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ABSTRACT 

This study examines the impact of adopting Bt corn on farm profits, yields, and insecticide use.  

The study employs an econometric model that corrects for self-selection and simultaneity.  The 

model is estimated using nationwide farm-level survey data for 2005.  Regression analysis 

confirms that Bt adoption is associated with increased profits, yields and seeding rates.  

However, the results of this analysis suggest that Bt adoption is not significantly related to 

insecticide use. 
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 Revisiting the Impact of Bt Corn Adoption by U.S. Farmers 

 
Genetically engineered (GE) crop varieties with enhanced pest management traits, such as insect 

resistance and herbicide tolerance are being adopted by U.S. farmers at a very rapid rate.1   

Insect resistant crops (Bt crops) contain a gene from a soil bacterium, Bacillus thuringiensis (Bt), 

which produces a protein that is toxic to specific insects. Bt corn with traits to control the 

European corn borer was introduced commercially in 1996.  By the year 2000, Bt corn accounted 

for 19 percent of corn planted acres.  Bt corn with traits to control corn rootworms was 

commercially introduced in 2003.  By 2010 Bt corn accounted for approximately 63 percent of 

domestic corn acres (figure 1).  

Estimating the costs and benefits associated with Bt corn use is complicated by the high 

degree of variability in regional factors such as weather, infestation levels and seed costs.  

Moreover, the impact of Bt adoption is often confounded with the effect of other production 

practices such as conservation tillage, crop rotation, and other pest-management practices. 

Several studies have analyzed how Bt corn affects pesticide use, yields, costs, and profits (Marra 

et al. 1998; Duffy, 2001; McBride & El-Osta, 2002; Fernandez-Cornejo and McBride, 2002;  

Pilcher et al., 2002;  Fernandez-Cornejo and Li, 2005).  Generally speaking, these studies have 

found that Bt corn yields are higher for adopters than for growers of conventional varieties (table 

1).  For instance, Marra el al. (1998) showed that yields were approximately 7.1 bushels per acre 

higher for Bt adopters in Iowa, and 18.2 bushels per acre higher for Bt adopters in Minnesota.  

Duffy (1999) found that Bt corn yields were approximately 13 bushels per acre higher than 

conventional yields.  Mitchell et al. (2004) found that adoption increased yields by 2.8 to 6.6 %.  

                                                            
1 Insect resistance and herbicide tolerance are classified as first generation, or input, characteristics. First generation 
characteristics usually increase yields and/or confer costs savings to farmers.   
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Dillehay et al. (2004) found that adoption increased yields by 5.5 % in Pennsylvania and 

Maryland.  Fernandez-Cornejo and Li (2005) found that, on average, adopters had 12.5 bushels 

per acre higher corn yields that nonadopters.  Several studies also concluded that adopters used 

less insecticide than nonadopters (table 1).  

However, most studies have analyzed data collected in the first 5 years of adoption 

(1996-2001).    As a recent report by the NRC concludes “The environmental, economic, and 

social effects on adopters and nonadopters of GE crops changed over time...” However, 

empirical research into the environmental and economic effects of changing market conditions 

and farmer practices have not kept pace.”  This paper presents the results of a study conducted to 

estimate the farm-level effects of adopting Bt corn.  The study uses farm level data collected 

nationally in 2005.     

 
 
The Data  
 
 The data were obtained from the 2005 nationwide Agricultural Resource Management Survey 

(ARMS) developed and conducted by the USDA. The ARMS survey has a multi-phase, multi-

frame, stratified, probability-weighted design.  In other words, farmers with specific 

characteristics are administered different phases of the ARMS survey during and after each 

survey year.  After data collection, NASS generates probability weights to help ensure that the 

ARMS sample accurately represents the population of US famers.   

The ARMS survey has three phases.  The ARMS Phase I survey is administered in the 

summer of the survey year.  Phase I verifies that all respondents operate a farm or plant a 

specific crop.  The ARMS Phase II survey is administered in the fall or winter of the survey year.  

This commodity-based, field level survey collects data on production practices and input use.  
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The ARMS Phase III is administered in the spring following the survey year.  Phase III gathers 

data on debt, revenue, operating costs and expenditures. 

After merging the Phase II and Phase III datasets and excluding observations with 

missing values, 1156 observations from 19 major corn-producing states were available for 

analysis.  Five hundred and sixty four of the operations sampled were located in the Heartland 

region.  The Heartland Region encompasses western Ohio, Indiana, Illinois, western Kentucky, 

northern Missouri, Iowa, northeastern Nebraska, southeastern South Dakota, and southern 

Minessota.   

According to the 2005 ARMS corn survey, 76.5 percent of the farmers adopting Bt corn 

indicated that they did so in order to increase yields. Other adopters reported reasons for 

adopting Bt corn were to decrease pesticide costs (11.3 percent), to save management time (3.3 

percent). Approximately ten percent of adopters reported using Bt corn for other reasons.  

Survey results indicate that, on average, actual corn yields were 17 bushels per acre (12.3 

percent) higher for adopters than for non-adopters, seed use was 0.02 bushels per acre (4.8  

percent) higher for adopters than for non-adopters,  insecticide use was 0.04 pounds per acre (43 

percent) of active ingredients lower for adopters than for non-adopters, and variable profits were 

18.84 dollars per acre (8.75 percent) higher for adopters than for non-adopters (table 2),  

Differences in the unconditioned means suggest that Bt adoption may increase profits, yields, 

and seeding rates, while decreasing insecticide use. 

The geographical distribution of average corn yields and Bt adoption rates are shown in 

Figures 1 and 2, respectively. We also show the location of the the ERS designated Heartland 

Region, where the yields and Bt adoption rates appear highest (particularly in the northwestern 

heartland region).   
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Table 3 contrasts  insecticide use in 2005 with insecticide use in 2001.  Total pounds 

applied declined by approximately 4.5 million pounds (or 50 percent) over this time period.  

Usage declined most in Chlorpyrifos and Terbufos.  Chlorpyrifos and Terbufos are used to 

control corn rootworms and other insects (Wilson et al., 2005).2 Given that Bt corn can be used 

to control the European corn borer (since 1996) and the corn rootworm (since 2003), it is likely 

that that decreased demand for corn insecticides is due to Bt adoption.   

 Mean comparisons are illustrative.  However, definite conclusions should not be drawn 

from these comparisons unless the data is generated under carefully controlled experimental 

settings, where factors other than adoption are "controlled for" by making them as similar as 

possible (Fernandez-Cornejo and Li, 2005; Fernandez-Cornejo and McBride, 2002).  Clearly, 

this is not the case with survey data.  After all, surveyed farmers were not randomly assigned to a 

treatment group (adopters) and a control group (non-adopters). Consequently, adopters and 

nonadopters may be systematically different from one another (for example, in terms of 

management ability).  This situation, called self-selection, biases the statistical results, unless it is 

corrected.  For these reasons, we specify an econometric model that accounts for self-selection 

and endogeneity.  

 

The Model 

In this section, we briefly discuss the theoretical framework of the model and present the 

specifications used in the empirical analysis. 

This study employs a two-stage framework. The first stage, which is referred to as the 

adoption decision model, is used to determine factors that influence farmers’ decision to use Bt 

                                                            
2 http://www.chlorpyrifos.com/benefits-by-crop.htm 
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seeds.  The second stage, or impact model, is used to estimate the impact of how adopting Bt  

seeds has on yields, seed demand, insecticide demand, and farm profits.  

  

The Adoption Decision Model 

Because adoption decisions involve a binary choice (experimenting with a new technology or 

retaining an old one), a probit specification is used in this stage of the analysis.  Formally, if F 

denotes the normal distribution, the probability of adopting a seed with Bt traits is 1

′  where  is an indicator for whether the farmer chooses Bt seeds,  is a vector of 

parameter estimates, and  is a vector of explanatory variables.  The specification for the 

adoption equation is:  ′  where the residuals,  are normally, identically and 

independently distributed.  Elements of  may include:  (i) the relative price of Bt seeds, (ii) 

farm size, (iii) operator experience, (iv) use of crop insurance (which is used in many studies as a 

proxy for risk aversion), and  (v) operator knowledge about pest infestations.    

 

The Impact Model 

The second stage of the model examines how Bt adoption affects pesticide use, yields, and 

variable profits.  To do this in a manner consistent with farmers’ optimization behavior, we use 

the well-developed restricted profit function (Diewert, 1974).  Using the Hotteling-Shephard 

lemma, the output supply and input demand functions can be derived from the profit function.  

For the empirical model, we use a normalized quadratic restricted profit function 

(Diewert and Ostensoe, 1988). Considering land as a fixed  input, imposing symmetry by sharing 

parameters, imposing linear homogeneity by normalization (using the price of labor as the 

numeraire), and appending disturbance terms, the per-acre profit function ( ), the supply (yield) 
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equation ( ), the per-acre demand equation for seeds ( , and the per-acre demand equation for 

insecticides (  are: 

 
(1)    ∑ .05 ∑ ∑ .05 ∑ ∑
                  ∑ ∑  
 

2      

 

3      

 

4             

 
where P and W are output and input prices (respectively) and A, C, E, F and G are parameters 

(Fernandez-Cornejo, 1996).  The vector  contains a measure of Bt adoption (as discussed in the 

next section) as well as exogenous variables to control for pest infestation levels and 

management characteristics. 

 

Self Selection 

As discussed in a previous section, since farmers are not randomly assigned to a treatment group 

and a control group, adopters and nonadopters may be systematically different from one another.  

If these differences affect both farm performance and Bt adoption, they will confound the 

analysis (Fernandez-Cornejo, 1996). This is a classic case of self-selection (Greene, 1997).   

Self-selection is a type of endogeniety (Maddala, 1983 ; Green, 1997).  Endogeneity 

arises when there is a correlation between the explanatory variables and the model’s residuals.3  

                                                            
3 The residuals represent “noise” generated by random processes, but also contain variation caused by all unspecified or 
unobservable variables. 
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If endogeniety is not accounted for (for instance, through the use of instrumental variable 

techniques), the results of the analysis will be biased. 

For simplicity, consider self selection in the context of determining whether Bt adoption 

affects seed demand.  Let the true model be, 

 
(5)               

 
(6)           

   
Where   represents seed use,  0,1  represents the farmer’s decision to adopt Bt seeds, 

 and   are vectors of (exogenous) explanatory variables,  represents an unobserved 

variable (e.g., the farmers desire to avoid risk),  , , ,   and  are vectors of parameter 

estimates, and  and  are error terms.   

RA is assumed to be unobserved.  Thus, it is necessary to estimate: 

 

(7)  ,   where the error term is  =     

 

  8        ,     where the error term            
              
 

Consider Equation 7.  Notice that neither ,  nor ,  equals 0 because  

influences both Bt adoption and seed demand (as specified in Equations 5 and 6).  This 

correlation is the source of the self-selection problem.  Regressing Equation 7 without 

accounting for this correlation will generate biased parameter estimates.   

 

Controlling for Endogeneity/Self Selection 

There are several methods of controlling for self-selection. The approach used in this study 
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(sometimes called an instrumental variables approach) is to calculate predictions of  (denoted 

by ) using the parameters estimated from equation 8 and to substitute these predictions  into 

Equation 7.  Because the variables in  are exogenous,  is uncorrelated with ,, and  is an 

unbiased estimator.4    

 

Estimation 

 The Adoption Model was calculated using the weighted probit routine in LIMDEP.  The 

system of profit, yield, and derived demand equations (equations 1-4) were jointly estimated 

using a seemingly unrelated regression (SUR) framework.    

The Impact model was estimated using the Conditional Mixed Process Module (cmp) 

developed for STATA by David Roodman (Roodman, 2009).5 The CMP module fits Seemingly 

Unrelated Regression Models with normally distributed error terms.  Unlike many of the SUR 

routines available in Stata or SAS, this program enables the estimation of mixed models, 

allowing linear, probit, ordered probit, multinomial probit, Tobit, interval regression, and 

truncated-distribution regressions to be jointly estimated within the context of a seemingly 

unrelated system of equations.  For the purposes of this analysis, the profit, yield, and seed 

demand equations were assumed to have uncensored, linear specifications.  Because 

approximatley 80% of the farmers in the sample do not use insecticides, a tobit specification was 
                                                            
4 An alternate approach (sometimes called a generalized residuals approach) involves explicitly modeling  , the endogenous 
component of  .   Assuming that the residuals from Equation  8 are normally distributed, a probit equation can be used to 
estimate Equation 8.  The generalized residuals are obtained from the first order condition (or score function) of the probit’s log 
likelihood function.  A simple derivation demonstrates that the score function simplifies to the inverse mills ratio for the entire 
sample.   The inverse mills ratio is strongly correlated with .  Consequently, the inverse mills ratio can be used as a proxy, or 
an instrument.  Including the inverse mills ratio (denoted ) in Equation 5 yields: 

9   
Since  , , , 0,  is an unbiased estimator. 
Though this approach relies on parametric assumptions (the normality of ),  provides valuable information about how farm 
performance is effected by unobserved variation. 
5 This module is based on work by Cappellari and Jenkins (2003), Gates (2006), Geweke (1989), Hajivassiliou (1998), and Keane 
(1992,1994). 
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used to model insecticide demand.  As in the Adoption Model, a weighted least squares 

technique was used to estimate the Impact Model. 

After estimating the Impact Model using the full sample, the standard errors were 

reestimated using the delete-a-group jackknife method described in Kott (1998), and employed 

in other analyses of ARMS data (Fernandez et al., 2005; Fernandez and Li, 2005; Fernandez 

2002).6  It is well known that standard errors estimated using the jackknife method are 

conservative, and “may understimate the significance of variables under some circumstances 

(Fernandez et al., 2005).    For this reason, standard errors calculated using both the standard 

estimation procedure and the jackknife method are reported below.  The P-values used in this 

analysis were calculated using the jackknifed standard errors.   

 
Model Results 
 
 
The Adoption Decision Model 

Table 4 presents results from the Adoption Model.  Generally speaking, these results 

corroborated a priori assumptions.  For instance, previous work has established that large 

operations are more likely than small operations to adopt agricultural innovations (Feder et al, 

1985; Fernandez et al, 2002; Fernandez-Cornejo and Li, 2005).  Previous work has also 

established that farmers who purchase crop insurance are more likely than their uninsured 

counterparts to purchase Bt seeds (Fernandez and McBride, 2002).7  Similarly, it is well known 

that the opportunity cost of pest infestations tends to be higher on irrigated operations, operations 

                                                            
6 NASS partitions the sample into 15 groups of observations.  15 “replicate” groups of observations are formed by excluding one 
of the 15 original groups from the full sample.  NASS calculates sampling weights for the full sample, as well as each of the 
replicates.  In order to estimate the model, parameter estimates are estimated using the full sample.  To calculate the standard 
errors, the model is run 15 additional times (using each of the 15 subsamples and the appropriate replicate weights).  The 
standard errors estimated from each subsample are saved and used to calculate the adjusted standard errors (see Fernandez-
Cornejo, Hendricks, and Mishra; 2005). 
7 Bt seeds and crop insurance both reduce expected losses from pest infestations. 
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in the heartland (that tend to have highly productive soils), and other operations with high 

expected yields.  Finally, it is not surprising that farmers expecting yield loses from corn borers 

are more likely to plant insect resistant seeds than those who do not expect these loses.  In other 

words, we expected the parameter estimates on Size, Crop Insurance, Irrigation, Heartland, and 

Ind_cbor to be positive and significant. 

It should be mentioned that some of the results did not corroborate our a priori 

hypotheses.  For instance, we expected the parameter estimates for operator experience and the 

price of corn to be positive.  However, both of these parameter estimates were negative and 

significant.   

Insofar as operator experience is concerned, while we usually expect a positive 

association of adoption with experience, we also expect a negative association of adoption with 

age.  In this study, adopters had an average of 33.48 years of experience, while nonadopters had 

an average of 37.74 years of experience (see table 2).  This implies that many of the survey 

respondents are in their sixties.  It is not surprising that older farmers are less likely to adopt a 

new technology than their “younger” counterparts.    

Insofar as the price of corn is concerned, our results indicate that there is a negative 

association between the price of corn and the use of Bt corn. This result mirrors the difference 

between the unconditioned means in corn prices for nonadopters ($2.01) and adopters ($1.95) 

(see table 2).  The fact that farmers received higher prices for conventional corn may reflect the 

fact that consumers are willing to pay a premium for non-GE corn.  An alternative explanation 

stems from the fact that corn prices exhibit a high degree of spatial correlation (this would 

violate the assumption that corn prices are independently distributed).  In cases where there is a 

high degree of spatial correlation, p-values for parameter estimates may be spuriously high.  In 
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other words, there might not be a strong statistical relationship between corn prices and seed 

choice.  Future work should further explore these possibilities. 

 

The Impact Model 

The Impact Model fits the data relatively well.  While it appears that there is no consensus 

regarding the best measure of “goodness of fit” for Mixed Process Models (Kramer, 2005), 

pseudo-R2 statistics are good alternatives to traditional R2 values.8  As discussed in Magee 

(1990), there are many different methods of calculating pseudo R2 statistics, all of which provide 

slightly different values.   

One possibility involves calculating the likelihood ratio for a parameterized (unrestricted) 

model and an unparameterized (restricted) model (Magee, 1990).  More specifically, it can be 

shown that: 

 

 1 exp
2

log 1 exp
2

log log  

 

where,  is the number of observations,  is the log-likelihood of the fully parameterized model 

and  represents the log-likelihood of the intercept only model.  Using this measure, the 

Pseudo-R2 of the model is 0.77. 

 An alternative involves directly computing the sum of squared residuals and dividing 

them by the sum of squared means.  While identical to the formula used to calculate the 

traditional R2 value, it does not have the same interpretation: 

 
                                                            
8 Pseudo R2 values resemble traditional R2 values in that they are bounded on the [0,1] interval and higher values indicate better 
model fit.  However, these values cannot be interpreted as one would interpret a traditional R2, because the parameter estimates 
were not calculated to minimize variance (rather they were calculated via maximum likelihood or an alternative, iterative 
method).  Different methods of calculating pseudo R2’s can provide very different values. 
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 1
SSE
SSM 1

| ′ |
| ′ | 

 
where e is a nxl matrix of residuals (with n = to the number of observations in the system, and l = 

to the number of equations in the system), m is a nxl matrix of the difference in means ( ), 

and | ′ | represents the determinant of ′ .  Using this measure, the Generalized R2 of the model 

is 0.83. 

 In addition to the pseudo R2 calculations, several Likelihood Ratio tests were also used to 

test the performance of our model (see table 5).  These tests strongly reject the following null 

hypotheses: 

 
1) That all of the parameter estimates in the model equal 0.   

 
2) That all of the parameter estimates for Bt adoption equal 0. 

 

These tests confirm that our model has explanatory power, and that Bt adoption is strongly 

correlated with measures of on-farm performance. 

Most of the results derived from the parameter estimates corroborate a priori 

expectations.  Increases in seed prices decrease seed demand.  Increases in insecticide prices 

decrease insecticide demand.  Increases in corn prices increase per-acre supply (yields).  Pest 

infestation is associated with decreased yields, while being located in the Heartland region and 

high precipitation rates are associated with increased yields (table 6).  Notably, increases in 

insecticide prices appear to decrease seed demand.9  This implies that seeds and insecticides are 

complements in the production process. 

Insofar as the impact of Bt adoption is concerned, this study’s findings suggest that Bt 

seed use increases profits, yields, and seed demand (tables 6 and 7).  More specifically, a 10% 
                                                            
9 Parameter restrictions ensure that G12 equals G21.  This ensures that the effect insecticide prices have on seed demand is 
equivalent to the effect seed prices have on insecticide demand. 
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increase in the probability of adoption was associated with a 1.3 percent (2.89 dollars/acre) 

increase in profits, a 1.2 percent (1.72 bushels/acre) increase in yields, and a 0.6 percent (0.002 

bushels /acre) increase in seed demand (table 8).   

In contrast to the findings reported in Fernandez-Cornejo and Li (2005) (which were 

based on 2001 data), this study finds that Bt adoption does not have a statistically significant 

impact on insecticide demand (table 5).   This result appears to be related to the fact that insect 

infestation levels were lower in 2005 than they were in 2001 (see for example Hutchinson et al, 

2010).  Because infestation levels were low, most farmers applied substantially fewer 

insecticides in 2005 than they did in 2001.10 In fact (as previously mentioned), 80% of the 

farmers in the sample did not use insecticides at all.  This may have reduced the impact of Bt 

adoption on insecticide use.  After all, farmers only use insecticides if treating pest infestations is 

expected to be profitable.  In other words, farmers only use insecticides if infestation levels are 

above a certain threshold.11  Below this threshold, Bt adoption should not affect insecticide use.   

 

Concluding Comments 

This study estimates how adopting Bt corn affects profits, yields, seeding rates, and insecticide 

demand using an econometric model that corrects for self-selection and simultaneity.  The model 

is estimated using 2005 national survey data. 

 Survey results indicate that, on average, variable profits were $18.84 per acre higher for 

adopters than for non-adopters, corn yields were 17 bushels per acre higher for adopters than for 

non-adopters, seed demand was 0.02 bushels per acre higher for adopters than for non-adopters, 

                                                            
10  Average insecticide use was 0.07 pounds per acre in 2005 (table 1) compared with about 0.15 pounds per acre in 2001 
(Fernandez-Cornejo and Li (2005). 
11 This threshold may differ for adopters and non-adopters. 
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and insecticide demand was 0.04 pounds of active ingredients lower for adopters than for non-

adopters.  Differences in the unconditioned means suggest that Bt adoption increases profits, 

yields, and seeding rates, while decreasing insecticide use. 

 Regression analysis confirms that Bt adoption is positively associated with increased 

profits, yields and seeding rates.  However, our results suggest that Bt adoption is not 

significantly related to insecticide use. This result appears to be related to the fact that insect 

infestation levels were lower in 2005 than they were in earlier years.  

The implications of these results should be regarded carefully, and only within the 

constraints of this analysis.  The economic impacts of adopting GE crops vary with pest 

infestations, seed premiums, and prices of alternative pest control programs.  Future work should 

incorporate other inputs (for instance, fertilizer) and cropping practices (particularly the role of 

crop rotations and conservation tillage).   
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Table 1. 
Summary of Previous Studies on the Effects of Bt 
Corn on Yields, Insecticide Use, and Returns    

Effects on 

Researchers / Date of Publication 
 

Data Source 
 

Yield 
Insecticide 

Use 
Returns 

Rice and Pilcher, 
1998 

    Survey 
 

Increase  Decrease  Depends on infestation 

Marra et al., 1998  Survey  Increase  Decrease  Increase 

McBride & El‐Osta, 20021    Survey  Na  Na  Decrease 

Duffy, 2001    Survey  Increase  Na  Same 

Pilcher et al., 2002    Survey  Increase  Decrease  Na 

Baute, Sears, and Schaafsma, 2002  Experiments  Increase  Na  Depends on infestation 

Dillehay et al., 
20042 

    Experiments 
 

Increase  Na  Na 

Fernandez‐Cornejo and Li, 2005     Survey  Increase  Decrease  Na 

Na = not available 
1 Results using 1998 data 
2 Results using 2000 ‐ 2002 data 

Source: Fernandez‐Cornejo and Li, 2005 

 

Table 2. 
Sample Means and Definition of Selected 
Variables ‐‐ Corn Producers, 2005                

Variable  Description 
All 
Obs 

Std 
Dev   

Bt 
Adopters

Non 
Adopters 

Yield  Per Acre Yields, in bushels  144.76  40.54    155.44  138.33 
Seed Use  Seed, in bushels per acre  0.35  0.05    0.36  0.34 
Insecticide Use  Insecticides, in pounds AI per acre  0.07  0.27    0.05  0.09 
Bt Corn  Dummy Variable = 1 if the operator planted seeds 

with Bt traits 
0.38  0.48       

Crop Insurance  Dummy Variable = 1 if the operator has crop ins  0.76  0.43    0.88  0.69 
Seed Price  Seed Price, dollars per bushel  109.23  24.01    120.30  102.53 
Insecticide Price  Insecticide Price, in dollars per pound AI  16.24  13.14    17.08  15.73 
Corn Price  Corn Price, dollars per bushel  1.99  0.24    1.95  2.01 
Operator Experience  Years of operator experience  36.14  13.92    33.48  37.74 
Conservation Tillage  Dummy Variable = 1 if the operator uses conservation 

tillage practices 
0.65  0.48    0.68  0.63 

Heartland  Dummy Variable = 1 if the operation is located in the 
ERS designated Heartland region 

0.69  0.46    0.74  0.65 

Insecticide  Dummy Variable = 1 if insecticides are applied  0.20  0.40    0.21  0.19 
                    
Source:  2005 ARMS Corn Survey 
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Table 3.    
Major Insecticides Used on Corn, 
20011 and 20052 

Active Ingredient     Area Applied     Total Applied 

Percent 
Thousand 
Pounds 

2001  2005  2001  2005 

Bifenthrin  2  2  67  72 
Carbofuran  *  *  476  113 
Chlorpyrifos  4  2  3,663  2,047 
Cyfuthrin  4  7  16  38 
Dimethoate  *  *  164  68 
Esfenvalerate  *  *  1  8 
Fipronil  3  1  259  88 
Lambda‐cyhalothrin  2  1  23  25 
Methyl parathion  1  *  386  82 
Permethrin  3  1  236  116 
Propargite  *  *  156  289 
Tebupirimphos  4  6  371  573 
Tefluthrin  6  7  466  637 
Terbufos  3  *  2,491  331 
Petroleum Distillate  *  NA  56  NA 
Phorate  *  NA  73  NA 
Zeta‐cypermethrin  NA  *  NA  11 
Other  100  351 

Total              8,904  4,498 

Planted Acres (in thousands)        76,470  70,745 
                    
* Area applied is less than one percent. 
1 Planted Acres in 2001 for the 19 program states were 70.7 million

   acres.  States included are CO, GA, IL, IN, IA, KS, KY, MI, MN, MO, NE, NY, 

   NC, ND, OH, PA, SD, TX and WI.    
2 Planted Acres in 2005 for the 19 program states were 76.5 million 

   acres.  States included are CO, GA, IL, IN, IA, KS, KY, MI, MN, MO, NE, NY, 

   NC, ND, OH, PA, SD, TX and WI.

Source:  NASS Agricultural Chemical Usage Reports,  

Field Crop Summaries, 2005 and 2001  
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Table 4.  Predicting Bt Adoption  ‐‐ Corn Producers, 2005 

Observations :  1156 
Log Likelihood :  ‐638.30 
Restricted Log Likelihood:  ‐765.95 
Wald Chi‐Squared :  255.31 
Prob > chi2 :  P< .0001 

Variable           Parameter Estimates 

Constant      0.58   
Acres Planted      0.005  *** 
Operator Experience      ‐0.01  *** 
Relative Price of Bt Seeds    ‐0.06   
Corn Price      ‐0.96  *** 
Debt to Asset Ratio      0.19   
Contract      0.12   
Crop Insurance      0.44  *** 
Conservation Tillage      0.03   
Irrigation      0.84  *** 
Crop Rotation      0.19   
Ind_Cbor      0.69  *** 
Ind_Cwrm      0.08   
Heartland           0.26  *** 

*** indicates that P<.01, ** indicates that P<.05, * indicates that P<.1 
Source: Model Results 
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Table 5.     Log Likelihood Tests,  Parameters from the Impact Model 

Null Hypothesis 
 

Description of the Null 
Hypothesis   

Test 
Statistic   

P‐value 

A0, Ay, A1, A2, C1, C2, C3, C4, C5, C6, C7, 
Gyy, Gy1, Gy2, Fy1, Fy2, Fy3, Fy4, Fy5, Fy6, 
Fy7, G11, G12, G22, E11, E12, E13, E14, 
E15, E16, E17, E21, E22, E23, E24, E25, E26, 
E27 = 0 

  Ho:  The variables in the 
impact model do not have 
explanatory power 

1720.89    <.00001

 
C1, Fy1, E11, E21 = 0 

 

Ho:  Bt Adoption does not 
affect Profits, Yields, Seed 
Demand, or Insecticide 
Demand 

108.99    <.00001

 

                             
Source: Model Results 
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Table 6. 

Results from the Impact Model ‐‐ Corn Producers, 2005 

Derived Output and Input Equations          

Variable  Parameter  Yield1  Parameter  Seed1  Parameter  Ins1 

Corn Price  Gyy  134.53  ***  Gy1  0.48  ***  Gy2  1.73  ** 
Seed Price  Gy1  0.48  ***  G11  ‐0.004  ***  G21  ‐0.002 
Insecticide Price  Gy2  1.73  **  G12  ‐0.002  G22  ‐0.006 
Bt Corn  Fy1  45.84  ***  E11  0.05  E21  0.19 
Other Insect 
Infestations 

Fy2  ‐28.34  **  E12  ‐0.014  ***  E22  0.253 
 

Ind_Cbor  Fy3  ‐0.96  E13  0.01  **  E23  ‐0.27 
Ind_Cwrm  Fy4  ‐0.04  E14  0.01  E24  0.04 
Heartland  Fy5  17.22  ***  E15  0.025  E25  0.03 
Precipitation  Fy6  1.33  E16  ‐0.003  ***  E26  ‐0.05  ** 
Education  Fy7  2.72  E17  0.02  *  E27  0.19 
Constant  Ay  67.67  ***  A1  0.26  **  A2  ‐0.87  *** 
1 P‐values were calculated using the jackknifed standard errors.  *** indicates that P<.01, ** indicates that P<.05, * indicates 
that P<.1 
Source: Model Results 
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Table 7. 

Results from the Impact Model ‐‐ Corn Producers, 2005 
Profit Equation                         

Variable 
 

Parameter  Parameter 
Estimate1 

SE, using  
standard method 

SE, using 
Jackknife
method  

Constant  A0 ‐4.45 ** 0.77 1.70 
Corn Price  Ay 67.67 *** 6.36 9.04 
Seed Price  A1 0.26 *** 0.01 0.03 
Insecticide Price  A2 ‐0.87 *** 0.20 0.29 
Bt Adoption  C1 ‐2.47 ** 0.57 0.96 
Other Insect Infestations  C2 1.84 0.92 1.55 
Ind_cbor  C3 ‐0.13 0.63 1.18 
Ind_cwrm  C4 ‐1.59 0.75 1.31 
Heartland  C5 ‐1.20 ** 0.25 0.49 
Precipitation  C6 0.20 * 0.07 0.10 
Education  C7 ‐0.69 0.39 0.68 
(Corn Price)^2  Gyy 134.53 *** 15.10 21.78
Corn Price*Seed Price  Gy1 0.48 *** 0.04 0.08 
Corn Price*Insecticide Price  Gy2 1.73 ** 0.38 0.59 
Corn Price*Bt Adoption  Fy1 45.84 *** 4.82 11.17
Corn Price*Other Insect Infestations  Fy2 ‐28.34 ** 8.22 9.52 
Corn Price*Ind_cbor  Fy3 ‐0.96 5.71 7.99 
Corn Price*Ind_cwrm  Fy4 ‐0.04 6.55 8.85 
Corn Price*Heartland  Fy5 17.22 *** 2.20 5.42 
Corn Price*Precipitation  Fy6 1.33 0.54 0.91 
Corn Price*Education  Fy7 2.722 3.41 5.78 
(Seed Price)^2  G11 ‐0.004 *** 0.00 0.00 
Seed Price*Insecticide Price  G12 ‐0.002 0.00 0.00 
(Insecticide Price)^2  G22 ‐0.006 0.01 0.01 
Seed Price*Bt Adoption  E11 0.054 *** 0.01 0.01 
Seed Price*Other Insect Infestations  E12 ‐0.0136 ** 0.01 0.01 
Seed Price*Ind_cbor  E13 0.009 0.01 0.01 
Seed Price*Ind_cwrm  E14 0.01 0.01 0.02 
Seed Price*Heartland  E15 0.025 *** 0.00 0.00 
Seed Price*Precipitation  E16 ‐0.003 * 0.00 0.00 
Seed Price*Education  E17 0.02 ** 0.00 0.01 
Insecticide Price*Bt Adoption  E21 0.19 0.14 0.31 
Insecticide Price*Other Insect Infestations  E22 0.25 0.22 0.33 
Insecticide Price*Ind_cbor  E23 ‐0.27 0.18 0.28 
Insecticide Price*Ind_cwrm  E24 0.04 0.14 0.35 
Insecticide Price*Heartland  E25 0.03 0.07 0.11 
Insecticide Price*Precipitation  E26 ‐0.05 ** 0.02 0.02 
Insecticide Price*Education  E27 0.19 0.11 0.29 

1 P‐values were calculated using the jackknifed standard errors.  *** indicates that P<.01, ** indicates that P<.05, * indicates that P<.1 
Source: Model Results 
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Table 8. 

The Impact of Adoption of Insect 
Resistant Corn, Corn Producers 
2005 

Elasticity of  
 

Elasticity with respect 
to the probability of 

adoption 

Profit  0.13

Yield  0.12

Seed  0.06

Ins 

  

NA

Source: Model Results 

 


