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Abstract

Constant factor loadings is a standard assumption in tHgsasaf large dimen-
sional factor models. Yet, this assumption may be restdatinless parameter shifts
are mild. In this paper we develop a new testing procedureetectbig breaks in
factor loadings at either known or unknown dates. It is bagmsh testing for struc-
tural breaks in a regression of the first of théactors estimated by PC for the whole
sample on the remaining— 1 factors, where is chosen using Bai and Ng's (2002)
information criteria. We argue that this test is more powidtian other tests available
in the literature on this issue.
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1 Introduction

Despite the well-ackowledged fact that some parametersonamic relationships can
become unstable due to important structural breaks (égsetrelated to technological
change, globalization or strong policy reforms), a stadgagactice in the estimation of
large factor models is to assume the constancy of the factalings. Possibly, one of
the main reasons for this benign neglect of breaks is théfirgteattempt to address this
issue, by means of time-varying factor loadings, focusedt@racterizing the properties
of mild instabilities, under which the constructed factossng principal components (PC
hereafter) remain consistently estimated (Stock and Waf202).

Later on, however, a few studies have investigated the pe#ince of factor-based
forecasting subject not only to mild but also to large breakbe factor model structures.
Banerjee, Marcellino and Masten (2008) conclude that te@bility of factor loadings is
the most likely reason behind the worsening factor-baseetésts, particularly in small
samples. Although their results are exclusively based ontMarlo simulations, they
shed some light on the importance of detecting relevanttsiral breaks in the factor
loadings. Two additional papers have contributed to thiesash of research. The first one
is by Stock and Watson (2009) who, extending their previgys@ach, propose several
forms of mild structural instability in factor models to thase empirical evidence showing
that the failure of factor-based forecasts is mainly dubédnstability of forecast function,
rather than of the factor loadings. As a result, they corelit the estimated factors
using PC are still consistent when instabilities are snmathagnitude and independent,
claiming therefore that forecasts can be improved by usitigshmple factor estimates
and subsample forecasting equations. Yet, this focus ahstrilictural breaks, though very
useful, has also been questioned by Giannone (2007) whestgat'....to understand
structural changes we should devote more effort in modgtlve variables characterized
by more severe instabilities...'In this paper, we follow this route by proving a precise
characterization of the different conditions under whigpdind mild structural breaks in
the factor loadings may occur, as well as develop a test tindissh between them. We
conclude that the influence of big breaks cannot be ignorestsi may lead to misleading
results in the usual econometric practices with factor rnsde

The second paper, which is the most closely related to aaitsy Breitung and Eick-
meier (2010). Like us, these authors propose statististd fer big structural breaks in the
factor loadings. Their test relies on the argument thateutite null of no structural break
plus some additional assumptions, the estimation erranefadctors can be ignored and
thus the estimated factors can be treated as the true facorssequently, a Chow-type
test can be constructed by means of separate regressiogaciovariable in the dataset
where the regressors are the estimated factors for the whoiple period and their trun-
cated version from the date of the break onwards whre thdicieets on the latter are
tested for statistical significance. However, in our vidvg Breitung and Eickmeier’s test
suffers from two limitations: (i) it is based on comparing #mpirical rejection frequency
among the individual regressions to a nominal size of 5% wutidenull of no breaks de-
spite the fact that the limiting distribution of this tesatsstic is not known; and (ii) it is
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claimed that the number of factors can be correctly estithatgng subsamples before
and after the known break date. However, if either the bred& b not considered to be
a priori known or the number of factors is not correctly sfiedj their test may exhibit
poor power. For example, as explained below, a factor modblmcommon factors and
1 structural break in the factor loadings admits a standectbf representation with+ 1
common factors without a break. Hence, if the number of fad®incorrectly specified
as being + 1 instead of, their test may not detect any break atall.

Our contribution in this paper is to propose a simple tespirggedure to detect struc-
tural breaks in the factor loadings which allows for diffietréypes of breaks and does not
suffer from the previous shortcomings. In particular, wetfaderive some asymptotic re-
sults finding that, in contrast to small breaks where bothniim@aber of factors and the
factor space are consistently estimated, the number afr&etill be over-estimated when
big breaks occur. We argue that ignoring those big break$iaaa serious consequences
on the forecasting performance of factors in some populgression models. We then
propose a simple two-step test procedure for testing bigkisteln the first step, the num-
ber of factors for the whole sample period is estimated, ad then the factors are
estimated using PC. In the second step, one of the estimaténts (e.g., the first one)
is regressed on the remaining-1 factors, and the standard Chow Test or the Sup Type
Test of Andrews (1993), depending on whether the date of thakhis treated as known
or unknown, is then used to test for a structural break inrdgsession. If the null of no
structural breaks is rejected in the second-step regressm® conclude that there are big
breaks and, otherwise, that either no breaks at all exishairdnly small breaks occur.
We also illustrate the finite sample performance of our testgisimulations, as well as
provide an empirical application of how to implement outitggapproach.

The rest of the paper is organized as follows. In Section 2present the basic no-
tation, assumptions and give precise definitions of tweeddt types of structural breaks
considered herebig andsmall breaks In Section 3, we analyze the consequences of big
breaks on the choice of the number of factors and their estmaas well as the effects of
those breaks on the factor augmented regressions. In Béctiwe derive the asymptotic
results underlying our approach and discuss the advantdgres proposed test against
Breitung and Eickmeier’s (2010) test. Section 5 deals wWithfinite sample performance
of our test procedure using Monte-Carlo simulations. $ecé provides two empirical
applications. Finally, Section 7 concludes.

2 Notation and Preliminaries

We consider factor models that can be rewritten in the stathonical form:

X = AR +& (1)

1Even when the break date is known, the number of factors cstilldbe incorrectly estimated due to
finite-sample problems of the consistent information cidteised to choose the number of factors to be
estimated.




whereX; is theN x 1 vector of observed variable&,= (ai,...,an)’ is theN x r matrix
of factor loadingsy is the number of common factonig, = (fi1,.. ., fir)" is ther x 1 vec-
tor of common factors, and is theN x 1 vector of idiosyncratic errors. In the case of
dynamic factor models, all the common factdrsnd their lags are stacked irffa Thus,
a dynamic factor model with dynamic factors ang lags of these factors can be written
as a canonical static factor model with+ 1) x p static factors. Further, given the as-
sumptions we make about tbeerror terms, the case analyzed by Breitung and Eickmeier
(2010) where they disturbances are generated by individual specificgR{rocesses is
also considered. Notice, however, that our setup excluddegéneralized dynamic factor
models considered by Forni and Lippi (2001) when the polyiabrdistributed lag tends
possibly to infinity.

We assume that there is a single structural break in therferadings of all factors at
the same time':

X =AR+ea t=12...T (2)
X=BR+a t=1+1,....T 3)

whereB = (B1,...,Bn)’ is the new factor loadings after the break. By defining therimat
C =B — A, which captures the size of the breaks, the factor model)iaigd (3) can be
rewritten as:

X =AR+CG +& (4)
whereG; =0fort=1,...,1,andGi =k fort=1+1,...,T.

As argued by Stock and Watson (2002), the effects of some imsl@bility in the
factor loadings can be averaged out, so that estimationrdecence based on PC remain
valid. Our aim is to generalize their analysis by distinging between two types of break
sizes:big andsmall Whereas the latter correspond to those breaks charaztdryzStock
and Watson (2002, 2009) and therefore can be neglectedpalisggo analyze which are
the effects of the former.We we will show that they cannotgm®red. Thus, to distinguish
between both types of breaks, it is convenient to partit@nmatrixC as follows:

C=[A H]

where/A andH areN x k; andN x k, matrices that corresponds to thigg and thesmall
breaks, and; + ko, = r. In other words, we assume that, among thHactors,k; andky
factors are subject toig andsmallbreaks in their loadings, respectively. Accordingly, we
can also partitioi®; into two parts Gt andGZ, such that (4) can be rewritten as:

X = AR +AG +HG? + ¢ (5)

whereA = (Aq,...,An) @andH = (nN1,...,Nn)’.

Once the basic notation has been established, the nexsgtepriovide precise defini-
tions of the two types of breaks.

Assumption 1. Breaks



a. E[|A[|* <. N713N AjA/ — 35 as N— oo for some positive definite matriy .

b. ni :Op(ﬁ) fori=1,2,...,N.

The matrice$\ andH are assumed to contain random elements. Assumption 1dsyiel
the definition of a big break which also includes the case @hge= 0 ( no break) for a
fixed proportion of variables ad — c. Assumption 1.b, in turn, provides the definition
of small breaks which can be ignoredM&ndT goes to infinity.

To investigate the influence of the breaks on the estimafitactors and the number of
factors, some further assumptions need to be imposed. Tevaotonsistent notation with
the previous literature in the discussion of these assumgtive follow the presentation of
Bai and Ng (2002) with a few slight modifications. ltef>) and||Z|| = \/tr(2'X)denote
the trace and the norm of a matix respectively, whildT 7] denotes the integer part of
T x mfor me (0,1). Then

Assumption 2. Factors: E(R) =0, E||R||* <o, TS RF —» Zrand TS RF —
'ZF as T— o for some positive definite matrBe wherer* = lim;_,e 1.

Assumption 3. Factor Loadings: E||ai||* <M < o, and N"TAA — 5o, N7I'T — 3¢
as N— oo for some positive definite matrks andZr, wherel' = [A  A].

Assumption 4. ldiosyncratic Errors. the error terms g the factors Fand the loadings
A satisfy the Assumption A, B, C, E, F1 and F2 of Bai (2003).

Assumption 5. I ndependence of Factors, Loadings, Breaks, and Idiosyncratic Errors:
(RIy, [l (AN, [miIN.; and[&]]; are mutually independent groups, and for all i

1 T
thﬁat = Op(2).

While Assumptions 3 and 4 are standard in the literature otofanodels allowing
for weak cross-sectional and temporal correlations betvtiee errors ( see Bai and Ng,
2002), Assumption 2 is a new one. Since factors and factalinga cannot be separately
identified, we have to assume some stable properties forattters in order to test the
stability of the factor loadings. We also allow the differéactors to be correlated at all
leads and lags. Assumption 5 on the independence amondfd@di groups is stronger
than the usual assumptions made by Bai and Ng (2002). Ndtoseever, that we could
have also assumed some dependence between these groupsraimiose some restric-
tions on this dependence when necessary. Yet, this woulgloxate the proofs without
essentially altering the intuition behind the main ideaanhdng our approach. Thus, for
the sake of simplicity, we assume them to be independent.



3 The Effects of Structural Breaks

In this section, we study the effects of the structural bseak the estimation of factors
based on PC, and on the estimation of the number of factoedbas the information
criteria proposed by Bai and Ng (2002). Our main result is i@ estimated factors using
PC are not consistent and the number of factors tends to bestiveated when big breaks
exist, in contrast to Stock and Watson’s (2002, 2009) finslithgit the true factor space is
still consistently estimated.

3.1 The estimation of factors

Let us rewrite model (5) witk; big breaks an#t; small breaks in the more compact form:
X = AR +A\G + & (6)

whereg = HGt2 +&. The idea is to show that the new error terenstill satisfy the nec-
essary conditions for (6) being a standard factor model nath factorsR* = [F/ th/]’
and new factor loading®\ A|.

Let r be the selected number of factors, either by the informati@aria or by some
prior knowledge. Note that is not necessarily equal ta Let F be /T times ther™
eigenvectors corresponding to thirgest eigenvalues of the matdxx’, and define

|f = |EVN7T

as the estimated factors, where The N matrixX = [X1, X2... Xr]', % = [X1, %2, .., Xn]',
F=[F.F,...,F], andvy T is a diagonal matrix with thelargest eigenvalues ONT)"1XX.
Then we have

Proposition 1. For any fixedr > 1, under Assumptions 1 to 5, there exists a full rank
I x (r +k1) matrix D anddy 1 = min{+/N,+/T} such that:

R = DR’ +Op(1/dnT) (7)

This result implies thak; estimate consistently the space of the new factgrs but
not the space of the true factoFs,

Let us consider two cases. First, whan= 0 ( no big breaks), we have th&f = 0,
andR* = R, so that (7) becomes

R = DR +Op(1/dnT) (8)

for ar x r matrix D of full rank. This just trivially replicates the well-knowconsistency
result of Bai and Ng (2002).

Secondly, in the more interesting case wikgn- O (big breaks exist), we can rewrite
(7) as

R

D1 Dy (gtl) 1 0p(1) = D1 + D2GL + 0p(1) ()
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where ther x (r + ki) matrix D is partitioned into the x r matrix D1 and ther x k;
matrix D,. Note that, by the definition o, Gt =0 fort =1,2,...,1, andG{ = F! for
t=1+1,...,T, whereR!is thek; x 1 sub-vector of; that experiences big breaks in their
loadings. Therefore (9) can be expressed as:

R=DiR+o0p(1)fort=212....1 (10)
R=DsR+o0p(1)fort=1+1,...,T (11)

whereD5 =D1+[D2 0], 0isar x (r —ky) zero matrix, such thdd, # 0 sinceD is a full-
rank matrix. Hence, sind®, # D3, this result implies that, in contrast to small breaks, the
estimated factors are not consistent for the space of the true fadfotmder big breaks.
Thus, in this case, the use of estimated factors as preslict@xplanatory variables may
lead to misleading results in the usual econometric pregtigth factor models.

To illustrate the consequences of having big breaks in ttterfdqoadings, consider the
following simple Factor Augmented Regression (FAR) modek(Bai and Ng, 2006):

yt:a/Ft+b/\M+ut7t:l727"7T (12)

whereW is a small set of observable variables andthel vectork contains the
common factors driving a large panel datagefi = 1,2,...N;t =1,2,...T) which excludes
bothy; andW.The parameters of interest are the elements of véxidiile i is included
in (12) to control for potential endogeneity arising fromitted variables. Since we cannot
identify R anda, only the product’R is relevant. Suppose there is a big break at date
From (10) and (11), we can rewrite (12) as:

vt = (@D7)(D1R) + bW +u fort=1,2,...,1
yi = (D5 )(DsR) + bW +u fort =7+1,....T

whereD; D; = D5 D, = Iy, or equivalently

v =ajh + bW+ fort=21,2...,1 (13)
i =ah + W+ fort=1+1,...,T (14)
wherea) = aD; anda, = aD; ", andu; = u; + 0p(1).

If the number of factors is assumed to be known a prioris r, thenD; = D7,
D5~ = D; 1. SinceD; # Dj, it follows thatD; ! # D5~ * and thusa; # a,. Therefore,
using the indicator functiofi(t > 1), (13) and (14) can be rewritten as

vt =ajR + (a2 —ag)RIt > 1)+ bW + G, t =1,2,.., T (15)
The implication is that if we were to ignore the set of regoesﬁﬂ(t > T) in (15), the

estimation ofb will in general become inconsistent due to ommited varisbias. There
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are many examples in the literature where the number of fac$oa priori imposed for

theoretical reasons, e.g., to name a few, a single commtor fapresenting a global effect
is assumed in the well-known study by Bernanke, Boivin and<szl(2005) on measuring
the effects of monetary policy in Factor Augmented VAR (FAR)AmModels, or two factors

are imposed by Rudebusch and Wu (2008) in their macro-finarocke|.

Alternatively, if the number of factors is not assumed to jpecai known and therefore
needs to be estimated using some information criteria, Vlestvdw in Proposition 2 in
the next section that the chosen number of factors will tend+ k; as the sample size
gets large. In this cas®; andD; are(r +kp) x r, and by the definitions db; and D5,
it is easy to show that we can always find & (r +k;) matrixD* = D; = D5~ such that
D*Dy = D*D3 = I;. If we define

a*=aD* (16)

thena] = &, = a* so that (13) and (14) can be rewritten as
y=ah bW+, t=12..T (17)

From above equation we can see that the estimation of (12nutilbe affected by the
estimated factors under big breaks i1 + kj.

In sum, in the presence of big breaks, the use of estimat¢or$aas the true factors
when assuming that the number of factors is a priori knowhledld to inconsistent es-
timates in a FAR. As a simple remedi](t > 1) should be added as regressors when
big breaks are detected and the break date is located. Aftesty, without pretending
to know a priori the true number of factors, the estimatiorrAR will be robust to the
estimation of factors under big breaks if the number of fexcte overestimated. Notice
that a similar argument will render inconsistent the impukssponse functions in FAVAR
models where (12) becomgs.1 = (R+1,W+1). As a result, in order to run regression
(17), a formal test of whether big breaks exist is requiresl\Will illustrate these points
by using simulations in a typical forecasting exercise \hie predictors are common
factors estimated by PC.

3.2 The estimated number of factors

Breitung and Eickmeier (2010) have previouosly argued thatpresence of structural
breaks in the factor loadings may lead to the overestimatiadghe number of factors but
they do not prove this result. In this part, we fill this gap bg\pding a rigorous proof.

Let F be the estimated number of factors in (6) using the inforomatiriteria of Bai
and Ng (2002). Then the following result holds:

Proposition 2. Under Assumptions 1 to 5, it holds that

lim Plf=r+k=1

N, T—00



When there is no big break;(= 0), this result replicates Theorem 2 of Bai and Ng
(2002). However, under big breaklls, (> 0), their information criteria will overestimate
the number of factors by the number of big breaks.( Actually, Bai and Ng (2002)’s
criteria, that consistently estimate the number of trueoiac will overestimate the number
of original factors when there are big breaks because we $tawen that a factor model
with those breaks admits a representation without brealwhitmore factors.

Finally, notice that, although the presence of structurabks in the factor loadings
may lead to wrong estimation of the factor space and the nuoflfactors, the common
part of a factor modelAR andBFR) can still be consistently estimated if enough factors
are extracted.

4 Testing for Structural Breaks

4.1 Hypotheses of interest and test statistics

From the previous discussion, we have found that the fagiaces and the number of
factors are both consistently estimated only when mildakseexist. Therefore, our goal
here is to develop a test for big breaks.

If we were to follow the usual approach in the literature & @ structural breaks, we
should consider

Ho:A=B

Hi:A#£B
However, if only small breaks occur, the alternative hypsth may not be interesting
sinceC = A— B vanishes adl — o andT — . Thus, this kind of local alternatives for

which the usual test should have no trivial power, is notvahfor the large factor models
we consider here. Therefore, since our focus is on big breaksonsider instead:

Ho:ki =0
H1:k1>0

where the null and alternative hypotheses correspond toabes where there are no big
breaks (yet there may be small breaks) and there is at leadiigibreak, respectively.

To test the above null hypothesis, we consider the followingrstep procedure:

1. Inthe first step, the number of factors to estimates either determined by Bai and
Ng “s (2002) information criteriar(= f) or by prior knowledge, so thatcommon
factors () are estimated by PC.

2. In the second step, we consider the following linear regogssf the first estimated
factor on the remaining — 1 ones:

Fit = CoFo + -+ G + U = CF gt + (18)
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whereF_y; = [Fx ---Fg] and c=[c,--- ¢}’ are (F— 1) x 1 vectors. Then we test for
a structural break of ¢ in the above regression. If a struatinreak is detected, then
we reject H : k; = 0; otherwise, we cannot reject the null stating that there iaoe
big breaks.

Both steps can be easily implemented in practice. In thergkestep, although there
are many methods of testing for structural breaks in a sitipd@r regression model, we
consider theChow Testwhen the possible break date is assumed to be known, and the
Sup-type Testvhen no prior knowledge about the break date exists. Moresuge the
Wald, LR, and LM test statistics have the same asymptoticiligion under the null, we
focus on the LM and Wald tests because they are simpler to geamp

Following Andrews (1993), the LM test statistic is defined as
T 1L . '/l & =
L(M==—=(=S Ful)SH=SF 19
(m) 71(1—7‘1)<Ttgi uth) <TtZ1 uth) (19)

whererr=1/T, (i is the residuals in the OLS regression of (1B); IimT_mVar(% Siq If_ltut) ,
andSis a consistent estimate &f
The Sup-LM statistic is defined as:

(T

2(n) = ggﬂpn(lT_ . ( > Fatk)$(5 > F ) (20)

wherefll is some pre-specified subset[6f1].
Similarly, the Wald and Sup-Wald test statistics can be taoted as:

25 (m =T<61(7_T>—62(7_T)>/\7_1(61(7_T)—éz(ﬁ)) (21)
d
i #°() = supT (61— ea(m)) ¥ (ex(m) — ea(m) (22)

whereci (11) andcz(m) are OLS estimates afusing subsamples before and after the break
point : [T . In additionV = MM~ andM = T~y F 4F' .

To illustrate why our two-step procedure is able to deteetdig breaks, it is useful to
consider a simple example wheare- 1,k; = 1 (one common factor and one big break).
Then (6) becomes:

X =Af+Ag+&
wheregr =0fort=1,...,1,andg; = ffort =1+ 1,...,T. By Proposition 2, we will
tend to getr = 2 in this case. Suppose now that we estimate 2 factotsd). Then, by

Proposition 1, we have: A
ftl) (ft>
=D +0p(1

10



whereD = <g; g ) is a non-singular matrix. By the definition gf we have:
4

fu=difi+0p(1) fio=dsfi+op(1) for t=1,...1

fo = (di+dp)fe+op(l) fio=(ds+dg)fi+0p(1) for t=1+1,...,T

which imply that:
fi = %ﬂz-ﬁ-op(l) for t=1,...,1
3

d -
fio+0p(l) for t=1+1,...,T
4

Thus, We can observe that the two estimated factors arerlynedated and that the co-
eff|C|ents o and ;j 2 pefore and after the break date must be different due to the no
singularity of the matrixD. As a result, if we regress one of the estimated factors on the
other and test for a structural break in this regression,veeilsl reject the null of no big
break. We choose the first estimated facfor, as the regressand in the previous regres-
sions because being the "main factor" in the PC analysisikaly that ds = 0.2Likewise,

if the break date is not a priori assumed to be known, the Sup-type Test wilthaenatu-

ral estimate of at the date when the test reaches its maximum value. In whawi we
derive the asymptotic distribution of the test statisti®)(@nd (20) under the null hypoth-
esis, as well as extend the intuition behind this simple gtano the more general case in
order to show that our test has power against relevant aliees.

4.2 Limiting distributions under the null hypothesis

Since in most applications, the number of factors is estohby means of the information
criteria, and it converges to the true one under the null thgsis of no big break, we start
with the most interesting case where-r.

Note that use of PC |mpI|es th{tt 1F 1tFyt = O for any T by construction, so we
havec= 0 in (18) andu; = Fy; in (19). To derive the asymptotic distributions of the LM
statistics, we impose the following additional assumpion

Assumption 6. v/T/N —0asN—wand T— ., .

Assumption 7. {R} is a stationary and ergodic sequence, &t Fjr — E(FtFjt), Qt} is
an adapted mixingale withy, of size—1fori,j=1,2,...,r, thatis:

% E(E(YielQ-m)?) < v

where Yit = FitFjt — E(FitFjt), Qt is a 0— algebra generated by the information at time
t,t—1,...,{c} and{ym} are non-negative sequences arg= O(m 1-2) for somed > 0.

2SinceD is non singular, even ifi; = 0, d; cannot be equal to zero. If the regression for the first sub-
sample yields an ill-defined (ie., very large) estimatega|dhen we recommed usirfg as the regressand
and f;; as the regressor.
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Assumption 8. For the subsefl of [0, 1]:

T N
sup

nen H\/%t;i;aiﬁ/at HZ =Op(1)

Assumption 9. ||S—S|| = op(1), and S is ar — 1) x (r — 1) symmetric positive definite
matrix.

Assumption 6 and 8 are required to bound the estimationsaoff, while Assump-
tion 7 is necessary for deriving the weak convergence ofdbiestatistics using the Func-
tional Central Limit Theorem (FCLT).

Note that these assumptions are not restrictive. AssumgtallowsT to beO(N1*9)
for —1 < 6 < 1. As for Assumption 7, it allows one to consider a quite gahelass of
linear processes for the factorsi = 57 @kVit—k Wherevw = [vy;...v]" are i.i.d with
zero means, andar(vi) = 0 < o. It can shown that in this case:

\/E<E(Yi,-,t|th)2) < Gi0; (émmk\) (;ﬁ \(ij\)

=m

then it suffices that
( > Ich\> = O(m 279
k=m

for somed > 0, which is satisfied for a large class of ARMA processes. Agsion 8 is
analogue to Assumption F.2 of Bai (2003), which involveszenean random variables.
Finally, a consistent estimate 8ican be calculated by a HAC estimator.

Let” & "denoteconvergence in distributionand #;_1(-) denote a — 1 vector of
standard Brownian Motions, then:

Theorem 1. Under the null hypothesisH k; = 0 and Assumptions 1 to 9:

2(M) % sup(#; (7 - 1) (Fealm) — 0 4()) /(L o)

el

2(0) 3 X (r-1).

The critical values for the Sup-type test are provided in g (1993).

It is easy to show that Theorem 1 still holds whienr. Yet, wherr > r, the covariance
matrix Sis not full ranked, althoug can be inverted in any given finite sample size. In
the following section, we will show through simulationsttiddeorem 1 still provide good
approximations for the test statistics even whenr.
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4.3 Behavior of LM and Wald tests under the alternative hypohesis

We extend the idea of the simple example in section 4.1 to shatyunder the alternative
hypothesisk; > 0), the linear relationship between the estimated factoanges at time
T, so that big breaks can be detected.

First, let us consider the case where r <r +k; so thatD; andD} in (10) and (11)
become x r matrices with full column rank. Notice that, sincec r, we can always find
r x 1 vectorsp, andp, which belong to the null spaces bf, and D;’ separately, that is,
p;D1 = 0 andp;D3 = 0. Hence, premultiplying both sides of (10) and (11)ddyandp;
leads to:

PiR=0p(1) t=12...T
phR=0p(1) t=1+1,...,T,

which, after normalizing the first elementsmf andp, to be 1, yields:

Fit = F'_1p} +0p(l) t=12...,1 (23)
Fu=F _ups+0p(1) t=1+1..T (24)

Next, to show thafp; # p;, we proceed as follows. Suppose that Null(D}) and
ye NuII(Dg/), then by the definition oD; and D’ and by the basic properties of full-
rank matrices, it holds that € Null(D’). SinceD is full rank r x (r + k1) matrix, then
Null(D’) = 0 and thusy = 0. Therefore, the only vector that belongs to the null spdce o
D1 andDj is the trivial zero vector. Further, because the rank of thilespace ofD; and

D3 isr—r > 0, we can always find two non- zero-vectors such tha¢ p.

Notice that whem <, the rank of the null spaces B andD; becomes zero. Hence,
the preceding analysis does not apply in this case despgitexistence of linear relation-
ships among the estimated factors. If we regress one of timeaged factors on the others,
with p; andp, denoting the OLS estimates of the coefficients using thessupkes before
and after the break, it is easy to show tpat—+ 6; andp, — 6, but generally we cannot
verify that6; # 6,.

In the case where > r +k;, the rank of null space db defined in Proposition 1
becomes — (r +ki). Applying similar arguments as above, we can find a non zeré
vectorp such thap’D = 0. Then, premultiplying both sides of (7) iy and normalizing
the first element op to be 1, it follows that:

Fit = F/_1tp" +op(1)fort=1,2,...,T

Hence, there is still a linear relationship between thevestted factors, but this relationship
(p*) is constant over time.

As a result, our test may fail to detect the breaks whenhr or r > r + kg, which is
confirmed by the simulation results shown in the followingtg®. However, this may not
be a problem due to two reasons. First, we usually equateuimder of factors with the
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estimated ones, (= ) and we have shown th&f =r +k;] — 1. Secondly, instead of
using a single value, we can try different values ofhen, under the null, we should not
detect any break no matter which value efe use while, under the alternative, we should
detect breaks whenlies betweem andr + k;.

4.4 Comparison with other available tests

Although the issue of instability in factor models was iality raised by Stock and Watson
(2002) in the context of small breaks, Breitung and Eickm610) (BE test, henceforth)
is, to our knowledge, the only available paper that propestst for big breaks. Thus,
it is natural to compare our testing procedure with theinsour view, the BE test suffers
from three shortcomings which are worth mentioning befaeedomparison is made.

First, the BE test will lose power when the number of facteravierestimated. The BE
test is equivalent to the Chow test in the regres3ipa- aik + e; wherek is replaced by
K. However, as shown in equation (5), a factor model with béegks in the factor loadings
admits a new representation with more factors but no breakother words, when the
number of factors is overestimated, the PC estimators stamgly estimate (up to a linear
transformation) the new factors and loadings which arelstabthe new representation.
Thus the BE test may fail to detect breaks in this case. Alghaine authors are fully
aware of this problem (see Remark B in their paper) and stuggesplit the sample to
estimate the correct number of factors, in principle thisasfeasible when the break date
is considered to be unknown. Using a Sup-Type Test, as BEopesolves the problem
of the unknown break date but, since the number of factolgevitl to be overestimated,
lack of power will still be a problem.

Secondly, their testing procedure is mainly heuiristiceifmull hypothesis i\ = B,
oraj =G foralli=1,...,N, rather thanaj = B;j for a specificj 3. They construcN
test statistics (denoted ksyi = 1,...,N) for each of theN variables, but do not derive
a single statistic foHp : A = B. One possibility that the authors mention is to combine
the N individual statistics to obtain a pooled test, but this ieegithe errors; andej
to be independent if # j, an assumption which is too restrictive. In their simulaso
and applications, the decisions are merely based onejeetion frequenciesi.e., the
proportion of variables that are detected to have breakgyubie individual statistics.
This rejection frequency, defined byt N I(s > a) wherel (.) is an indicator function
anda is some critical value, may converge to some predeterminadmal size (typically
5%), as shown by their simulations, but this is not a propst itgsofar as its limiting
distribution is not derived.

Finally, the individual tests for each of the variables megd to incorrect conclusions
about which individual variables are subject to breaks @airttoadings of the factors, as

3The authors do not mention this, but it is implicitly assurbedause they need the factors to be consis-
tently estimated under the null, which will hold onlyaf = 3 for alli = 1,...,N, or alternatively if the the
break is small according to our definition..
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BE seemingly dd. A key presumption for their individual test to work propeitythat
the estimated factoi§ can replace the true factors, even under the alternativethgpis
(given that the number of factors is correctly estimatedy. we have shown before, the
true factor space can only be consistently estimated ugenuall of no break or only
small breaks. By contrast, when big breaks exist, the spbitedrue factors is not well
estimated (see equations (10) and (11)). If we plug in thienaseéd factors in this case,
some variables that have constant loadings may be deteched¢ breaks due to the poor
estimation of the factors. For example, consider a factodehwith big breaks in the
factor loadings where we select the right number of factotsr, and there is one of the
variablesX;; that has constant Ioadinés:

Xit = a{R +ex.
Then, from (10) and (11), we can also write the above-meat@yuation as follows:

Xt = (a/D;Y)(D1R) +er = (a{D; YR +& t=1,2...1
Xi = (a/Dy 1) (D3R) +er = (a{Dy YR +& t=1+1,...,T

where€; = ey +0p(1). Notice tha‘rai’Dl’l =+ a{DEfl sinceD1 # D3. As aresult, the factor
loadings will exhibit a break when the true factors are re@thby the estimated factors.
Hence if we apply the individual test & usingR, we may wrongly conclude that there
is a big break in that variable when there is none.

To analyze how serious this problem could be in practice, e&gh a very simple
simulation. First, we generate a factor model With=- T = 200,r = 1, where the first 100
variables have constant factor loadings while the remgihl0 variables have big breaks
in their loadings. Then we estimate the factors by PC andyael individual tests for
all the 200 variable8. Applying the BE test, we find that rejection frequency fortht
200 variables is 587%, close to the proportion of variables that have breaksvéver,
the rejection frequencies for the first and second 100 vimsadre 5298% and 5315% ,
respectively, which means that we falsely reject the nulhiore than half of the variables
that are stable while we reject the null correctly for onlyf led the variables that have
breaks. Further, if we increase the size of the breaks, {betrigequency can rise up to
90% while the true proportion is 50%.

Our LM and Wald tests cannot identify either which particulariables are subject
to breaks in the factor loadings but avoid the other two pwid. Regarding the first
problem, we have derived its limiting distribution in Theor 1 both for the cases of
known and unknown breaking dates. As for the second oneraigro the BE test, our

4For example, in BE (2010, Section 6, pg. 26), it is stated ttn@re seems to be a break in the loadings
on the CPI and consumer expectations,..., but not in therigaef commodity prices".

SNotice that this is possible because of Assumption 1.a.

SFor simplicity, all the loadings, factors and errors areagated as standard normal variables, the mean
of the factor loadings of the second 100 variables are shif{e0.3 at timet = 100. The reported numbers
are averages of 1000 replications
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test needs more estimated factors than the true nugnbek; > r > r) to maintain the
power. However, this overestimation it is still preferatuehe BE test because in practice
the number of factors to estimate is chosen by means of tbeniattion criteria(r = f),
and we have proved in Proposition 2 tffaf = r + k] — 1.

5 Simulations

In this section, we first study the finite sample propertieswf proposed LM/Wald and
Sup-LM/Wald tests. Then a comparison is made with the ptmseof the BE test by
means of Monte-Carlo simulations. Since the only BE teshwiknown limiting distri-
bution is their pooled statistic when the idiosyncratic paments in the factor model are
uncorrelated, we restrict the comparison to this speciBe @astead of using their rejection
frequency approach whose asymptotic distribution remanmksown.

5.1 Size properties

We first simulate data from the following DGP:
r
X =Y aikFe+ex
K=1

wherer = 3, ajx ande; are generated as.d standarised normal variables, afig} are
generated as:

Fae = @Rct—1+ Vit

where@, = 0.8, ¢ = 0.5, 3 = 0.2, andvy; is anothei.i.d standarized normal error term.
The number of replications is 1000. We consider both the LM Afald tests and their
Sup-type versions defined in (19)-(20) and (21)-(22). Themial breaking date is
considered to be a priori known and is seTd® for the LM/Wald tests whil&1 is chosen
as[0.15,0.85] for the Sup-type versions of the tests. The covariance rm&is estimated
using the HAC estimator of Newey and West (1987).

Table 1 reports the empirical sizes (in percentages) fotL¥ANald tests and Sup-
LM/Wald tests (in brackets) using 5% critical values for gdersizes N andT) equal to
100, 150, 200, 250, 300 and 1000We consider three cases regarding the choice of the
number of factors to be estimated by PC: (i) the correct orer(= 3), (ii) smaller than
the true number of factors & 2 < r = 3), and (iii) larger than the true number of factors
(f=4>r=23)8

Broadly speaking, the LM and Wald tests are slightly undediforr = 2 and 3 and
more so wherr = 4. Yet the effective sizes converge to the nominal siz&laand T

’As mentioned earlier, the critical values of the Sup—typéstare taken from Andrews (1993).

8Notice that the choice af = 3 allows us to analyze the consequences of performing oyogeal test
with the under-parameterised choiceref 2, where two factors are needed to perform the LM/Wald test in
(18). Had we chosen= 2 as the true number of factors, the test could not be perfdforeg = 1.
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increase This finite sample problem is more accurate wittstie LM test especially for
small T, in line with the findings in other studies (see, Diebold areei@ 1996) This is
hardly surprising because, for instance, whesa 100 and1 = [0.15,0.85], we only have
15 observations in the first subsample. By contrast, the\8ailo- test is too liberal for
T = 100. Therefore, although we impose tRaT /N goes to zero, a large is preferable
when the Sup-LM test is used. Another conclusion to be drammat, despite some
minor differences, the tests perform quite similarly imterof size even when the selected
number of factors is not correct.

5.2 Power properties

We next consider similar DGPs but this time with= 2 and now subject to big breaks
which are characterized as deterministic shifts in the raedihe factor loadingd. The
factors are simulated as AR(1) processes with coefficidris8dor the first factor and @
for the second. The shifts in the loadings ar2 &d 04 at timer = T /2. Table 2 reports
the empirical rejection rates of the LM/Wald and Sup-LM/@/dsts in percentage terms
using again 1000 replications.

As expected, both tests are powerful to detect the breaksgal =2 <r <r+k; =
4, while the power is trivial when =r = 2. Moreover, the power is low for the Sup-LM
test whenl' < 150, which is not surprising given that the Sup-LM test isens&zed. This
problem could be fixed by either using size-corrected @litalues, or by the Sup-Wald
test that is more powerful in finite samples. For safety, wsmemend to use data sets
with largeT (at least around 200) in practice.

5.3 Comparison with BE test

To compare our test to the BE test, we need to construct a ¢ghatddistic as suggested at
the beginning of this section. The pooled BE test is congtdias follows:

SN s —Nr
V2Nr

wheres is the individual LM statistics in BE (2010). This test shdwonverge to a
standarised normal distribution as longeasandej; are independent, an assumption we
also adopt here. For simplicity, we only report results fa tase of known break dates.

We first generate factor models with= 2, and compare the two tests under the null.
The DGPs are similar to those used in the size study. The dezmomn of Table 3 (no
break) reports the 5% empirical sizes. In general, we fintttieapooled BE and the LM
tests exhibit similar sizes.

Then, we generate a break in the loadings of the first factdelie other parts of the
models remain the same as in the DGP where we study the poajenes. The break

9The results with other types of breaks such as random shétsimilar.
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is generated as a shift ofDin the mean of the loadings. We consider two cases: (i) the
number of factors is correctly selectad:=r = 2; and (ii) the selected number of factors
is larger than the true one:= 3 > r = 2. The third and fourth columns in Table 3 report
the empirical rejection rates of both tests. In agreemetit @ur previous discussion, the
differences in power are striking: whenr= 2, the pooled BE test is much more powerful
while the opposite occurs when= 3. However, according to our result in Proposition 2,
the use of Bai and Ng'’s (2002) selection criteria will yighgttchoice of =3 as a much
more likely outcome abl andT increase.

5.4 The effect of big breaks on forecasting

Finally, in this section we consider the effect of having brgaks in a typical forecasting
exercise where the predictors are estimated common fadtost, we have a large panel
of dataX; driven by the factor§; which are subject to a break in the factor loadings:

X =ARI(t <1)+BRI{t>71)+e&

Secondly, the variable we wish to forecgst which is excluded from td, is assumed to
be related tdr as follows:

Vi1 =aR +Wi1

We consider a DGP whet¢ = 100,T =20071=100r=2,a =[1 1], Rk are generated
as two AR(1) processes with coefficients 0.8 and 0.2, resjedgte andv; are i.i.d normal
variables, and the break size is characterized by a mearbgtvfeen loadingé andB
occuring at half of the time sample size.

The following forecasting methods are compared in our Shtiah:

Bechmark Forecasting: The factorsk are treated as observed and are used directly
as predictors. The one-step-ahead forecast ixfdefined ag; (1) = &R, whered'is the
OLS estimate o& usingy;1 andFk.

Forecasting 1:We first estimated 2 facto#s from X by PCs, which are then used as
predictorsy;(1) = & 'R, whereais the OLS estimate af usingyi.1 andH

Forecasting 2:We first estimated 2 factofs from X% by PC, then usk andlftﬂ(t >T)
as predictorsy; (1) = &[R RI(t > 1)], wheredis the OLS estimate afin the regression
of yt11 onk andRI(t > 1)].

Forecastlng 3:We first estimated 4 facto#s from X by PC, then use them as predic-
tors.y;(1) =& 'R, whereais the OLS estimate of usingyi 1 andf.

The above forecastings are implemented recursively, atgeach timet, the data
X, Xi-1,...,X and v, ¥:_1,...,y1 are treated as known to forecagt 1. This process
starts fromt = 149 tot = 199, and the mean square errors (MSES) are calculated by

199

49 Sl

To facilitate the comparisons, the MSE of the Benchmark éastng is standardized to 1.
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The results of 1000 replications are reported in Figure b different break sizes rang-
ing from O to 1. It is clear that the MSE of the Forecasting 1hodtincreases drastically
with the size of the breaks. The Forecasting 1 and 2 procegedorm equally well and
their MSEs remain constant as the break size increasesughithey can not outperform
the benchmark forecasting due to the estimation errorseofaittors.

6 Empirical Applications

To provide a few empirical applications of our test, we firsé the dataset of Stock and
Watson (2009). This data consist of 144 quarterly time sdoe the US ranging from
1959:Q1 to 2006:Q4, concerning nominal and real variabBsce not all variables are
available for the whole period, we end up using their suggkbilanced panel of stan-
darized variables witfi = 190 N = 109 which more or less corresond to the case where
T=200, N=100 in Table 2, where no severe size distortiongcaned. We refer to Stock
and Watson (2009) for the details of the the data descri@ti@hthe standardization pro-
cedure to achieve stationarity.

Since the estimated numbers of factors using various BaNgy&l(2002) information
criteria range from 3 to 6, we implement the testifer 3,4,5 and 6. For the Sup- LM and
Wald tests, the trimmin@l = [0.3,0.7] is used. It corresponds to the time period ranging
from 1973Q3 to 1992Q3 which includes several relevant evigkd, e.g., the second oil
price shock (1979) and the beginning of great moderatio84)19The graphs displayed in
Figure 1 are the series of LM and Wald tests for different @alafr, with the horizontal
lines representing the 5% critical values of the Sup-type te

As can be observed, the LM and the Wald tests reject the nulbddig breaks (i.e.,
exceeds the lower horizontal line) for=4,5,6 when the break date is assumed to be
known at 1984 in agreement with the results in BE (2010). IStved Watson (2009) get
similar conclusions about the existence of breaks arouac#nly 1980s. However, one
important implication of our results is that the breaks dtidae interpreted as being big
and thus cannot be neglected.

As for the case when the break date is not assumed to be akrawin, we find that,
while the Sup-LM test cannot reject the null for all values pthe Sup-Wald test rejects
the null whenr = 5,6.(i.e., exceeds the upper horizontal line) The estimath@break
date provided by the last test is around 1979 (second oié mimock), rather than 1984
which, as mentioned before, is the only date considered b{2BEQ) as a potential break
date in their empirical application using the same dataset.

A second empirical application relies on another datas&te¢k and Watson (2003).
The data we use consists of 240 monthly marco series from tdpEan countries from
1982M1 to 1997M8. This data set is standardized to a panalTwvit 188 andN = 240
(see the original paper for the details). We use the trimrinrg [0.15,0.85 which spans
the period from 1984M12 to 1995M6, during which the Maasiritreaty was signed and
the European Union was created. The results of the LM and Watd are shown in Figure
2 with the 5% critical values of the Sup-type test fee 3 to 6.
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It is clear that, under the assumption of a known break diagecomparison of the test
values to the 5% critical values of)@ distribution implies that we can easily reject the
null of no big break around 1994. However, in contrast to ttuelSand Watson’s (2009)
dataset, if we compare the maximum of the LM and Wald testsdatitical values of the
Sup-type test, no big break is detected during the samplecer

7 Conclusions

In this paper, we propose a simple two- step procedure tddestig structural breaks

in the factor loadings of large dimensional factor modke&.bvercomes some limitations
in other available tests, like Breitung and Eickmeier (2010 particular, we derive the

limiting distributions of our test, while theirs remainskimown, and show that it has much
better power than their test when the choice of the numbeaaibfs is based upon Bai
and Ng’'s (2002) consistent information criteria Our metlvad be easily implemented
in practice either when the break date is considered to bevkray unknown, and can

be adapted to a sequential procedure when the number ofdanight not be correctly

chosen in finite samples. Lastly, and foremost, our testimogguure is useful to avoid
serious forecasting/estimation problems in standard aoetric practices with factors,
like FAR and FAVAR models, especially if the number of fadtoa priori determined and

the factor loadings are subject to big breaks.

In the second step of our testing approach, a Sup-type tasetsto detect a break of
the parameters in that regression when the break date ismadsio be unknown. As the
simulations show, this test does not perform very well esflgovhenT is not too large
(T < 200). As other studies on the size of sup-type tests suggeststoaptan improve the
finite sample performance of the test.compared to the temlikssymptotic critical values
of Andrews (1993). It is high in our research agenda to expiiois possibility.

Further research is also needed if we were to allow for melfjpeaks. As Breitung
and Eickmeier point out, sequential estimation, as in BdiR@&rron (1998), or an efficient
search procedure, as in Bai and Perron (2003), for findingdneidate break dates may
be employed.

Finally, while we only consider the case where structurabks affect the factor load-
ings, it has been noted by Stock and Watson (2009) that tluere e other sources of
parameter instability stemming from breaks in the factamaiyics and/or in the idiosyn-
cratic errors. Given the instability of the whole model, hmnidentify the instability of
each of these components is an issue that also requiresifumtiestigation.
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Appendix

A.1: Proof of Propositions 1 and 2

The proof procedes by showing that the errors, factors aamings in model (6) satisfy Assump-
tions A to D of Bai and Ng (2002). Then, once this is shown, Bsifions 1 and 2 just follow
immediately from Theorems 1 and 2 of Bai and Ng (2002). Defihe- [/ G!'], & =HGL + &,
r=[A A

Lemma 1. E||R*||* <wand T15[_, F*R* — Zf as T— o for some positive matrig;.

Proof. E||F*||* < o follows from E||R||* < o by Assumption 2 and the definition Gf.
To prove the second part, we partition the maBix= limt_,. T~1 th:l RF/) into:

<211 z12>
T, 222
whereZg; = lim7 o TS RIRY, Zoo=limt o T 1S R2RZ, S =lim71 e T3 RIFZ,

andF! is thek; x 1 subvector of; that has big breaks in their Ioading‘gaz, is thek, x 1 subvector
of R that doesn’t have big breaks in their loadings. By the dédimiof F,* andG{ we have:

T / Ty RRY Ty R'RE TiyD o RIRY
T Zl FRR = Tyl RRY TiyLRPR? Tyl RRY
= Ty aRRY Ty RRE Tyl o RIRY
By Assumption 2, the above matrix converges to

211 212 (1-m)Zn
X = 21 T (1-m)3
(1-m)%1 (1-m)% (1-7)In

Moreover,

211 212 0
detZf) =det| X}, X (1-m")%), | =det(Zg)det(r"(1—m")Z11) >0
0 0 m(l-m)Z;x
becauser is positive definite by assumption. This completes the proof O
Lemma 2. E||[j||* < o, and NI — 51 as N— o for some positive definite matri-.

Proof. This follows directly from Assumptions 1.a and 3. O

The following lemmas involve the new errogs Let M andM* denote some positive con-
stants.

Lemma 3. E(g;) =0, E|& |2 < M*
Proof. This follows easily fronE|e; |8 < M (Assumption 4)E(R) =0, E||R||* < « (Assumption
2), andn; = op(1) (Assumption 1.b). O
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Lemmad. E(gleg/N) =E(N7SN  gser) = Wi(S,t), [%i (S 5)| <M*foralls, andy L, y(s,t)? <
M*foralltand T.

Proof.

N
Wi(st) = N‘l_ZlE(EisEit)
N
= Nfl.zlE(as—i— n{G5)E (et + n{Gf)

N
- N’lzl [E(eser) + E(n/G3n/GF)]

N N
< N‘l_;E(ase.t) + N_l_; \/E (n/G2)*E(n/G})°

SinceN~'sN | E(eser) = w(st) by Assumption C of Bai and Ng (2002), aI:-‘thni’Gtz)2 =0(gk)
for all t by Assumptions 1.b and 2, we hayg(s,t) < w(s,t) +O(x5)- Then
1 R
IW(s:9)] < IW(s9)l +O(m) <M
by Assumption C of Bai and Ng (2002). Moreover,

T T 1
ZlVK:(s,t)Z < Y (W(sH+0()

s=1

2

il 1
= Y Wist?+0()
s=1
1 R
< M+ O(N) <M
by Assumption E.1 of Bai (2003). The proof is complete. O
Lemma 5. E(grejr) = 17, with |13 | < |73 | for somer;; and for all t; and Nt 5, 51, |13 <
M*.
Proof. By Assumption C.3 of Bai and Ng (2002);; +| < |t;;| for somer;; and allt, wheret;j =
E(etejt). Then:

1fidl = |E(eegp)l
E(ex +n/GE)(ejt +njGY)|
Eecey)|+/E(n/G2) B (/GF)’

1
|Tij |+ (—NT)

IN

IN

for all t. Therefore
N

N 1
-1 * -1 - .
N™ ;Vii < N 1<|T”|+O(NT))

z
=z

IN

<

_|_

o
—|\LH i

I
<



by Assumption C.3 of Bai and Ng (2002). O
Lemma 6. E(grejs) = Tj s and (NT) 3 50 5 580 [T ol < M-

Proof. By Assumption C.4 of Bai and Ng (2002(),\IT)*1Zi'\‘:1 Z'j\‘:1 Zthl Zg:lm”s’ <M, where
E(etejs) = Tijts- Then:

E(&tgjs) = T 1s = E(erejs) + E(0{GEN| GE) = Tij s+ E(n/GFN|GY)

and we have
1NNTT 1NNTT 1NNTT ’
(NT)~ Tl < |Tij sl + (NT) [E(n{GEn;jGs)
i;gn;t; s i =iss = let =
< M+0(1
< M*
following the same arguments as above.
|
Lemma 7. For every(t,s), E[N"Y2 5N [gser — E(gs&t)][* < M*.
Proof. Sinceg; = e + n/G? —en+Op(F) we have:
EIN2Y [eves— E(eo)l* = EINY2Y [e6s— E(@@s) + Op(—e) + O(—m)
l; it €is it Cis l; it Sis it Sis \/ﬁ m
N
1
= EIN"Y25 [eres — E(er6s)] + Op(—=) + O(——
N2 5 fores — E(es)] + O ) +O( o)l
1
< M+0O(—
< M*
|

2
Lemma 8. E(% zi'\‘:l"% ZthlFt*gitH > < M*.
Proof. By the definition ofg; we have:

N T N T N T
=53 |5 mal) <e(g 5 | srel) (g5 | 5 Rt

then by the definition oF;* andG?,

|2 el =l 2nel | 7 3 melf

1 x 12 2 _ 1 : =2 2 1 1,/=2 2
| 3, Fomet] = | 2 e+ 7 5 e
Therefore, by Assumptions 1.b, 2 and 5, it follows easily tha first part of the right hand side of
the last inequality i©(1) and the second part @(%). Thus the proof is complete. O

Once we have proved that the new factdfs; the new loadingsl” and the new errorss; all
satisfy the necessary conditions of Bai and Ng (2002), Fsitipas 1 and 2 just follow directly
from theirTheorems 1 and 2, withreplaced by + k; andR replaced byR*.
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A.2: Proof of Theorem 1

Let & define ther x 1 vector of estimated factors. Under the nidl:= 0, whenr = r we have
R = DR +0p(1)

Iet Dqi. ) denote thath row of D, and D( i denote thejth column ofD. Definejt DR, and
Jkt = k) x F, as thekth element of%;. Let Fy; be the first element d&, andF_;; = [th Frt]
Jlt and.Z_y; can be defined in the same way. Note tjﬁtdepends oMN andT becauseD =
(FF/T)(A'A/N) (see Bai and Ng (2002)).

Lemma 9.
1 Tm P 2
TSTgI_FI) ‘ftzl(Ft — )R || =0p(dy7)
Proof. Following Bai (2003) we have:
1TnA P _2T7TTA , _2T7TTA , _2T7TTA , _2TnTA ,
T Zi (R—%) = T t;s;FSFt W(st)+T t;S;FSFt (st+T t;sleSFt Kst+T t;sZiFSFt Est

— T+ +IV
where
o= 32yt

Kst = FSA’Q/N.
ESt = Ft/A/eS/N.

First, note that:

TrrT T T
| =T lel — DF)F/W(st)+ T~ ZDZlZlFSFtW\Isvt)

Consider the first part of the right hand side, we have

I TZTITl ~DR)R'W(s1)|

= 3 (B-om 3 Rwes)|
T 15 Jforg’ S IR 2 5 5 s

= T 205(8,3)0p(1)

IN

becauset 51 [|Fs— DFSH2 s O (342) by Theorem 1 of Bai and Ng (20025 " ||R|* is Op(1)

by Assumption 2, ang 3¢ ; 517} yN(s,t)2 < 1Ye 1Y 1W(st)2=0p(1) by Lemma 1(j) of Bai
and Ng (2002).
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For the second part, note that:

5 Tn T
HT DZLS_lFSFtyN(st)H

< T‘2\|D||t;;\\FsFt’\\IW<S»t)|
T T
< 0T 3 3 Inist)

= Oy(T™h

becausdD||, ||[FsF/[| and4 31 T4 1| (s,t)| are allOp(1) from Bai and Ng (2002) and Assump-
tions 2 and 4. Therefore, we have

1
supl|i| = O"<Wf)' (A1)

Next, Il can be written as:

T T T T
T2Y S (R—DF)R/{st+T°D Zl S FoR st
t=1s=1
Similarly, we have
Tn T

|2 > 3 (F-DRIF
RO RS 2

N R TRIES S 2

- (dwf>

becausest = N3N  [eres — E(eres)] is Op(1/v/N) by Assumption C.5 of Bai (2003). For the
second term, we can write:

1 Tm

ZDthli R/ st = \/—TDthFt

[at &s — E(et6s)]Fs

where

4= 7 2

Mz

—
EM*
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SinceE||t||? < M by Assumption F.1 of Bai (2003), we have

5 T T ,
sup||T <D FF
rrel'?‘ le S tZst
= —su T'D =4
T sup| Zq‘ i
1 1T7T
< 2
< = > \/ S IR
1 17 1
< = = 2 [ = 2
< p<1>mH\/Tt;Hqtu \/Tt;uﬁu
1
- Op(‘/NT)
Then it follows that 1
sup||ll|| = Op( ———= ).
neFE)H ” p(5|\|T\/N>
[l can be written as:
Trr T T T

n =7- Zi — DFy)F/Kst+ T~ DZZFSFt’Kst

and the second part on the right hand side can be written as

1T7TN

( Z RN 2, 2GR

therefore:

’ T T
su ‘T D F.F K
2ol o8 e

bl ¥ R
VNT TS; :

- o)

Tm N

x2S e

IN

sup
el

by Assumption 8.
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For the first part on the right hand side, we have

Tm T

‘T lex  DF)F/Kst

sup
el

IN

R T 1 T
\/? Z HFS—DFSHZSUp\/? z HT ZiFt Kst

- “NT)\/—ié‘np\/ g PR

T N
< Fs ig#\/u\/_zlzia.ﬁat“
e
by Assumption 8. Thus,
sup|il | = Oy~ ).
It can also be proved in the similar way that
sup|IV | = Op ().
Finally we have:
1 T R P
iéll"l) ‘?t;(ﬁ . ) nel el
= o ) 0o Jaer) + Ooloae) =% ()

Lemma 10.

Proof. Note that:

Tr(AA/ lTngQJt/_ o

2;?‘?t;ﬁ|:t _?t: FtFy —OD(5N7T)
1T7‘[AA/ 1Tngﬁg-';/
Tt: R t—ft: Tt
1T7TAA 1T7T
~SYRF-= DR) (K
73 RF -3 3 (OR)(RD)
L SR - FD) 1 LS (R - DR)FD)
Tt: t 1 Tt; t
1T7‘[ R 1 T 1T R '
T2,R DR)(R—~DR) + = DZHH DR)’ + 7 2, (R-DRIRD)
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Thus:

1T7TAA 1T7‘[ A
sup||= H-=Y %%
PR PGS
< sup\—Z(Fl—Dﬁ)(Fl—Dﬁ)’ +2||D\|sup\52<ﬁ—Dﬁ)F{
nel Tt: nell Tt:

<1y !!ﬁt—DH|!2+2|rD\\sup\\1T"(FE—DH)F;
B TtZl el thl

since||R — DR[| = Op(dy}) and supn, HthT”l(Ft DR)F/ H is Op(8y %) by Lemma 9, the proof
is complete.

U
The following two lemmas follow from Lemma 10 and Assumptin
Lemma 11.
1 Tm 1 T,
igrﬁl ‘\/—Tt;FltFlt - \/—Tt;gfltglt H =0p(1)
Proof. See Lemma 10 and Assumption 6. O
Lemma 12.

1 L.
Hﬁzﬁ_n%u = 0p(1)

Proof. By construction we have 3, F_1F}, = 0, then the result follows from Lemma 11. (J

Let = denoteweak convergenceD* = Q3a, whereQ = lim &F (See proposition 1 of Bai
(2003)) A= ||m And deflneJt DR, S= ||mVar(T ZT FF o“/) Then:

Lemma 13.
\/— 21 4T — E(F_uFn)) = S2H_a(n)
for me [0,1].

Proof. . 1%y is stationary and ergodic becauBgeis stationary and ergodic by Assumption
7. First, we show tha{.7«.%1 — E(%%1t),Q} is an adapted mixingale of sizel for k =
2,...,r. By definition, we haveZi 7y = (Df \R)(D{y,)R) = (b1 ngprt)(zL:l DipFpt) =
She1 ¥ po1 DipDinFotFrt, and FiaFa — E(FeFn) = Thor ¥ hot DipDin(FotFit — E(FotFin)) =
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She1Yp-1 DipDinYhpt- Thus:

2
E (ST — E(FFn) |Qtfm))

(
- \/E<i i D;pD’ihE(thﬂQtfm))z

r r

< Ar?max(c®) max(yhP)

since mam)ﬂnp) is O(m~1-%) for somed > 0 by Assumption 7, we conclude thét. 71 —
E(%%1), Qi } is an adapted mixingale of sizel fork=2,...,r
Next, we proof the weak convergence using the Crame-Racelebiefine

z =dS V(7 1Ty — E(F-uTu))

wherea € R'~1, anda’a = 1. Note that
r
z &P F1t — E(FF))

whereay, is thek — 1th element o/S /2.

( \/ 8P Ty — E(%%)})ZY
A(éz \/ E (fkt%)z— (E(ﬁkt%))z)Z <M

becauseE ||R|* < © and.%q = Dy k. Moreover,z is stationary and ergodic, arfd;,Q;} is an
adapted mixingale sequence of siz&, because:

\/E<E(Zt\Qt—m)>2 = \/ i (fkte?lt—E(?kte?lt)\ﬂt—m>>2
< i \/ ( ( FieF 1 — E(ﬁktﬁlt)lﬁtm>2>

< max(|a|) ;

E(Z)

IN

IN

by the results above we knowj#, is O(m—1— &) for k=2,...,r, it follows that{z,Q;} is an
adapted mixingale sequence of siz&. Then it follows from Theorem 7.17 of White (2001) that:

1 T 1 T
\/—T let = a/S—l/Zﬁ Zl(g‘lltflt — E(g‘lltﬁlt)) = 7/(7'[)
= t=
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Moreover, it can be proved that:

/ 1 & a a a a. / 1 i a a a a. / /

a— Z (F_uFu—E(F_uFn))+db—= Y (F_uFu—E(F_uFn)) ~ A (0,(Tb— m)a;Sa + T3 Sa)
\/—tf h \/Tt:

by using Corrollary 3.1 of Woodridge and White (1988). Thegidris complete by using Lemma
A.4 of Andrews (1993).

O
Lemma 14.
1 T
ZF_HF1t = SY22° (m)
for me M, where#? (1) = #;_1(m) — m#;_1(1) is a vector of Brownian Bridge.
Proof. If we show that
T
Zi[ T T Z 1sJ15] = SY20 | (m) (A.5)
and
Tm R 1 I 1 S
ggl_ﬁ) —Zlg‘lltflt—ﬁt: [gfltglt—-r_ Zlflsfls] =0p(1) (A.6)

then the result follows from Lemma 11.
First note that

1 T 1 S
i Zl [cg‘lltﬁlt -T" z ﬁllsﬁls}
t=
l T

= %tg (9_]19]1 —E(Z# 1tJ1t T Zl <\/— Zl F_1sF 15— J—lsyls))>

hence A.5 can be verified by applying Lemma 13.
To prove A.6, we first defin®_; as the second to last rows Df andD; as the first row oD.
Then we have
F_1wFy =D_1RF'D]

and

it follows that:

(D-1RF/D; - D_1RFD} +D_1RRD; - D*,RFD])
1

T , 1 T
= D_1<—Tt_ F[Ft/> (Di_Di)+(D—1_D* ( ZFtFt>D*
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Next, define#_. 7 = %2;197139131 andF_yFy = %2;1 F_1sF1s, then:

S

1 T 1
- Z 9—15915)
s=1

w2

1 T\,
D', —= S F_yFy |DZ
1 \/Tt; 1Tt 1

Tm

Tm

1 _ , 1 Tﬂi ,
-D_4 Nas ZlFfltFlt D1+D_3 Nl ZiFfltFlt D1
t= t=

(D*l—D1)< ¥

Combining the above results gives:

Tm

1 Tm . 1 T 1 S
—= Y I uFn——= [ff—ltfflt -T°Y F_1s71 ]
T & VT £ & 77
T T S
- L (F -1 f—nfflt)-Fizi(T_lsz—lles)
Tt: \/Tt: s=1
1 T , 1 T
= D.| —=5 (RR' —F-uFx) | (D1—D1) + (D-1—DZ —Zl RF/
(&5 v ) ) 0i-00)+ (100 (5 s
1 T 1 T R
+— (— cg?flscgls)
T2,

Following the similar arguments of Lemma 13, we can prové tha

1 T , -
supl|—= 3 (AR —FaFi) | = Op(1).

el

Moreover, it is easy to see thiD || = Op(1) and||D — D*|| = 0p(1). Finally, H %
is0p(1) by Lemma 12. Then A.6 follows easily and the proof is complete

Theorem 1:

1 M\, 1 T ,
— S F_4Fy |Df+D 1| —= § F_Fy | (DY —=D}) +

1 T\, 1 T\ 1 T\,
D' | —S F 4Fy |Df =D 1| —= S F 4F; |D¥ +D_ 1| — S F 4Fy | D!
1 \/Tt; 1Tt 1 1 \/Tt; 1t 1 1 \/Tt; 1t it 1

Tm

1

T
= z Z. 715197 ls)

s=1

—|

(

T £

T A
Z$1 35,153515

Proof. First note that lim Va(% i1 If_ltlflt) = Shecauset 31 F yFy — 151, 7 1T =
0p(1) andE||R||* < . Then Theorem 1 follows from Assumption 9, Lemma 14, and @anus

Mapping Theorem.
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Table 1:

Size study, 3 factors

N T Qo.os|l =2 Go.os|r =3 Gooslf =4
LM SupLM Wald SupWald LM SupLM Wald SupWald|LM SupLM Wald Sup Wald
100 100| 5.0 1.0 5.9 4.8 2.3 0.2 4.2 6.7 0.5 0.2 1.3 11.6
100 150 5.0 1.9 4.9 3.1 35 0.7 3.7 4.8 1.1 0.3 1.9 7.0
100 200| 5.7 2.7 5.0 4.0 4.9 1.8 4.0 35 3.0 0.5 2.9 3.9
100 250 5.3 3.2 5.3 3.9 4.4 1.8 4.7 3.2 2.3 0.9 3.4 3.1
100 300| 6.2 4.5 6.7 4.0 5.3 2.0 51 3.4 3.8 1.1 4.7 3.9
150 100| 5.3 1.2 5.9 51 2.6 0.2 4.0 7.9 0.8 0.2 2.3 12.9
150 150]| 5.9 1.8 5.2 4.0 2.9 0.5 34 4.0 1.3 0.3 2.7 6.1
150 200 5.5 2.6 6.2 4.5 35 1.2 51 3.4 2.3 0.9 3.0 4.3
150 250( 6.0 2.9 6.9 3.8 35 1.6 5.7 3.1 3.2 0.5 3.6 4.7
150 300| 5.8 3.7 6.3 4.4 3.9 2.5 51 4.0 3.5 1.3 4.0 3.7
200 100| 4.6 1.1 54 5.0 2.3 0.1 3.0 8.6 0.4 0.4 1.5 15.6
200 150 4.7 2.3 5.6 3.2 2.8 0.2 3.7 4.3 1.2 0.1 2.7 5.6
200 200| 5.4 3.0 51 2.9 4.0 1.6 34 2.5 2.6 1.3 3.2 35
200 250] 6.2 3.7 7.0 4.0 3.8 2.0 6.8 4.1 2.4 1.1 4.1 5.2
200 300| 5.3 3.1 55 4.6 3.2 1.5 35 4.0 3.4 1.3 2.6 4.5
250 100| 5.2 0.8 7.4 5.1 2.1 0.4 4.5 7.0 0.6 0.2 3.5 12.9
250 150 4.1 2.5 5.7 3.6 2.9 0.5 3.9 4.2 1.6 0.0 2.4 6.4
250 200| 5.3 2.6 6.5 4.9 3.5 0.8 4.6 5.0 29 0.3 3.4 5.2
250 250 5.3 3.1 6.2 4.3 4.7 1.8 5.6 3.1 4.0 0.7 3.5 3.6
250 300| 55 4.0 5.1 3.7 4.3 1.5 4.0 3.3 3.4 1.4 2.9 3.7
300 100| 4.7 0.6 5.2 54 1.5 0.2 34 8.5 0.3 0.3 2.9 14.0
300 1501 4.6 1.8 6.4 54 2.9 0.8 4.8 4.7 1.7 0.5 2.8 7.0
300 200 3.7 2.6 7.0 4.0 3.2 0.8 6.5 4.1 1.7 0.5 4.2 55
300 250 5.9 35 6.3 4.1 4.8 1.7 5.2 3.4 2.7 1.0 3.3 35
300 300 5.7 4.2 4.2 4.1 6.2 3.2 4.4 3.4 3.9 1.4 2.8 3.2
1000 1000| 5.7 6.1 7.1 5.9 5.8 4.2 6.2 4.9 6.5 4.7 5.8 35
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Table 2:

Power study, 2 factors

N T Qo.os|l =2 Go.osr =3 Qo.0s|r = 4

LM SupLM Wald SupWald LM SupLM Wald SupWald LM SupLM Wald Sup Wald
100 100/ 6.3 1.8 8.1 54 |77.9 1.8 100 98.3 | 41.7 0.5 100 97.3
100 150/ 8.9 25 10.0 48 [958 24.0 100 100 | 88.8 2.8 100 99.9
100 200| 8.9 4.1 9.3 54 |976 729 92.0 92.0 | 955 39.6 91.8 92.5
100 250/ 12.0 53 12.4 6.5 |99.1 98.0 97.4 97.4 | 99.0 77.9 97.4 97.4
100 300 13.0 6.5 11.6 6.0 |99.6 98.0 83.6 83.6 | 994 941 83.5 83.7
150 100| 6.1 2.2 7.8 59 |77.9 14 99.7 99.5 | 41.6 0.6 99.8 99.0
150 150| 7.5 2.2 8.3 5.0 | 954 245 100 100 | 88.5 2.2 100 100
150 200, 8.8 4.1 9.8 54 1988 765 100 100 |97.7 40.2 100 100
150 250| 9.7 4.8 10.3 6.0 |99.4 944 99.0 99.1 1985 79.1 99.0 99.1
150 300| 11.4 6.3 10.8 71 997 98.6 90.5 91.1 | 99.7 945 90.7 91.1
200 100| 6.4 15 7.6 46 |79.4 2.3 100 97.7 | 429 0.7 100 99.2
200 150/ 85 3.4 9.5 6.3 |97.0 241 100 100 | 89.0 3.0 100 100
200 200/ 8.6 35 9.3 45 |99.0 776 100 100 | 98.0 38.8 100 100
200 250| 11.5 45 12.3 5.7 | 100 96.8 100 100 | 100 82.7 100 100
200 300| 11.2 5.4 12.6 6.4 |99.8 9838 99.9 99.9 | 99.7 951 99.9 99.9
250 100| 5.1 14 6.7 45 |80.4 1.8 100 99.7 | 45.2 1.0 100 99.2
250 150| 6.7 24 7.8 5.0 |97.0 245 99.9 100 | 90.7 3.2 100 100
250 200| 7.2 34 7.8 5.0 |99.2 789 100 100 |98.4 409 100 100
250 250| 10.5 5.5 11.3 58 [99.8 95.6 100 100 |99.7 824 100 100
250 300|115 5.7 12.0 76 1999 99.2 100 100 | 999 95.1 100 100
300 100| 6.0 1.6 7.0 6.7 |80.1 1.2 100 99.1 | 454 0.3 100 98.9
300 150| 8.6 21 9.9 47 973 249 100 100 | 91.5 34 100 100
300 200| 8.6 43 9.2 6.8 |99.3 79.0 100 100 | 98.4 433 100 100
300 250| 11.4 4.4 11.9 5.8 |99.8 943 100 100 | 99.5 826 100 100
300 300| 11.3 5.9 12.1 7.7 199.8 99.0 100 100 |99.8 96.3 100 100
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Table 3: Comparison of LM test, 2 factors: known break date

N T | nobreaky =2 | 1 breaky =2 | 1breaky =3

BE LM BE LM BE LM

100 100| 6.0 3.9 100 56 219 96.8
100 150| 5.9 5.2 100 7.2 |18.2 100
100 200| 5.2 4.3 100 6.2 |26.0 8938
100 250| 5.3 4.8 100 8.7 179 97.7
100 300| 5.7 4.3 100 74 |30.2 839

150 100| 6.4 4.3 100 58 |183 946
150 150| 5.9 5.7 100 6.6 |16.2 100
150 200| 5.6 4.3 100 6.2 |125 100
150 250| 5.5 4.5 100 5.7 149 983
150 300| 4.9 4.0 100 56 |20.6 89.7

200 100| 5.5 4.1 100 41 |20.0 95.8
200 150| 5.4 4.8 100 6.6 |158 100
200 200| 7.0 4.5 100 6.3 |14.0 100
200 250 6.5 4.7 100 7.5 |126 100
200 300( 5.0 4.7 100 7.8 |12.0 99.7

250 100| 6.8 3.9 100 42 1188 97.0
250 150| 5.4 5.3 100 59 (149 100
250 200 4.5 4.6 100 6.1 |11.3 100
250 250( 5.1 4.2 100 6.6 |10.9 100
250 300| 6.6 4.9 100 8.3 7.9 100

300 100 7.3 4.7 100 54 |19.7 96.3
300 150 7.0 3.6 100 6.1 |14.4 100
300 200|5.9 3.4 100 6.0 |13.6 100
300 250(5.9 5.4 100 6.7 |12.0 100
300 300 5.7 6.1 100 /70 |10.0 100
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Figure 1: The MSEs of different forecasting methods.
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Figure 2: US data set. The LM test (dotted) and Wald testdyaising the trimming
M =[0.3,0.7], for r = 3 to 6 (from top to bottom), and the corresponding criticduea
(horizontal dotted lines) for the Sup Test.
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Figure 3: EU data set. The LM test (dotted) and Wald test d¥alsing the trimming
M =[0.15,0.85], for r = 3 to 6 (from top to bottom), and the corresponding criticdliea
(horizontal dotted lines) for the Sup Test.
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