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Abstract

Constant factor loadings is a standard assumption in the analysis of large dimen-
sional factor models. Yet, this assumption may be restrictive unless parameter shifts
are mild. In this paper we develop a new testing procedure to detectbig breaks in
factor loadings at either known or unknown dates. It is basedupon testing for struc-
tural breaks in a regression of the first of the ¯r factors estimated by PC for the whole
sample on the remaining ¯r −1 factors, where ¯r is chosen using Bai and Ng´s (2002)
information criteria. We argue that this test is more powerful than other tests available
in the literature on this issue.
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1 Introduction

Despite the well-ackowledged fact that some parameters in economic relationships can
become unstable due to important structural breaks (e.g., those related to technological
change, globalization or strong policy reforms), a standard practice in the estimation of
large factor models is to assume the constancy of the factor loadings. Possibly, one of
the main reasons for this benign neglect of breaks is that thefirst attempt to address this
issue, by means of time-varying factor loadings, focused oncharacterizing the properties
of mild instabilities, under which the constructed factorsusing principal components (PC
hereafter) remain consistently estimated (Stock and Watson, 2002).

Later on, however, a few studies have investigated the performance of factor-based
forecasting subject not only to mild but also to large breaksin the factor model structures.
Banerjee, Marcellino and Masten (2008) conclude that the instability of factor loadings is
the most likely reason behind the worsening factor-based forecasts, particularly in small
samples. Although their results are exclusively based on Monte Carlo simulations, they
shed some light on the importance of detecting relevant structural breaks in the factor
loadings. Two additional papers have contributed to this stream of research. The first one
is by Stock and Watson (2009) who, extending their previous approach, propose several
forms of mild structural instability in factor models to then use empirical evidence showing
that the failure of factor-based forecasts is mainly due to the instability of forecast function,
rather than of the factor loadings. As a result, they conclude that the estimated factors
using PC are still consistent when instabilities are small in magnitude and independent,
claiming therefore that forecasts can be improved by using full sample factor estimates
and subsample forecasting equations. Yet, this focus on mild structural breaks, though very
useful, has also been questioned by Giannone (2007) who argues that"....to understand
structural changes we should devote more effort in modelling the variables characterized
by more severe instabilities...". In this paper, we follow this route by proving a precise
characterization of the different conditions under which big and mild structural breaks in
the factor loadings may occur, as well as develop a test to distinguish between them. We
conclude that the influence of big breaks cannot be ignored since it may lead to misleading
results in the usual econometric practices with factor models.

The second paper, which is the most closely related to ours, is by Breitung and Eick-
meier (2010). Like us, these authors propose statistical tests for big structural breaks in the
factor loadings. Their test relies on the argument that, under the null of no structural break
plus some additional assumptions, the estimation error of the factors can be ignored and
thus the estimated factors can be treated as the true factors. Consequently, a Chow-type
test can be constructed by means of separate regressions foreach variable in the dataset
where the regressors are the estimated factors for the wholesample period and their trun-
cated version from the date of the break onwards whre the coefficients on the latter are
tested for statistical significance. However, in our view, the Breitung and Eickmeier’s test
suffers from two limitations: (i) it is based on comparing the empirical rejection frequency
among the individual regressions to a nominal size of 5% under the null of no breaks de-
spite the fact that the limiting distribution of this test statistic is not known; and (ii) it is
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claimed that the number of factors can be correctly estimated using subsamples before
and after the known break date. However, if either the break date is not considered to be
a priori known or the number of factors is not correctly specified, their test may exhibit
poor power. For example, as explained below, a factor model with r common factors and
1 structural break in the factor loadings admits a standard factor representation withr +1
common factors without a break. Hence, if the number of factors is incorrectly specified
as beingr +1 instead ofr, their test may not detect any break at all.1

Our contribution in this paper is to propose a simple testingprocedure to detect struc-
tural breaks in the factor loadings which allows for different types of breaks and does not
suffer from the previous shortcomings. In particular, we first derive some asymptotic re-
sults finding that, in contrast to small breaks where both thenumber of factors and the
factor space are consistently estimated, the number of factors will be over-estimated when
big breaks occur. We argue that ignoring those big breaks canhave serious consequences
on the forecasting performance of factors in some popular regression models. We then
propose a simple two-step test procedure for testing big breaks. In the first step, the num-
ber of factors for the whole sample period is estimated as ˆr, and then the ˆr factors are
estimated using PC. In the second step, one of the estimated factors (e.g., the first one)
is regressed on the remaining ˆr −1 factors, and the standard Chow Test or the Sup Type
Test of Andrews (1993), depending on whether the date of the break is treated as known
or unknown, is then used to test for a structural break in thisregression. If the null of no
structural breaks is rejected in the second-step regression, we conclude that there are big
breaks and, otherwise, that either no breaks at all exist or that only small breaks occur.
We also illustrate the finite sample performance of our test using simulations, as well as
provide an empirical application of how to implement our testing approach.

The rest of the paper is organized as follows. In Section 2, wepresent the basic no-
tation, assumptions and give precise definitions of two different types of structural breaks
considered here:big andsmall breaks. In Section 3, we analyze the consequences of big
breaks on the choice of the number of factors and their estimation, as well as the effects of
those breaks on the factor augmented regressions. In Section 4, we derive the asymptotic
results underlying our approach and discuss the advantagesof our proposed test against
Breitung and Eickmeier’s (2010) test. Section 5 deals with the finite sample performance
of our test procedure using Monte-Carlo simulations. Section 6 provides two empirical
applications. Finally, Section 7 concludes.

2 Notation and Preliminaries

We consider factor models that can be rewritten in the staticcanonical form:

Xt = AFt +et (1)

1Even when the break date is known, the number of factors couldstill be incorrectly estimated due to
finite-sample problems of the consistent information criteria used to choose the number of factors to be
estimated.
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whereXt is theN×1 vector of observed variables,A= (α1, . . . ,αN)
′ is theN× r matrix

of factor loadings,r is the number of common factors,Ft = ( ft1, . . . , ftr)′ is ther ×1 vec-
tor of common factors, andet is theN×1 vector of idiosyncratic errors. In the case of
dynamic factor models, all the common factorsft and their lags are stacked intoFt . Thus,
a dynamic factor model withr dynamic factors andp lags of these factors can be written
as a canonical static factor model with(r + 1)× p static factors. Further, given the as-
sumptions we make about theet error terms, the case analyzed by Breitung and Eickmeier
(2010) where theeit disturbances are generated by individual specific AR(pi) processes is
also considered. Notice, however, that our setup excludes the generalized dynamic factor
models considered by Forni and Lippi (2001) when the polynomial distributed lag tends
possibly to infinity.

We assume that there is a single structural break in the factor loadings of all factors at
the same timeτ:

Xt = AFt +et t = 1,2. . . ,τ (2)

Xt = BFt +et t = τ +1, . . . ,T (3)

whereB= (β1, . . . ,βN)
′ is the new factor loadings after the break. By defining the matrix

C = B−A, which captures the size of the breaks, the factor model in (2) and (3) can be
rewritten as:

Xt = AFt +CGt +et (4)

whereGt = 0 for t = 1, . . . ,τ, andGt = Ft for t = τ +1, . . . ,T.

As argued by Stock and Watson (2002), the effects of some mildinstability in the
factor loadings can be averaged out, so that estimation and inference based on PC remain
valid. Our aim is to generalize their analysis by distinguishing between two types of break
sizes:big andsmall. Whereas the latter correspond to those breaks characterized by Stock
and Watson (2002, 2009) and therefore can be neglected, our goal is to analyze which are
the effects of the former.We we will show that they cannot be ignored. Thus, to distinguish
between both types of breaks, it is convenient to partition the matrixC as follows:

C= [Λ H]

whereΛ andH areN×k1 andN×k2 matrices that corresponds to thebig and thesmall
breaks, andk1+ k2 = r. In other words, we assume that, among ther factors,k1 andk2

factors are subject tobig andsmallbreaks in their loadings, respectively. Accordingly, we
can also partitionGt into two parts,G1

t andG2
t , such that (4) can be rewritten as:

Xt = AFt +ΛG1
t +HG2

t +et (5)

whereΛ = (λ1, . . . ,λN)
′ andH = (η1, . . . ,ηN)

′.

Once the basic notation has been established, the next step is to provide precise defini-
tions of the two types of breaks.

Assumption 1. Breaks
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a. E||λi||4 < ∞. N−1 ∑N
i=1 λiλ ′

i → ΣΛ as N→ ∞ for some positive definite matrixΣΛ.

b. ηi = Op(
1√
NT

) for i = 1,2, . . . ,N.

The matricesΛ andH are assumed to contain random elements. Assumption 1.a yields
the definition of a big break which also includes the case where λi = 0 ( no break) for a
fixed proportion of variables asN → ∞. Assumption 1.b, in turn, provides the definition
of small breaks which can be ignored asN andT goes to infinity.

To investigate the influence of the breaks on the estimation of factors and the number of
factors, some further assumptions need to be imposed. To achieve consistent notation with
the previous literature in the discussion of these assumptions, we follow the presentation of
Bai and Ng (2002) with a few slight modifications. Lettr(Σ) and||Σ||=

√

tr(Σ′Σ)denote
the trace and the norm of a matrixΣ, respectively, while[Tπ ] denotes the integer part of
T ×π for π ∈ (0,1). Then

Assumption 2. Factors: E(Ft)=0, E||Ft ||4<∞, T−1 ∑T
t=1FtF ′

t →ΣF and T−1∑τ
t=1FtF ′

t →
π∗ΣF as T→ ∞ for some positive definite matrixΣF whereπ∗ = limt→∞

τ
T .

Assumption 3. Factor Loadings: E||αi||4 ≤ M < ∞, and N−1A′A→ ΣA, N−1Γ′Γ → ΣΓ
as N→ ∞ for some positive definite matrixΣA andΣΓ, whereΓ = [A Λ].

Assumption 4. Idiosyncratic Errors: the error terms et , the factors Ft and the loadings
Ai satisfy the Assumption A, B, C, E, F1 and F2 of Bai (2003).

Assumption 5. Independence of Factors, Loadings, Breaks, and Idiosyncratic Errors:
[Ft ]

T
t=1, [αi]

N
i=1, [λi]

N
i=1, [ηi]

N
i=1 and[et ]

T
t=1 are mutually independent groups, and for all i

1√
T

T

∑
t=1

Fteit = Op(1).

While Assumptions 3 and 4 are standard in the literature on factor models allowing
for weak cross-sectional and temporal correlations between the errors ( see Bai and Ng,
2002), Assumption 2 is a new one. Since factors and factor loadings cannot be separately
identified, we have to assume some stable properties for the factors in order to test the
stability of the factor loadings. We also allow the different factors to be correlated at all
leads and lags. Assumption 5 on the independence among the different groups is stronger
than the usual assumptions made by Bai and Ng (2002). Notice,however, that we could
have also assumed some dependence between these groups and then impose some restric-
tions on this dependence when necessary. Yet, this would complicate the proofs without
essentially altering the intuition behind the main idea underlying our approach. Thus, for
the sake of simplicity, we assume them to be independent.
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3 The Effects of Structural Breaks

In this section, we study the effects of the structural breaks on the estimation of factors
based on PC, and on the estimation of the number of factors based on the information
criteria proposed by Bai and Ng (2002). Our main result is that the estimated factors using
PC are not consistent and the number of factors tends to be overestimated when big breaks
exist, in contrast to Stock and Watson’s (2002, 2009) findings that the true factor space is
still consistently estimated.

3.1 The estimation of factors

Let us rewrite model (5) withk1 big breaks andk2 small breaks in the more compact form:

Xt = AFt +ΛG1
t + εt (6)

whereεt = HG2
t +et . The idea is to show that the new error termsεt still satisfy the nec-

essary conditions for (6) being a standard factor model withnew factorsF∗
t = [F ′

t G1′
t ]

′

and new factor loadings[A Λ].
Let r̄ be the selected number of factors, either by the informationcriteria or by some

prior knowledge. Note that ¯r is not necessarily equal tor. Let F̃ be
√

T times the ¯r
eigenvectors corresponding to the ¯r largest eigenvalues of the matrixXX′, and define

F̂ = F̃VN,T

as the estimated factors, where theT×N matrixX = [X̄1, X̄2 . . . X̄T ]
′, X̄t = [Xt1,Xt2, . . . ,XtN]

′,
F̂ = [F̂1, F̂2, . . . , F̂T ]

′, andVN,T is a diagonal matrix with the ¯r largest eigenvalues of(NT)−1XX′.
Then we have

Proposition 1. For any fixedr̄ ≥ 1, under Assumptions 1 to 5, there exists a full rank
r̄ × (r +k1) matrix D andδN,T = min{

√
N,

√
T} such that:

F̂t = DF∗
t +Op(1/δN,T) (7)

This result implies that̂Ft estimate consistently the space of the new factors,F∗
t , but

not the space of the true factors,Ft .

Let us consider two cases. First, whenk1 = 0 ( no big breaks), we have thatG1
t = 0,

andF∗
t = Ft , so that (7) becomes

F̂t = DFt +Op(1/δN,T) (8)

for a r̄ × r matrix D of full rank. This just trivially replicates the well-knownconsistency
result of Bai and Ng (2002).

Secondly, in the more interesting case whenk1 > 0 (big breaks exist), we can rewrite
(7) as

F̂t = [D1 D2]

(

Ft

G1
t

)

+op(1) = D1Ft +D2G1
t +op(1) (9)

6



where the ¯r × (r + k1) matrix D is partitioned into the ¯r × r matrix D1 and the ¯r × k1

matrix D2. Note that, by the definition ofGt , G1
t = 0 for t = 1,2, . . . ,τ, andG1

t = F1
t for

t = τ +1, . . . ,T, whereF1
t is thek1×1 sub-vector ofFt that experiences big breaks in their

loadings. Therefore (9) can be expressed as:

F̂t = D1Ft +op(1) for t = 1,2, . . . ,τ (10)

F̂t = D∗
2Ft +op(1) for t = τ +1, . . . ,T (11)

whereD∗
2 =D1+[D2 0], 0 is a ¯r×(r−k1) zero matrix, such thatD2 6= 0 sinceD is a full-

rank matrix. Hence, sinceD1 6= D∗
2, this result implies that, in contrast to small breaks, the

estimated factorŝF are not consistent for the space of the true factorsF under big breaks.
Thus, in this case, the use of estimated factors as predictors or explanatory variables may
lead to misleading results in the usual econometric practices with factor models.

To illustrate the consequences of having big breaks in the factor loadings, consider the
following simple Factor Augmented Regression (FAR) model (see Bai and Ng, 2006):

yt = a′Ft +b′Wt +ut , t = 1,2, ..,T (12)

whereWt is a small set of observable variables and ther ×1 vectorFt contains ther
common factors driving a large panel datasetxit (i =1,2, ...N; t = 1,2, ...T) which excludes
bothyt andWt .The parameters of interest are the elements of vectorb while Ft is included
in (12) to control for potential endogeneity arising from omitted variables. Since we cannot
identify Ft anda, only the producta′Ft is relevant. Suppose there is a big break at dateτ.
From (10) and (11), we can rewrite (12) as:

yt = (a′D−
1 )(D1Ft)+b′Wt +ut for t = 1,2, . . . ,τ

yt = (a′D∗−
2 )(D∗

2Ft)+b′Wt +ut for t = τ +1, . . . ,T

whereD−
1 D1 = D∗−

2 D2 = Ir , or equivalently

yt = a′1F̂t +b′Wt + ũt for t = 1,2, . . . ,τ (13)

yt = a′2F̂t +b′Wt + ũt for t = τ +1, . . . ,T (14)

wherea′1 = a′D−
1 anda′2 = a′D∗−

2 , andũt = ut +op(1).

If the number of factors is assumed to be known a priori , ¯r = r, thenD−
1 = D−1

1 ,
D∗−

2 = D∗−1
2 . SinceD1 6= D∗

2, it follows thatD−1
1 6= D∗−1

2 and thusa1 6= a2. Therefore,
using the indicator functionI(t > τ ), (13) and (14) can be rewritten as

yt = a′1F̂t +(a2−a1)
′F̂tI(t > τ)+b′Wt + ũt , t = 1,2, ..,T (15)

The implication is that if we were to ignore the set of regressors F̂tI(t > τ) in (15), the
estimation ofb will in general become inconsistent due to ommited variables bias. There
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are many examples in the literature where the number of factors is a priori imposed for
theoretical reasons, e.g., to name a few, a single common factor representing a global effect
is assumed in the well-known study by Bernanke, Boivin and Eliasz (2005) on measuring
the effects of monetary policy in Factor Augmented VAR (FAVAR) models, or two factors
are imposed by Rudebusch and Wu (2008) in their macro-financemodel.

Alternatively, if the number of factors is not assumed to be apriori known and therefore
needs to be estimated using some information criteria, we will show in Proposition 2 in
the next section that the chosen number of factors will tend to r + k1 as the sample size
gets large. In this case,D1 andD2 are(r + k1)× r, and by the definitions ofD1 andD∗

2,
it is easy to show that we can always find ar × (r +k1) matrix D∗ = D−

1 = D∗−
2 such that

D∗D1 = D∗D∗
2 = Ir . If we define

a∗ = a′D∗ (16)

thena′1 = a′2 = a∗ so that (13) and (14) can be rewritten as

yt = a∗F̂t +b′Wt + ũt , t = 1,2, ..,T (17)

From above equation we can see that the estimation of (12) will not be affected by the
estimated factors under big breaks if ¯r = r +k1.

In sum, in the presence of big breaks, the use of estimated factors as the true factors
when assuming that the number of factors is a priori known will lead to inconsistent es-
timates in a FAR. As a simple remedy,F̂tI(t > τ) should be added as regressors when
big breaks are detected and the break date is located. Alternatively, without pretending
to know a priori the true number of factors, the estimation ofFAR will be robust to the
estimation of factors under big breaks if the number of factors is overestimated. Notice
that a similar argument will render inconsistent the impulse response functions in FAVAR
models where (12) becomesyt+1 = (Ft+1,Wt+1)́. As a result, in order to run regression
(17), a formal test of whether big breaks exist is required.We will illustrate these points
by using simulations in a typical forecasting exercise where the predictors are common
factors estimated by PC.

3.2 The estimated number of factors

Breitung and Eickmeier (2010) have previouosly argued thatthe presence of structural
breaks in the factor loadings may lead to the overestimationof the number of factors but
they do not prove this result. In this part, we fill this gap by providing a rigorous proof.

Let r̂ be the estimated number of factors in (6) using the information criteria of Bai
and Ng (2002). Then the following result holds:

Proposition 2. Under Assumptions 1 to 5, it holds that

lim
N,T→∞

P[r̂ = r +k1] = 1
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When there is no big break (k1 = 0), this result replicates Theorem 2 of Bai and Ng
(2002). However, under big breaks (k1 > 0), their information criteria will overestimate
the number of factors by the number of big breaks (k1). Actually, Bai and Ng (2002)’s
criteria, that consistently estimate the number of true factors, will overestimate the number
of original factors when there are big breaks because we haveshown that a factor model
with those breaks admits a representation without break butwith more factors.

Finally, notice that, although the presence of structural breaks in the factor loadings
may lead to wrong estimation of the factor space and the number of factors, the common
part of a factor model (AFt andBFt) can still be consistently estimated if enough factors
are extracted.

4 Testing for Structural Breaks

4.1 Hypotheses of interest and test statistics

From the previous discussion, we have found that the factor space and the number of
factors are both consistently estimated only when mildl breaks exist. Therefore, our goal
here is to develop a test for big breaks.

If we were to follow the usual approach in the literature to test of structural breaks, we
should consider

H0 : A= B

H1 : A 6= B

However, if only small breaks occur, the alternative hypothesis may not be interesting
sinceC = A−B vanishes asN → ∞ andT → ∞. Thus, this kind of local alternatives for
which the usual test should have no trivial power, is not relevant for the large factor models
we consider here. Therefore, since our focus is on big breaks, we consider instead:

H0 : k1 = 0

H1 : k1 > 0

where the null and alternative hypotheses correspond to thecases where there are no big
breaks (yet there may be small breaks) and there is at least one big break, respectively.

To test the above null hypothesis, we consider the followingtwo-step procedure:

1. In the first step, the number of factors to estimate,r̄ , is either determined by Bai and
Ng ´s (2002) information criteria (̄r = r̂) or by prior knowledge, so that̄r common
factors (F̂t) are estimated by PC.

2. In the second step, we consider the following linear regression of the first estimated
factor on the remaininḡr −1 ones:

F̂1t = c2F̂2t + · · ·+cr̄ F̂r̄t +ut = c′F̂−1t +ut (18)

9



whereF̂−1t = [F̂2t · · · F̂r̄t ]
′ and c= [c2 · · ·cr̄ ]

′ are (r̄ −1)×1 vectors. Then we test for
a structural break of c in the above regression. If a structural break is detected, then
we reject H0 : k1 = 0; otherwise, we cannot reject the null stating that there areno
big breaks.

Both steps can be easily implemented in practice. In the second step, although there
are many methods of testing for structural breaks in a simplelinear regression model, we
consider theChow Testwhen the possible break date is assumed to be known, and the
Sup-type Testwhen no prior knowledge about the break date exists. Moreover, since the
Wald, LR, and LM test statistics have the same asymptotic distribution under the null, we
focus on the LM and Wald tests because they are simpler to compute.

Following Andrews (1993), the LM test statistic is defined as:

L (π̄) =
T

π̄(1− π̄)

( 1
T

τ

∑
t=1

F̂−1t ût

)′
Ŝ−1
( 1

T

τ

∑
t=1

F̂−1t ût

)

(19)

whereπ̄ = τ/T, ût is the residuals in the OLS regression of (18),S= limT→∞ Var
(

1√
T ∑T

t=1 F̂−1tut

)

,

andŜ is a consistent estimate ofS.

The Sup-LM statistic is defined as:

L (Π) = sup
π∈Π

T
π(1−π)

( 1
T

[Tπ]

∑
t=1

F̂−1t ût

)′
Ŝ−1
( 1

T

[Tπ]

∑
t=1

F̂−1t ût

)

(20)

whereΠ is some pre-specified subset of[0,1].

Similarly, the Wald and Sup-Wald test statistics can be constructed as:

L
∗(π̄) = T

(

ĉ1(π̄)− ĉ2(π̄)
)′

V̂−1
(

ĉ1(π̄)− ĉ2(π̄)
)

(21)

and
L

∗(Π) = sup
π∈Π

T
(

ĉ1(π)− ĉ2(π)
)′

V̂−1
(

ĉ1(π)− ĉ2(π)
)

(22)

whereĉ1(π) andĉ2(π) are OLS estimates ofc using subsamples before and after the break
point : [Tπ ]. In addition,V̂ = M̂−1ŜM̂−1, andM̂ = T−1∑T

t=1 F̂−1t F̂ ′
−1t .

To illustrate why our two-step procedure is able to detect the big breaks, it is useful to
consider a simple example wherer = 1,k1 = 1 (one common factor and one big break).
Then (6) becomes:

Xt = A ft +Λgt + εt

wheregt = 0 for t = 1, . . . ,τ, andgt = ft for t = τ +1, . . . ,T. By Proposition 2, we will
tend to get ˆr = 2 in this case. Suppose now that we estimate 2 factors (¯r = 2). Then, by
Proposition 1, we have:

(

f̂t1
f̂t2

)

= D

(

ft
gt

)

+op(1)

10



whereD =

(

d1 d2
d3 d4

)

is a non-singular matrix. By the definition ofgt we have:

f̂t1 = d1 ft +op(1) f̂t2 = d3 ft +op(1) for t = 1, . . . ,τ

f̂t1 = (d1+d2) ft +op(1) f̂t2 = (d3+d4) ft +op(1) for t = τ +1, . . . ,T

which imply that:

f̂t1 =
d1

d3
f̂t2+op(1) for t = 1, . . . ,τ

f̂t1 =
d1+d2

d3+d4
f̂t2+op(1) for t = τ +1, . . . ,T

Thus, we can observe that the two estimated factors are linearly related and that the co-
efficients d1

d3
and d1+d2

d3+d4
before and after the break date must be different due to the non-

singularity of the matrixD. As a result, if we regress one of the estimated factors on the
other and test for a structural break in this regression, we should reject the null of no big
break. We choose the first estimated factor,f̂t1, as the regressand in the previous regres-
sions because being the "main factor" in the PC analysis it islikely thatd3 6= 0.2Likewise,
if the break dateτ is not a priori assumed to be known, the Sup-type Test will yield a natu-
ral estimate ofτ at the date when the test reaches its maximum value. In what follows, we
derive the asymptotic distribution of the test statistics (19) and (20) under the null hypoth-
esis, as well as extend the intuition behind this simple example to the more general case in
order to show that our test has power against relevant alternatives.

4.2 Limiting distributions under the null hypothesis

Since in most applications, the number of factors is estimated by means of the information
criteria, and it converges to the true one under the null hypothesis of no big break, we start
with the most interesting case where ¯r = r.

Note that use of PC implies that∑T
t=1 F̂−1t F̂1t = 0 for anyT by construction, so we

haveĉ= 0 in (18) and ˆut = F̂1t in (19). To derive the asymptotic distributions of the LM
statistics, we impose the following additional assumptions:

Assumption 6.
√

T/N → 0 as N→ ∞ and T→ ∞. .

Assumption 7. {Ft} is a stationary and ergodic sequence, and{Fit Fjt −E(Fit Fjt ),Ωt} is
an adapted mixingale withγm of size−1 for i, j = 1,2, . . . , r, that is:

√

E
(

E(Yi j ,t |Ωt−m)2
)

≤ ctγm

where Yi j ,t = Fit Fjt −E(Fit Fjt ), Ωt is a σ− algebra generated by the information at time
t, t−1, . . ., {ct} and{γm} are non-negative sequences andγm=O(m−1−δ ) for someδ > 0.

2SinceD is non singular, even ifd3 = 0, d1 cannot be equal to zero. If the regression for the first sub-
sample yields an ill-defined (ie., very large) estimated slope, then we recommed usinĝft2 as the regressand
and f̂t1 as the regressor.
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Assumption 8. For the subsetΠ of [0,1]:

sup
π∈Π

∥

∥

∥

1√
NT

Tπ

∑
t=1

N

∑
i=1

αiF
′

t eit

∥

∥

∥

2
= Op(1)

Assumption 9.
∥

∥Ŝ−S
∥

∥ = op(1), and S is a(r −1)× (r −1) symmetric positive definite
matrix.

Assumption 6 and 8 are required to bound the estimation errors of F̂t , while Assump-
tion 7 is necessary for deriving the weak convergence of the test statistics using the Func-
tional Central Limit Theorem (FCLT).

Note that these assumptions are not restrictive. Assumption 6 allowsT to beO(N1+δ )
for −1 < δ < 1. As for Assumption 7, it allows one to consider a quite general class of
linear processes for the factors:Fit = ∑∞

k=1 φikvi,t−k, wherevt = [v1t . . .vrt ]
′ are i.i.d with

zero means, andVar(vit ) = σ2
i < ∞. It can shown that in this case:

√

E
(

E(Yi j ,t |Ωt−m)2
)

≤ σiσ j

(

∞

∑
k=m

|φik|
)(

∞

∑
k=m

|φ jk|
)

then it suffices that
(

∞

∑
k=m

|φik|
)

= O(m−1/2−δ )

for someδ > 0, which is satisfied for a large class of ARMA processes. Assumption 8 is
analogue to Assumption F.2 of Bai (2003), which involves zero- mean random variables.
Finally, a consistent estimate ofScan be calculated by a HAC estimator.

Let ”
d→ ”denoteconvergence in distribution, andWr−1(·) denote ar − 1 vector of

standard Brownian Motions, then:

Theorem 1. Under the null hypothesis H0 : k1 = 0 and Assumptions 1 to 9:

L (Π)
d→ sup

π∈Π

(

Wr−1(π)−πWr−1(1)
)′(

Wr−1(π)−πWr−1(1)
)

/[π(1−π)];

L (π̄) d→ χ2(r −1).

The critical values for the Sup-type test are provided in Andrews (1993).

It is easy to show that Theorem 1 still holds when ¯r < r. Yet, when ¯r > r, the covariance
matrix S is not full ranked, althougĥScan be inverted in any given finite sample size. In
the following section, we will show through simulations that Theorem 1 still provide good
approximations for the test statistics even when ¯r > r.
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4.3 Behavior of LM and Wald tests under the alternative hypothesis

We extend the idea of the simple example in section 4.1 to showthat, under the alternative
hypothesis (k1 > 0), the linear relationship between the estimated factors changes at time
τ, so that big breaks can be detected.

First, let us consider the case wherer < r̄ ≤ r +k1 so thatD1 andD∗
2 in (10) and (11)

become ¯r × r matrices with full column rank. Notice that, sincer < r̄, we can always find
r̄ ×1 vectorsρ1 andρ2 which belong to the null spaces ofD′

1 andD∗′
2 separately, that is,

ρ ′
1D1 = 0 andρ ′

2D∗
2 = 0. Hence, premultiplying both sides of (10) and (11) byρ ′

1 andρ ′
2

leads to:

ρ ′
1F̂t = op(1) t = 1,2. . . ,τ

ρ ′
2F̂t = op(1) t = τ +1, . . . ,T,

which, after normalizing the first elements ofρ1 andρ2 to be 1, yields:

F̂1t = F̂ ′−1tρ∗
1 +op(1) t = 1,2. . . ,τ (23)

F̂1t = F̂ ′−1tρ∗
2 +op(1) t = τ +1, . . . ,T (24)

Next, to show thatρ∗
1 6= ρ∗

2 , we proceed as follows. Suppose thatγ ∈ Null(D′
1) and

γ ∈ Null(D∗′
2 ), then by the definition ofD1 andD∗

2 and by the basic properties of full-
rank matrices, it holds thatγ ∈ Null(D′). SinceD is full rank r̄ × (r + k1) matrix, then
Null(D′) = 0 and thusγ = 0. Therefore, the only vector that belongs to the null space of
D1 andD∗

2 is the trivial zero vector. Further, because the rank of the null space ofD1 and
D∗

2 is r̄ − r > 0, we can always find two non- zero-vectors such thatρ1 6= ρ2.

Notice that when ¯r ≤ r, the rank of the null spaces ofD1 andD∗
2 becomes zero. Hence,

the preceding analysis does not apply in this case despite the existence of linear relation-
ships among the estimated factors. If we regress one of the estimated factors on the others,
with ρ̂1 andρ̂2 denoting the OLS estimates of the coefficients using the subsamples before
and after the break, it is easy to show thatρ̂1 → θ1 andρ̂2 → θ2, but generally we cannot
verify thatθ1 6= θ2.

In the case where ¯r > r + k1, the rank of null space ofD defined in Proposition 1
becomes ¯r − (r +k1). Applying similar arguments as above, we can find a non zero ¯r ×1
vectorρ such thatρ ′D = 0. Then, premultiplying both sides of (7) byρ ′ and normalizing
the first element ofρ to be 1, it follows that:

F̂1t = F̂ ′−1tρ∗+op(1) for t = 1,2, . . . ,T

Hence, there is still a linear relationship between the estimated factors, but this relationship
(ρ∗) is constant over time.

As a result, our test may fail to detect the breaks when ¯r ≤ r or r̄ > r + k1, which is
confirmed by the simulation results shown in the following section. However, this may not
be a problem due to two reasons. First, we usually equate the number of factors with the
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estimated ones, ( ¯r = r̂) and we have shown thatP[r̂ = r +k1]→ 1. Secondly, instead of
using a single value, we can try different values of ¯r . Then, under the null, we should not
detect any break no matter which value of ¯r we use while, under the alternative, we should
detect breaks when ¯r lies betweenr andr +k1.

4.4 Comparison with other available tests

Although the issue of instability in factor models was initially raised by Stock and Watson
(2002) in the context of small breaks, Breitung and Eickmeier (2010) (BE test, henceforth)
is, to our knowledge, the only available paper that proposesa test for big breaks. Thus,
it is natural to compare our testing procedure with theirs. In our view, the BE test suffers
from three shortcomings which are worth mentioning before the comparison is made.

First, the BE test will lose power when the number of factors is overestimated. The BE
test is equivalent to the Chow test in the regressionXit = αiFt +eit whereFt is replaced by
F̂t . However, as shown in equation (5), a factor model with big breaks in the factor loadings
admits a new representation with more factors but no break. In other words, when the
number of factors is overestimated, the PC estimators consistently estimate (up to a linear
transformation) the new factors and loadings which are stable in the new representation.
Thus the BE test may fail to detect breaks in this case. Although the authors are fully
aware of this problem (see Remark B in their paper) and suggest to split the sample to
estimate the correct number of factors, in principle this isnot feasible when the break date
is considered to be unknown. Using a Sup-Type Test, as BE propose, solves the problem
of the unknown break date but, since the number of factors will tend to be overestimated,
lack of power will still be a problem.

Secondly, their testing procedure is mainly heuiristic. Their null hypothesis isA= B,
or αi = βi for all i = 1, . . . ,N, rather thanα j = β j for a specific j 3. They constructN
test statistics (denoted bysi i = 1, . . . ,N) for each of theN variables, but do not derive
a single statistic forH0 : A = B. One possibility that the authors mention is to combine
the N individual statistics to obtain a pooled test, but this requires the errorseit andejt

to be independent ifi 6= j, an assumption which is too restrictive. In their simulations
and applications, the decisions are merely based on therejection frequencies, i.e., the
proportion of variables that are detected to have breaks using the individual statisticssi .
This rejection frequency, defined byN−1 ∑N

i=1I(si >α) whereI (.) is an indicator function
andα is some critical value, may converge to some predetermined nominal size (typically
5%), as shown by their simulations, but this is not a proper test insofar as its limiting
distribution is not derived.

Finally, the individual tests for each of the variables may lead to incorrect conclusions
about which individual variables are subject to breaks in their loadings of the factors, as

3The authors do not mention this, but it is implicitly assumedbecause they need the factors to be consis-
tently estimated under the null, which will hold only ifαi = βi for all i = 1, . . . ,N, or alternatively if the the
break is small according to our definition..
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BE seemingly do.4 A key presumption for their individual test to work properlyis that
the estimated factorŝFt can replace the true factors, even under the alternative hypothesis
(given that the number of factors is correctly estimated). As we have shown before, the
true factor space can only be consistently estimated under the null of no break or only
small breaks. By contrast, when big breaks exist, the space of the true factors is not well
estimated (see equations (10) and (11)). If we plug in the estimated factors in this case,
some variables that have constant loadings may be detected to have breaks due to the poor
estimation of the factors. For example, consider a factor model with big breaks in the
factor loadings where we select the right number of factors ¯r = r, and there is one of the
variablesXit that has constant loadings:5

Xit = α ′
i Ft +eit .

Then, from (10) and (11), we can also write the above-mentioned equation as follows:

Xit = (α ′
i D

−1
1 )(D1Ft)+eit = (α ′

i D
−1
1 )F̂t + ẽit t = 1,2. . . ,τ

Xit = (α ′
i D

∗−1
2 )(D∗

2Ft)+eit = (α ′
i D

∗−1
2 )F̂t + ẽit t = τ +1, . . . ,T

whereẽit = eit +op(1). Notice thatα ′
i D

−1
1 6=α ′

i D
∗−1
2 sinceD1 6=D∗

2. As a result, the factor
loadings will exhibit a break when the true factors are replaced by the estimated factors.
Hence if we apply the individual test toXit usingF̂t , we may wrongly conclude that there
is a big break in that variable when there is none.

To analyze how serious this problem could be in practice, we design a very simple
simulation. First, we generate a factor model withN = T = 200,r = 1, where the first 100
variables have constant factor loadings while the remaining 100 variables have big breaks
in their loadings. Then we estimate the factors by PC and apply the individual tests for
all the 200 variables.6 Applying the BE test, we find that rejection frequency for allthe
200 variables is 53.07%, close to the proportion of variables that have breaks. However,
the rejection frequencies for the first and second 100 variables are 52.98% and 53.15% ,
respectively, which means that we falsely reject the null for more than half of the variables
that are stable while we reject the null correctly for only half of the variables that have
breaks. Further, if we increase the size of the breaks, the reject frequency can rise up to
90% while the true proportion is 50%.

Our LM and Wald tests cannot identify either which particular variables are subject
to breaks in the factor loadings but avoid the other two problems. Regarding the first
problem, we have derived its limiting distribution in Theorem 1 both for the cases of
known and unknown breaking dates. As for the second one, contrary to the BE test, our

4For example, in BE (2010, Section 6, pg. 26), it is stated that"there seems to be a break in the loadings
on the CPI and consumer expectations,..., but not in the loadings of commodity prices".

5Notice that this is possible because of Assumption 1.a.
6For simplicity, all the loadings, factors and errors are generated as standard normal variables, the mean

of the factor loadings of the second 100 variables are shifted by 0.3 at timeτ = 100. The reported numbers
are averages of 1000 replications
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test needs more estimated factors than the true number(r + k1 ≥ r̄ > r) to maintain the
power. However, this overestimation it is still preferableto the BE test because in practice
the number of factors to estimate is chosen by means of the information criteria(r̄ = r̂),
and we have proved in Proposition 2 thatP[r̂ = r +k1]→ 1.

5 Simulations

In this section, we first study the finite sample properties ofour proposed LM/Wald and
Sup-LM/Wald tests. Then a comparison is made with the properties of the BE test by
means of Monte-Carlo simulations. Since the only BE test with a known limiting distri-
bution is their pooled statistic when the idiosyncratic components in the factor model are
uncorrelated, we restrict the comparison to this specific case instead of using their rejection
frequency approach whose asymptotic distribution remainsunknown.

5.1 Size properties

We first simulate data from the following DGP:

Xit =
r

∑
k=1

αikFkt +eit

wherer = 3, αik andeit are generated asi.i.d standarised normal variables, and{Fkt} are
generated as:

Fkt = φkFk,t−1+vkt

whereφ1 = 0.8, φ2 = 0.5, φ3 = 0.2, andvkt is anotheri.i.d standarized normal error term.
The number of replications is 1000. We consider both the LM and Wald tests and their
Sup-type versions defined in (19)-(20) and (21)-(22). The potential breaking dateτ is
considered to be a priori known and is set atT/2 for the LM/Wald tests whileΠ is chosen
as[0.15,0.85] for the Sup-type versions of the tests. The covariance matrix S is estimated
using the HAC estimator of Newey and West (1987).

Table 1 reports the empirical sizes (in percentages) for theLM/Wald tests and Sup-
LM/Wald tests (in brackets) using 5% critical values for sample sizes (N andT) equal to
100, 150, 200, 250, 300 and 1000.7. We consider three cases regarding the choice of the
number of factors to be estimated by PC: (i) the correct one (¯r = r = 3), (ii) smaller than
the true number of factors (¯r = 2< r = 3), and (iii) larger than the true number of factors
(r̄ = 4> r = 3).8

Broadly speaking, the LM and Wald tests are slightly undersized forr = 2 and 3 and
more so whenr = 4. Yet the effective sizes converge to the nominal size asN andT

7As mentioned earlier, the critical values of the Sup–type tests are taken from Andrews (1993).
8Notice that the choice ofr = 3 allows us to analyze the consequences of performing our proposed test

with the under-parameterised choice ofr = 2, where two factors are needed to perform the LM/Wald test in
(18). Had we chosenr = 2 as the true number of factors, the test could not be performed for r = 1.
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increase This finite sample problem is more accurate with theSup-LM test especially for
smallT, in line with the findings in other studies (see, Diebold and Chen, 1996) This is
hardly surprising because, for instance, whenT = 100 andΠ = [0.15,0.85], we only have
15 observations in the first subsample. By contrast, the Sup-Wald test is too liberal for
T = 100. Therefore, although we impose that

√
T/N goes to zero, a largeT is preferable

when the Sup-LM test is used. Another conclusion to be drawn is that, despite some
minor differences, the tests perform quite similarly in terms of size even when the selected
number of factors is not correct.

5.2 Power properties

We next consider similar DGPs but this time withr = 2 and now subject to big breaks
which are characterized as deterministic shifts in the means of the factor loadings9. The
factors are simulated as AR(1) processes with coefficients of 0.8 for the first factor and 0.2
for the second. The shifts in the loadings are 0.2 and 0.4 at timeτ = T/2. Table 2 reports
the empirical rejection rates of the LM/Wald and Sup-LM/Wald tests in percentage terms
using again 1000 replications.

As expected, both tests are powerful to detect the breaks as long asr = 2< r̄ ≤ r+k1 =
4, while the power is trivial when ¯r = r = 2. Moreover, the power is low for the Sup-LM
test whenT ≤ 150, which is not surprising given that the Sup-LM test is undersized. This
problem could be fixed by either using size-corrected critical values, or by the Sup-Wald
test that is more powerful in finite samples. For safety, we recommend to use data sets
with largeT (at least around 200) in practice.

5.3 Comparison with BE test

To compare our test to the BE test, we need to construct a pooled statistic as suggested at
the beginning of this section. The pooled BE test is constructed as follows:

∑N
i=1si −Nr̄√

2Nr̄

wheresi is the individual LM statistics in BE (2010). This test should converge to a
standarised normal distribution as long aseit andejt are independent, an assumption we
also adopt here. For simplicity, we only report results for the case of known break dates.

We first generate factor models withr = 2, and compare the two tests under the null.
The DGPs are similar to those used in the size study. The second column of Table 3 (no
break) reports the 5% empirical sizes. In general, we find that the pooled BE and the LM
tests exhibit similar sizes.

Then, we generate a break in the loadings of the first factor while the other parts of the
models remain the same as in the DGP where we study the power properties. The break

9The results with other types of breaks such as random shifts are similar.
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is generated as a shift of 0.1 in the mean of the loadings. We consider two cases: (i) the
number of factors is correctly selected: ¯r = r = 2; and (ii) the selected number of factors
is larger than the true one: ¯r = 3> r = 2. The third and fourth columns in Table 3 report
the empirical rejection rates of both tests. In agreement with our previous discussion, the
differences in power are striking: when ¯r = 2, the pooled BE test is much more powerful
while the opposite occurs when ¯r = 3. However, according to our result in Proposition 2,
the use of Bai and Ng’s (2002) selection criteria will yield the choice of ¯r = 3 as a much
more likely outcome asN andT increase.

5.4 The effect of big breaks on forecasting

Finally, in this section we consider the effect of having bigbreaks in a typical forecasting
exercise where the predictors are estimated common factors. First, we have a large panel
of dataXt driven by the factorsFt which are subject to a break in the factor loadings:

Xt = AFtI(t ≤ τ)+BFtI(t > τ)+et

Secondly, the variable we wish to forecastyt , which is excluded from toXt , is assumed to
be related toFt as follows:

yt+1 = a′Ft +vt+1

We consider a DGP whereN = 100,T = 200,τ = 100, r = 2,a′ = [1 1], Ft are generated
as two AR(1) processes with coefficients 0.8 and 0.2, respectively, et andvt are i.i.d normal
variables, and the break size is characterized by a mean shift between loadingsA andB
occuring at half of the time sample size.

The following forecasting methods are compared in our simulation:

Bechmark Forecasting: The factorsFt are treated as observed and are used directly
as predictors. The one-step-ahead forecast ofyt is defined asyt(1) = â′Ft , whereâ is the
OLS estimate ofa usingyt+1 andFt .

Forecasting 1:We first estimated 2 factorŝFt from Xt by PCs, which are then used as
predictors.yt(1) = â′F̂t , whereâ is the OLS estimate ofa usingyt+1 andF̂t .

Forecasting 2:We first estimated 2 factorŝFt from Xt by PC, then usêFt andF̂tI(t > τ)
as predictors.yt(1) = â′[F̂t F̂tI(t > τ)], whereâ is the OLS estimate ofa in the regression
of yt+1 on F̂t andF̂tI(t > τ)].

Forecasting 3:We first estimated 4 factorŝFt from Xt by PC, then use them as predic-
tors.yt(1) = â′F̂t , whereâ is the OLS estimate ofa usingyt+1 andF̂t .

The above forecastings are implemented recursively, e.g.,at each timet, the data
Xt ,Xt−1, . . . ,X1 and yt ,yt−1, . . . ,y1 are treated as known to forecastyt+1. This process
starts fromt = 149 tot = 199, and the mean square errors (MSEs) are calculated by

MSE=
199

∑
t=149

(yt+1−yt(1))2

51

To facilitate the comparisons, the MSE of the Benchmark Forecasting is standardized to 1.
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The results of 1000 replications are reported in Figure 1 with different break sizes rang-
ing from 0 to 1. It is clear that the MSE of the Forecasting 1 method increases drastically
with the size of the breaks. The Forecasting 1 and 2 procedures perform equally well and
their MSEs remain constant as the break size increases, although they can not outperform
the benchmark forecasting due to the estimation errors of the factors.

6 Empirical Applications

To provide a few empirical applications of our test, we first use the dataset of Stock and
Watson (2009). This data consist of 144 quarterly time series for the US ranging from
1959:Q1 to 2006:Q4, concerning nominal and real variables.Since not all variables are
available for the whole period, we end up using their suggested balanced panel of stan-
darized variables withT = 190,N = 109 which more or less corresond to the case where
T=200, N=100 in Table 2, where no severe size distortions arefound. We refer to Stock
and Watson (2009) for the details of the the data descriptionand the standardization pro-
cedure to achieve stationarity.

Since the estimated numbers of factors using various Bai andNg’s (2002) information
criteria range from 3 to 6, we implement the test for ¯r = 3,4,5 and 6. For the Sup- LM and
Wald tests, the trimmingΠ = [0.3,0.7] is used. It corresponds to the time period ranging
from 1973Q3 to 1992Q3 which includes several relevant events like, e.g., the second oil
price shock (1979) and the beginning of great moderation (1984). The graphs displayed in
Figure 1 are the series of LM and Wald tests for different values of ¯r, with the horizontal
lines representing the 5% critical values of the Sup-type test.

As can be observed, the LM and the Wald tests reject the null ofno big breaks (i.e.,
exceeds the lower horizontal line) for ¯r = 4,5,6 when the break date is assumed to be
known at 1984 in agreement with the results in BE (2010). Stock and Watson (2009) get
similar conclusions about the existence of breaks around the early 1980s. However, one
important implication of our results is that the breaks should be interpreted as being big
and thus cannot be neglected.

As for the case when the break date is not assumed to be a prioriknown, we find that,
while the Sup-LM test cannot reject the null for all values ofr̄, the Sup-Wald test rejects
the null when ¯r = 5,6.(i.e., exceeds the upper horizontal line) The estimate ofthe break
date provided by the last test is around 1979 (second oil price shock), rather than 1984
which, as mentioned before, is the only date considered by BE(2010) as a potential break
date in their empirical application using the same dataset.

A second empirical application relies on another dataset ofStock and Watson (2003).
The data we use consists of 240 monthly marco series from 11 European countries from
1982M1 to 1997M8. This data set is standardized to a panel with T = 188 andN = 240
(see the original paper for the details). We use the trimmingΠ = [0.15,0.85] which spans
the period from 1984M12 to 1995M6, during which the Maastricht Treaty was signed and
the European Union was created. The results of the LM and Waldtests are shown in Figure
2 with the 5% critical values of the Sup-type test for ¯r = 3 to 6.
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It is clear that, under the assumption of a known break date, the comparison of the test
values to the 5% critical values of aχ2 distribution implies that we can easily reject the
null of no big break around 1994. However, in contrast to the Stock and Watson’s (2009)
dataset, if we compare the maximum of the LM and Wald tests to the critical values of the
Sup-type test, no big break is detected during the sample period.

7 Conclusions

In this paper, we propose a simple two- step procedure to testfor big structural breaks
in the factor loadings of large dimensional factor models.that overcomes some limitations
in other available tests, like Breitung and Eickmeier (2010). In particular, we derive the
limiting distributions of our test, while theirs remains unknown, and show that it has much
better power than their test when the choice of the number of factors is based upon Bai
and Ng’s (2002) consistent information criteria Our methodcan be easily implemented
in practice either when the break date is considered to be known or unknown, and can
be adapted to a sequential procedure when the number of factors might not be correctly
chosen in finite samples. Lastly, and foremost, our testing procedure is useful to avoid
serious forecasting/estimation problems in standard econometric practices with factors,
like FAR and FAVAR models, especially if the number of factoris a priori determined and
the factor loadings are subject to big breaks.

In the second step of our testing approach, a Sup-type test isused to detect a break of
the parameters in that regression when the break date is assumed to be unknown. As the
simulations show, this test does not perform very well especially whenT is not too large
(T < 200). As other studies on the size of sup-type tests suggest, bootstrap can improve the
finite sample performance of the test.compared to the tabulated asymptotic critical values
of Andrews (1993). It is high in our research agenda to explore this possibility.

Further research is also needed if we were to allow for multiple breaks. As Breitung
and Eickmeier point out, sequential estimation, as in Bai and Perron (1998), or an efficient
search procedure, as in Bai and Perron (2003), for finding thecandidate break dates may
be employed.

Finally, while we only consider the case where structural breaks affect the factor load-
ings, it has been noted by Stock and Watson (2009) that there could be other sources of
parameter instability stemming from breaks in the factor dynamics and/or in the idiosyn-
cratic errors. Given the instability of the whole model, howto identify the instability of
each of these components is an issue that also requires further investigation.
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Appendix

A.1: Proof of Propositions 1 and 2

The proof procedes by showing that the errors, factors and loadings in model (6) satisfy Assump-
tions A to D of Bai and Ng (2002). Then, once this is shown, Propositions 1 and 2 just follow
immediately from Theorems 1 and 2 of Bai and Ng (2002). DefineF∗

t = [F ′
t G1′

t ]
′, εt = HGt

2+et ,
Γ = [A Λ].

Lemma 1. E||F∗
t ||4 < ∞ and T−1∑T

t=1F∗
t F∗′

t → Σ∗
F as T→ ∞ for some positive matrixΣ∗

F .

Proof. E||F∗
t ||4 < ∞ follows from E||Ft||4 < ∞ by Assumption 2 and the definition ofG1

t .
To prove the second part, we partition the matrixΣF (= limT→∞ T−1∑T

t=1FtF ′
t ) into:

(

Σ11 Σ12

Σ′
12 Σ22

)

whereΣ11= limT→∞ T−1 ∑T
t=1 F1

t F1′
t , Σ22= limT→∞ T−1∑T

t=1F2
t F2′

t , Σ12= limT→∞ T−1∑T
t=1F1

t F2′
t ,

andF1
t is thek1×1 subvector ofFt that has big breaks in their loadings,F2

t is thek2×1 subvector
of Ft that doesn’t have big breaks in their loadings. By the definition of F∗

t andG1
t we have:

T−1
T

∑
t=1

F∗
t F∗′

t =





T−1∑T
t=1 F1

t F1′
t T−1∑T

t=1F1
t F2′

t T−1∑T
t=τ+1F1

t F1′
t

T−1∑T
t=1 F2

t F1′
t T−1∑T

t=1F2
t F2′

t T−1∑T
t=τ+1F2

t F1′
t

T−1∑T
t=τ+1F1

t F1′
t T−1∑T

t=τ+1F1
t F2′

t T−1∑T
t=τ+1F1

t F1′
t





By Assumption 2, the above matrix converges to

Σ∗
F =





Σ11 Σ12 (1−π∗)Σ11

Σ′
12 Σ22 (1−π∗)Σ′

12
(1−π∗)Σ11 (1−π∗)Σ12 (1−π∗)Σ11





Moreover,

det(Σ∗
F) = det





Σ11 Σ12 0
Σ′

12 Σ22 (1−π∗)Σ′
12

0 0 π∗(1−π∗)Σ11



= det(ΣF)det(π∗(1−π∗)Σ11)> 0

becauseΣF is positive definite by assumption. This completes the proof.

Lemma 2. E||Γi||4 < ∞, and N−1Γ′Γ → ΣΓ as N→ ∞ for some positive definite matrixΣΓ.

Proof. This follows directly from Assumptions 1.a and 3.

The following lemmas involve the new errorsεt . Let M andM∗ denote some positive con-
stants.

Lemma 3. E(εit ) = 0, E|εit |8 ≤ M∗

Proof. This follows easily fromE|eit |8 ≤ M (Assumption 4),E(Ft) = 0, E||Ft ||4 < ∞ (Assumption
2), andηi = op(1) (Assumption 1.b).
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Lemma 4. E(ε ′
sεt/N)=E(N−1∑N

i=1 εisεit )= γ∗N(s, t), |γ∗N(s,s)| ≤M∗ for all s, and∑T
s=1γ∗N(s, t)2 ≤

M∗ for all t and T.

Proof.

γ∗N(s, t) = N−1
N

∑
i=1

E(εisεit )

= N−1
N

∑
i=1

E(eis+η ′
i G

2
s)E(eit +η ′

i G
2
t )

= N−1
N

∑
i=1

[

E(eiseit )+E(η ′
i G

2
sη ′

i G
2
t )
]

≤ N−1
N

∑
i=1

E(eiseit )+N−1
N

∑
i=1

√

E
(

η ′
i G

2
s

)2
E
(

η ′
i G

2
t

)2

SinceN−1∑N
i=1E(eiseit )= γN(s, t) by Assumption C of Bai and Ng (2002), andE

(

η ′
i G

2
t

)2
=O( 1

NT )
for all t by Assumptions 1.b and 2, we haveγ∗N(s, t) ≤ γN(s, t)+O( 1

NT ). Then

|γ∗N(s,s)| ≤ |γN(s,s)|+O(
1

NT
)≤ M∗

by Assumption C of Bai and Ng (2002). Moreover,
T

∑
s=1

γ∗N(s, t)2 ≤
T

∑
s=1

(

γN(s, t)+O(
1

NT
)
)2

=
T

∑
s=1

γN(s, t)
2+O(

1
N
)

≤ M+O(
1
N
)≤ M∗

by Assumption E.1 of Bai (2003). The proof is complete.

Lemma 5. E(εit ε jt ) = τ∗
i j ,t with |τ∗

i j ,t | ≤ |τ∗
i j | for someτ∗

i j and for all t; and N−1∑N
i=1 ∑N

j=1 |τ∗
i j | ≤

M∗.

Proof. By Assumption C.3 of Bai and Ng (2002),|τi j ,t | ≤ |τi j | for someτi j and allt, whereτi j ,t =
E(eit ejt ). Then:

|τ̂i j ,t | = |E(εit ε jt )|
= |E(eit +η ′

i G
2
t )(ejt +η ′

jG
2
t )|

≤ |E(eit ejt )|+
√

E
(

η ′
i G

2
s

)2
E
(

η ′
i G

2
t

)2

≤ |τi j |+O(
1

NT
)

for all t. Therefore

N−1
N

∑
i=1

N

∑
j=1

|τ∗
i j | ≤ N−1

N

∑
i=1

N

∑
j=1

(

|τi j |+O(
1

NT
)
)

≤ M+O(
1
T
)

≤ M∗
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by Assumption C.3 of Bai and Ng (2002).

Lemma 6. E(εit ε js) = τ∗
i j ,ts and(NT)−1∑N

i=1∑N
j=1∑T

t=1∑T
s=1 |τ∗

i j ,ts| ≤ M∗.

Proof. By Assumption C.4 of Bai and Ng (2002),(NT)−1∑N
i=1∑N

j=1∑T
t=1 ∑T

s=1 |τi j ,ts| ≤ M, where
E(eit ejs) = τi j ,ts. Then:

E(εit ε js) = τ∗
i j ,ts = E(eit ejs)+E(η ′

i G
2
t η ′

jG
2
s) = τi j ,ts+E(η ′

i G
2
t η ′

jG
2
s)

and we have

(NT)−1
N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
t=1

|τ∗
i j ,ts| ≤ (NT)−1

N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
t=1

|τi j ,ts|+(NT)−1
N

∑
i=1

N

∑
j=1

T

∑
t=1

T

∑
t=1

|E(η ′
i G

2
t η ′

jG
2
s)|

≤ M+O(1)

≤ M∗

following the same arguments as above.

Lemma 7. For every(t,s), E|N−1/2∑N
i=1[εisεit −E(εisεit )]|4 ≤ M∗.

Proof. Sinceεit = eit +η ′
i G

2
t = eit +Op(

1√
NT

), we have:

E|N−1/2
N

∑
i=1

[εit εis−E(εit εis)]|4 = E|N−1/2
N

∑
i=1

[eit eis−E(eit eis)+Op(
1√
NT

)+O(
1√
NT

)]|4

= E|N−1/2
N

∑
i=1

[eit eis−E(eit eis)]+Op(
1√
T
)+O(

1√
T
)|4

≤ M+O(
1√
T
)

≤ M∗

Lemma 8. E
(

1
N ∑N

i=1

∥

∥

∥

1√
T ∑T

t=1F∗
t εit

∥

∥

∥

2)

≤ M∗.

Proof. By the definition ofεit we have:

E
( 1

N

N

∑
i=1

∥

∥

∥

1√
T

T

∑
t=1

F∗
t εit

∥

∥

∥

2)

≤ E
( 1

N

N

∑
i=1

∥

∥

∥

1√
T

T

∑
t=1

F∗
t eit

∥

∥

∥

2)

+E
( 1

N

N

∑
i=1

∥

∥

∥

1√
T

T

∑
t=1

F∗
t η ′

i G
2
t

∥

∥

∥

2)

then by the definition ofF∗
t andG2

t ,
∥

∥

∥

1√
T

T

∑
t=1

F∗
t eit

∥

∥

∥

2
=
∥

∥

∥

1√
T

T

∑
t=1

Fteit

∥

∥

∥

2
+
∥

∥

∥

1√
T

T

∑
t=τ+1

F1
t eit

∥

∥

∥

2

∥

∥

∥

1√
T

T

∑
t=1

F∗
t η ′

i G
2
t

∥

∥

∥

2
=
∥

∥

∥

1√
T

T

∑
t=1

Ftη ′
i F

2
t

∥

∥

∥

2
+
∥

∥

∥

1√
T

T

∑
t=1

F1
t η ′

i F
2
t

∥

∥

∥

2

Therefore, by Assumptions 1.b, 2 and 5, it follows easily that the first part of the right hand side of
the last inequality isO(1) and the second part isO( 1

N). Thus the proof is complete.

Once we have proved that the new factors:F∗
t , the new loadings:Γ and the new errors:εt all

satisfy the necessary conditions of Bai and Ng (2002), Propositions 1 and 2 just follow directly
from theirTheorems 1 and 2, withr replaced byr +k1 andFt replaced byF∗

t .
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A.2: Proof of Theorem 1

Let F̂t define ther ×1 vector of estimated factors. Under the null:k1 = 0, when ¯r = r we have

F̂t = DFt +op(1)

let D(i·) denote theith row of D, andD(· j) denote thejth column ofD. DefineF̂t = DFt , and
F̂kt = D(k·)×Ft as thekth element ofF̂t . Let F̂1t be the first element of̂Ft , andF̂−1t = [F̂2t · · · F̂rt ].
F̂1t andF̂−1t can be defined in the same way. Note thatF̂t depends onN andT becauseD =

(F̂F/T)(A′A/N) (see Bai and Ng (2002)).

Lemma 9.

sup
π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

(F̂t − F̂t)F
′
t

∥

∥

∥
= Op(δ−2

N,T)

Proof. Following Bai (2003) we have:

1
T

Tπ

∑
t=1

(F̂t − F̂t)F
′

t = T−2
Tπ

∑
t=1

T

∑
s=1

F̂sF
′
t γN(s, t)+T−2

Tπ

∑
t=1

T

∑
s=1

F̂sF
′
t ζst+T−2

Tπ

∑
t=1

T

∑
s=1

F̂sF
′
t κst+T−2

Tπ

∑
t=1

T

∑
s=1

F̂sF
′
t ξst

= I + II + III + IV

where

ζst =
e′set

N
− γN(s, t).

κst = F ′
sA′et/N.

ξst = F ′
t A′es/N.

First, note that:

I = T−2
Tπ

∑
t=1

T

∑
s=1

(F̂s−DFs)F
′

t γN(s, t)+T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′
t γN(s, t)

Consider the first part of the right hand side, we have

∥

∥

∥T−2
Tπ

∑
t=1

T

∑
s=1

(F̂s−DFs)F
′

t γN(s, t)
∥

∥

∥

=
∥

∥

∥
T−2

T

∑
s=1

(

(F̂s−DFs)
Tπ

∑
t=1

F ′
t γN(s, t)

)∥

∥

∥

≤ T−1/2

√

1
T

T

∑
s=1

∥

∥F̂s−DFs

∥

∥

2

√

1
T

Tπ

∑
t=1

∥

∥Ft

∥

∥

2

√

1
T

T

∑
s=1

Tπ

∑
t=1

γN(s, t)2

= T−1/2Op(δ−1
N,T)Op(1)

because1
T ∑T

s=1

∥

∥F̂s−DFs

∥

∥

2
is Op(δ−2

N,T) by Theorem 1 of Bai and Ng (2002),∑Tπ
t=1

∥

∥Ft

∥

∥

2
is Op(1)

by Assumption 2, and1T ∑T
s=1∑Tπ

t=1 γN(s, t)2 ≤ 1
T ∑T

s=1∑T
t=1γN(s, t)2 = Op(1) by Lemma 1(i) of Bai

and Ng (2002).
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For the second part, note that:

∥

∥

∥T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′
t γN(s, t)

∥

∥

∥

≤ T−2‖D‖
T

∑
t=1

T

∑
s=1

∥

∥FsF
′
t

∥

∥|γN(s, t)|

≤ Op(1)T
−1
( 1

T

T

∑
t=1

T

∑
s=1

|γN(s, t)|
)

= Op(T
−1)

because‖D‖,
∥

∥FsF ′
t

∥

∥ and 1
T ∑T

t=1 ∑T
s=1 |γN(s, t)| are allOp(1) from Bai and Ng (2002) and Assump-

tions 2 and 4. Therefore, we have

sup
π∈Π

‖I‖= Op

( 1

δN,T
√

T

)

. (A.1)

Next, II can be written as:

T−2
Tπ

∑
t=1

T

∑
s=1

(F̂s−DFs)F
′

t ζst+T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′
t ζst

Similarly, we have

∥

∥

∥
T−2

Tπ

∑
t=1

T

∑
s=1

(F̂s−DFs)F
′
t ζst

∥

∥

∥

≤
√

1
T

T

∑
s=1

∥

∥F̂s−DFs
∥

∥

2

√

1
T

Tπ

∑
t=1

∥

∥Ft
∥

∥

2

√

1
T2

T

∑
s=1

Tπ

∑
t=1

ζ 2
st

≤
√

1
T

T

∑
s=1

∥

∥F̂s−DFs

∥

∥

2

√

1
T

T

∑
t=1

∥

∥Ft

∥

∥

2

√

1
T2

T

∑
s=1

T

∑
t=1

ζ 2
st

= Op

( 1

δN,T
√

N

)

becauseζst = N−1∑N
i=1[eit eis−E(eit eis)] is Op(1/

√
N) by Assumption C.5 of Bai (2003). For the

second term, we can write:

T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′
t ζst =

1√
NT

1
T

D
Tπ

∑
t=1

qtF
′
t

where

qt =
1√
NT

T

∑
s=1

N

∑
i=1

[eit eis−E(eit eis)]Fs
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SinceE‖qt‖2 < M by Assumption F.1 of Bai (2003), we have

sup
π∈Π

∥

∥

∥
T−2D

Tπ

∑
t=1

T

∑
s=1

FsF
′
t ζst

∥

∥

∥

=
1√
NT

sup
π∈Π

∥

∥

∥
T−1D

Tπ

∑
t=1

qtF
′
t

∥

∥

∥

≤ 1√
NT

‖D‖ sup
π∈Π

∥

∥

∥

√

1
T

Tπ

∑
t=1

‖qt‖2

√

1
T

Tπ

∑
t=1

‖Ft‖2

≤ Op(1)
1√
NT

∥

∥

∥

√

1
T

T

∑
t=1

‖qt‖2

√

1
T

T

∑
t=1

‖Ft‖2

= Op

( 1√
NT

)

Then it follows that

sup
π∈Π

‖II ‖= Op

( 1

δN,T
√

N

)

. (A.2)

III can be written as:

III = T−2
Tπ

∑
t=1

T

∑
s=1

(F̂s−DFs)F
′

t κst+T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′

t κst

and the second part on the right hand side can be written as

D
( 1

T

T

∑
s=1

FsF
′
s

) 1
NT

Tπ

∑
t=1

N

∑
i=1

αiF
′

t eit

therefore:

sup
π∈Π

∥

∥

∥T−2D
Tπ

∑
t=1

T

∑
s=1

FsF
′
t κst

∥

∥

∥

≤ 1√
NT

‖D‖
∥

∥

∥

1
T

T

∑
s=1

FsF
′
s

∥

∥

∥
sup
π∈Π

∥

∥

∥

1√
NT

Tπ

∑
t=1

N

∑
i=1

αiF
′
t eit

∥

∥

∥

= Op

( 1√
NT

)

by Assumption 8.
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For the first part on the right hand side, we have

sup
π∈Π

∥

∥

∥
T−2

Tπ

∑
t=1

T

∑
s=1

(F̂s−DFs)F
′
t κst

∥

∥

∥

≤
√

1
T

T

∑
s=1

∥

∥F̂s−DFs
∥

∥

2
sup
π∈Π

√

1
T

T

∑
s=1

∥

∥

∥

1
T

Tπ

∑
t=1

F ′
t κst

∥

∥

∥

2

= Op(δ−1
N,T)

1√
NT

sup
π∈Π

√

1
T

T

∑
s=1

∥

∥

∥
F ′

s
1√
NT

Tπ

∑
t=1

N

∑
i=1

αiF ′
t eit

∥

∥

∥

2

≤ Op(δ−1
N,T)

1√
NT

√

1
T

T

∑
s=1

∥

∥

∥Fs

∥

∥

∥

2
sup
π∈Π

√

∥

∥

∥

1√
NT

Tπ

∑
t=1

N

∑
i=1

αiF ′
t eit

∥

∥

∥

2

= Op

( 1
δN,T

1√
NT

)

by Assumption 8. Thus,

sup
π∈Π

‖III ‖= Op

( 1√
NT

)

. (A.3)

It can also be proved in the similar way that

sup
π∈Π

‖IV‖= Op

( 1√
NT

)

. (A.4)

Finally we have:

sup
π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

(F̂t − F̂t)F
′
t

∥

∥

∥
≤ sup

π∈Π
‖I‖+ sup

π∈Π
‖II ‖+ sup

π∈Π
‖III ‖+ sup

π∈Π
‖IV‖

= Op

( 1√
TδN,T

)

+Op

( 1√
NδN,T

)

+Op

( 1√
NT

)

= Op

( 1

δ 2
N,T

)

Lemma 10.

sup
π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

F̂tF̂
′
t

∥

∥

∥
= Op(δ−2

N,T)

Proof. Note that:

1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

F̂tF̂
′
t

=
1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

(DFt)(F
′
t D′)

=
1
T

Tπ

∑
t=1

F̂t(F̂
′

t −F ′
t D′)+

1
T

Tπ

∑
t=1

(F̂t −DFt)(F
′
t D′)

=
1
T

Tπ

∑
t=1

(F̂t −DFt)(F̂t −DFt)
′+

1
T

D
Tπ

∑
t=1

Ft(F̂t −DFt)
′+

1
T

Tπ

∑
t=1

(F̂t −DFt)(F
′

t D′)
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Thus:

sup
π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

F̂t F̂
′
t −

1
T

Tπ

∑
t=1

F̂tF̂
′
t

∥

∥

∥

≤ sup
π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

(F̂t −DFt)(F̂t −DFt)
′
∥

∥

∥+2‖D‖ sup
π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

(F̂t −DFt)F
′

t

∥

∥

∥

≤ 1
T

T

∑
t=1

∥

∥F̂t −DFt
∥

∥

2
+2‖D‖ sup

π∈Π

∥

∥

∥

1
T

Tπ

∑
t=1

(F̂t −DFt)F
′
t

∥

∥

∥

since
∥

∥F̂t −DFt
∥

∥=Op(δ−1
N,T) and supπ∈Π

∥

∥

∥

1
T ∑Tπ

t=1(F̂t −DFt)F ′
t

∥

∥

∥
is Op(δ−2

N,T) by Lemma 9, the proof

is complete.

The following two lemmas follow from Lemma 10 and Assumption6:

Lemma 11.

sup
π∈Π

∥

∥

∥

1√
T

Tπ

∑
t=1

F̂−1t F̂1t −
1√
T

Tπ

∑
t=1

F̂−1tF̂1t

∥

∥

∥
= op(1)

Proof. See Lemma 10 and Assumption 6.

Lemma 12.
∥

∥

∥

1√
T

T

∑
t=1

F̂−1tF̂
′
1t

∥

∥

∥= op(1)

Proof. By construction we have1T ∑T
t=1 F̂−1t F̂ ′

1t = 0, then the result follows from Lemma 11.

Let ⇒ denoteweak convergence, D∗ = QΣA, whereQ = lim F̂ ′F
T (See proposition 1 of Bai

(2003)),ΣA = lim A′A
N . And defineFt = D∗Ft , S= limVar

(

1
T ∑T

t=1FF ′
)

. Then:

Lemma 13.
1√
T

Tπ

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

⇒ S1/2
Wr−1(π)

for π ∈ [0,1].

Proof. F−1tF1t is stationary and ergodic becauseFt is stationary and ergodic by Assumption
7. First, we show that{FktF1t −E(FktF1t),Ωt} is an adapted mixingale of size−1 for k =
2, . . . , r. By definition, we haveFktF1t = (D∗

(k·)Ft)(D∗
(1·)Ft) =

(

∑r
p=1D∗

kpFpt
)(

∑r
p=1D∗

1pFpt
)

=

∑r
h=1∑r

p=1D∗
kpD

∗
1hFptFht, and FktF1t − E(FktF1t) = ∑r

h=1∑r
p=1 D∗

kpD
∗
1h(FptFht − E(FptFht)) =

28



∑r
h=1∑r

p=1D∗
kpD

∗
1hYhp,t . Thus:

√

E
(

E
(

FktF1t −E(FktF1t)|Ωt−m
)

)2

=

√

E
( r

∑
h=1

r

∑
p=1

D∗
kpD

∗
1hE(Yhp,t |Ωt−m)

)2

≤
r

∑
h=1

r

∑
p=1

|D∗
kpD

∗
1h|
√

E
(

E(Yhp,t |Ωt−m)
)2

≤ ∆
r

∑
h=1

r

∑
p=1

chp
t γhp

m

≤ ∆r2 max(chp
t )max(γhp

m )

since max(γhp
m ) is O(m−1−δ ) for someδ > 0 by Assumption 7, we conclude that{FktF1t −

E(FktF1t),Ωt} is an adapted mixingale of size−1 for k= 2, . . . , r.
Next, we proof the weak convergence using the Crame-Rao device. Define

zt = a′S−1/2(
F−1tF1t −E(F−1tF1t)

)

wherea∈ R
r−1, anda′a= 1. Note that

zt =
r

∑
k=2

ãk[FktF1t −E(FktF1t)]

whereãk is thek−1th element ofa′S−1/2.

E(z2
t ) ≤

( r

∑
k=2

√

E
(

ãk[FktF1t −E(FktF1t)]
)2
)2

≤ ∆
( r

∑
k=2

√

E
(

FktF1t

)2
−
(

E(FktF1t)
)2
)2

≤ M

becauseE‖Ft‖4 < ∞ andFkt = D∗
k·Ft . Moreover,zt is stationary and ergodic, and{zt ,Ωt} is an

adapted mixingale sequence of size−1, because:
√

E

(

E(zt |Ωt−m)

)2

=

√

E

( r

∑
k=2

ãkE
(

FktF1t −E(FktF1t)|Ωt−m

)

)2

≤
r

∑
k=2

|ãk|
√

E

(

E
(

FktF1t −E(FktF1t)|Ωt−m

)2
)

≤ max(|ãk|)
r

∑
k=2

c̃k
t γ̃k

m

by the results above we knowñγk
m is O(m− 1− δ ) for k = 2, . . . , r, it follows that{zt ,Ωt} is an

adapted mixingale sequence of size−1. Then it follows from Theorem 7.17 of White (2001) that:

1√
T

Tπ

∑
t=1

zt = a′S−1/2 1√
T

Tπ

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

⇒ W (π)
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Moreover, it can be proved that:

a′1
1√
T

Tπ2

∑
t=Tπ1

(

F−1tF1t −E(F−1tF1t)
)

+a′2
1√
T

Tπ0

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

 N (0,(π2−π1)a
′
1Sa1+π0a

′
2Sa2)

by using Corrollary 3.1 of Woodridge and White (1988). The proof is complete by using Lemma
A.4 of Andrews (1993).

Lemma 14.
1√
T

Tπ

∑
t=1

F̂−1t F̂1t ⇒ S1/2
B

0
r−1(π)

for π ∈ Π, whereB0
r−1(π) = Wr−1(π)−πWr−1(1) is a vector of Brownian Bridge.

Proof. If we show that

1√
T

Tπ

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

⇒ S1/2
B

0
r−1(π) (A.5)

and

sup
π∈Π

∥

∥

∥

∥

1√
T

Tπ

∑
t=1

F̂−1tF̂1t −
1√
T

Tπ

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

∥

∥

∥

∥

= op(1) (A.6)

then the result follows from Lemma 11.
First note that

1√
T

Tπ

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

=
1√
T

Tπ

∑
t=1

(

F−1tF1t −E(F−1tF1t)
)

+
1
T

Tπ

∑
t=1

(

1√
T

T

∑
s=1

(

F−1sF1s−E(F−1sF1s)
)

)

hence A.5 can be verified by applying Lemma 13.
To prove A.6, we first defineD−1 as the second to last rows ofD, andD1 as the first row ofD.

Then we have
F̂−1tF̂1t = D−1FtF

′
t D′

1

and
F−1tF1t = D∗

−1FtF
′

t D∗′
1

it follows that:

1√
T

Tπ

∑
t=1

(

F̂−1tF̂1t −F−1tF1t
)

=
1√
T

Tπ

∑
t=1

(

D−1FtF
′

t D′
1−D−1FtF

′
t D∗

1+D−1FtF
′

t D∗
1−D∗

−1FtF
′

t D∗
1

)

= D−1

(

1√
T

Tπ

∑
t=1

FtF
′
t

)

(

D′
1−D∗′

1

)

+
(

D−1−D∗
−1

)

(

1√
T

Tπ

∑
t=1

FtF
′
t

)

D∗′
1

30



Next, defineF−1tF1t =
1
T ∑T

s=1F−1sF1s, andF−1tF1t =
1
T ∑T

s=1F−1sF1s, then:

1√
T

Tπ

∑
t=1

(

T−1
s

∑
s=1

F−1sF1s

)

= D∗
−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1

= D∗
−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1 −D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1 +D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1

−D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D′
1+D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D′
1

=
(

D∗
−1−D−1

)

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

D∗′
1 +D−1

(

1√
T

Tπ

∑
t=1

F−1tF1t

)

(

D∗′
1 −D′

1

)

+
1√
T

Tπ

∑
t=1

( 1
T

T

∑
s=1

F̂−1sF̂1s

)

Combining the above results gives:

1√
T

Tπ

∑
t=1

F̂−1tF̂1t −
1√
T

Tπ

∑
t=1

[

F−1tF1t −T−1
s

∑
s=1

F−1sF1s

]

=
1√
T

Tπ

∑
t=1

(

F̂−1tF̂1t −F−1tF1t
)

+
1√
T

Tπ

∑
t=1

(

T−1
s

∑
s=1

F−1sF1s

)

= D−1

(

1√
T

Tπ

∑
t=1

(

FtF
′
t −F−1tF1t

)

)

(

D′
1−D∗′

1

)

+
(

D−1−D∗
−1

)

(

1√
T

Tπ

∑
t=1

(

FtF
′

t −F−1tF1t
)

)

D∗′
1

+
1√
T

Tπ

∑
t=1

( 1
T

T

∑
s=1

F̂−1sF̂1s

)

Following the similar arguments of Lemma 13, we can prove that

sup
π∈Π

∥

∥

∥

1√
T

Tπ

∑
t=1

(

FtF
′
t −F−1tF1t

)

∥

∥

∥= Op(1).

Moreover, it is easy to see that‖D‖= Op(1) and‖D−D∗‖= op(1). Finally,
∥

∥

∥

1√
T ∑T

s=1F̂−1sF̂1s

∥

∥

∥

is op(1) by Lemma 12. Then A.6 follows easily and the proof is complete.

Theorem 1:

Proof. First note that limVar
(

1
T ∑T

t=1 F̂−1t F̂1t

)

= S because1
T ∑T

t=1 F̂−1t F̂1t − 1
T ∑T

t=1F−1tF1t =

op(1) andE‖Ft‖4 < ∞. Then Theorem 1 follows from Assumption 9, Lemma 14, and Continuous
Mapping Theorem.
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Table 1: Size study, 3 factors
N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4

LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald
100 100 5.0 1.0 5.9 4.8 2.3 0.2 4.2 6.7 0.5 0.2 1.3 11.6
100 150 5.0 1.9 4.9 3.1 3.5 0.7 3.7 4.8 1.1 0.3 1.9 7.0
100 200 5.7 2.7 5.0 4.0 4.9 1.8 4.0 3.5 3.0 0.5 2.9 3.9
100 250 5.3 3.2 5.3 3.9 4.4 1.8 4.7 3.2 2.3 0.9 3.4 3.1
100 300 6.2 4.5 6.7 4.0 5.3 2.0 5.1 3.4 3.8 1.1 4.7 3.9
150 100 5.3 1.2 5.9 5.1 2.6 0.2 4.0 7.9 0.8 0.2 2.3 12.9
150 150 5.9 1.8 5.2 4.0 2.9 0.5 3.4 4.0 1.3 0.3 2.7 6.1
150 200 5.5 2.6 6.2 4.5 3.5 1.2 5.1 3.4 2.3 0.9 3.0 4.3
150 250 6.0 2.9 6.9 3.8 3.5 1.6 5.7 3.1 3.2 0.5 3.6 4.7
150 300 5.8 3.7 6.3 4.4 3.9 2.5 5.1 4.0 3.5 1.3 4.0 3.7
200 100 4.6 1.1 5.4 5.0 2.3 0.1 3.0 8.6 0.4 0.4 1.5 15.6
200 150 4.7 2.3 5.6 3.2 2.8 0.2 3.7 4.3 1.2 0.1 2.7 5.6
200 200 5.4 3.0 5.1 2.9 4.0 1.6 3.4 2.5 2.6 1.3 3.2 3.5
200 250 6.2 3.7 7.0 4.0 3.8 2.0 6.8 4.1 2.4 1.1 4.1 5.2
200 300 5.3 3.1 5.5 4.6 3.2 1.5 3.5 4.0 3.4 1.3 2.6 4.5
250 100 5.2 0.8 7.4 5.1 2.1 0.4 4.5 7.0 0.6 0.2 3.5 12.9
250 150 4.1 2.5 5.7 3.6 2.9 0.5 3.9 4.2 1.6 0.0 2.4 6.4
250 200 5.3 2.6 6.5 4.9 3.5 0.8 4.6 5.0 2.9 0.3 3.4 5.2
250 250 5.3 3.1 6.2 4.3 4.7 1.8 5.6 3.1 4.0 0.7 3.5 3.6
250 300 5.5 4.0 5.1 3.7 4.3 1.5 4.0 3.3 3.4 1.4 2.9 3.7
300 100 4.7 0.6 5.2 5.4 1.5 0.2 3.4 8.5 0.3 0.3 2.9 14.0
300 150 4.6 1.8 6.4 5.4 2.9 0.8 4.8 4.7 1.7 0.5 2.8 7.0
300 200 3.7 2.6 7.0 4.0 3.2 0.8 6.5 4.1 1.7 0.5 4.2 5.5
300 250 5.9 3.5 6.3 4.1 4.8 1.7 5.2 3.4 2.7 1.0 3.3 3.5
300 300 5.7 4.2 4.2 4.1 6.2 3.2 4.4 3.4 3.9 1.4 2.8 3.2
1000 1000 5.7 6.1 7.1 5.9 5.8 4.2 6.2 4.9 6.5 4.7 5.8 3.5
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Table 2: Power study, 2 factors
N T α̂0.05|r̄ = 2 α̂0.05|r̄ = 3 α̂0.05|r̄ = 4

LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald LM Sup LM Wald Sup Wald
100 100 6.3 1.8 8.1 5.4 77.9 1.8 100 98.3 41.7 0.5 100 97.3
100 150 8.9 2.5 10.0 4.8 95.8 24.0 100 100 88.8 2.8 100 99.9
100 200 8.9 4.1 9.3 5.4 97.6 72.9 92.0 92.0 95.5 39.6 91.8 92.5
100 250 12.0 5.3 12.4 6.5 99.1 98.0 97.4 97.4 99.0 77.9 97.4 97.4
100 300 13.0 6.5 11.6 6.0 99.6 98.0 83.6 83.6 99.4 94.1 83.5 83.7
150 100 6.1 2.2 7.8 5.9 77.9 1.4 99.7 99.5 41.6 0.6 99.8 99.0
150 150 7.5 2.2 8.3 5.0 95.4 24.5 100 100 88.5 2.2 100 100
150 200 8.8 4.1 9.8 5.4 98.8 76.5 100 100 97.7 40.2 100 100
150 250 9.7 4.8 10.3 6.0 99.4 94.4 99.0 99.1 98.5 79.1 99.0 99.1
150 300 11.4 6.3 10.8 7.1 99.7 98.6 90.5 91.1 99.7 94.5 90.7 91.1
200 100 6.4 1.5 7.6 4.6 79.4 2.3 100 97.7 42.9 0.7 100 99.2
200 150 8.5 3.4 9.5 6.3 97.0 24.1 100 100 89.0 3.0 100 100
200 200 8.6 3.5 9.3 4.5 99.0 77.6 100 100 98.0 38.8 100 100
200 250 11.5 4.5 12.3 5.7 100 96.8 100 100 100 82.7 100 100
200 300 11.2 5.4 12.6 6.4 99.8 98.8 99.9 99.9 99.7 95.1 99.9 99.9
250 100 5.1 1.4 6.7 4.5 80.4 1.8 100 99.7 45.2 1.0 100 99.2
250 150 6.7 2.4 7.8 5.0 97.0 24.5 99.9 100 90.7 3.2 100 100
250 200 7.2 3.4 7.8 5.0 99.2 78.9 100 100 98.4 40.9 100 100
250 250 10.5 5.5 11.3 5.8 99.8 95.6 100 100 99.7 82.4 100 100
250 300 11.5 5.7 12.0 7.6 99.9 99.2 100 100 99.9 95.1 100 100
300 100 6.0 1.6 7.0 6.7 80.1 1.2 100 99.1 45.4 0.3 100 98.9
300 150 8.6 2.1 9.9 4.7 97.3 24.9 100 100 91.5 3.4 100 100
300 200 8.6 4.3 9.2 6.8 99.3 79.0 100 100 98.4 43.3 100 100
300 250 11.4 4.4 11.9 5.8 99.8 94.3 100 100 99.5 82.6 100 100
300 300 11.3 5.9 12.1 7.7 99.8 99.0 100 100 99.8 96.3 100 100
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Table 3: Comparison of LM test, 2 factors: known break date

N T no break, ¯r = 2 1 break, ¯r = 2 1 break, ¯r = 3
BE LM BE LM BE LM

100 100 6.0 3.9 100 5.6 21.9 96.8
100 150 5.9 5.2 100 7.2 18.2 100
100 200 5.2 4.3 100 6.2 26.0 89.8
100 250 5.3 4.8 100 8.7 17.9 97.7
100 300 5.7 4.3 100 7.4 30.2 83.9
150 100 6.4 4.3 100 5.8 18.3 94.6
150 150 5.9 5.7 100 6.6 16.2 100
150 200 5.6 4.3 100 6.2 12.5 100
150 250 5.5 4.5 100 5.7 14.9 98.3
150 300 4.9 4.0 100 5.6 20.6 89.7
200 100 5.5 4.1 100 4.1 20.0 95.8
200 150 5.4 4.8 100 6.6 15.8 100
200 200 7.0 4.5 100 6.3 14.0 100
200 250 6.5 4.7 100 7.5 12.6 100
200 300 5.0 4.7 100 7.8 12.0 99.7
250 100 6.8 3.9 100 4.2 18.8 97.0
250 150 5.4 5.3 100 5.9 14.9 100
250 200 4.5 4.6 100 6.1 11.3 100
250 250 5.1 4.2 100 6.6 10.9 100
250 300 6.6 4.9 100 8.3 7.9 100
300 100 7.3 4.7 100 5.4 19.7 96.3
300 150 7.0 3.6 100 6.1 14.4 100
300 200 5.9 3.4 100 6.0 13.6 100
300 250 5.9 5.4 100 6.7 12.0 100
300 300 5.7 6.1 100 7.0 10.0 100
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Figure 1: The MSEs of different forecasting methods.
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Figure 2: US data set. The LM test (dotted) and Wald test (solid) using the trimming
Π = [0.3,0.7], for r̄ = 3 to 6 (from top to bottom), and the corresponding critical values
(horizontal dotted lines) for the Sup Test.
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Figure 3: EU data set. The LM test (dotted) and Wald test (solid) using the trimming
Π = [0.15,0.85], for r̄ = 3 to 6 (from top to bottom), and the corresponding critical values
(horizontal dotted lines) for the Sup Test.
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