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Abstract We give a characterization of the non-empty binary relations > on a N*-set A such that there exist
two morphisms of N*-sets u1, uz : A — Ry verifying u1 < u2 and = > y < wi(z) > u2(y). They
are called homothetic interval orders. If > is a homothetic interval order, we also give a representation
of > in terms of one morphism of N*-sets u : A — Ry and a map o : u’l(R’jr) X A — R% such that
z =y < oz, y)u(z) > u(y). The pairs (u1,u2) and (u, o) are “uniquely” determined by >, which allows
us to recover one from each other. We prove that > is a semiorder (resp. a weak order) if and only if o
is a constant map (resp. o = 1). If moreover A is endowed with a structure of commutative semigroup,
we give a characterization of the homothetic interval orders > represented by a pair (u, o) so that u is
a morphism of semigroups.

Résumé On donne une caractérisation des relations binaires non vides > sur un N*-ensemble A telles qu’il existe
deux morphismes de N*-ensembles ui, uz : A — Ry vérifiant u1 < ug et > y < ui(x) > ua(y).
On les appelle des ordres intervalles homothétiques. Si > est un ordre intervalle homothétique, on
donne aussi une représentation de > a l’aide d’un morphisme de N*-ensembles u : A — Ry et d’une
application o : ufl(]Ri) x A — R% tels que z > y < o(z,y)u(z) > u(y). Les paires (u1,u2) et (u,0)
sont déterminées “de maniere unique” par >, ce qui nous permet de retrouver I'une a partir de ’autre.
On montre que > est un semiordre (resp. un ordre faible) si et seulement si o est une application
constante (resp. o = 1). Si de plus A est muni d’une structure de semigroupe commutatif, on donne
une caractérisation des ordres intervalles homothétiques > représentés par une paire (u,o) telle que u
soit un morphisme de semigroupes.

AMS Class. 06A06, 06F05, 20M14
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Introduction Let us start with an example, which has been our main source of inspiration
for this work. Consider a two-armed-balance, the two arms of which not necessarily being of the
same length; such a balance is said to be biased. Let denote P; and P» its two pans. If the arms
are not of the same length, we assume that P; is located at the end of the shortest arm. Suppose
also we are given a set A of objects to put on P; and P,. We define as follows a binary relation
= on A: x > y if the balance tilts towards z when we put « on P; and y on P,. This relation is
always asymmetric and transitive, but it is negatively transitive if and only if the two arms are of
the same length. However we can observe it is always strongly transitive: © >y Z z >t =>x >t
with y 7~ z & 2z # y. In particular, > is an interval order (cf. [F]). Furthemore, suppose that
A is endowed with a structure of N*-set. Then the relation > verifies the following property of
homothetic independence: © = y < (mx > my, ¥Ym € N*). We can continue to identify the
properties satisfied by . That naturally brings us to introduce the notion of homothetic structure
(cf. section 2). A homothetic structure is by definition a N*-set A endowed with a binary relation >
verifying five properties of compatibility, the most striking two being the homothetic independence
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introduced before and the following property : if « > y, then Im € N* such that mz > (m + 1)y.
A homothetic structure (4, ) is called a homothetic interval order if the relation > is assymmetric
and strongly transitive. The main goal of this paper is to give a caracterization of the homothetic
interval orders via their representations in R .

So let (A, ) be a non-empty homothetic interval order. If (A,>) is obtained from a biased
balance as above, then we know there exists a morphism of N*-sets u : A — R (the mass) and a real
number « € ]0, 1] (the ratio of the shortest arm to the longest one) such that x = y < au(z) > u(y).
It is this kind of result we are looking for here. Let us begin with the simplest case: > is a homothetic
weak order; i.e., the relation > is negatively transitive. Then we prove (proposition (4.1)) that
there exists a morphism of N*-sets v : A — R, unique up to multiplication by a positive scalar,
such that = > y < u(x) > u(y). Let us point out that no countable hypothesis on the quotient-set
A/~ is needed here; where ~ denotes the indifference relation on A defined by z ~y < x 7=y - x.

Now let us return to the general case. So as to simplify this introduction, we assume that
V(z,y) € A x A, the set Py, = {mn~1: (m,n) € N*x N*, mz = ny} is non-empty. Hence we can
put sz, = infr P, € R4. This invariant is one the most important tool of this work; we prove
in particular that > y < s,, < 1. Let £(A) be the set of pairs (u,o) made up of a morphism
of N*-sets u: A — R* and a map o : A/N*x A/N* — R such that o(x,y)o(2,t) = o(z,t)o(2,y)
and o(x,2) < 1. The main result of this paper (propositions (6.1) and (7.2)) is stated as follows.

MAIN RESULT. — The four following conditions are equivalent:
(1) there exists a pair (u,0) € E(A) such that z = y < oz, y)u(z) > u(y);
(2) there exists a morphism of N*-sets v : A — R and a map v : A/N* — 10,1] such that
x =y & y(@)ulr) > y(y)tuly);

(3) there exists two morphisms of N*-sets uy, ug : A — R% such that u1 < ug and v ~ y <

ur () > uz(y);

(4) > is a homothetic interval order.

Moreover, if = is a homothetic interval order, then the pair (u,v) of (2) is unique up to
multiplication of u by a positive scalar; and the pair (uy,us) of (8) is unique up to multiplication
by a positive scalar (i.e., up to replacing it by (Aui, Auz) for a constant X > 0).

The link between the two characterizations (2) and (3) is precisely described (corollary (7.4)):
if (u,7) is a pair verifying (2), then the pair (u1,us) = (yu,y 1) clearly verifies (3). Conversely,
if (uy,u9) is a pair verifying (3), then the pair (u,7) = ((uyu2)?, (u1iz)?) verifies (2); where
Uy : A — R% denotes the map defined by 2 (x) = ua(x) '

For i =0, 1, 2, we define as follows a binary relation »; on A:

ST r0Y = Szy < Sy,

-z y e (me sz =my, I(z,m) € Ax N¥),

-xroy e (mx > zomy, I(z,m) € Ax N¥).

Suppose = is a homothetic interval order. Then we prove that for ¢ = 0, 1, 2, =; is a homothetic
weak order; i.e., a homothetic structure which is a weak order. Moreover, for any (i.e., for one)
pair (u,7) verifying (2), u represents »g; and for any (i.e., for one) pair (u1,us) verifying (3), u;
represents »=; (i = 1, 2). Let denote . : A/N* — 10, 1] the map defined by . = v for any (i.e.,
for one) pair (u,7) verifying (2). We prove (proposition (7.5)) that the following conditions are
equivalent:

- 7. is a constant map;

- 1=

- > is a semiorder.
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We are also interested in the case of a commutative semigroup A (sections 5 and 8). A binary
relation > on A is said to be o-independent if x > y < (roz > yoz, Vz € A). We introduce a
weaker notion of compatibility between o and >, called o-pseudoindependence (cf. section 5). We
prove in particular (corollary (8.3)) that if (A, o) is a commutative semigroup endowed with a non-
empty homothetic interval order -, then the weak order > is o-independent if and only if > is a
o-pseudoindependent semiorder; we also remark (proposition (8.2)) that > is o-pseudoindependent
if and only if for ¢ = 1, 2, »; is o-independent.

Let us make a few remarks about the nature of the results explained here above. Character-
ization (3) with the help of two maps u; and wue, is the usual way to represent interval orders
([F] theorem 2.7); in fact, the homothetic weak orders =1 and 2 are simple variants of the weak
orders associated with > by Fishburn ([F] theorem 2.6). Novelty resides in that the pair of mor-
phisms (u1,uz) is unique up to mutiplication by a positive constant. The advantage provided by
the characterization (2) is to put in a prominent position the twisting factor v, : A/N* — ]0,1],
conveying explicitely the guiding line of our thinking: to consider a homothetic interval order >
as a deformation of its associated homothetic weak order »=q. This characterization leads us to
contemplate a classification of homothetic interval orders in terms of their invariant ., a task
left to a future work. Finally let us mention that this paper is a generalization of [LL], in which
we deal with the particular case of a N*-set A so that V(z,y) € A2, 3(m,n) € N* x N* such that
mz = ny.

NOTATIONS, WRITING CONVENTIONS. The symbols R, Q, Z denote respectively the field of real
numbers, the field of rational numbers, and the ring of integers. For every part X C R and every
reR weput Xs, ={z€X:zx>r}and X5, = {z € X :2 >r}. Let Ry =R>¢, R} =Ry,
N = Z>0; and for every part X C R, let X* = X NR7.

Let R =Ry [[{co} where oo denotes an arbitrary element not belonging to R. The standard
strict order > on R extends naturally to a strict order on RS, still denoted >: for z € R, we
put co > x, v ¥ oo and oo ¥ oo. And for x, y € R, we put > y < y # x. For every part
X C R, we put

infRic X =

infr, (X NRy) if XNRy # 0
00 if not ’

Let (writing conventions) co™! =0, 07! = oo and =1 = (). And for all non-empty parts X C
R¥andY, ZCRy,weput X '={¢gt:ge X} CRY and YZ ={yz:ycVY, z€ Z} CRy.
At last, if A is a set, for n € Z>1, we put A" = A x --- x A (n times).

1. Let A be a set endowed with a binary relation >. Let denote ~ and 7 the binary relations
on A defined as follows:
ST ySTFY S,
-zxrnye (z=yora~y).
The relation > is said to be:
(A) asymmetric if V(x,y) € A%, we have x = y = y ¥ x;
(T) transitive if V(z,y, z) € A®, we have & = y = 2 = = = z;
(ST) strongly transitive if it satisfies (A) and V(x,y,2,t) € A*, wehave x =y m 2 =t = 2 = t;
(NT) negatively transitive if it satisfies (A) and the relation - is transitive;
(S) strictif V(z,y) € A%, wehave z y 5o = 1 =1.
The relation > satisfies (A) if and only if V(z,y) € A2, we have z % y < y = 2. Then we deduce
that if > satisfies (A), then it satisfies (NT) if and only if the two following equivalent properties
are true (z, y, z € A):



- V(x,y,2) € A3, wehave & = y 7= 2 = 1 = 2;
- V(x,y,2) € A3, wehave v Dy = 2z = 1 = 2.
Thus we have the implications:

(NT) = (ST) = (T) & (A).

(1.1) REMARKS. — Suppose the relation > satisfies (A). Then we have:
-+ satisfies (ST) if and only if V(z,y, 2,) € A%, we have (z = y and 2z = t) = (x = t or z = y);
- = satisfies (NT) if and only if V(z,y, 2,t) € A*, we have z —y = 2z =t = x = t;
- = satifies (S) if and only if V(x,y) € A%, we have x # y = (z = y or y = x);
- if > satisfies (T), then it satisfies (NT) if and only if ~ is an equivalence relation. *

Using the terminology of Fishburn [F], we will say that the relation > is a:

- interval order if it satisfies (ST);

- semiorderif it is an interval order and V(z, vy, 2,t) € A*, wehave x = y = 2z = (t = z or & = t);
- weak order if it satisfies (NT);

- strict order if it satisfies (NT) and (S).

It is easy to check that the definition of interval order given above coincides with the one of [F].
Thus we have the implications:

strict order = weak order = semiorder = interval order.

(1.2) DEFINITION. — Let A be a set endowed with a non-empty binary relation > (i.e., satisfying:
(z,y) € A? such that x = y; in particular, A est non-empty), and let u be a map A — R,. We
say that u represents = if V(x,y) € A%, we have v = y < u(x) > u(y).

2. Let G be a commutative monoid (written multiplicatively); i.e., a set endowed with a
map G x G — G, (9,9') — g¢’ and an element 1 = 1g € G, such that ¥(g,¢,¢") € G>, we
have (gg9')g” = 9(d'9"), 99’ = ¢'g and 1g = g. We call G-set a set A endowed with a map
G x A— A, (g,x) — gz such that ¥(g, ¢, 7) € G* x A, we have g(¢’x) = (g¢')x and lo = 2. If A
is a G-set, we denote A/G the quotient-set of A by the equivalence relation ~g on A defined by:

- x ~g y if and only if 3(g,¢’) € G? such that gz = ¢'y.

Let G be a commutative monoid, and let A be a G-set endowed with a binary relation . The
relation > is said to be :

(¢l) G-independent if V(x,y,g) € A% x G, we have x = y & gx = gy;

(gSS) G-strongly separable if V(x,y,z,t) € A* such that = y and z = t, I(g, 4, ¢") € G* such
that gz > ¢’z = ¢"'2 = gy;

(gC) G-coherent if ¥(z,y, z) € A such that x = y = 2, 3(g,g') € G? such that gr = ¢'2.

From section 1, we know that if the relation > satisfies (NT), then it satisfies (¢C). Suppose
moreover that G is endowed with a weak order >. Then the relation > is said to be:

(gA) G-archimedean if V(x,y) € A% such that z = y, 3(g,¢’) € G? such that ¢’ > g and gz = ¢'y;

(gP) G-positive if ¥(x,y,g,9") € A% x G? such that g > ¢/, we have x = y = gz > ¢'y.

(2.1) REMARK. — Let G be a commutative monoid endowed with a weak order >, and let A be a
G-set endowed with a binary relation >. Let denote (gNI) (resp. (¢NP)) the property obtained
by replacing the symbol > by the symbol 7 in (gI) (resp. in (gP)). It is easy to prove that if >
satisfies (A), (¢I), (¢A) and (¢P), then Z satisfies (¢NI) and (gNP). *
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(2.2) DEFINITION. — Let G be a commutative semigroup endowed with a weak order >. A binary
relation = on a G-set A is called a:

- G-structure if it satisfies (gI), (gSS), (cC), (¢A) and (¢P);

- G-strict order if it is a G-structure and a strict order;

- G-weak order if it is a G-structure and a weak order;

- G-semiorder if it is a G-structure and a semiorder.

- G-interval order if it is a G-structure and an interval order.

The set N* is a monoid for the multiplication, and the standard strict order > on R induces by
restriction a strict order on N*. To ease the notation, we will replace the index N* in (n:I), (n-SS)
(etc.), by an index “h” for homothetic; and we will call homothetic structure (resp. homothetic
strict order, etc.) a N*-structure (resp. a N*-strict order, etc.). In this paper, we intend to give
a characterization — by means of their representations in Ry — of the N*sets endowed with a
non-empty homothetic interval order. We will also give a characterization of the N*-sets endowed
with a non-empty homothetic semiorder (resp. a non-empty homothetic weak order, a non-empty
homothetic strict order).

3. Let A be a N*set endowed with a binary relation . For z, y € A, we denote P, , = P;,
and Qg = Q;y the subsets of Qs defined by

Py = {mn~": (m,n) € (N*)?, ma = ny},
Quy = {mn~": (m,n) € (N*)?, ma = ny};

and we put s;,y = infre Py y and 1y = infree Qg . If > satisfies (A), then V(z,y) € A2, we have
the partitions of Q~q:

(3.1) Qoo ="Puy [[ 9k =Pyt [] Lo

(3.2) LEmMA. — Let A be N*-set endowed with a non-empty binary relation = satisfying (hbA) and
(nP). Then ¥(z,y) € A%, we have Pyy = Qss, .

Proof : Let z,y € A, and put s = s, ,. If P,, =0, then there is nothing to prove. Thus we
may (and do) assume that P, # 0. From (4P), if ¢ € Py, then Q>4 C Py y. If ¢ € Qs then
by definition of s, 3¢’ € P, such that s < ¢’ < ¢g. Thus we have Q> C P, . From (,A), we have
5 € Qs0 = s ¢ Py . From which we deduce that P, , = Q. []

If A is a N*-set endowed with a binary relation >, we denote A* = A{ and A** = A" the
subsets of A defined as follows:

A ={z € A: Py #0, Iy € A},
A" ={x e A: P, #0,Vyec A}

(3.3) REMARKS. — Suppose the relation > satisfies (,I). Then A* is a sub-N*-set of A, and we
have:
- = satisfies (,SS) if and only if ¥(z,y, 2) € A? x A* such that = = y, 3(p,m,n) € (N*)3 such
that px = mz =~ nz > py;
- if > satisfies (,SS), then > satisfies (,C) if and only if A** = A*. *
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(3.4) LEMMA. — Let A be a N*-set endowed with a non-empty interval order > satisfying (nI),
(1SS) and (,C), and let (z,a) € (A*)2. Then Yy € A, we have Pyy = Pu.aQa,aPay-

Proof : Since A** = A*, we have P, # 0 and P,y # 0. From (FT) and (nI), we have
P2.aQa,aPay C Pry. And from (,SS) and (,I), we have P, C Py.qQa,aPa.y- 0

4. The following proposition characterizes the N*-sets endowed with a homothetic weak order
(resp. a homothetic strict order).

(4.1) ProposITION. — Let A be a N*-set endowed with a non-empty binary relation »-. The two
following conditions are equivalent:

(1) there exists a morphism of N*-sets u: A — Ry which represents »;

(2) > is a homothetic weak order.
Moreover, if = is a homothetic weak order, then the morphism u of (1) is unique up to mutiplication
by a positive scalar. And > is a homothetic strict order if and only if there exists an injective
morphism of N*-sets u : A — Ry which represents .

Proof : Suppose there exists a morphism of N*-sets u : A — R, which represents . Clearly we
have v~ (u(A)*) = A*, and the relation = is given by: x = y < u(x) > u(y). Then it is easy to
check (and left to the reader) that > is a homothetic weak order.

Conversely, suppose > is a homothetic weak order. Let (z,y) € A%. From (,1) and (3.2), we
have - y < s, < 1. And from (3.1) and (3.2), we have Q, » = Q>,, , with r,, = s, 1.

Let us prove that P, , # 0 < s, = 1. The implication <« is clear. Conversely, if s, , # 1,
then r,, < 1. Hence 3(m,n) € (N*)? such that m < n and mz = nz. From (,NI) and (,NP)
(cf. remark (2.1)), we have m?z = mnx - n’x, from which we obtain (using (NT)) m?x = n?x.
Therefore Vk € N*, we have mFz = n*z. Since limkHJroo(%)k = 0, we obtain r,, = 0; ie.,
Pw,;z = (Z)

Since the relation > is non-empty, we have A* # (). Choose an element a € A*. We have
Poa 7 0; ie., Sqq = 1.

Suppose x > y. From (3.3), we have P, o, # 0, hence r,, € Rso. Let us prove that
Sqp = Tag. From (3.4), we have Py y = Pr.09a,aPa,y = Pr,aPa,y, Which implies the equality
Sz = Sw,aSay = r;}gsmy. Hence we have sq, < rq, because s, < 1. Seing that r,, € Ry, we
have Q,, # 0. Let (m,n) € (N*)? such that ma = nx. Since s, = 1 = 844, from (,P) and
(uNT), Vp € N* {1}, we have (p+ 1)ma > pma 7 pnz > (p — 1)nzx; therefore (using (ST)), we
have (p + 1)ma = (p — 1)nz. Tending towards the limit, we obtain the inclusion Qs = C Pq .. So
we have 74 4 > 84, Which is an equality because P, » C Qg .. Finally we obtain s, » > sq4,4.

We don’t suppose any more that x > y.

Let us prove that r,, € Ry by reducing it to the absurd: suppose r,, = oo; i.e., suppose
Pra = Qso. Then (,I) we have = a; therefore (,SS), I(p,m,n) € (N*)? such that
pa = mx > nx > pb. In particular, ;% € Py.o; contradiction. Hence rq , € Ry.

Let u = u, : A — Ry be the map defined by u(z) = rq . From (,NI), V(2,t,m) € A% x N*, we
have Q. n,y = mQ, ;. Hence u is a morphism of N*-sets. Let us prove that z > y < u(x) > u(y).
We have seen that if x > y, then 74+ = 54,0 > 54,y- But we have the inclusion P,y C Qq,y, from
which we deduce the implication: = = y = u(x) > u(y). Conversely, suppose u(z) > u(y). Then
J(m,n) € (N*)2 such that ma = ny and ma Z nxr. But ma 7 nx < nx = ma, from which we
obtain nz > ma 7 ny. From (NT) we have nz > ny; hence (,I) we have = > y. We thus proved
that u represents >. And clearly, > satisfies (S) if and only if w is injective.

We still have to prove the uniqueness property. Let v : A — R, be another morphism of N*-sets
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such that V(z,y) € A2, we have x > y < v(z) > v(y). Since u=(u(A)*) = A* = v~ (v(A4)*),
Vr € A, we have u(z) # 0 < v(x) # 0. Let A: A — R be the map defined by

~ fu(@)"to(z) ifu(z) £0
Alz) { “lo(a) if not '

Since v and v are morphisms of N*-sets, A factorizes through the quotient-set A/N*. Suppose
Jz € A such that A\(z) # Aa). Put a = A(a)\(z)~!. First of all suppose a < 1. Then g € Q=0
such that au(a)u(z)™! < ¢ < u(a)u(x)~'. In other words, we have v(a) < qu(x) and qu(x) < u(a),
contradiction. Now if a > 0, then 3¢’ € Qs such that u(a)u(z)™! < ¢ < au(a)u(z)™!; ie.,
u(a) < q'u(z) and ¢'v(z) < v(a), contradiction. Hence @ = 1, and A is a constant map. This
completes the proof of the proposition. []

(4.2) CoroLLARY. — Let A be a N*-set endowed with a non-empty homothetic weak order -, and
let a € A*. Then the map A — R, x — 144 s a morphism of N*-sets which represents .

5. Let (A, o) be a commutative semigroup; i.e., a set A endowed with amap AXA — A, (z,y) —
x oy such that V(z,y, z) € A%, we have

- zo(yoz) = (xoy)oz (associativity),

- zoy =yox (commutativity).
Let remark that A is a fortiori a N*-set, for the operation of N* on A defined by the map
N*x A — A (mx) — me = zo---ox (m times). For all parts X, Y C A, we put
XoY ={zoy:zeX,yeY}CA

A binary relation > on A is said to be:

(oI) o-independent if ¥(z,y, z) € A%, we have x = y < r 02 = y o 2
(oPI) o-pseudoindependent if A* o (A~ A*) C A* and V(x,v, 2,t) € A*, we have

(x>y,z>t)=>x0z>yotl
(xmy,znt)=xo0zZyot

(5.1) ProposiTION (variant of (4.1)). — Let (A,0) be a commutative semigroup endowed with a
non-empty binary relation >=. The three following conditions are equivalent:

(1) there exists a morphism of semigroups u : A — R which represents »=;

(2) > is a o-independent homothetic weak order;

(8) = is a o-pseudoindependent homothetic weak order.
Moreover, if = is a homothetic weak order, then the morphism u of (1) is unique up to multiplication
by a positive scalar.

Proof : The implication (1) = (2) is clear.

Let us prove the implication (2) = (3). Supposose > is a o-independent homothetic weak order.
Let (z,y) € A* x (A~ A*) such that x oy € A~ A*. Thus we have x > z oy. From (oI), we have
xoy > (roy)oy = xo(2y) and y > 2y, hence y € A*; contradiction. Therefore A*o (AN A*) C A*.
Then using (T) and (NT), we easily deduce that the relation > is o-pseudoindependent. So we
have (2) = (3).

Let us prove the implication (3) = (1). Suppose > is a o-pseudoindependent homothetic weak
order. Choose an element a € A*, and let u = u, : A — Ry be the morphism of N*-sets defined
by u(z) = re. From (4.3), u represents =. Let (z,y) € A% If (m,n,m/n’) € (N*)* satisfies
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ma 77 nz and m'a 7 n'y, then from (,PI), we have (nm’ +n'm)a 7 nn’(xz o y). Therefore we have

Tazoy < 2+ ZL—,, From which we deduce that 74 zoy < 7'q,z +74a,y; i€, that u(zoy) < u(z)+ u(y).

First of all suppose (z,y) € (A*)%. If (m,n,m/,n’) € (N*)* is such that mz > na et m'y = n’a,
mml

then from (oPI), we have mm/(z oy) = (m'n + mn')a. Hence we have syoya < srmfies =

(£ + 7%/,)_1. From which we deduce that 7oy = 850, 4 = Syt + Sy = Tax + Tay; i-€., that
u(z oy) > u(z) + u(y). Hence we have u(z oy) = u(z) = u(y).

Now suppose (z,y) € (A~ A*)2. Then the inequality u(r o y) < u(x) + u(y) = 0 implies
u(zoy) = 0. So we have u(zoy) =0 = u(z) + u(y).

Last of all suppose (z,y) € A* x (A~ A*). Assume u(x oy) < u(x) 4+ u(y). Since u(y) =0, we
have z = x oy. Hence (,P), I(m,n) € (N*)? such that m > n and nz = m(z o y) = nx o z with
z=(m—n)xomy. But (m —n)x € A* and my € A~ A*. Thus from (,PI), we have z € A*.
Because (nz, z) € (A*)?, we have (cf. above) u(nz o 2) = u(nz) + u(z). But since nx = nx o 2z, we
also have u(nx) > u(nx o z); contradiction. Hence we have u(x o y) = u(x) + u(y).

Since z oy = y o x, the case (z,y) € (A A*) x A* is already done.

So we proved that u is a morphism of semigroups. This completes the proof of the implication
(3)=(1).

At last, the uniqueness property is a consequence of (4.1). []

6. Let E beaset, and E' C E be a subset. Let denote G(E'x E) the set of maps f : E'’x E — R
such that V(2, v/, x,y) € (E')? x E?, we have f(2/,2') < 1 and f(2,2)f(v,y) = f(z',y)f(v,x). And
let denote Go(E' x E) C G(E'x E) the subset made up of maps f such that V(z',y') € (E')?, we
have f(x'y') = f(y,2'). Let remark that if f € Go(E' x E), then V(z,y/) € (E')?, we have
flz,y) = fz,2)2 f(y,y)% < 1. B

Let A be a N*-set endowed with a binary relation > satisfying (,I). Put A = A/N* and let
denote A* = A} the subset of A defined by A* = Af /N*. We denote (A, ) the set of pairs
(u,0) made up of a morphism of N*-sets v : A — Ry and a map o € G(A* x A); i.e., a map
o € G(A*x A) such that V(z,y,m,n) € A* x A x (N*)2, we have o(mx,ny) = o(z,y). We denote
Eo(A, =) C E(A, =) the subset made up of pairs (u,o) such that o € Go(A* x A). At last, for
(u,0) € E(A, ), we denote o* the restriction o gy j«-

The following proposition characterizes the homothetic interval orders.

(6.1) ProposITION. — Let A be a N*-set endowed with a non-empty binary relation >-. The two
following conditions are equivalent:

(1) there exists a pair (u,0) € E(A, =) such that ¥(z,y) € A%, we have x = y < o(x,y)u(x) >

u(y);

(2) > is a homothetic interval order.
Moreover, if = is a homothetic interval order, then there exists a pair (u,0) € Ey(A, =) verifying
(1); and if (u1,01), (u2,02) € E(A, =) are two pairs verifying (1), then o5 = o7 and there exists
a (unique) constant A > 0 such that us = Au;.

Proof : Suppose there exists a pair (u,0) € E(A, =) verifying (1). Clearly we have u=!(u(A4)*) =
A*. For v € A, put T = u(x). Let (x,y9) € A? such that + = y, and suppose y = .
Then we have o(y,x)o(z,y)T > o(y,z)y > T. But since 0 € G(A* x A), we also have
o(y,z)o(x,y) = o(y,y)o(x,x) < 1, which contradicts the inequality o(y, z)o(z,y)T > T. Therefore
>~ satisfies (A).

Since = satisfies (A), for (x,y) € A x A*, we have x = y & T > o(y,2)y. Let (x,vy,2,t) € A



such that > y 7~ z > ¢t. Thus we have

hence %;—QT > t. But o(z,y)o(z,t) = o(z,t)o(z,y), hence o(x,t)T > t; i.e., x > t. Therefore
> satisfies (ST); so it is an interval order.

It remains to prove that > is a homothetic structure. The conditions (yI), (hA) and (,P) are
clearly satisfied. Let (z,y,2) € A such that x = y = 2. We have o(z,y)Z > 7, hence T > 0 and
Im € N* such that mo(x, 2)T > Z; i.e., such that ma > z. Therefore > satisfies (;,C). Concerning
the condition (,,SS), let (z,y,2,t) € A* such that # = y and z = t. We have o(z,y)T > 7 and

r = o(z,y)z > 0. Hence 3(p, m,n) € (N*)3 such that

m

—_ >
po(z,2)

o(z,y)T > r>7.

n
p
Since o(z, y)% = o(x, z), multiplying by p%, we obtain

o(z,2)
o(z,y)

po(z,2)T > mz > no(z,2)Z > p

i.e., pr > mz = nz = py. Therefore > satisfies (1,SS).

Conversely, suppose > is a homothetic interval order. Then V(z,y) € A%, we have (cf. the proof
of (4.1)) & =y & spy <1l and Q,, = Qx,, , with 7y, =5, .

Let denote > the binary relation on A defined by & > y & 55y < Sy .25 1., by € >y & Py 2
Py In particular, we have z > y = z € A*. Clearly, > satisfies (A). Let (z,y,2) € A% such
that © >y > 2. If z € AN A" then ) = P, G P,.. And if z € A*, then from (3.4), we have
Pz = PeyQyyPy.z G Pu.o. Therefore > satisfies (T).

Let denote = the binary relation on A defined by x = y < = % y # x. Thus we have
TRY S Sey = Syx = Poy=Pya

We clearly have  ~ y < y ~ x. Let us prove that ~ is transitive. Let (z,y,2) € A® such that
T =y =z Since P, = Py, we have (z,y) € (A*)2 U (A~ A%)2. If (x,y) € (A*)?, then from
(3.4), we have Py . = PryQy yPy.z = PywQyyPey = Pays e, @ = 2. Suppose (,y) € (AN A*)2
Since A** = A*, we have P, . =P, . =0 =P, ,; i.e., z € A~ A*, which implies P, , = (). Hence
SRS

Since = is transitive, it is an equivalence relation. Hence > is a weak order. Let remark that
V(x,y) € A%, we have x = y = x > y, therefore x >y = z 7= y.

Let us prove that > is a homothetic structure. For (z,y,m,n) € A?x (N*)2 we have
Prmany = 1Pz y. From which we deduce that > satisfies (1), (,A) and (,P). Since > satisfies
(NT), > satisfies (;,C). Concerning the condition (1,SS), let (z,vy,2,t) € A* such that x > y and
z > t. Since (z,2) € (A*)?%, we have (3.4) Pyy = Pr2Q..P.y. And if y € A%, we also have
Pyz = Py2Q::Ps . Since sz < 8y, With s, = o0 if y € A\ A*, I(p,m,n) € (N*)3 such that
n <m, (%)2395,2 < 8., and (£)%s, ) < s,.; i.e., such that pr > mz > nz > py. Thus > satisfies
(nSS), and > is a homothetic structure.

Since > is a homothetic weak order, from (4.1), there exists a morphism of N*-set v : A — Ry
such that V(x,y) € A2, we have z > y < u(z) > u(y). For z € A, we have u(z) = 0 if and only
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if Vy € A, we have r,, = 0; i.e., if and only if z € A\ A*. Thus we have u™!(u(A)*) = A*.
Let o* : A* x A* — R’ be the map defined by o*(z,y) = ryu(z) tu(y). We extend o* to
A* x A in the following way: let choose an element a € A*, and for (x,y) € A* x (A~ A*), put
o(z,y) = o (x,a). For (z,y,m,n) € (A*)*x (N*)2, we have 7y ny = 21y ,. Therefore o factorizes
through A* x A. For (z,y,2,t) € (A*)*, we have 0*(z,2) = ry, < 1 and Pyy = Pr1Qt.tPry,
from which we deduce that s, , = $; 474,+5¢, and (switching to the inverse) that ry , = ¢ 25¢.¢7y .43
hence 7y 7t = T2 (Tt,28t 4Ty t) = TeaTy,. and o(z,y)o(z,t) = o(x,t)o(2,y). From the definition
of o, this last equality remains true for (y,t) € A% Hence (o,u) € £(A,>), and by construction
V(x,y) € A% we have z = y < o(z,y)u(r) > u(y).

It remains to prove the last two assertions of the proposition. For (x,3) € (A*)2, we have
Ty = o(z,y)u(x)u(y) !, hence

u(@) > uly) & oz, y)u(@)u(y) ™ > oy, x)u(y)u(z) "
& oz, y)iul@) > oy, 2)Tu(y);

which is possible only if o(z,y) = o(y,x). Hence (u,0) € &(A, ). Concerning the uniqueness
property, for i = 1,2, let (u;,0;) € E(A, =) such that V(z,y) € A% we have v = y &
oi(x,y)ui(r) > ui(y). Let recall that uy ' (ui(A)*) = A* = uy '(uz(A)*). For x € A, let write
uz(z) = Agui(x) with A\, >0 and A\, = 1if u1(z) = 0. Let remark that the map z +— X, factorizes
through A. For (z,y) € (A*)?, we have (easy checking left to the reader) o2(z,y) = A; ' A\yo1(z, y),
therefore
0-2(1"7 y) = 02(y7 JI)

e A\ o, y) = )\;1/\1.01 (y, x)

& A=A
ie, Ay = \,. Soz+— ), is a constant map on A*. This completes the proof of the proposition. []

(6.2) REMARK. — Let A be N*-set endowed with a non-empty binary relation >=. If (u,0) € £(4, >)
is a pair verifying (6.1)-(1), then we have u=*(u(A)*) = A*; and the relation > is completely
determined by the pair (u|a-,0*). But for 0 € Go(A* x A) and (z,y) € (A*)?, we have
o(z,y) = v(x)y(y) with y(z) = o(z,z)2. Therefore, the condition (1) of (6.1) is equivalent to
the following condition (1’):

(1°) there erxists a morphism of N*-sets u* : A* — Ry and a map v : A* — ]0,1], such that

V(z,y) € (A*)?, we have x =y & y(x)u(z) > v(y) ' u(y)

Moreover, if = is a homothetic interval order, then the pair (u*,v) of (1’) is unique up to
multiplication of u* by a positive scalar. *

(6.3) COROLLARY/DEFINITION. — Let A be a N*-set endowed with a non-empty interval homothetic
order =, and let (u,0) € Ey(A, =) be a pair verifying (6.1)-(1). Then u represents the homothetic
weak order ~o (denoted > in the proof of (6.1)) on A defined by x =o y < 1yu > Tay; and
V(z,y) € (A*)?, we have o*(x,y) = rysu(y)u(x)~'. The invariant o* € Go(A* x A*) does
not depend on u; we denote it ol . At last, let denote vi : A* — R% the map defined by
* * 1 * * *

Vi (x) = ol (x,2)%; so we have ol (x,y) = % (2)vL ().

(6.4) CorOLLARY. — Let A be a N*-set endowed with a non-empty homothetic interval order >,
and let u: A — Ry be a morphism of N*-sets which represents =q. Then ¥(x,y) € (A*)?, we have

u(x)u(y)_l = (Ty,msy,z) 2
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Proof : For (z,y) € (A*)?, we have o} (z,y) = ry zu(y)u(z) ™ and o(z,y) = o(y, z); from which

we deduce that w(2)u(y) ™" = (ry.r; L)% = (ryasy.)?. (]
(6.5) REMARK. — Let A be a N*-set endowed with a non-empty homothetic interval order >,
and let v : A — R% be a morphism of N*-sets which represents ¢. One may wonder if the
map A x A — R, (z,y) — ry, = s;é factorizes through the product-map w x w; i.e., if
V(z,y,2,y') € A* such that u(z) = u(2’) and u(y) = u(y’), we have r,, = r,,. In general
the answer is negative: cf. the example (7.5) below. *

Let A be a N*-set endowed with a non-empty homothetic interval order >, and let u : A — R be
a morphism of N*-sets u : A — R which represents 9. Choose an element a € A* and let denote
ol : A*x A — R’ the map extending o defined by o¢ (,y) = 0% (x,a) for (z,y) € A*x (AN A¥).
Then (u,0%) € E(A,>) and V(z,y) € A2, we have x > y < o (x,y)u(z) > u(y). The map
ol is split: there exist two maps o1 : A* — R and o2 : A — R such that ¢ = o1 X 7
with Ga(z) = o2(z)7! (z € A). In fact, for (z,y) € (A%)2, put 01(x) = Sqalau(z)”! and
o5(y) = Sayu(y)”l; since 7y. = TyaSaaTax (34), we have o1(x)os(y)”t = of(z,y). Let
o2 © A — R% be the map extending o3 defined by o2(y) = o2(a) for y € A~ A*. The maps
o1 : A* — R% and 0 : A — RY defined in this way factorize through A* and A respectively. And by
construction, we have 0 = o1 X 72. In other words, V(z,y) € A2, we have z = y < u1(z) > uz(y)
with u;(x) = o;(z)u. Fori =1, 2, the map u; : A — R, is a morphism of N*-sets. This formulation
by means of a pair of maps (u1,u2) is the one usually employed to represent interval orders; cf. [F]
theorem 2.7. Let remark that in the general (i.e., not necessarily homothetic) theory of interval
orders, there is a priori no possible uniqueness result for the pair (uq,us). As we will see in section
7 below, for homothetic interval orders the result is quite different.

7. Let A be a N*-set endowed with a binary relation »=. We denote >=; and >, the binary
relations on A defined by:

-z y s (mx = z7omy,3(z,m) € Ax N,

-z y e (mx sz =-my, I(z,m) € Ax N¥).

(7.1) LEMMA. — Let A be a N*-set endowed with a non-empty homothetic interval order >. Then
fori=1,2, =; is a non-empty homothetic weak order.

Proof : Let a pair (u,0) € & (A, ) satisfying (6.1)-(1). We may (and do) suppose o = ¢ for
an element a € A*. For (z,y) € A%, we have * = y = x =; y (i = 1, 2). Therefore the relations
=1 and =9 are non-empty. Let us prove that =1 is a homothetic weak order. Let (z,y) € A? such
that = =1 y, and let (z2,m) € A x N* such that ma > z 77 my. Thus we have x € A*. First of all
suppose (y, z) € (A*)%. Hence we have o(z, z)u(mzx) > u(z) > o(x,y)u(my). We obtain

u(z) u(maz) > u(z) > rz,yMu(my),

u(y)

hence 7, 5 > r.,. But from (3.4), we have r, , = 7, 4Sq,aTa,x a0d T2y =72 4Sa,aTa,y- From which
we deduce that 74, > 74,. Now if (y,2) € (A~ A*) x A, then this last inequality remains true:
we have r,, > 0 and r,, = 0. At last, if (y,2) € A* x (A~ A*), then replacing z by a in the
calculation above, we still obtain 74 . > rq,y.

Conversely, let (z,y) € A? such that o, > r,,. Then z € A*, and 3(m,n) € (N*)? such that
Tae > 7= 2> Tay. Since %ra,t = Tnay (t € A), we have mryq. > 1> mrypq,. First of all suppose
y € A*. Then we obtain o(z, a)u(mz) > u(na) > o(y,a)u(my); i.e., mz = na 7 my. Thus we
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have x »1 y. Now if y € A~ A*, then Vm € N* such that m > s, ,, we have ma > a > my;
therefore x =1 y.

So we proved that the morphism of N*-sets u; : A — R, © +— r, , represents the relation >.
Then it is easy to check (and left to the reader) that =; is a homothetic weak order.

Let (z,y) € A? such that @ =5 y, and let (2,m) € A x N* such that max - z = my. Then
z € A*, u(mzx) > o(z,7)u(z) and o(z,y)u(z) > u(my), from which we obtain o(z,z) tu(mz) >
u(z) > o(z,y) " tu(my). In particular, we have x € A*. First of all suppose y € A*. Like for >,
we obtain s, ; > 54,,; and this inequality remains true for y € A \ A*. Conversely, like for ~; we
prove that if (z,y) € A? is such that s, > 4, then z =2 y. Hence the morphism of N*-sets
us : A — Ry, . — s, represents >2. And like for 1, it is easy to check that 5 is a homothetic
weak order. []

(7.2) ProposITION. — Let A be a N*-set endowed with a non-empty binary relation -. The two
following conditions are equivalent:

(1) there exists two morphisms of N*-sets uy, up : A — R, such that uy < us and ¥(x,y) € A2,

we have x = y < ui(x) > uz(y);

(2) > is a homothetic interval order.
Moreover, if = is a homothetic interval order, then the pair (ui,us) of (1) is unique up to
multiplication by a positive scalar (i.e., up to replacing it by (Aui, Auz) for a A > 0); and for
1 =1, 2, u; represents ;.

Proof : Let uy, us : A — Ry be two morphisms of N*-sets verifying (1). Since u; < ug, >
satisfies (A); and V(x,y) € A%, we have x = y < ua(x) > u1(y). It is easy to check (and left to the
reader) that > is a homothetic interval order.

Conversely, suppose = is a homothetic interval order. Choose an element a € A*, and let
ut, uj : A* — R be the morphisms of N*-sets defined by uf(z) = s4,a7a,» and u3(x) = s4,,. For
i=1,2, let u; : A — R, be the morphism of N*-sets obtained extending u} by zero on A \ A*.
For (z,y) € (A*)?, we have

Ty Ty >1
& TyaSa,aTae > 1
< up () > ua(y).

By construction, we have u; *(u;(A)*) = A* (i = 1, 2), therefore the equivalence above remains
true for y € A~ A*. Since > satisfies (A), we have u; < ug. From the proof of (7.1), we already
know that for ¢ = 1, 2, u; represents >;.

Concerning the uniqueness property, let u}, u5 : A — R4 be two others morphisms of N*-
sets verifying (1). For (m,n,p) € (N*)3, we have muy(z) > nus(z) > pui(z) if and only if
muy(z) > nub(x) > puj(x). Thus for i = 1,2, we have u(z) = 0 & wi(z) = 0 (z € A).
For i = 1,2, let \; : A* — R% be the map defined by \;(z) = w;(x) 'uj(x); since u; and ]
are morphisms of N*-sets, \; factorizes through the quotient-set A*. Let f : A* x A* — R}
be the map defined by f(z,y) = Xo(y) " *A1(z). Let (x,9) € (A*)2, and put u = uy () Lus(y)
and a = f(x,y). For (m,n) € (N*)2, we have ma = ny < Z > p; but we also have
mz = ny < uj(mz) > uh(ny) < o > po If a > 1, let choose (m,n) € (N*)? such that
@ > > 2 then we have ma > na 7, ma, contradiction. If av < 1, let choose (m,n) € (N*)?
such that 2 > u > a2%; then we have mx = nx I mx, contradiction. Hence a = 1. So we proved
that f = 1. This implies there exists a constant A > 0 such that Ay = Ay = A. This completes the

proof of the proposition. []
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(7.3) COROLLARY. — Let A be a N*-set endowed with a non-empty homothetic interval order >.
Let a € A* and uq, uz : A — Ry be the morphisms of N*-sets defined by u1(x) = Sq,qTa.c and
Ug(x) = Sq,2- Then the pair (u1,us) verifies (7.2)-(1).

(7.4) CorROLLARY. — Let A be a N*-set endowed with a non-empty homothetic interval order .
(1) Let (u,0) € E(A, =) be a pair verifying (6.1)-(1). Let uy, us : A — Ry be the morphisms of
N*-sets defined by u;(A~ A*) =0 (i = 1,2), ui(z) = v (z)u(z) and us(z) = v& (z) tu()
(x € A*). Then the pair (ui,us) verifies (7.2)-(1).
(2) Let uy, ug : A — Ry be two morphisms of N*-sets verifying (7.2)-(1). Let u: A — Ry be the
morphism of N*-sets defined by u = (Ullla)%, and let v* : A* — R% be the map defined by
v* = (u1Ta)? with Ty(z) = ug(x) ™. Then u represents = and vE =0t
Proof : Let choose an element a € A* and let v}, u5 : A — Ry be the morphisms of N*-sets
defined by v} (z) = $4,a7a,z and uh(x) = 4. For (z,y) € (A*)?, we have

Tey < Tyz < Tz.aSa,aTay < Ty,aSa,ala,x
< Sa,aTa,zSa,x = Sa,aTa,ySa,y

& (uyuy) (@) > (uhus)(y).

!

Since for i = 1, 2, we have ug_l(uZ

(A)*) = A*, the equivalence above remains true for (x,y) € A2

Hence ujuy represents >o. Therefore v/ = (u}ub)? represents >, and u’ is a morphism of N*-

sets. Moreover, it is easy to check (and left to the reader) that the map vf : A* — R% is given
ES

by v (x) = u)(x)2ub(z)~2. By construction, for z € A*, we have u}(z) = ¥ (x)u/(x) and
uh(z) = % (x) "'/ (z). Finally the uniqueness properties in (6.1) and (7.2) implie the corollary. []

The following proposition characterizes the homothetic semiorders.

(7.5) ProPOSITION. — Let A be a N*-set endowed with a non-empty binary relation . The three
following conditions are equivalent:
(1) there exists a morphism of N*-sets w : A — Ry and a constant a € ]0,1] such that
V(z,y) € A%, we have = y < au(z) > u(y);
(2) = is a homothetic interval order such that =1 =2 (in that case, we have =1 ==¢g=>2);
(3) = is a homothetic semiorder.
Moreover, if = is a homothetic semiorder, then the pair (u, ) of (1) is unique up to multiplication
of u by a positive scalar.

Proof : Suppose there exists a morphism of N*-sets u : A — R4 and a constant « € ]0,1]
verifying (1). Let (z,y) € A% We have z =; y if and only if 3(2,m) € A x N* such that
au(mz) > u(z) > au(my); ie. (cf. the proof of (7.1)), if and only if u(x) > u(y). And
we have z =9 y if and only if 3(z,m) € A x N* such that au(mz) > au(z) > au(my); ie.,
if and only if u(x) > u(y). Thus we have =1 =%g=1>2. Now let (z,y,2,t) € A* such that
x = y = z Since au(r) > u(y) > a'u(z), we have o?u(x) > u(z). If t = x, we have
u(t) > au(r) and au(t) > o?u(z) > u(z), hence t = z. And if 2 7= ¢, we have o~ tu(z) > u(t) and
au(z) > a~tu(z) > u(t), hence x = t. Therefore = is a semiorder.

Conversely, suppose »=1 =5. Let a € A*. From the uniqueness property in (4.1), there exists a
(unique) B > 0 such that Vo € A, we have 7, = 85,,2; taking z = a, we obtain rq o = 384,4. From
(7.3) and (7.4), we have ¢ =11, and V(z,y) € (4*)?, we have o} (z,y) = 0f (a,a) = 7q,q. Put
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@ =714, €0,1]. If u: A — RY is a morphism of N*-sets which represents ¢, then V(z,y) € A%
we have x > y < au(z) > u(y).

The implication (1) = (3) and the equivalence (1) < (2) are proved. Let us prove the implication
(3) = (1). Suppose > is a homothetic semiorder. Let a pair (u, o) € £ (A, >) verifying (6.1)(1). We
have to prove that o* = o is a constant map. Let (2,9, z,t) € (4*)* such that z = y = 2. We have
o(z,y)u(z) > u(y) and o(y, 2)u(y) > u(z). Mutiplying the first inequality by o(y, t) and the second
one by o(z,t), we obtain o (y, y)o(z, t)u(z) > o(y, t)u(y) and o(z, z)o(y, t)u(y) > o(z,t)u(z). From
which we deduce that

oy, y)o(x, t)o(z, 2)

o(z,t)
i.e., that o(y,y)o(x, z)u(x) > u(z). Suppose ¢* is not a constant map. Then we may (and do)
assume o(t,t) # o(y,y). Up to permuting ¢ and y, and replacing x, ¢, z par some multiples
of themselves (in order to have x > t > z), we may (and do) assume o(t,t) < o(y,y). Put

u(z) > u(2);

*

W= J_lf;(g% > 1. Since Ppy = Qss,,, Py- = Qss, . and s,5,. = s%yr;; = Sy,ySy,y, We
have Py, Py . = Qss, .s,,- Thus we deduce that for every ¢ > 0, there exists (m,n,p) € (N*)3
such that ma = py > nz and sg.8y,) < 2 < $3.5,, + €. So let (m,n,p) € (N*)? such that

Su,2Syy < L < fUSg,25y,y. Since o(x,z) = s, Lu(x) " u(z), multiplying by u(x)u(z)~", we obtain

1 <u(mac) u
o(yy)o(x,z) ~ u(nz) ~ oly,y)o(x,z)

Therefore, up to replacing (z,y,z) by (mx,py,nz), we may (and do) suppose that we have
o(y,y)o(z, 2)u(x) > u(z) > o(t,t)o(z, z)u(x). Then I(a,b) € (N*)? such that

u(z) > %a(t,z)u(t) > o(t,t)o(x, 2)u(z).

Again, up to replacing (z,y, z,t) by (bx, by, bz, at), we may (and do) suppose a = b = 1. Thus we
have z = ; and u(t) > o(t, 2) to(t, t)o(x, 2)u(x) = o(x,t)u(x), that is ¢t 25 x. Therefore = is not
a semiorder, contradiction. So we proved that ¢* is a constant map, which implies (1). [

Let A be a N*-set endowed with a non-empty homothetic interval order ». From (7.5), > is a
semiorder if and only if its invariant o is a constant map. And - is a weak order if and only if
o = 1. We can see the homothetic interval order > as a deformation of its associated homothetic
weak order >~¢; the invariant o being the expression of this deformation. So the homothetic
semiorders are the homothetic interval orders for which the deformation is as simple as possible,
that is expressed by a constant invariant.

(7.6) ExamMPLE. — Let A = N*z [[N*y be the union of two copies of N*. Let «, 8 be two real
numbers such that 0 < o, 3 < 1, and let 0 : Ax A — R% be the map defined by o(z,z) = a,
o(y,y) = B and o(x,y) = o(y,z) = (af)%. Let u: A — R, be the morphism of N*-sets defined
by u(z) = u(y) = 1. From (6.1), the binary relation = on A defined by z > t < o(z,t)u(z) > u(t),
is a homothetic interval order. Let remark that we have AT = A. Moreover, > is a semiorder if
and only if o = 3; in which case we have ¢ = a.

Otherwise, we have ry, = o(z,z) and ry, = o(y,y). So if o # [, then the map
Ax A — R, (2,t) = 1,4 do not factorizes through the product-map u x u; which answers
the question asked in (6.5). *

8. In this section, we generalize proposition (5.1) to the homothetic interval orders.



15

(8.1) LEMMA. — Let (A,0) be a commutative semigroup endowed with a non-empty homothetic
interval order . If > is o-independent, then > est un semiorder.

Proof : Suppose =g is o-independent. In particular, we have A* o A C A*. Let a € A*. For
(2,9,2) € A3, we have x oz =1 yoz & Ta,z0z > Ta,yoz- Replacing a by a oz € A*, we obtain

TOZ > YORZ< Tgoz,woz = Taoz,yozr = Ta,xz > Tay & T ™1 Y.

Thus >~ is o-independent. In the same way, we prove that o est o-independent. Let ug, uq, us
A — Ry be the morphisms of N*-sets defined by u1 () = $q,07a,2, U2(Z) = Sq,, and ug = (uluz)
From (7.3), for ¢ = 0, 1, 2, u; represents >;; and from (5.1), u; is a morphism of semigroups. For
(z,y)* € A, we have (easy calculation)

u(x 0y)* = uo(x)? + uo(y)* + ur (2)uz(y) + wi (y)ua ()
= [uo () + uo(¥)]* + ([ (2)ur (9)]* = [ur (W)ua(@)]*)?,

from which we deduce that ([uy (@)us(y)]2 —[u1 (y)ug(x)]2)? = 0; i.e., that u; (z)ua(y) = u1 (y)us(z).
That is possible only if us = Auy for a constant A > 0. Hence > is a semiorder (7.5). [

(8.2) PrROPOSITION. — Let (A, 0) be a commutative semigroup endowed with a non-empty homoth-
etic interval order —. The two following conditions are equivalent:

(1) = is o-pseudoindependent;

(2) fori=1,2, »; est o-independent.

Proof : Suppose > is o-pseudoindependent. Let a € A*. From the proof of (5.1), for z, y € A,
we have 7 zoy = Ta,z +7a,y; and in the same way, we obtain 84 z0y = Sa,z + 5a,y- S0 the implication
(1) = (2) is proved.

Conversely, suppose for i = 1, 2, »=; est o-independent. Let w1, us : A — R4 be two morphisms
of N*-sets verifying (7.2)-(1). For i = 1, 2, since wu; represents »; (7.2), it is a morphism of
semigroups (5.1). From this we deduce that for (z,y, z,t) € A%, we have

(x>=y,z=t)=>x02>yot
(xZy, zot)=x0zZyot '

Let (z,y) € A* x (AN A*). If zoy € AN A*, then we have x = z oy, that is ui(x) > us(xoy) =
uz(x) + ua(y) = ua(x), which is impossible because u; < us. Hence = is o-pseudoindependent. []

(8.3) CorOLLARY. — Let (A, o) be a commutative semigroup endowed with a non-empty homothetic
interval order . The two following conditions are equivalent:

(1) ¢ is o-independent;

(2) > is a o-pseudoindependent semiorder.

Proof : If = is o-independent, then > is a semiorder (8.1), therefore >=1 =>¢ =2 (7.5) and > is
o-pseudoindependent. So we have (1) = (2). Conversely, if > is a o-pseudoindependent semiorder,
then we have =1 =>¢ =2 (7.5) and = is o-independent (8.2). 0
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(8.4) ExampLE. — Let A = N*z x N*y be the product of two copies of N*| endowed with the
structure of commutative semigroup o defined by (mz,ny) o (m'z,n'y) = (m + m)z, (n + n')y).
Let A, p be two real numbers such that 0 < A < u, and let uy, ug : A — Ry be the morphisms of
semigroups defined by uy (mz, ny) = Am+n and us(ma, ny) = pm+n. Then from (7.2) and (8.2),
the binary relation > on A defined by z = ¢t < wuy(2) > us(t), is a o-pseudoindependent homothetic
interval order. But the homothetic weak order g is o-independent (i.e., =1 =32) if and only if
we have A = y; in which case > is a homothetic weak order. *

For once, let us conclude with a definition.

(8.5) DEFINITION. — We call biased balance a commutative semigroup (A, o) endowed with a o-
pseudoindependent homothetic semiorder >.
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