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Abstract

In this paper we shall prove that the plane of financial events, introduced and applied to
financial problems by the author himself (see [2], [3] and [4]) can be considered as a fibration in
two different ways. The first one, the natural one, reveals itself to be isomorph to the tangent-
bundle of the real line, when the last one is considered as a differentiable manifold in the natural
way; the second one is a fibration induced by the status of compound interest capitalization at
a given rate i ∈] − 1,→ [. Moreover, in the paper we define on the first fibration an affine
connection, also in this case induced by the status of compound interest at a given rate i.
The final goal of this paper is the awareness that all the effects determined by the status of
compound interest are nothing but the consequences of the fact that the space of financial events
is a fibration endowed with a particular affine connection, so they are consequences of purely
geometric properties, at last, depending upon the curvature determined by the connection upon
the fibration. A natural preorder upon the set of fibers of the second fibration is considered.
Some remarks about the applicability to economics and finance of the theories presented in the
paper and about the possible developements are made in the directions followed in papers [1],
[5], [6], [7], [8] of the author.

1 Preliminaries

For the general theory of fibrations we follow [9]. A fibration or fiber space is a pair F = (X,π),
where

i) X is a non-empty set, said the underlying set of the fiber space;
ii) π is a surjection of X onto a non-empty set B, called the base of the fiber space;
iii) for any point b in B there is a subset U of B containing b, a set Fb and a bijection

h : U × Fb → π−1(U)

such that
π(h(y, t)) = y,

for each y in U and t in Fb. In other terms,

π ◦ h = prU×Fb
1 ,

where prU×Fb
1 is the first projection of the cartesian product U × Fb.

Let k be a natural number (an integer greater or equal to 0) a Ck-fibration or fiber space of
class Ck is a pair F = (X,π), where

i) X is a Ck-manifold, said the underlying set of the fiber space;
ii) π is a surjection of X onto a Ck-differentiable manifolds (B,A);
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iii) for any point b in B there is an open neighborhood U of b in B, a differentiable manifold
(F,AF ) and a Ck-diffeomorphism

h : U × F → π−1(U)

such that
π(h(y, t)) = y,

for each y in U and t in F .

2 Fibrations on financial events plane

In this section we introduce the basic concepts of the paper.

Theorem 1. The space of financial events R2 is a smooth fiber space in the following two ways:
1) the trivial one (R2,pr1);
2) Fi = (R2, πi) with i > −1 and πi the below surjection

πi : R2 → R : (t, c) 7→ (1 + i)−tc.

Proof. Straightforward by definition of fiber space. �

Definition 1. We call the fibration (R2,pr1) natural fibration of the financial events plane.
We call the fibration Fi = (R2, πi) fibration induced on the financial events plane by the
compound capitalization at rate i > −1.

Let us examine the fibration (R2,pr1):

• the base of the fibration is the time-line R;

• for each time t, the fiber
(
R2

)
t
is the straight-line pr−1 (t) = {t} × R, that is the equivalence

class generated by the null event (t, 0) by means of the equivalence relation “to have the same
time”;

• this fibration is a fibred space of fiber-type R, since each fiber is diffeomorphic to the standard
manifold R.

Let us examine the second fibration Fi = (R2, πi):

• the base of the fibration is the capital-line;

• for each element c of the capital-line, the fiber (R2)c is the set-curve π−i (c) = gr(Mc), graph
of the function

Mc : R→ R : t 7→ (1 + i)tc,

the so called capital-evolution of the event (0, c). The fiber π−i (c) is nothing but the class of
equivalence generated by the event (0, c) by means of the equivalence relation ∼i induced by
the compound capitalization at rate i, that is the binary relation defined by

e0 ∼i e iff πi(e0) = πi(e),

the equivalence class generated by an event e shall be denoted also by [e]i;

• this fibration is a fibred space of fiber-type R, since each fiber is diffeomorphic to the standard
manifold R (since each fiber is a set-curve).
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Remark (the fibration induced by a capitalization factor at 0). If f : [0,+∞] → R is
a capitalization factor of class Ck, that is a positive function from the time semi-line [0,+∞] into
the capital line R of class Ck such that f(0) = 1, we can build up a Ck-fibration ([0,+∞]×R, πf ),
defined by

πf : [0,+∞]× R→ R : (t, c) 7→ f(t)−1c.

Even more generally, we can define a C0-fibration (R2, πf ) by

πf : R2 → R : (t, c) 7→
{
f(t)−1c if t ≥ 0
f(−t)c if t < 0

,

and this fibration is at least of class C1 if k > 0. Indeed, setting g>(t) = f(t)−1 and g<(t) = f(−t),
we have g′<(t) = −f ′(−t) and g′>(t) = −f ′(t)f(t)−2, from which

g′>(0) = g′<(0) = −f ′(0).

3 Properties of the fibration induced by the compound inter-
est

Theorem 2. Let, for any real i > −1, Fi = (R2, πi) be the fibration induced by the compound
capitalization at rate i. Then, for any two rates i and i′ the two fibrations Fi and Fi′ are isomorph,
being the bijection g : R2 → R2 defined by

g(t, c) = (t, (u′)tu−t) = (t, (u′/u)tc),

for any financial event (t, c), where u = 1 + i and u′ = 1 + i′, an R-isomorphism.

Proof. An isomorphism of a Ck-fibration F = (X,π) onto another Ck-fibration F ′ = (X ′, π′)
with the same base B is a pair of Ck-functions (idB , g), with g : X → X ′, such that

π′ ◦ g = π.

Put u = 1 + i, u′ = 1 + i′ and consider the bijection g : R2 → R2 defined by

g(t, c) = (t, (u′)tu−tc) = (t, (u′/u)tc),

for any financial event (t, c), then the pair (idR, g) is an isomorphism of Fi onto Fi′ . Indeed we
have

πi′(g(t, c)) = πi′((t, (u
′)tu−tc)) =

= (u′)−t(u′)tu−tc =

= πi(t, c),

for each financial event (t, c). �

Remark. Another way to prove that the two above induced fibrations are isomorph is to prove
that, for every c0 belonging to the common base R there is an isomorphism gc0 : Xc0 → X ′c0 .
Indeed, define

gc0(t, c) = (t, (u′/u)tc),
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for every event (t, c) in the fiber Xc0 = [(0, c0)]i. We note that if (t, c) is a financial event of the
fiber generated by the event (0, c0), it has the form (t, c0u

t), applying the function gc0 we obtain

gc0(t, c) = (t, (u′/u)tc) =

= (t, (u′/u)tc0u
t) =

= (t, (u′)tc0),

that is an event of the fiber X ′c0 = [(0, c0)]i′ : in other words, we pull back the event e along the
fiber Xc0 to the event e0 = (0, c0) and then we push forward the event e0 to e′ = (t, (u′)tc0) along
the fiber X ′c0 .

Corollary 1. Let, for any real i > −1, Fi = (R2, πi) be the fibration induced by the compound
capitalization at rate i. Then, Fi is trivializable for every rate i.

Proof. It derives from the circumstance that the fibration F0 (corresponding to the rate 0%) is
trivializable, in fact the projection π0 acts as follows

π0 : R2 → R : (t, c) 7→ (1 + 0)−tc = c,

and then the projection π0 is nothing but pr2 on the cartesian product of the time-line T times
the capital line C; now it is clear that this fibration is isomorph to the fibration (C × T, pr1). The
conclusion follows from the fact that each fibration Fi is isomorph to the fibration F0. �

4 Sections of the fibration induced by the compound interest

Theorem 3. (the sections of the fibrations Fi). Let C be the real line of capitals and let E
be the plane of financial events. Then, a curve s : C → E defined by s(c) = (s1(c), s2(c)), for every
capital c, is a section of the fibration Fi if and only if

s2(c) = c(1 + i)s1(c),

for every capital c.

Proof. The curve s is a section of the fibration Fi, by definition, if and only if

πi(s(c)) = c,

for every capital c. This last relation means that

πi(s1(c), s2(c)) = (1 + i)−s1(c)s2(c) = c,

for any capital c, that is
s2(c) = c(1 + i)s1(c),

for any capital c. �

Remark. In other words, the above theorem states that are sections of the fibration induced
by the compound capitalization at rate i only those curves s : C → E of the form

s(c) =
(
s1(c), c(1 + i)s1(c)

)
,

for every c in C and for any function s1 : C → E.

We can restate the above theorem as follows.
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Theorem 4. (the sections of the fibrations Fi). Let C be the capital line, T the time line
and let E be the plane of financial events. Then, a curve s : C → E is a section of the fibration
Fi = (E, πi) if and only if there if a function f : C → T such that

s(c) = (f(c), uf(c)c),

for every capital c.

Remark. The fibration F0 is the pair (E,pr2), thus every its section s : C → E has the form

s(c) = (f(c), c),

for every c in C, where f : C → T is any function of the capital line into the time line. Since any
fibration Fi is isomorphic to the fibration F0, the sections of Fi can be obtained by the section of
F0 applying the canonical isomorphism of F0 into Fi, that is the bijection g : R2 → R2 defined by

g(t, c) = (t, utc) = (t, utc),

for any financial event (t, c), where u = 1 + i; applying the isomorphism g to the section s, we
obtain the curve g ◦ s : C → E, that is the curve defined by

g ◦ s(c) = g(f(c), c) = (f(c), uf(c)c),

for any capital c: so we obtained newly the above theorem.

In a perfectly analogous way we can extend the above theorem as follows.

Theorem 5. (the sections of the fibrations Fi). Let C ′ be a part of the capital line, T ′ be
a part of the time line and let E be the plane of financial events. Then, a curve s : C ′ → E is a
section of the fibration Fi = (E, πi) upon the part C ′ if and only if there if a function f : C ′ → T ′

such that
s(c) = (f(c), uf(c)c),

for every capital c in C ′.

5 Capital evolutions as sections in the compound interest

We devote this paragraph to solve this problem important in the applications:

• LetM : T → C be a function from the time line into the capital line, called a capital evolution.
There are sufficient conditions to assure that the graph of the function M , the subset gr(M)
of the financial events plane E, is the trace of a section s : C → E?

At this purpose we have the following complete result.

Theorem 6. Let M : T → C be a function from the time line into the capital line. Then, the graph
of the function M , the subset gr(M) of E, is the trace of a section s : C → E if and only if there
exists a bijection f : C → T such that

M(t) = utf−(t),

for each time t.
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Proof. Sufficiency. Let us suppose there exist a bijection f : C → T such that

M(t) = utf−(t),

for each time t. Then, let s : C → E be the curve defined by

c 7→ (f(c), uf(c)c),

for every capital c. For each t in T (by surjectivity of the function f) there is a capital c in C such
that f(c) = t, hence we have

(t,M(t)) = (f(c), utf−(t)) = (f(c), uf(c)c) = s(c),

so any point (t,M(t)) of the graph of M is a point of the curve s, that is

gr(M) ⊆ s(C);

we have now to prove that s(C) ⊆ gr(M), indeed, let c be a capital, then by surjectivity of the
reciprocal function f−, there is a time t such that f−(t) = c, now

s(c) = (f(c), uf(c)c) = (f(c), utf−(t)) = (t,M(t)),

as we desire. Necessity. Suppose now that the graph of M is the trace of a section s, this is
equivalent to say (by the above characterization of sections) that there is a function f : C → T
(not necessarily a bijection) such that, for each time t in T , we have

(t,M(t)) = (f(c), uf(c)c),

for some c in C. First of all, we have to prove that the function f is bijective. In fact, let c and c′
be two capitals such that f(c) = f(c′), since f(c) is in T , we have

(f(c),M(f(c)) = s(c) = (f(c), uf(c)c),

(f(c′),M(f(c′)) = s(c′) = (f(c′), uf(c
′)c′),

from which

uf(c)c = M(f(c)) =

= M(f(c′)) =

= uf(c
′)c′ =

= uf(c)c′,

and we conclude c = c′. The function f is then injective, it is surjective since for every t there is
a c such that t = f(c). Concluding the relation M(t) = utf−(t), is an obvious consequence of the
relations t = f(c) and M(t) = uf(c)c by means of bijectivity. The theorem is proved. �

We conclude the section with a little (sometimes useful) result.

Proposition 1. Let M : T → C be a capital evolution. Then, the graph of M is the trace of a
section s : C → E of the fibration Fi if and only if the mapping

h : gr(M)→ C : (t, c) 7→ cu−t

is a bijection.
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Proof. Necessity. Let the graph of M be a section, then there is a bijection f : C → T such
that

M(t) = utf−(t),

for each time t. We have

h(t, c) = h(t,M(t)) =

= h(t, utf−(t)) =

= utf−(t)u−t =

= f−(t),

and this prove that h is a bijection. Sufficiency. Let the mapping h be a bijection, we put

v(t) = h(t,M(t)),

it is clear that v is a bijection, moreover

v(t) = h(t,M(t)) = M(t)u−t,

from which, setting f = v−, we deduce, for each t in T ,

M(t) = v(t)ut = f−(t)ut,

as we desired. �

Analogous result we have for the evolutions defined on a part of the time line.

Theorem 7. Let T ′ be a part of the time line, C ′ be a part of the capital line and M : T ′ → C ′

be a capital evolution. Then, the graph of the function M , that is a subset gr(M) of the rectangle
T ′ × C ′, is the trace of a section s : C ′ → E upon the part if and only if there exists a bijection
f : C ′ → T ′ such that

M(t) = utf−(t),

for each time t in T ′.

Example. Let i be a positive real, T be the time line, let C> be the semi-line of strictly positive
capital and let M : T → C> be a surjective C1-capital evolution such that M ′ is strictly negative.
Then, the graph of M is the trace of a section of the fibration Fi upon C>. Indeed, put

v(t) = M(t)u−t,

we have
v′(t) = M ′(t)u−t −M(t)u−t lnu < 0,

for any time t, so the function v is strictly decreasing (hence injective) and surjective since M is so,
and the claim is proved taking for f the inverse of v.
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6 Connections on the financial fibration and capitalization
laws

Consider the trivial financial fibration (E,pr1), where E is the rectangle U ×R product of an open
subset of the time-line times the capital axis R.

Definition 2. (of local discount factor). Let t be a time in U and let F : V → R be an
application of a neighborhood V of the time-vector 0 into the discount factor line R. The mapping
F is said a (local) discount law in U if verifies the following properties:

i) the translation t+ V is contained in the open subset U ;
ii) the discount factor F (h) is positive, for every time-vector h;
iii) the F -discount factor at time 0 is 1, F (0) = 1;
i) F is of class C1 in V .

Definition 3. (of financial translation induced by a discount factor). We call, for every
time-vector h in R, such that t + h lies in U , financial translation from the fiber Et to the
fiber Et+h induced by the discount law F the mapping

τh : {t} × R→ {t+ h} × R

defined by
τh : (t, c) 7→ (t+ h, F (h)−1c),

for every financial event e = (t, c) of the fiber Et.

Theorem 8. The financial translation τh induced by a discount law F is a linear isomorphism of
the fiber Et = {t}×R onto the fiber Et+h = {t+ h}×R and the application τ of V ×R into U ×R
defined by

τ : (h, c) 7→ (t+ h, F (h)−1c)

is of class C1. The derivative τ ′(0, c) of the application τ at the point (0, c) is the linear mapping
of R× R into itself

(k, v) 7→ (k, v − F ′(0)kc).

Theorem 9. Let F be a discount law. Then, the mapping (k, c) 7→ F ′(0)kc is a bilinear application
of R× R into R, we denote it by Γt (and we call it the Cristoffel bilinear form)

(k, c) 7→ Γt(k, c) = F ′(0)kc.

Conversely, if we have a bilinear application (k, c) 7→ Γt(k, c) and if we put

F (h) = 1 + Γt(h, 1),

the function F is a discount factor such that

F ′(0)kc = Γt(k, c).

Since E = U×R and since the event e = (t, c) is a point of a fiber Et, the tangent space T(t,c)(E)
can be identified with the product Tt(U)× Tc(R), and this product can be itself identified with the
product ({t} × R)× ({c} × R).

Definition 4. (of local connection induced by a discount factor). Let T be the time line
endowed with its natural structure of C∞ manifold. We call the application Ct of the product
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Tt(T ) × Et into the tangent bundle T (E) of the fibration (E,pr1), union of the (disjoint) tangent
spaces Te(E) = {e} × R2, with e varing in E, defined by

Ct : Tt(T )× Et → T (E) : ((t, k), e) 7→ (e, (k,−F ′(0)kc)),

local connection at time t induced by the discount law F . The local connection Ct associate with a
couple of (applied) vectors (t, k) ∈ Tt(T ), (t, c) ∈ Et the applied vector at the event e = (t, c) given
by

Ct((t, k), (t, c)) = ((t, c), (k,−Γt(k, c))).

Definition 5. (of global connection induced by a discount factor). Let F be a global
discount law. The connection induced by the capitalization factor F is the mapping

C : T (T )⊕ E → T (E) : ((t, k), e) 7→ Ct((t, k), e),

where T (T )⊕E is the union of the (disjoint) rectangles Tt(T )×Et, i.e., the rectangles ({t} × R)×
({t} × R).

Application. Consider an event e = (t, c) and a capitalization law u : R → R, that is a
mapping verifing the following properties:

• the capitalization factor u(h) is positive, for every time-vector h;

• the u-capitalization factor at time 0 is 1, i.e. u(0) = 1;

• u is of class C1

The capital-evolution of the event e determined by the capitalization factor u is by definition
the mapping

M : T → C : t 7→ u(t)c.

We note that the moltiplicative inverse v = u−1 is a discount law. Let us consider the connection
induced by the discount factor v:

Ct : Tt(T )× Et → T (E) : ((t, k), e) 7→ (e, (k,−F ′(0)kc)).

Suppose that each event e = (t, c) has a capitalization-time t, that is we suppose that e is the state
at t of the event e0 = (0, cu(t)−1), the financial translation induced by the capitalization law u is
defined by

τh : (t, c) 7→ (t+ h, u(t+ h)u(t)−1c),

so, concerning the discount law we have

v(h)−1 = u(t+ h)u(t)−1,

deriving we obtain
−v(h)−2v′(h) = u′(t+ h)u(t)−1,

and considering the Cristoffel bilinear form, we have

−Γt(k, c) = −v′(0)kc =

= u′(t)u(t)−1kc =

= δ(t)kc,

where δ(t) := u′(t)u(t)−1 is the instant force of interest (by definition) at time t of the capitalization
law u.

9



References
[1] David Carf̀i, Optimal boundaries for decisions, Atti dell’Accademia Peloritana dei Pericolanti -

Classe di Scienze Fisiche, Matematiche e Naturali Vol. LXXXVI, (2008)

[2] David Carf̀i, Structures on the space of financial events, Atti dell’Accademia Peloritana dei
Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali, Vol. LXXXVI, (2008)

[3] David Carf̀i, Giovanni Caristi, Financial dynamical systems, Differential Geometry - Dynamical
Systems, Vol.10, (2008)

[4] David Carf̀i, The family of transformations associated with a financial law, Atti dell’Accademia
Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali, Vol. LXXXI-
LXXXII, (2004)

[5] David Carf̀i, S-Linear Algebra in Economics and Physics, APPLIED SCIENCES Vol. 9, 2007

[6] David Carf̀i, Prigogine approach to irreversibility for Financial and Physical applications, Sup-
plemento Atti dell’Accademia Peloritana dei Pericolanti di Messina, Proceedings Thermocon’05.
(2008)

[7] David Carf̀i,Dyson formulas for Financial and Physical evolutions in S ′, Communications to
SIMAI congress, vol. 2 (2007)

[8] D. Carf̀i, Feynmann’s transition amplitudes in the space S ′, Atti della Accademia Peloritana dei
Pericolanti, classe di scienze Fisiche Matematiche e Naturali. Volume on line LXXXIII (2005)
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