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1 Introduction

Commodity prices are back in the news. And not just the price of oil. Or gold. In recent

months international prices for cotton, maize, wheat, sugar, edible oils, coffee and many

other basic goods and products have risen to near all–time record highs, if not record highs

outright. Energy prices are also on the ascendancy, as are prices for a number of metals,

both precious and otherwise. Moreover, these recent price run–ups appear in part to be a

continuation of a trend started in the early–to–mid 2000s. To illustrate, the World Bank’s

food price index increased in nominal terms by nearly 170% from January 2000 through

December 2010. Over the same period the World Bank’s grain price index increased, again

in nominal terms, by nearly 160%. Price increases for many commodities have been especially

steep since 2006. And while commodity prices declined broadly during 2009 relative to their

pre–recession highs, many prices have since rebounded in spectacular fashion.

High commodity prices have real and notable consequences for all consumers and end

users, but especially for those in nations and regions that rely heavily on imports to augment

domestic food, fibre, and energy production. For example, and as noted widely in the popular

press, the spark igniting the widespread movement for democratic reforms throughout much

of North Africa and the Middle East may have been escalating food prices (Gjelten, 2011).

As well, in their 2011 winter meeting in Paris, G–20 finance ministers moved discussions

regarding food price inflation to the top of their agenda after the World Bank Group’s

President Robert B. Zoellick declared that “...food prices are rising to dangerous levels and

threaten tens of millions of poor people around the world” (World Bank, 2011a). Clearly,

rising commodity prices have become a chief concern to consumers and policy makers alike.

And while hard data in this regard do not exist, it seems reasonable to assert that the current

focus on primary commodity price movements is rivaled only by the attention they received

during the sharp price run–ups of the 1970s.

There are many plausible reasons for the recent surge in commodity prices, with most of

these being well documented elsewhere. Even so, primary drivers for the recently observed
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price run–ups include first and foremost the rapid income growth of emerging economies,

most notably in China and India. With rising purchasing power there appears to be con-

comitant “Westernization” of diets, with consumers in these countries increasingly demand-

ing a richer, more varied diet, and oftentimes one more heavily tilted towards protein

(Zhang and Law, 2010). Likewise, income growth in emerging economies has also corre-

sponded with a rapidly increasing demand for oil and its derivatives. See, for example,

Hamilton (2009) and Kilian (2009) for further discussion on these and related points.

The demands for energy and food are also increasingly linked in new ways (Abbott,

Hurt, and Tyner, 2008). Since passage of the Energy Policy Act of 2005, the United States

has established a renewable fuel standard (starting at four billion gallons in 2006) while

simultaneously pursuing a policy of subsidizing ethanol production and restricting its import.

Subsequently, the Energy Independence and Security Act of 2007 increased the volume of

renewable fuel required to be blended into transportation fuel from nine billion gallons in

2008 to 36 billion gallons by 2022. According to USDA’s National Agricultural Statistics

Service, the result now is that effectively two out of every five bushels of corn produced in

the United States are used directly in ethanol production (U.S. Department of Agriculture,

2011).

Tied to rising demands for food and energy, large weather shocks in various key produc-

ing regions have reduced supplies for many food commodities (World Bank, 2011b). The

result is that in many instances global stock levels relative to overall use are small by his-

torical standards. The implication is that, when combined with increasing (and inelastic)

demands, commodity prices can be expected to rise sharply in response to even relatively

small production shortfalls. There is also some belief that speculative activity has resulted in

bubbles in the prices for a number of commodities in recent years. Even so, the evidence in

favor of this hypothesis is mixed. See, for example, Sanders and Irwin (2010). Finally, some

economists (see, e.g., Hamilton, 2010), assert that expansionary monetary policies (includ-

ing but not limited to quantitative easing) pursued in recent years by the Federal Reserve
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and other central banks have stimulated inflationary pressures amongst prices for primary

goods. While this later line of reasoning is certainly plausible, it is likely too soon to verify

its true role in recent and on–going commodity price inflation. Whatever the reasons under-

lying their recent movements, two things seem unequivocal at this juncture: (1) prices for

many commodities have increased sharply in nominal terms in recent times; and (2) these

price movements are increasingly drawing the attention if not the ire of policy makers and

consumers alike.

Surprisingly, what is missing in much of the current debate on commodity food price

inflation is legitimate empirical analysis. Specifically, while recent commodity price moves

have ventured into historically high levels in nominal terms, how does the picture change once

general price inflation is taken into account? And once overall price inflation is considered,

is it the case that underlying commodity price fundamentals have truly changed in recent

years? As well, assume for the moment that underlying fundamentals for real commodity

prices have changed, at least in a number of instances. In this event, a reasonable question

is then to what extent is there coincidence in these observed changes? To our knowledge

there has been no systematic examination of these and related issues. This observation is

all the more surprising given the rather extensive literature that has evolved on examining

long–term trends in primary commodity prices. See, for example, Kellard and Wohar (2006),

Balagtas and Holt (2009), and Harvey et al. (2010).

In broad terms the overall goals of the present paper are: to examine fundamentals in

real commodity price relationships; to determine if changes (or breaks) in these fundamentals

have recently occurred; to determine the extent to which any such changes coincide; and to

ascertain if there is any discernable pattern to the timing of such changes. We proceed by

examining monthly primary commodity price data collected primarily fromWorld Bank Pink

Sheets and the International Monetary Fund (IMF) Financial Statistics Database, 1960–

2010. Commodities examined include maize, soy, wheat, rice, cotton, and crude oil, among

many others. In so doing we employ both a set of standard as well as new tools for examining
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shifts in price fundamentals. Specifically, we look for breaks by using a well–established

procedure due to Bai and Perron (1998). We also implement a variant of the smooth shifting–

mean autoregressive (SM–AR) process due to González and Teräsvirta (2008) to estimate

changing fundamentals.1 The later approach is of interest because it does not necessarily

force structural change to be sharp but rather allows that it could be a gradual process

over time. In this sense the SM–AR approach represents a reasonable alternative to that

of Bai and Perron (1998), which forces structural change to be immediate and discrete.

Finally, and as an alternative to the SM–AR methods of González and Teräsvirta (2008),

we also present SM–AR results based on Gallant’s (1984) flexible Fourier form. The Fourier

form has been used recently by Becker, Enders and Hurn (2004, 2006) to model changing

fundamentals in time series data, and is also useful for identifying smooth changes.

The outline of the paper is as follows. In the next section we present an overview of

the methods employed to investigate changes in underlying price fundamentals. In section

three we discuss in depth the implementation of the various methodologies. In section four

we describe the data, while in section five we present results. In section six we discuss

the implications of our analysis for the timing and causes of changing commodity price

fundamentals. The final section concludes.

2 A Framework for Modelling Changing Fundamentals

Let cpt denote a primary commodity price, and let pt denote the produer price index. The

fundamental building block for our investigation of changing commodity price fundamentals

is a univariate autoregressive (AR) model. That is, we write a simple AR model as

(1) ∆yt = δ̃(t) +

p∑
j=1

θj∆yt−j + ρyt−1 + εt, t = 1, . . . , T,

and where yt = ln(cpt/pt), ∆ denotes a difference operator such that ∆zt = zt − zt−1, δ̃(t)

is a time–varying intercept, and εt ∼ iid(0, σ2). In the present context the variable ∆yt
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denotes the monthly (real) inflation rate in a relevant commodity price. By examining real

commodity prices we abstract from price movements caused by changes in the overall price

level.2

Our focus here is on the time–varying intercept term, δ̃(t), and how it evolves over

time. A now standard methodology for modelling δ̃(t), developed by Perron (1989) and

Bai and Perron (1998), is to assume that the series of interest is stationary around a small

set of discrete structural breaks in its unconditional mean. In other words, commodity prices

might behave as a process that is piecewise stationary. In the context of (1), the idea is as

follows. Rewrite δ̃(t) as

(2) δ̃(t) = δ0 +
k∑

i=1

δiIτi ,

where Iτi is defined as a Heaviside indicator function such that Iτi = 1 if t > τi and is 0

otherwise.3 Additionally, k denotes a finite and presumably small number of discrete breaks

in the unconditional mean of the series in question and δi denotes additional parameters to

be estimated.

A novel extension of the above approach is considered by González and Teräsvirta (2008).

They assume that prices move around a deterministically shifting unconditional mean and

that mean shifts can be either discrete or smooth. Specifically, they consider the case where

(3) δ̃(t) = δ0 +
k∑

i=1

δig(ηi, ci, t
∗),

where as before the δi are “mean–shift” parameters and g(.) are logistic functions, defined

as

(4) g(ηi, ci, t
∗) =

(
1 + exp(−γ(ηi)(t

∗ − ci)/σ̂t∗)
)−1

, i = 1, . . . , k,

where γ(ηi) = exp(ηi), t
∗ = t/T, t = 1, . . . , T ; σ̂t∗ denotes the standard deviation of t∗, σ̂t∗ is
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the estimated standard deviation of t∗, and is used to render γ(ηi) unit free; and where ηi

and ci are parameters. Specifically, ηi is finite but is otherwise unrestricted in sign. As well,

ci ∈ [0, 1] are centrality parameters, and ciT indicates points in the sample where mean shifts

are centered.4 From the point of view of statistical fit, the logistic function components in (4)

are interchangeable. Identification may therefore be achieved by assuming that c1 < . . . < ck.

By construction each g(ηi, ci, t
∗) component in (4) is bounded on the unit interval.

Given the specification in (4), it follows that the unconditional mean (fundamental)

can, depending on the magnitude of ηi, experience either sharp or slowly evolving changes.

Specifically, as the normalized value of ηi → 6 the logistic function g(ηi, ci, t
∗) effectively

becomes a step function, with the step (mean break) occurring at date ciT . In other words

the logistic function component effectively becomes a Heaviside indicator function, Ici as

defined in (2). Alternatively, for small values of ηi, say, ηi = -1/2, the function g(ηi, ci, t
∗)

approaches a linear trend. For values of ηi between these extremes, the corresponding logistic

function will have the familiar sigmoidal shape. Moreover, by varying k additional flexibility

can be built into the process. For example, the shifting mean could include a combination

of discrete and smooth changes over time, as well as a linear trend. In this sense (3) and (4)

represent a generalization of the Bai and Perron (1998) method in equation (2).

A related approach explored by Becker, Enders and Hurn (2004, 2006) is to model δ̃(t)

by using low–order Fourier frequencies. Specifically, they define

(5) δ̃(t) = δ0 + δ1t+
k∑

i=1

{
δci cos (2πf

∗
i t/T ) + δsi sin (2πf

∗
i t/T )

}
,

where f ∗
i are Fourier frequencies and where k ≤ T/2. There are various ways of choosing

the frequencies as well as k including, for example, model selection criteria. Similar to the

logistic function approach outlined above, the Fourier approximation allows considerable

flexibility in modelling shifting means. We include a linear trend in the estimating equation

so that the starting and ending values of the approximation do not need to be equal.
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Regardless of the approach used to specify δ̃(t), it is a straightforward matter to uncover

an estimate of the shifting mean (price fundamentals) once parameter estimates have been

obtained. Specifically, assuming that ρ < 0 in (1), that is, by assuming that commodity

prices are stationary around a shifting mean, the underlying fundamental at time t is

(6) E(yt) = −δ̃(t)/ρ,

where E denotes the expectation operator.

3 Estimation Strategies

The approach taken here focuses on models for commodity prices wherein δ̃(t) is estimated

jointly with (1). In the present case the three types of mean–shift models are fully paramet-

ric. However, there are various specification issues to be resolved and, as well, an estimation

strategy must be adopted. In all instances it is necessary to determine p, the order of

the autoregressive model, and k, the number of “shifts.” In general it is not clear which

should be chosen first: the order of the process, p, or the number of shifts, k. We pro-

ceed here by obtaining the best fitting AR model (as measured by the Akaike information

criterion, or AIC) in (1) by first assuming that δ̃(t) = δ0, that is, by assuming that the

unconditional mean is constant. We then attempt to determine if additional time–varying

components are called for, that is, if the underlying commodity price fundamental has ex-

perienced breaks or shifts during the sample period. A similar approach is often adopted

when specifying and estimating smooth transition autoregressive (STAR) models. See, for

example, van Dijk, Teräsvirta and Franses (2002).

3.1 Bai–Perron Procedure

We begin with an examination of the popular Bai and Perron models that allow for discrete

structural breaks in the underlying price fundamental. If the break dates are known, it is
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possible to set the Heaviside indicator in (2), estimate a model in the form of (1), and then

test the null hypothesis that all values of δi in (2) equal zero by using a standard Chow test.

Of course break dates are seldom known with certainty a priori so that a different method-

ology is required. Andrews and Ploberger (1994) develop a test that can be used to estimate

a single sharp break occurring at an unknown date. The essence of the procedure involves

searching for the break date by performing a Chow test for every possible break date. To

ensure that there are an adequate number of observations in each regression, it is standard to

use a 10% “trimming” such that breaks are assumed to occur only within the middle 80% of

the sample. If a break is present, the value of ti producing the best fit is a consistent estimate

of the actual break date. The null hypothesis of structural stability is tested against the al-

ternative of a one–time structural break using the Andrews and Ploberger (1994) supremum

test. Simply put, Bai and Perron (1998, 2003) generalize this methodology to allow for k

structural breaks.

3.2 Logistic Function Components

An approach to estimating the SM–AR’s parameters when the shifting mean is identified with

logistic function components is to use González and Teräsvirta’s (2008) QuickShift procedure.

Their approach is in turn an adaptation of the QuickNet framework for estimating artificial

neural network (ANN) models described by White (2006). González and Teräsvirta (2008)

noted that the specification for δ̃(t) is similar to a single hidden–layer ANN model. In order

to implement the procedure it is necessary to choose an upper limit, k, for the total number

of mean shifts. A set of candidate transition functions is then obtained by evaluating the

logistic function in (4) for a wide array of values for η and c, specifically, for a fixed grid.

Let ΘN =
{(

HNη × CNc

)}
, where HNη = {ηs : ηs = ηs−1 + κη, s = 1, . . . , Nη} and CNc =

{cs : cs = cs−1 + κc, s = 1, . . . , Nc}, and where κη and κc are values used to initialize the

grid. The QuickShift procedure is explained in detail in González and Teräsvirta (2008).

In our applications we modified the QuickShift procedure as follows:
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1. Estimate the AR model in (1) by setting δ̃(t) = δ0. The minimized sum of the squared

in–sample prediction errors is computed and saved.

2. Determine the first smooth break as

(η̂1, ĉ1) = argmin
(ηs,cs)∈ΘN

T∑
t=1

{
∆yt − δ̂0 − δ̂1g (ηs, cs, t

∗)−
p∑

j=1

θ̂j∆yt−j − ρ̂yt−1

}2

where estimates of α̂ =
(
δ̂0, δ̂1, θ̂1, . . . , θ̂p, ρ̂

)′

are obtained as follows. Define wt (ηs, cs) =

(1, g (ηs, cs, t
∗) ,∆yt−1, . . . ,∆yt−p, yt−1)

′
. Then

α̂ (ηs, cs) =

(
T∑
t=1

wt (ηs, cs)wt (ηs, cs)
T

)−1( T∑
t=1

wt (ηs, cs)∆yt

)
.

3. Repeat step 2 until k = k. For each pass, k, treat (η̂1, . . . , η̂k−1, ĉ1, . . . , ĉk−1) as fixed.

Compute and save the AIC(k). Determine the number of logistic function components

to use in the final model as k̂ = argmink∈(1,...,k) AIC(k).

Simply put, we propose using a two–dimensional grid search to identify the logistic func-

tion parameters similar to that described by Leybourne, Newbold and Vougas (1998). As

such this method involves Nη × Nc matrix inversions in step 2. For this reason we refer to

our estimation strategy as SlowShift. The advantage of SlowShift, however, is that with a

fine enough grid the in–sample mean square prediction error will be effectively minimized.5

As noted in step 3, we use the AIC to choose k, the number of logistic function compo-

nents.6 We determine the AIC for a model with k shifts as

AIC(k) = T log

(
T∑
t=1

ε̂2t,k

)
+ 2 (2 + p+ 3k) , k = 1, . . . , 10.
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3.3 Fourier Series Approximation

Instead of modelling the breaks as being sharp or as logistic functions, an alternative is to use

a modification of Gallant’s (1984) flexible Fourier form. As shown in Becker, Enders and Hurn

(2004, 2006), the essential characteristics of a series containing structural breaks can often

be captured using the low frequency components of a Fourier approximation. The choice of a

Fourier approximation to model the smoothly evolving time–varying intercept in (1) is driven

by three important considerations. First, it is well–known that a Fourier approximation can

capture the variation in any absolutely integrable function of time. Hence, the behavior of

the time–varying intercept can be readily captured by trigonometric expressions even though

the actual function in question is not periodic. Second, unlike a Taylor series expansion using

powers of t, t2, t3..., the sum of a small number of trigonometric components is bounded and

projections into the future are necessarily finite. Although a Taylor series expansion is valid

at a particular point in the sample space, a Fourier approximation is a global (rather than a

local), approximation. Third, the estimation of (5) is easily accomplished by using OLS; for

each desired frequency f ∗
i , form the variables sin(2πf ∗

i t/T ) and cos(2πf ∗
i t/T ) and include

them in the estimating equation. Hypothesis testing is also straightforward since the values

of sin(2πf ∗
i t/T ) and cos(2πf ∗

i t/T ) are orthogonal to each other and to every other sine and

cosine function. Farley and Hinich (1970, 1975) originally explored the issue of testing for

trigonometric functions and Gallant and Souza (1991) show that their joint distributions are

multivariate normal.7 To be consistent with our implementation of the SlowShift procedure,

we select k, the number of frequencies in (5), by minimizing AIC. Since each frequency com-

ponent entails the estimation of two additional parameters, the AIC for the Fourier model

is calculated as

AIC(k) = T log

(
T∑
t=1

ε̂2t,k

)
+ 2 (2 + p+ 2k) , k = 1, . . . , 10.
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4 Data

The commodity price data used in the empirical analysis were obtained from World Bank

(various issues), from the IMF Financial Statistics Database, and in one instance (gold)

from the Deutsche Bundesbank. We also examine the behavior of ocean freight rates for

bulk products, a series collected by Lutz Kilian; see Kilian (2009) for details. Although a

large array of commodity prices are available, we focus here on 24 prices and price indices

These include: maize, soy, wheat, sorghum, palm oil, rice, cotton, coffee, cocoa, sugar, beef,

logs, rubber, iron ore, copper, tin, lead, zinc, gold, silver, oil, coal, ocean freight rates, and

food. The data are monthly, and in most instances span the period 1960–2010.8 By design

this group includes important food and feed grains (maize, soy, wheat, sorghum, and rice) as

well as prices for other primary food and fibre items (palm oil, cotton, coffee, cocoa, sugar,

and beef). Logs and rubber are important products used extensively in manufacturing, con-

struction, and production of consumer items. Additionally, prices for metals used extensively

in construction and manufacturing (iron ore, copper, tin, lead, and zinc) are also included,

as well as prices for several precious metals (gold and silver) used for manufacturing and, at

times, as an inflation hedge. The price of oil is included because of its universal importance as

primary input in manufacturing, food production, and transportation, et cetera. Moreover,

previous studies have focused exclusively on modelling breaks in oil prices over time (e.g.,

Perron 1989). And as noted in the introduction, there is the possibility that oil and maize

have become more intertwined in recent years due to the rise of biofuel production. Oil,

while important, is not the only relevant energy source, and for this reason we also include

the price of coal. The price of ocean freight rates for dry cargo bulk products is included

because it is thought to reflect general global economic activity and, moreover, to be an

important consideration in the international transport of primary commodities. Finally, the

price of food is a composite index that reflects the prices of cereal grains (11.3%), edible

oils (16.3%) and other food (12.3%), the later of which includes oranges, bananas, beef, and

poultry. As such, sharp changes in the food price index should be indicative of changes in
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the food sector in general. A detailed description of the data used including units, sample

periods, and sources may be found in Appendix Table A1.

Prior to estimation all prices are deflated by the producer price index (PPI). Although

the question of which deflator to use and for that matter whether or not to deflate at all is of

importance when analyzing breaks in commodity prices (see, e.g., Wang and Tomek, 2007),

we choose to work with real prices. We do so in an attempt to rule out identifying shifts that

are simply the result of overall price inflation. We use the producer price index as opposed

to the consumer price index in that essentially all of the commodities examined here can be

regarded as intermediate inputs. Prior to estimation we transform each real price series by

multiplying the real price by 100 and then by taking the natural logarithm.

As outlined previously, the building block for each shifting–mean model is one wherein the

intercept δ̃(t) is constant over time. For this reason it is useful to have some idea of how well

a linear AR model fits each series. In each case the order of the autoregressive process, p, was

determined by minimizing AIC, where a maximum of twelve lags were allowed. Summary

information on linear AR model estimates is reported in Appendix Table A2. In addition to

the optimal lag order and various measures of fit and performance, an indication of general

model misspecification (Ramesy’s RESET test) and of structural change in the intercept (the

Lin and Tersvirta, 1994, Lagrange Multiplier test for a shifting intercept) are also reported.

Of interest is that for most commodities the results of these later tests imply that the linear

AR model without a shifting mean is misspecified.

5 Estimation of Shifting Means

In this section we apply the methods described previously for estimating shifting means for

commodity prices. For all models we set the upper limit for the number of autoregressive

parameters, p, to twelve; we use AIC to determine the lag order of the autoregressive process

by setting δ̃(t) = δ0. The result is that we have T = 599 usable sample observations, from

February, 1961 through December, 2010 for all commodities save silver (T = 479), coal
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(T = 479), and ocean freight (T = 503); see Appendix Table A1.

5.1 Bai–Perron Results

We employ the Bai and Perron (1998, 2003) methodology setting the maximum number of

breaks at 9. With a 10% trim factor, in our sample the last of these breaks can occur no

later than 2005:10. Instead of using a sequential search, we estimate the model for every

possible combination of 9 breaks imposing the restriction that there must be at least two

years (24 observations) between any adjacent break dates. The combination of break dates

resulting in the smallest residual sum of squares is a consistent estimate of the vector of

break dates. We test the null hypothesis of no breaks against the alternative hypothesis of

some breaks using the UDmax critical values tabulated in Bai and Perron (1998).9 Since

we allow only the intercept to change across regimes, we can use the 90%, 95% and 97.5%

asymptotic critical values of 8.78, 10.17 and 11.52, respectively. Although Bai and Perron

(1998) indicate that the critical values are insensitive to the magnitude chosen for the upper

value of k, we also perform tests for the null hypothesis of no breaks against the specific

alternatives of exactly one break and exactly nine breaks (i.e., the sup–F using a single break

and using nine breaks). Given that we reject the null hypothesis of no breaks, we estimate

every possible combination of breaks using models containing 1 through 9 breaks. We select

the best fitting model using the BIC. This procedure is recommended by Prodan (2008)

and seems reasonable for a large number of commodities with varying numbers of potential

breaks.

For each commodity, Table 1 reports the number of breaks, k̂, selected by the BIC(k̂),

the estimated value of ρ, the t–statistic for the null hypothesis ρ = 0, the value of R2, the

AIC, the sample value of UDmax obtained by using all 9 breaks, the sup–F test for 1 and

9 breaks, respectively, and results for an LM test for remaining serial correlation up to lag

four. Notice that for a 95% confidence interval, the UDmax test allows us to reject the null

hypothesis of no structural change for all commodities except for cocoa. However, for cocoa,
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we can reject the null hypothesis of no structural breaks if we use the 90% critical value.

Moreover, for every commodity including cocoa, the sup–F (9) test allows use to reject the

null hypothesis of no breaks and accept the alternative of exactly nine breaks using a 95%

confidence interval. Not surprisingly, for some commodities (i.e., cocoa, sugar, copper, tin,

lead and zinc) we cannot reject the null of the sup–F (1) test because of the presence of

U–shaped breaks.

For our purposes, the key issue involves the timing of the last break found for each series.

After all, if rising oil prices have caused run–ups in other commodity prices, we should find a

positive jump in the price of oil that occurs prior to, or concurrently with, the jumps in the

prices of the other commodities. For each commodity, Figure 1 shows the time path of the

estimated breaks superimposed over the actual price series. For clarity, the plots in Figure

1 focus only on the later part of the sample, beginning with 1985.10 Table 2 reports the

estimated date of the most recent upward shift along with the upper and lower boundaries

of a 95% confidence interval. As should be clear from the results in Table 2, for oil, the

last break occurs in December 2004 (2004:12). This is earlier than the final jumps in the

prices of maize (2006:08), soy (2007:04), rice (2008:01), cotton (2008:11), coffee (2008:10),

cocoa (2008:11), copper (2005:09), tin (2006:06) and lead (2006:06). The oil price jump also

precedes the jumps in the prices of wheat (2006:1), sorghum (2006:08) and zinc (2005:07)

that were followed by partial returns to their pre–jump levels. This is reasonably strong

evidence in support of the claim that the rise in the price of oil reflected itself in a general

rise in most other commodity prices. Of the commodities in our sample, only sugar, beef,

and overall food prices seem to be invariant to the jump in the price of oil. This argument

is bolstered by the fact that the jump in the mean real price of oil was almost twofold (as

shown in Table 2, the mean went from 20.48 to 40.50).

The problem with the view that the oil price jump occurred prior to the other breaks

is that the break dates are poorly estimated. Notice, for example, that a 95% confidence

interval is such that the last break in the price of oil could have occurred as early as 2004:05

14



but as late as 2005:04. Part of the problem may result from breaks being gradual instead

of sharp. Unless each break fully manifests itself at a single point in time, models with

sharp breaks are misspecified. If you examine Figure 1, it is clear that sometime close to

1999, the (real) price of oil started to rise at a fairly steady pace. The Bai–Perron method

captures this steady upward drift using sharp (upward) breaks at 1999:02 and 2004:12. If

the price of oil actually did begin to rise in 1999, the prices of other commodities should

have begun their increases around 1999 as well. Note that similar problems occur in the

end–of–sample run–ups in the prices of soy, rice, coffee, copper, and tin and in the secular

decline in most commodity prices throughout the 1980s. The point is that if breaks are

smooth, the Bai–Perron procedure necessarily relies on several or more reinforcing breaks to

capture the sustained movement in the series. As such, the estimated break dates are not

especially informative of the actual change points in the series.

5.2 SlowShift Results

In the implementation of SlowShift we set the upper limit for the number of mean shifts, k,

to ten. As well, when k ≥ 2 we force SlowShift to pick a centrality parameter, ci, that is

at least 24 months away from its nearest neighbor.11 We restrict our search for ci’s to 100

equally spaced values in the [0.05, 0.95] interval and for ηi’s to 100 equally spaced values in

the [−1, 3.401] interval. In terms of gi = exp(ηi), the corresponding grid is [0.368, 30].12 The

result is that 10,000 regressions are estimated for each iteration of the SlowShift procedure.

The estimation results obtained by using SlowShift are summarized in Table 3. Estimates

for selected transition functions along with corresponding information on shift dates are

reported in Table 4. As indicated in Table 3, for all commodities save palm oil, zinc, and

ocean freight, the SlowShift procedure chooses at least two logistic function components;

in the case of zinc AIC is minimized when k̂ = 0 while for palm and ocean freight k̂ = 1.

Moreover, in sizteen instances four or more shifts are included in the final model specification

(i.e., for maize, soy, wheat, sorghum, rice, coffee, cocoa, sugar, beef, iron ore, tin, gold,
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silver, oil, coal, and food). Also recorded in Table 3 are heteroskedasticity robust versions

of diagnostic LM tests for remaining autocorrelation at lag four.13 The results in Table 3

indicate that in most instances there is limited evidence of remaining autocorrelation.

Results in Table 4 indicate that in some (but not all) instances the shifts in underlying

commodity price fundamentals are fairly sharp, that is, γ̂ = γmax = 30. Even so, for

most commodities there is at least one component for which the estimated value of γ is

substantially less than 30, indicating that long–term or slowly changing fundamentals is a

feature of the data. For example, although not reported here, long–term shifts were estimated

for maize, soy, wheat, sorghum, cotton, coffee, sugar, beef, iron ore, tin, gold, silver, oil, coal,

and ocean freight.

Additional results of interest, as identified in Figure 1 (the dash–dot line), are as follows.

In mid–1986 the International Coffee Organization (ICO) failed in its attempts to ratify a

new agreement, choosing instead to temporarily extend the 1983 agreement. During 1993–94

the ICO tried again to negotiate a new agreement to regulate international coffee prices, and

did eventually have a new agreement ratified in late 1994. The new agreement, however,

did not include provisions for regulating prices. As indicated by the plots in Figure 1, the

SM–AR model with logistic function components does a reasonable job of identifying these

periods and the resulting impacts on international coffee prices. In a similar situation the

International Tin Agreement effectively collapsed in 1985, which again SlowShift picked up

through the combination of several logistic function components. Finally, SlowShift identifies

one long mean shift for the price of oil from the late 1950s through the middle of 1980, that

is, through the period immediately following the second oil price shock of the late 1970s.

Of interest here, as with the Bai–Perron results, are the shifts that occurred in recent

years, notably, since the early– or mid– 2000s. Results in Table 4 as well as in Figure 1

suggest that in many instances commodity price fundamentals did change rather sharply

during this period. To illustrate, a rather abrupt increase in the underlying fundamental

for maize was centered around August 2006 (2006:08). Similar shifts were identified for
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soy (2007:02), wheat (2006:03), sorghum (2006:03), rice (2007:02), coffee (2008:06), cocoa

(2007:07), and rubber (2008:06). See Table 4. Of additional interest is that similar distinct

shifts occurred for most metals prices during approximately the same period, including iron

ore (2007:07), copper (2003:06), tin (2006:03), lead (2003:06), gold (2008:06), and silver

(2008:06).14 Likewise, notable upward shifts in the prices of oil and coal were centered around

December 2003 (2003:12). Similar to the results obtained by using alternative methods

(i.e., Bai–Perron and Fourier frequencies), SM–AR models with logistic function components

indicate that underlying price fundamentals for most industrial metals and, as well, for oil and

coal apparently shifted upward about three–to–four years in advance of the corresponding

rise in the fundamentals for grains and food commodities.

5.3 Fourier Results

Since breaks manifest themselves at the low end of the spectrum, Becker, Enders and Hurn

(2004) recommend estimating (5) using a small number of low frequencies, k. As such we

set max(k) = 10 and estimate each series in the form of (1) and (5). For each commodity,

the second column of Table 5 reports the number of frequencies selected by the AIC. To

avoid being ad hoc, we did not attempt to pare down the models by eliminating insignificant

intermediate frequencies (e.g., for Maize, the value of k yielding the lowest AIC was k = 6

so that sine and cosine terms using frequencies f ∗
1 through f ∗

6 are included). Notice that

the AIC does select a relatively large number of frequencies; in fact, for nine of the sixteen

commodities frequencies are at the upper bound of 10. Unlike the Bai and Perron (1998,

2003) specification, with a Fourier expansion, the number of breaks (shifts) in the data need

not equal the number of layers or frequencies used in the estimating equation. Nevertheless,

it seems that AIC might be overly generous in selecting the number of frequencies to use in

estimation.

For present purposes, the key piece of information in Table 5 is in the third column labeled

“Last”. Entries in this column show the date of the last trough of the estimated Fourier
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intercept and can be taken as an approximation of the last upward break in the series.15

For example, if you examine the estimated time–varying mean for maize, −δ̃(t)/ρ, shown as

the long dashed line labeled “Trig” in Panel 1 of Figure 1, you can see that the last trough

occurred in August of 2004 suggestive of an upward jump in the price of maize. Reading

down the column, the last trough for oil occurred in July 2002. This clearly predates the

last trough in all of the agricultural commodities (except rice and food). Interestingly, the

last troughs in the means of copper, tin, and lead (but not zinc) occur prior to July 2002,

which is when oil last changes.

6 Discussion and Analysis

A fundamental question is this: did the recent run–up in the price of oil cause subsequent

upward shifts in prices of other commodities? While the results of our analysis do not allow us

to make explicit causal statements, as indicated by the summary results in Table 6, it seems

unlikely that oil price jumps were the sole cause of subsequent shifts for other commodity

prices. Specifically, this table combines results from Tables 2, 4, and 5 to indicate starting

dates of the most recent price runs for each commodity and methodology. Unfortunately, it

is not always straightforward to determine the beginning of a price movement. For example,

for maize, the BP method selects a last upward break date of 2006:08, the ShowShift selects

2005:8 and the Fourier method 2004:09. Since this last shift in the price of maize is rather

sharp, the BP method seems to capture this particular shift better than the other methods.

Notice that the SlowShift and Fourier methods seem to smooth out the shift and, therefore,

seem to select a somewhat early break date.16 However, in cases where the shift is gradual,

the BP method seems to be the most problematic. For oil (see Panel 21 of Figure 1), the BP

method finds a downward shift at 1997:01 followed by upward shifts in 1999:02 and 2004:12.

The SlowShift and Fourier methods seem more plausible in that they capture the rise in the

price of oil that began in late 2002. Finally, some prices, (such as wheat, zinc, and ocean

freight) began to increase, but then fell during the onset of the 2008 financial crisis. In
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an effort to be fair to each method, we used some judgment and, in Table 6, report what

appear to be the start of the most recent run–up; notice that the commodities are listed

chronologically from first to last shift date.

Based on the rankings, we can categorize each method in terms of which commodities

began to rise early, which rose later in the sample, and those which are unclear (or have

non–applicable last breaks: i.e., a last break occurring prior to 2000:01 so that it cannot be

causal to the more recent price run ups). Notice that eight commodities, specifically, gold,

rubber, lead, copper, tin, coal, iron ore, and oil seem to have the strongest evidence of early

price shifts. Maize, sorghum, logs, palm oil, rice, and soybeans seem to increase somewhat

later. Finally, some commodities have no breaks occurring after 2000:01 (e.g., food), run–ups

which begin quite late in the sample period (e.g., cotton), or downward shifts following a

previous upward shift (e.g., freight and zinc).

The key point is the timing of the various jumps seems somewhat out of synchronization

if in fact oil is the primary causal factor. Specifically, we would expect that if oil is singularly

the causal driver, the corresponding jumps in the prices for grains and other food items would

have occurred sooner than they did. Moreover, all three methodologies generally indicate

that the prices of most metals and building materials preceded the increase in the price of

oil. As well, we are dubious that speculative activity has played a large and sustained role

in the recently observed behavior for many commodity prices. Why? Because not all prices

examined were associated conclusively with upward shifts at the end of the sample period

including several heavily traded (both on international markets as well as in commodity

exchanges) commodities such as wheat and sugar.17 A priori it is not clear why speculative

activity would result in bubbles in the prices for certain commodities and not others. Finally,

note that these shifts are not simply due to changes in the overall level of inflation as we

analyze only deflated commodity prices.

What, then, can we say? There are at least two plausible candidates for the recent

shift in the fundamentals for a number of primary commodity prices. First, and as noted
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in the introduction, there is solid reason to believe that demand shifts for many energy

and non–energy–related commodities may have occurred sometime in the mid 2000s and

that, likewise, increases in supplies were not sufficient to offset these demand shifts. The

demand shifts in turn were likely driven by higher real incomes in China, India, and in

other emerging economies. The nature and timing of the various breaks revealed here (i.e.,

the demand for energy, industrial metals, and building materials seemingly increased first

followed secondly by an increase in demand for many food–related commodities) are not

inconsistent with this hypothesis; in this regard we concur with Hamilton (2009) and Kilian

(2009). Secondly, and consistent with the conclusions of Abbott, Hurt, and Tyner (2008),

we cannot rule out the possibility that for some commodities at least, and notably for maize

as well as possibly for soy, wheat, and sorghum, that the explicit shift in the United States to

a mandated ethanol fuel standard starting in 2006 also triggered a more–or–less permanent

shift in underlying price fundamentals for these goods. Indeed, it is very likely that the two

factors are intertwined, that is, that both increasing demands for commodities in emerging

economies as well as the rise of biofuel production are primary drives underlying much of

the recently observed change in commodity price fundamentals.

7 Conclusions

In this paper we have examined the underlying behavior of a group of monthly commodity

prices over a fifty year period. Specifically, we examine fundamental price movements in the

context of mean breaks or shifts. We do so by using established methods for detecting mul-

tiple structural breaks in time series data (i.e., the procedures due to Bai and Perron, 1998,

2003) as well as several new procedures, specifically, SlowShift and Fourier approximations.

Interestingly, all three methods appear to tell a similar story: in recent years changes in the

price of oil, the prices for most industrial metals, and the prices for several building materials

pre–dated changes in the prices for grains and other food items. As such, it seems unlikely

that shifts in the oil price alone caused shifts in other commodity prices. Indeed, the more

20



plausible story seems to be that demand growth in emerging economies and the increasing

utilization of certain crops for biofuels production have resulted in recent price runs.

Although this study has shed light on the timing and nature of recently observed com-

modity price movements, more work remains to be done. For example, to what extent do

some or all of the commodity prices examined here cotrend? To illustrate, do the price of oil

and the price of maize share a common, nonlinear trend in the underlying fundamental? In

this regard it may be possible to use the SlowShit or Fourier SM–AR modelling framework

presented here in conjunction with methods advanced by, for example, Bierens (2000) to

examine this important issue. This and related topics remain, however, as important future

extensions of the analyses presented here.
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Notes

1In turn, González and Teräsvirta (2008) base their framework on a variant of the time–

varying autoregressive (TV–AR) model due originally to Lin and Tersvirta (1994).

2As Wang and Tomek (2007) note, it is important to deflate commodity prices in any

study of long–term price movements.

3It is a simple matter as illustrated by Perron (1989) to extend the model so that δ̃(t)

could include a linear trend term as well as breaks.

4Of course it is possible that one or more ci lie outside the unit interval, although as

a practical matter it may be difficult to accurately identify mean shifts that are centered

beyond the range of the observed data.

5The framework described here for estimating the SM–AR model is similar to that often

employed in estimating self–exciting threshold autoregressive (SETAR) models. See, for

example, Hansen (1997) and Balke and Fomby (1997) for additional details.

6An alternative approach is to use the parameter constancy Lagrange Multiplier (LM)

test introduced by Lin and Tersvirta (1994) and adopted by González and Teräsvirta (2008)

in their implementation of QuickShift. In preliminary investigations we found that in most

instances the model estimated by SlowShift when an LM test was used nested the model

obtained when k̂ is determined by minimizing AIC. For these reasons, and given that our

goal is to describe changing commodity price fundamentals, we focus here on the results

obtained by minimizing AIC.

7If the individual f ∗
i are estimated, they become unidentified nuisance parameters under

the null that δci = δsi = 0. In such circumstances, Becker, Enders and Hurn (2004, 2006)

develop a sup–F test along the lines of Davies (1987).

22



8Exceptions are silver and coal (1970:01–2010:12) and ocean freight rates (1968:01–

2010:12).

9As discussed in Prodan (2008), searching for multiple breaks using the alternative se-

quential procedure is problematic. The problem is that finding a consistent estimate of the

k-th break is contingent on successfully finding the first k−1 breaks. Yet, if there are k breaks

the search for the k − 1 breaks entails the use of a misspecified model. Papell and Prodan

(2006), show that this problem is especially acute in searching for offsetting breaks, some-

times called U–shaped breaks. Similarly, sequential testing procedures can be problematic

in that any test for the k-th break is conditional on the outcome of the tests for the other

k − 1 breaks.

10Plots for the entire sample period are available upon request.

11If two or more of the estimated ci’s are too close, and if the corresponding γi’s are similar

in magnitude, near singularity can result. By forcing ci’s to be at least 24 months apart we

preclude this possibility.

12One advantage of searching over η versus γ is that an equally spaced grid on the former

does not translate into an equally spaced grid for the later. As González and Teräsvirta

(2008) note, there is less need to have an evenly spaced grid for relatively large values of γ.

This principle is embedded here in our equidistant grid for η.

13LM tests for remaining autocorrelation are constructed in a manner similar to that de-

scribed by González and Teräsvirta (2008) for testing for remaining mean shifts. Additional

details are provided in Eitrheim and Teräsvirta (1996).

14It is of interest that the last shifts for gold and silver as identified by SlowShift, occurred

simultaneously in June, 2008 and, moreover, just prior to the financial market collapse later

that fall.
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15Since our interest is in breaks occurring around the rise in oil prices, we do not consider

troughs that occur after 2009:01.

16Moreover, we do not want to simply average break dates since, as noted in the text, each

method entails it own particular biases.

17Moreover, according to the Reuters webpage wheat and sugar continue to be included

in the widely used Reuters–Jefferies CRB index, which in turn has recently become a focal

point of a number of exchange traded funds (ETFs).
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van Dijk, Dick, Timo Teräsvirta, and Philip Hans Franses, “Smooth Transition
Autoregressive Models – A Survey Of Recent Developments,” Econometric Reviews, 2002,
21 (1), 1–47.

Wang, Dabin and William G. Tomek, “Commodity Prices and Unit Root Tests,” Amer-
ican Journal of Agricultural Economics, 2007, 89 (4), pp. 873–889.

White, Halbert, “Approximate Nonlinear Forecasting Methods,” in G. Elliott, C. Granger,
and A. Timmermann, eds., Handbook of Economic Forecasting, Vol. 1, Amsterdam: Else-
vier, 2006, chapter 9, pp. 459–512.

World Bank, “Food Price Hike Drives 44 Million People into Poverty,” [Press Release
No:2011/333/PREM], February 15, 2011. Washington, D.C.

, “Food Price Watch,” Online Publication. February, 2011.
http://www.worldbank.org/foodcrisis/food price watch report feb2011.html.

, “Commodity Price Data: Pink Sheet,” Development Prospects Group, Washington, DC.
various issues. http://blogs.worldbank.org/prospects/category/tags/historical-data.

Zhang, Wenlang and Daniel Law, “What Drives China’s Food-Price Inflation and How
does It Affect the Aggregate Inflation?,” Working Papers 1006, Hong Kong Monetary
Authority July 2010.

27



Table 1: Summary Results for Bai–Perron SM–AR Estimates.

Commodity k̂ ρ̂ tρ = 0 R2 AIC UDmax sup–F (1) sup–F (9) LMSC(4)

Maize 6 -0.102 -7.837 0.168 216.46 13.748 13.748 9.450 0.826

Wheat 8 -0.093 -6.749 0.235 276.81 11.705 11.348 8.200 0.038

Soy 7 -0.164 -9.652 0.220 267.85 17.007 17.007 11.708 0.329

Sorghum 9 -0.170 -8.955 0.228 279.47 11.068 10.820 10.631 0.004

Palmoil 9 -0.134 -9.172 0.251 545.30 16.195 16.195 9.281 0.628

Rice 8 -0.189 -10.589 0.272 372.10 17.231 17.231 9.695 0.437

Cotton 6 -0.105 -7.024 0.346 -41.11 10.859 9.193 8.412 0.010

Coffee 9 -0.150 -10.216 0.234 522.63 12.203 9.450 11.813 0.145

Cocoa 9 -0.126 -8.819 0.154 528.99 9.830 6.385 9.830 0.078

Sugar 7 -0.051 -5.449 0.200 1048.46 10.815 6.272 8.710 0.034

Beef 9 -0.192 -10.649 0.285 -1.13 14.248 12.343 13.257 0.729

Logs 9 -0.153 -10.272 0.280 157.47 11.943 9.047 11.290 0.356

Rubber 6 -0.061 -6.380 0.147 395.45 17.665 17.665 8.783 0.002

Iron 7 -0.173 -9.659 0.233 413.92 25.132 18.144 14.548 0.021

Copper 8 -0.115 -8.567 0.229 505.18 11.886 8.324 9.143 0.476

Tin 9 -0.130 -9.544 0.223 111.40 13.713 5.780 10.882 0.087

Lead 9 -0.105 -7.982 0.167 538.24 10.573 7.489 7.846 0.892

Zinc 9 -0.136 -10.508 0.266 369.81 11.059 5.219 11.059 0.026

Gold 9 -0.093 -8.298 0.264 2.23 13.047 1.417 10.260 0.146

Silver 4 -0.006 -0.530 0.194 498.74 15.339 6.763 8.512 0.011

Oil 9 -0.219 -11.531 0.238 750.32 18.897 12.149 16.103 0.002

Coal 9 -0.269 -12.313 0.330 65.66 17.273 8.804 16.246 0.120

Freight 8 -0.223 -10.244 0.249 489.80 23.211 23.211 11.896 0.636

Food 4 -0.073 -6.604 0.150 194.23 19.150 12.644 10.893 0.212

Note: The column headed k̂ denotes the number of structural breaks included in the final model.
The column headed ρ̂ denotes the estimates of the lagged level term in the SM–AR model. The
column titled tρ = 0 reports the heteroskedasticity robust t–ratio for a test of the null hypothesis
that ρ = 0. The column headed LMSC(4) includes p–values for a heteroskedasticity robust
Lagrange Multiplier test for remaining autocorrelation up to lag four.
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Table 2: Last Upward Break and Confidence Intervals for the Bai–Perron SM–
AR Models.

Commodity k̂ Lower Date Upper Commodity k̂ Lower Date Upper

Maize 6 2003:11 2006:08 2007:08 Rubber 6 2008:01 2008:12 2010:12

Soy 7 2006:06 2007:04 2008:05 Iron Ore 7 2007:02 2007:12 2008:02

Wheat 7 2003:11 2006:01 2006:07 Copper 8 2002:12 2005:09 2005:11

Sorghum 8 2006:03 2006:08 2006:09 Tin 8 2002:06 2003:09 2003:12

Palm Oil 9 2004:08 2006:06 2007:01 Lead 9 2003:08 2006:06 2007:01

Rice 8 2007:03 2008:01 2008:02 Zinc 8 2005:03 2005:07 2005:09

Cotton 6 2004:01 2008:11 2009:09 Gold 9 2008:07 2008:11 2009:08

Coffee 9 2007:09 2008:10 2009:08 Silver 4 2006:11 2008:11 2011:08

Cocoa 9 2007:12 2008:11 2010:05 Oil 9 2004:05 2004:12 2005:04

Sugar 7 1981:01 1985:06 1992:09 Coal 9 2006:11 2007:05 2007:07

Beef 9 1998:09 2003:06 2008:02 Ocean Freight 8 2002:07 2003:02 2003:07

Logs 9 2003:07 2005:11 2008:08 Food 4 1980:05 1980:10 1981:08

Note: Columns titled Lower (Upper) denote the lower (upper) limits for a 90% confidence
interval for the identified break date. Columns headed Date reports point estimate for identified
break dates.
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Table 3: Summary Results for SlowShift SM–AR Estimates.

Commodity k̂ ρ̂ tρ = 0 R2 σ̂NL σ̂NL/σ̂L AIC LMSC(4)

Maize 6 -0.110 -5.906 0.148 0.049 0.965 250.75 0.418

Soy 5 -0.122 -4.307 0.170 0.052 0.964 315.06 0.381

Wheat 5 -0.107 -5.561 0.199 0.050 0.971 292.34 0.523

Sorghum 8 -0.136 -5.234 0.183 0.051 0.960 325.31 0.594

Palm Oil 1 -0.049 -3.812 0.162 0.066 0.990 590.68 0.968

Rice 6 -0.119 -4.760 0.219 0.056 0.956 410.29 0.942

Cotton 2 -0.038 -3.074 0.294 0.039 0.992 -27.43 0.076

Coffee 7 -0.083 -5.751 0.161 0.065 0.968 595.12 0.561

Cocoa 5 -0.072 -4.953 0.078 0.065 0.977 588.27 0.192

Sugar 5 -0.060 -4.827 0.161 0.099 0.975 1085.11 0.314

Beef 7 -0.184 -7.824 0.239 0.040 0.945 36.48 0.014

Logs 3 -0.078 -3.878 0.186 0.048 0.984 222.64 0.934

Rubber 2 -0.033 -3.251 0.080 0.058 0.991 436.63 0.786

Iron Ore 5 -0.124 -3.166 0.186 0.057 0.943 440.07 0.274

Copper 2 -0.038 -4.108 0.152 0.064 0.988 551.77 0.909

Tin 4 -0.060 -5.269 0.143 0.046 0.976 170.61 0.936

Lead 2 -0.042 -3.817 0.093 0.066 0.988 579.23 0.807

Zinc 0 -0.034 -2.819 0.140 0.058 1.000 434.23 0.878

Gold 5 -0.062 -5.700 0.205 0.041 0.969 36.06 0.539

Silver 5 -0.095 -4.813 0.170 0.075 0.969 505.27 0.871

Oil 7 -0.160 -4.752 0.150 0.079 0.950 825.49 0.079

Coal 9 -0.198 -5.551 0.251 0.049 0.933 125.63 0.704

Freight 1 -0.126 -4.625 0.145 0.072 0.975 505.22 0.656

Food 4 -0.072 -3.673 0.103 0.049 0.976 238.35 0.506

Note: The column headed k̂ denotes the number of logistic function mean shifts
included in the final model. The column headed ρ̂ denotes the estimates of the
lagged level term in the SM–AR model. The column titled tρ = 0 reports the
heteroskedasticity robust t–ratio for a test of the null hypothesis that ρ = 0.
The column headed LMSC(4) includes p–values for a heteroskedasticity robust
Lagrange Multiplier test for remaining autocorrelation up to lag four.
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Table 5: Summary Results for Fourier Frequency SM–AR Estimates.

Commodity k̂ Last ρ̂ tρ = 0 R2 AIC LMSC(4)

Maize 9 2004:09 -0.138 -7.371 0.164 241.354 0.295

Soy 10 2005:10 -0.176 -8.278 0.201 304.388 0.653

Wheat 10 2005:03 -0.285 -7.787 0.262 255.040 0.101

Sorghum 10 2005:03 -0.239 -7.052 0.207 301.543 0.023

Palm Oil 3 2002:11 -0.072 -5.641 0.180 585.242 0.783

Rice 10 2001:11 -0.232 -8.034 0.261 383.423 0.210

Cotton 9 2007:10 -0.178 -8.104 0.373 -66.468 0.014

Coffee 9 2007:05 -0.126 -7.411 0.181 576.398 0.472

Cocoa 10 2005:09 -0.152 -7.250 0.140 558.821 0.021

Sugar 10 2008:01 -0.145 -7.577 0.209 1062.034 0.049

Beef 10 2007:06 -0.307 -9.634 0.275 7.791 0.001

Logs 8 2002:12 -0.126 -7.383 0.220 212.897 0.450

Rubber 9 2007:12 -0.094 -5.919 0.135 425.649 0.254

Iron 8 2001:07 -0.237 -7.364 0.194 437.757 0.135

Copper 6 2000:12 -0.092 -5.877 0.186 541.518 0.081

Tin 3 2001:04 -0.077 -5.921 0.152 153.993 0.787

Lead 6 2008:04 -0.093 -6.094 0.131 567.722 0.302

Zinc 9 2002:11 -0.114 -7.359 0.210 421.429 0.114

Gold 10 2001:01 -0.251 -8.522 0.286 -15.901 0.023

Silver 10 2008:09 -0.182 -5.966 0.221 501.828 0.121

Oil 10 2002:07 -0.214 -7.776 0.168 812.993 0.009

Coal 9 2001:11 -0.289 -9.531 0.274 98.536 0.826

Freight 10 2006:09 -0.306 -9.445 0.233 500.678 0.015

Food 10 1999:11 -0.163 -7.868 0.156 219.410 0.069

Note: The column headed k̂ denotes the number of Fourier frequencies included in the
final model. The column titled Last indicates the date associated with the last change
in direction in the unconditional mean. The column headed ρ̂ denotes the estimates of
the lagged level term. The column titled tρ = 0 records the heteroskedasticity robust
t–ratio associated with the null hypothesis that ρ = 0.
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Table 6: Last Upward Shift in Commodity Price Fundamentals.

Commodity Bai-Perron Commodity SlowShift Commodity Fourier

Commodities with Early Shifts

Gold 2001:07 Copper 2002:05 Copper 2000:12

Rubber 2001:12 Lead 2002:05 Gold 2001:01

Soy 2007:04 Oil 2002:11 Tin 2001:04

Freight 2003:02 Coal 2002:11 Iron 2001:07

Beef 2003:06 Iron Ore 2003:03 Silver 2001:09

Lead 2003:08 Silver 2004:08 Rice 2001:11

Copper 2003:09 Coal 2001:11

Tin 2003:09 Rubber 2001:12

Coal 2003:10

Commodities with Intermediate Shifts

Rice 2004:07 Wheat 2005:02 Oil 2002:07

Coffee 2004:08 Sorghum 2005:02 Palmoil 2002:11

Iron 2004:12 Tin 2005:02 Zinc 2002:11

Oil 2004:12 Rubber 2005:04 Logs 2002:12

Gold 2005:07 Lead 2003:08

Maize 2005:08

Commodities with Late or Non Applicable Shifts

Zinc 2005:07 Soy 2006:01 Maize 2004:09

Logs 2005:11 Rice 2006:01 Wheat 2005:03

Wheat 2006:01 Cocoa 2006:06 Sorghum 2005:03

Palmoil 2006:06 Coffee 2007:03 Cocoa 2005:09

Maize 2006:08 Palm Oil NA Soy 2005:10

Sorghum 2006:08 Cotton NA Freight 2006:09

Cotton 2008:11 Sugar NA Coffee 2007:05

Cocoa 2008:11 Beef NA Beef 2007:06

Silver 2008:11 Logs NA Cotton 2007:10

Sugar NA Zinc NA Sugar 2008:01

Food NA Freight NA

Food NA

Note: NA denotes “Non Applicable.”
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Table A2: Summary Results for Linear AR Model Estimates.

Commodity Lags ρ̂ tρ = 0 R2 AIC LMSC(4) RESET LMt(6)

Maize 1 -0.014 -2.370 0.075 264.06 0.897 0.000 0.007

Soybeans 2 -0.018 -1.635 0.100 334.17 0.641 0.002 0.013

Wheat 12 -0.018 -2.404 0.142 303.21 0.904 0.007 0.021

Sorghum 8 -0.012 -1.639 0.100 334.93 0.743 0.624 0.013

Palm Oil 4 -0.019 -2.634 0.144 597.37 0.971 0.114 0.002

Rice 11 -0.014 -2.808 0.137 433.94 0.910 0.000 0.020

Cotton 12 -0.009 -1.871 0.281 -22.31 0.048 0.000 0.000

Coffee 2 -0.017 -2.455 0.095 598.50 0.428 0.005 0.061

Cocoa 1 -0.012 -2.006 0.026 591.07 0.105 0.000 0.159

Sugar 3 -0.023 -2.267 0.109 1090.79 0.603 0.736 0.078

Beef 11 -0.013 -2.130 0.137 69.46 0.036 0.008 0.001

Logs 3 -0.028 -2.679 0.154 227.41 0.880 0.003 0.035

Rubber 1 -0.014 -2.069 0.060 437.65 0.698 0.101 0.127

Iron 12 -0.002 -0.400 0.076 485.46 0.248 0.001 0.010

Copper 2 -0.015 -1.937 0.129 556.27 0.870 0.528 0.026

Tin 2 -0.006 -1.598 0.094 179.97 0.909 0.027 0.000

Lead 1 -0.016 -2.065 0.067 584.28 0.867 0.000 0.151

Zinc 5 -0.034 -2.819 0.140 434.23 0.881 0.169 0.460

Gold 11 -0.005 -1.677 0.146 49.15 0.562 0.031 0.000

Silver 6 -0.012 -0.891 0.104 528.62 0.501 0.000 0.011

Oil 6 -0.005 -1.459 0.048 851.50 0.683 0.014 0.004

Coal 12 -0.024 -2.610 0.120 155.15 0.001 0.161 0.000

Freight 12 -0.047 -3.749 0.095 543.94 0.234 0.141 0.010

Food 1 -0.025 -1.732 0.051 247.90 0.384 0.015 0.110

Note: Lags denotes value of p in (1), selected by AIC. Column ρ̂ reports estimates
of the lagged level term and tρ = 0 reports the heteroskedasticity robust t–ratio
for the null hypothesis that ρ = 0. The LMSC(4) column includes p–values for a
heteroskedasticity robust Lagrange Multiplier test for remaining autocorrelation up
to lag four. RESET denotes the p–value associated with a Ramsey RESET test where
h = 4. The column headed LMt(6) records p–values for a Lin and Tersvirta (1994)
sixth–order Lagrange Multiplier test for intercept non–constancy.
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