Mean Squared Errors)

What Happens after 1% z Shock? What Happens after 1% l Shock? What Happens after 1% x Shock?

log yt /l t log l t logxt / yt log yt /llt log l t logxt / yt log yt /llt log l t logxt / yt

True                         .58 .27 .88                        .50 _1.52 _1.88 .35 _1.06 _3.52

Restricted SS

Tight .59 .25 .84 .50 _1.50 _1.86 .34 _1.04 _3.47

constraints (.03) (.05) (.18) (.05) (.15) (.46) (.07) (.21)            (.31)

Modest .59 .22 .79 .49 _1.53 –2.01 .31 –.97 –3.36

constraints (.04) (.08) (.22) (.07)             (.18) (.61) (.10) (.30)            (.45)

Loose .58 .25 .85 .48 –1.48 –1.91 .32 –.96 –3.28

constraints (.06) (.16) (.35) (.08) (.29) (.96)   (.16) (.44) (.63)

Unrestricted SS .42 .19 .70                        .35 –1.12 –1.46      .28 –.83 –2.63

(.36) (.68) (1.44) (.36) (.75)          (1.66) (.31)             (.76) (1.63)

VARMA .31 .22 .58                         —              — — — — —

(.52) (.96)           (1.88)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-

ters are used to compute the impact coefficients reported in the table. The term logyt /lt is the growth in labor productivity, yt is output, lt is labor, and xt is investment.

“SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model of order (1,1). For the “Tight constraints” case of the restricted

state space model, only , , and the stochastic processes of the exogenous shocks are estimated. For the “Modest constraints” case, all parameters are estimated, but

the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only restriction imposed is that an equilibrium can be computed. The

numbers in parentheses are the root mean squared errors. Some statistics are not reported for the VARMA representation because they are not identifiable.
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the investment share.
The next statistics that I consider are variance decom-

positions. For a general state space system of the form

S AS Bet t t+ += +1 1

Y CSt t=

with Ee et t ,  the population variances of the ob-
servables in Y are the diagonal elements of the matrix 
V, where

V AVA BLL B

and L LL .
In other words, the i i  element of V is the variance of 

the ith variable in Y. The variance decomposition sum-
marizes the contribution of the variances due to each of 
the shocks in et . Vj  be the contribution 
of the variance of Y due to shock j. This is given by

V AV A BL L Bj j j ,

where j  is a matrix with the same dimensions as 
and one nonzero element, element j j  that is equal 
to 1. In this case, the i i  element of Vj is the variance 
of the ith variable in Y which is due to the jth shock. 
Note that V Vj j .

namely,

Table 2

Variance Decomposition of Productivity Growth, Labor, and Investment Share
(Means and Root Mean Squared Errors)

What Fraction of Variance Is Due to z ? What Fraction of Variance Is Due to l ? What Fraction of Variance Is Due to x ?

log yt /l t log l t logxt / yt log yt /lt log l t logxt / yt log yt /l t log l t logxt / yt

True 45              3.4 8.9 36 69 19 19 28 72

Restricted SS

Tight 46 3.4 9.4 35 68 20 19 29 71

constraints (4.1) (.9) (3.1) (7.0) (12) (8.5) (6.6) (12) (11)

Modest 48 3.5              10 36 70 23 17 26 66

constraints (6.9) (1.9) (5.6)                      (8.0) (14) (14) (8.5) (14) (17)

Loose 46 5.6 12 34 68 25 20 27 63

constraints (9.3) (8.2) (12) (10) (23) (22) (15) (19) (22)

Unrestricted SS 40 13 15                         33 50 33 27 38 52

(23) (21) (22) (24) (35) (30) (25)             (30) (35)

VARMA 41 33 34                         —              — —     — — —

(30) (40) (35)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-

ters are used to compute the impact coefficients reported in the table. The term logyt /lt is the growth in labor productivity, yt is output, lt is labor, and xt is investment.

“SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model of order (1,1). For the “Tight constraints” case of the restricted

state space model, only , , and the stochastic processes of the exogenous shocks are estimated. For the “Modest constraints” case, all parameters are estimated, but

the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only restriction imposed is that an equilibrium can be computed. The

numbers in parentheses are the root mean squared errors. Some statistics are not reported for the VARMA representation because they are not identifiable.
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In Table 2, I report the predictions of the population 
variance decompositions. The ordering of results in 
Table 2 is the same as in Table 1, with the most restrictive 

Comparing the means of the statistics with the actual 
values, we again see large biases for the unrestricted 
state space and VARMA representations, especially 
for decompositions of labor and investment shares. In 

terms of the RMSEs, the results for the unrestricted state 
space and VARMA representations again show that the 
predictions are not informative. In effect, the range of 
variances for the VARMA representation is close to 
everything in 0 to 100 percent.

The third set of statistics is very common in the real 
business cycle literature that typically reports statistics 

-
sentation and each set of parameter estimates, I simulate 
500 time series for output, labor, and investment of 
length 200. In each case, the output and investment 

take averages of standard deviations, autocorrelations, 
and cross-correlations over the 500 simulations. This is 
done for each representation and for each of the 1,000 

Table 3

Standard Deviations and Correlations of HP-Filtered Output, Labor, and Investment
(Means and Root Mean Squared Errors)

Standard Deviations of HP-Filtered Series Autocorrelations of HP-Filtered Series Cross-Correlations of HP-Filtered Series

Output and Output and Labor and

Output Labor Investment Output Labor Investment                    Labor Investment Investment

True 1.9 2.4 6.9                        .70 .69 .69 .89 .91 .92

Restricted SS

Tight 1.9 2.4 6.8                        .69 .68 .68 .89 .90 .92

constraints           (.086) (.13) (.36) (.008) (.011) (.011) (.013) (.012) (.011)

Modest 1.9 2.4 6.8 .69 .68 .68 .89 .91 .92

constraints (.097)            (.13)            (.37) (.011) (.015) (.014) (.015) (.013) (.011)

Loose 1.9 2.4 6.8                        .69 .68 .68 .89 .90 .92

constraints (.098) (.13) (.38) (.012) (.017) (.016) (.015) (.013) (.011)

Unrestricted SS 1.9 2.3 6.7                        .68 .67 .67 .89 .90              .92

(.13) (.17) (.47) (.035) (.034) (.035) (.020) (.017) (.014)

VARMA 1.9 2.4 6.9                        .70 .69 .69 .89 .90              .92

(.14) (.16) (.51) (.036) (.029) (.035) (.018) (.018) (.015)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-

ters are used to compute the second moments reported in the table. “SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model

of order (1,1). For the “Tight constraints” case of the restricted state space model, only , , and the stochastic processes of the exogenous shocks are estimated. For

the “Modest constraints” case, all parameters are estimated, but the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only

restriction imposed is that an equilibrium can be computed. The numbers in parentheses are the root mean squared errors.
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maximum likelihood parameter vectors. 
The implied statistics are reported in Table 3. Notice 

that the bias and RMSEs of the predictions are small for 
all representations. For example, in all cases, the dis-
tribution of cross-correlations of output and labor has a 

all of the details of a model to get an accurate prediction 
for unconditional moments.

Table 2. In Table 4, I report the variance decompositions 

done in Table 2 but is included for easy comparison with 
estimates in the business cycle literature. As before, the 
RMSEs for the unrestricted state space and the VARMA 
representations are so large that they are uninformative. 

In the restricted state space model, the estimates for 
the technology shock are very informative. This is true 
even for labor and investment, whose variation depends 
little on technology shocks. The restricted state space 
estimates for the labor shock imply that it contributes 

space estimates for the investment shock are the least 
informative but still imply that x has a big effect on 
investment.

Conclusion
In this article, I conduct a simple small-sample study. I 
ask how much can business cycle theorists learn from 
actual time series if they impose very little theory when 
applying their statistical methods. The answer is very 
little.

Table 4

Variance Decomposition of HP-Filtered Output, Labor, and Investment
(Means and Root Mean Squared Errors)

What Fraction of Variance of
HP-Filtered Series Is Due to z ?

Output Labor Investment Output Labor Investment                   Output Labor Investment

True 33 2.1 11 47 67 30 23 33 62

Restricted SS

Tight 32 1.9 10 47 67 30 24 34 62

constraints (3.0) (0.7) (2.2) (8.2) (12) (10) (8.6) (12) (12)

Modest 31 1.6 10 50 70 35 21 30 58

constraints (4.8) (1.0) (2.9) (12) (15) (16) (11) (15) (16)

Loose 33 2.6 11 48 67 35 22 32 56

constraints (8.5) (3.3) (6.0) (19) (23) (24) (14) (21) (22)

Unrestricted SS 29 15 18 42 50 34 31 37               50

(22) (26) (25) (29) (37) (30) (27) (31) (34)

VARMA 32 28 25                         —                —               —           —                —               —

(28)             (37) (29)

Notes: For each model, parameters are estimated by the method of maximum likelihood. This is done for 1,000 data sets of length 200 periods. The estimated parame-

ters are used to compute the variance decompositions reported in the table. Tables do not necessarily sum to 100 percent because a two-sided filter is applied to the time

series. “SS” indicates state space model, and “VARMA” indicates vector autoregressive moving average model of order (1,1). For the “Tight constraints” case of the

restricted state space model, only , , and the stochastic processes of the exogenous shocks are estimated. For the “Modest constraints” case, all parameters are

estimated, but the parameters are constrained to be economically plausible. For the “Loose constraints” case, the only restriction imposed is that an equilibrium can be

computed. The numbers in parentheses are the root mean squared errors.

What Fraction of Variance of
HP-Filtered Series Is Due to l ?

What Fraction of Variance of
HP-Filtered Series Is Due to x ?
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