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Abstract

This paper introduces a mixture model based on the beta distribution, without pre-

established means and variances, to analyze a large set of Beauty-Contest data obtained

from diverse groups of experiments (Bosch-Domènech et al. 2002). This model gives a bet-

ter fit of the experimental data, and more precision to the hypothesis that a large proportion

of individuals follow a common pattern of reasoning, described as iterated best reply (de-

generate), than mixture models based on the normal distribution. The analysis shows that

the means of the distributions across the groups of experiments are pretty stable, while the

proportions of choices at different levels of reasoning vary across groups.

Keywords: Beauty-Contest experiments, decision theory, reasoning hierarchy, finite mixture

distribution, beta distribution, EM algorithm.
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1 Introduction

The paper applies a specific finite mixture model to identify patterns of belief formation

and choice. The heterogeneity of subjects’ decisions and beliefs favors clustering procedures

to separate the observed outcomes, and mixture models are a convenient statistical tool for

this type of investigation. Specifically, we analyze a data set collected from Beauty-Contest

(BC) experiments by A. Bosch-Domènech, J.G. Montalvo, R. Nagel and A. Satorra (2002)

using a finite mixture of generalized beta distributions. The data in Bosch-Domènech et. al.

(2002) were obtained from seventeen different experiments. Often, experiments in economics

draw their subjects from a student population and are typically run in laboratories. But

the seventeen experiments whose data we are analyzing were performed in very diverse en-

vironments, involving different subject pools, sample sizes, payoffs, and settings: some data

were collected in a laboratory and thus with high control, others in classrooms with under-

graduate students, or in conferences, by e-mail and, most numerously, through newsgroups

or among newspaper readers, a new source of data collection, enriching the growing area of

field experiments.1 We are, therefore, dealing with a rich and heterogeneous data set.

In a basic BC game, each player simultaneously chooses a number in an interval. The

winner is the person whose number is closest to p times the mean of all chosen numbers,

where p is a predetermined and known number.2 The BC game facilitates an evaluation of

the ‘agents reasoning” and their beliefs on the other players’ strategies. A nice feature of

the game is that players are not guided by social norms, like fairness or altruism, which are

often invoked when payoff-maximizing solutions cannot describe the observed behavior. The

game is thus a game of pure competition. Another advantage of the game is that the high

number of players that can participate in it makes collusion or cooperation difficult, therefore

1See Glenn Harrison and John List (2004).
2For surveys of BC experiments see Camerer (2003), Nagel (1998, 2004).
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simplifying the interpretation of the decisions. Rational-expectations equilibrium “solves”

the game by assuming common knowledge. That solution implies that all agents choose

the lowest possible number, after applying the process of ‘iterated elimination of weakly

dominated strategies (IEDS)’ starting from 100. But as can be seen from Figure 1, this is

not what necessarily happens in the seventeen experiments reported here, where p = 2/3

and the interval, in sixteen out of the seventeen experiments, is [0, 100]; in one experiment

the choice set is [1, 100].3

————– Figure 1 about here ————-

Alternatively to IEDS, a reasoning process that appears to describe better the observed

behavior is the so-called Iterated Best Reply with degenerate beliefs (i.e., the belief that

the choices of all others are at one precise value), denoted by IBRd, which classifies choices

according to the depth, or number of levels, of reasoning.4 Specifically, IBRd postulates

that a Level-0 player chooses randomly in the given interval [0, 100], with the mean being

50. At other levels, it is assumed that every player believes that she is exactly one level of

reasoning deeper than the rest of players. Therefore, a Level-1 player gives best reply to

the belief that everybody else is a Level-0 player and thus chooses 50p. A Level-2 player

chooses 50p2, a Level-k player chooses 50pk, and so on. Finally, a player who takes infinite

steps of reasoning, and believes that all players take infinite steps, chooses zero, the rational-

expectations equilibrium. The hypothesis that players follow the reasoning process described

as IBRd, together with p = 2/3, and an interval [0, 100], predicts that choices (in addition

to random and haphazard choices, corresponding to Level-0 players) will be on the values

3In the experiments with interval [0, 100], p < 1 and the number of players greater than two, the only
solution surviving the process of iterated elimination of weakly dominated strategies is to pick 0. Obviously,
when the interval is [1, 100], the rational solution is at 1.

4See, e.g., Nagel (1995), Stahl (1996) or Bosch-Domènech et al. (2002).
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33.33, 22.22, 14.81, 9.88, . . . and, in the limit, 0.5

Starting with Nagel (1995), the analysis of the data generated by BC experiments uses

diverse statistical procedures. In their seminal papers, Stahl and Wilson (1994, 1995) had

the insight to connect the theoretical model of iterated levels of reasoning with the statistical

method of mixtures, and based their analysis of a data set from 3 × 3 normal form games

on this insight.6 Later on, Stahl (1996) used the mixture model on data from Nagel’s (1995)

repeated BC games. In his paper he was interested in finding a learning rule and, to this

end, he fitted a mixture model with normally distributed stochastic errors with means and

variances highly restricted, so that the dynamics of the individual “learning” processes could

be assessed. Specifically, he assumed that, at period 1, the individual choices in each Level-k

were distributed with means specified at 50pk, and all variances followed a decreasing rule.

Stahl’s (1996) model included a uniform distribution to take care of the haphazard choices.

Since his data came from experiments with students who seldom chose the equilibrium, he

did not have to account for an important accumulation of choices at or near zero, and could

postulate a model with a small number of iterations that did not include a final iteration to

the equilibrium. In fact, the statistical procedure allowed him to choose between models with

three or four levels of iteration, but was not designed to account for equilibrium (Level-∞)

choices.

Our data, instead, come from a number of one-period experiments including a diversity of

people in different settings, totaling more than 8, 000 observations, which we organize in six

groups, according to the type of experiment that provided them, namely Lab, Classroom,

5Because the process of iterated reasoning is similar to the one mentioned by J. M. Keynes in the context
of a beauty-contest thought experiment (Keynes, 1936, p.155), the class of p-mean-games and its variations
have been called ’Beauty Contest games’.

6Mixture models have a long history in statistics, and a comprehensive description of the statistical theory
of finite mixture modeling can be found in Titterington et al. (1992) and McLachlan and Peel (2000).
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Take-home, Theorists, Internet, and Newspaper experiments (see Table 1).7 As a result,

we had data all over the range of possible choices and, in particular, at and around zero.

With the same data set, in Nagel, Bosch-Domènech, Satorra and Garćıa-Montalvo (1999)

(see also footnotes 26 and 28 in Bosch-Domènech et al. (2002)) we fitted a mixture model

similar to Stahl (1996) to the one-period data, with the difference that we did not constrain

the means and variances of the composing distributions and, in addition, we included the

Level-∞ (equilibrium) as a component of the model. This Level-∞ was a normal distri-

bution truncated at zero. Building on this previous analysis of ours, we propose a model

that, in addition to contemplating the Level-∞ and letting the means and variances free,

benefits from the higher degree of flexibility provided by assuming that the stochastic errors

follow a beta distribution. Contrary to the normal model, the beta distribution does not

impose symmetry and adds the elegance bonus of using a single family of distributions in

the mixture, as the uniform distribution is a specific beta distribution. Equally important,

the beta distribution allows a more flexible representation of the Level-∞ component than

the truncated normal distribution.8

In the meantime, other papers have followed in the approach of Stahl and Wilson (1994,

1995), fitting data from a variety of experimental games, notably Costa-Gomes, Crawford,

and Broseta (2001), Camerer, Ho, and Chong (2004), Costa-Gomes and Crawford (2006),

and Crawford and Iriberri (2007a). Also Ho, Weigelt and Camerer (1998) specify a model

in which the mean and variance of Level-k choices are functions of the mean and variance

of choices at the previous level, so that the only parameters of the model are the mean and

variance of Level-0 choices. This highly restricted model is then estimated by maximum

7For details of the six groups see Bosch-Domènech et al. (2002).
8In economics the use of the beta distribution is not new. McKelvey and Palfrey (1992), for instance,

use it in a different context, assuming that the heterogeneous beliefs of the participants in a centipede game
are independently drawn from a beta distribution. In econometric analysis of labor and income distribution
data, the beta distribution has a long tradition, see e.g. Heckman and Willis (1977) or McDonald and Xu
(1995) and, more recently, Bognanno (2001) or Dastrup et al. (2007).
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likelihood. In addition, Stahl (1998) estimated a levels-of-reasoning model assuming a non-

degenerate distribution of beliefs about other players choices. In a similar vein, Camerer,

Ho and Chong (2004) assumed that subjects believe that no other player uses as many

levels of reasoning as themselves and that players guess the relative proportion of other

players at the lower levels of reasoning, arguing that the Poisson distribution is a reasonable

parametric distribution of other players reasoning levels. While this model fits well some

samples of data from different games, it does not account for stochastic responses, as in all

other models described above. Recently, Harrison and Rutström (2009) use a mixture model

to propose a statistical reconciliation between two dominant theories of choice under risk,

EUT and Prospect Theory. Their paper offers an insightful alternative to the debate over

the competing models by assuming that the data analyzed are generated by a mixture of

decision rules associated to both theories.

From the computational perspective, all of the above applications use general-purpose

optimization algorithms, such as the simplex method of Nelder and Mead (1965).9 But when

handling finite mixture models, such algorithms require to carefully monitor the starting

values to ensure proper convergence. Instead, in the present paper we use the Expectation

Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) that takes full advantage

of the form of the likelihood function. Moreover, as a by-product of the EM algorithm, a

Bayes rule classification method for assigning cases to the different levels of the reasoning

process is made available.

9We thank a referee for pointing out an older literature in statistics showing that the beta distribution
can be well approximated by the logistic transformation of the normal, a useful fact since in many settings
there exists code that works for the normal distribution, thus with existing software a simple non-linear
transformation could be used to estimate the beta. See Lesaffre, Rizopoulos and Tsonaka (2007) for an
updated review of the logistic transformation of the normal, and Andersen, Harrison, Hole and Rutström
(2009) for novel methods for analyzing non-linear mixed logit models.
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2 Data description

The histogram for the whole distribution, when all the groups are pooled together (see Figure

1), shows that the peaks closely correspond to the numbers chosen by individuals who would

have reasoned according to the IBRd hypothesis, at levels one, two, perhaps three, and

infinity. In addition, inspecting the choices for each group, as depicted in Figure 3 of Bosch-

Domènech et. al. (2002), we see substantial variation across groups. The first group,

Lab-experiments with undergraduates, is clearly distinguished from the rest, because the

Nash equilibrium is rarely selected. Yet, when subjects have some training in game theory,

the proportion of subjects choosing the equilibrium increases. The highest frequencies are

attained when experimenting with theorists, in which case, the greater confidence that others

will reach similar conclusions may be reinforcing the effect of training. In Newspapers, the

frequency of equilibrium choices falls somewhere in between, as should be expected from the

heterogeneous level of training of their readers.

3 Finite mixture model and estimation procedure

The basic problem in fitting a statistical model to the BC data is the existence of unobserved

heterogeneity (the different levels of reasoning), in addition to the multiple-group structure.

This section develops the interpretation of the BC data as a mixture of beta distributions

and provides the statistical strategy to estimate such a model.

To begin, the components of the mixture are anchored at the different levels of reasoning:

33.33 for Level-1, 22.22 for Level-2, 14.81 for Level-3, . . . , 0 for Level-∞. In addition, choices

at Level-0 are captured by one specific beta distribution: the uniform distribution at (0, 100).
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3.1 A finite mixture model based on beta distributions

A variable X is said to belong to the family of beta distributions if its probability density

function (pdf) is

fX(x) =
1

B(α, β)
xα−1(1− x)β−1I(0,1),

α > 0 and β > 0; here, B(α, β) =
∫ 1
0 x

α−1(1 − x)β−1dx is the beta function, and I(0,1) is an

indicator function. We say that X is a standard beta distribution, X ∼ Beta(α, β). In this

paper we use the generalized beta distribution Y ∼ Beta(α, β, a, h) arising from the linear

transformation Y = a + hX, X ∼ Beta(α, β) and h > 0, where the support of variables X

and Y are (0, 1) and (a, a+ h) respectively. The shape of the distribution is dictated by the

values of α and β. When both α and β are > 1, the distribution is unimodal; when α < 1

(or β < 1) then fY (y)→∞ when y → a (or when y → a+ h). When both α and β are < 1,

the density function is U shaped and tends to ∞ both when y → a and when y → a + h.

Since the distribution has bounded support, all its moments exist; the mean and variance of

B(α, β, a, h) are µ = a+ hα
α+β

and σ2 = h2α(α+1)
(α+β)2(α+β+1)

, respectively.

We denote the multiple-group data in Table 1 by {yig; i = 1, . . . , ng}6g=1, where yig is the

number chosen by individual i in the group g of experiments, and ng is the sample size of

group g.

Associated to a model with L levels of reasoning, we consider the following L-component

mixture probability density function for y:

f(y, ϑ) = π0f0(y) + π1f1(y, θ1) + . . .+ πKfK(y, θK) + π∞f∞(y, θ∞),

where K = L− 2.

• f0 is the uniform distribution in 0 to 100; that is, f0 ∼ Beta(1, 1, 0, 100), associated to
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the Level-0 of reasoning.

• fk ∼ B(αk, βk, ak, h), k = 1, . . . , K, where ak = ((2
3
)kH) − h/2 are fixed values deter-

mined by the model specification, and αk and βk are free parameters, to be estimated,

that determine the shape of the distribution. Note that fk has support (ak, ak + h), so

ak + h/2 is the midpoint of the support, called the anchor point of component fk. As

explained below, the width h of the support of fk is taken to be 20. H is the number at

which the reasoning process of an individual – who is not Level-0 – starts. The value

of H will be 50 or 100 depending on whether we adopt the IBRd or the IEDS theories

to model this reasoning process.

• f∞ ∼ B(α∞, β∞, 0, h), with α∞ and β∞ being parameters to be estimated, associated

to the Level-∞ of reasoning.

• The πk’s are the mixing proportions. They are positive numbers and add up to 1, i.e.∑K
k=0 πk+π∞ = 1. The mixing proportions are the weights of the different components

of the mixture distribution.

Moreover, ϑ = (π, θ)′, where π = (π0, π1, . . . , πK , π∞), θ = (θ1, . . . , θK , θ∞) and θk = (αk, βk).

The different components of the mixture accounts for the (unobserved) levels of reasoning,

from the uniform distribution in (0, 100), accounting for Level-0, to the f∞ accounting for

Level-∞. The analysis estimates both the ‘weights’ πk of the different components of the

mixture and the shape parameters θk = (αk, βk).

Concerning the analysis of the different groups, we consider two models. One sets the

vector of mixing proportions π as well as the vector of shapes θ to be specific for each group.

The second model sets the vector θ (the shapes) as well as the vector of mixing proportions

π equal across groups.

9



The participants in the Newspaper experiments were asked to provide comments about

their decision process. We use this information to fix the width h of each of the beta

distributions as well as the number L = K + 2 of levels of reasoning. The comments of the

participants in the experiment indicate that subjects who declared to be at level of reasoning

k > 0 gives numbers deviating no more than 10 units from the corresponding anchor point

ak + h/2, the center of the support of the kth component. This suggests a range of 20 for

h.10 Were the true range smaller, this would be picked up by the fit, since α and β are free

parameters to be estimated. Accordingly, except for Level-0, that has range 100, we assign

h = 20 to all the other components. We decided to start at L = 4 because the received

comments showed a very small number of Level-3 participants (below 5%). We now proceed

to describe the estimation of the model.

3.2 Model Fitting

We estimate the mixture model by maximum likelihood (ML). From the previous subsection,

it follows that the log-likelihood function is

`(ϑ) =
n∑
i=0

log

(
K+1∑
k=0

πkfk(yi ; θk)

)
, (1)

where i varies across sample units, k varies over all components of the mixture, and fK+1 =

f∞ and πK+1 = π∞. This log-likelihood function is highly non-linear, so its maximization

using standard optimization routines may be difficult. Instead, we resort to the EM algo-

rithm, which exploits the fact that when the π’s are given, the likelihood function is trivially

optimized.

Consider the data augmented with an unobserved multinomial class-membership or vec-

10Only a small number of players at Level-∞ (less than 3% of the whole sample) deviate more than the
range of 20.
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tor of indicators di = (di0, di1, . . . , diK , di∞)′, where dik = 1 or 0 and
∑K+1
k=0 dik = 1. The vector

di is assumed to have a multinomial distribution with parameters π = (π0, . . . , πK , π∞). The

(complete-data) log-likelihood is thus

`C(ϑ) =
n∑
i=1

K+1∑
k=0

dik (log πk + logfk(yi; θk)) .

The EM approach computes ML estimates using the following algorithm:

E-step: From current estimates π
(t)
k and θ

(t)
k of the parameters (at tth iteration), compute

the expected value Q = Q(θ) of the (complete data) log-likelihood `C(θ). This expec-

tation turns out to be

Q =
n∑
i=0

K+1∑
k=0

π̂ik (logπk + logfk(yi; θk)) , (2)

where

π̂ik =
π
(t)
k fk(yi; θ

(t)
k )∑K+1

k=0 π
(t)
k fk(yi; θ

(t)
k )

. (3)

Note that Q can be written as:

Q =
n∑
i=1

K+1∑
k=0

π̂ik (logπk) +
K+1∑
k=0

(
n∑
i=1

π̂iklogfk(yi; θk)

)
. (4)

M-step: We update π
(t)
k and θ

(t)
k with the maximizers of Q of (2). This is accomplished by

• updating θ
(t)
k with

θ
(t+1)
k = arg max

n∑
i=1

π̂iklogfk(yi; θk), (5)

• updating π
(t)
k with

π
(t+1)
k =

n∑
i=0

π̂ik/n (6)

(π̂ik as defined in (3)).
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EM iterate steps 1 and 2 till convergence is achieved.

Note that the M-step implies the simple maximization with respect to θk of a one-

component likelihood function with a weighted sum of individual log-likelihoods (see (5));

in contrast to the usual log-likelihood of the mixture model, this is easily accomplished with

basic optimization routines.

In addition to providing a convenient algorithm, the EM procedure gives, for every sub-

ject, the posterior probabilities of belonging to each of the components (or levels of rea-

soning). From a Bayesian perspective, the π̂ik of (3), at the end of the iteration, can be

interpreted as the estimated conditional probabilities of case i belonging to component k,

while the π̂k of (6) are the marginal probabilities of each component. By averaging the

conditional probabilities π̂ik within each group, we obtain the marginal probabilities π̂kg of

each component in each group gth, g = 1, . . . , G. Both, the marginal probabilities for all the

groups and conditional for each group are reported below.

Since the EM algorithm produces maximum likelihood estimates, we can compute the

maximum log-likelihood (logL) of the data, that is the value of (1) evaluated at the ML

parameter estimates. To compare the fit of competing models, we suggest the Akaike Infor-

mation Criteria (AIC) AIC = −2 logL + 2q, where q is the number of parameters of the

estimated model.11

11See, e.g., Bozdogan (1987) for a review on AIC and other alternatives.
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4 Results of the Analysis

We fit the model, separately, for the whole sample and for each of the six groups. The

results are presented in Table 2 which shows the estimates of the means and variances

of the composing distributions, as well as the estimates of the mixing proportions across

groups. Standard errors (se) of all the sample estimates have been computed using bootstrap

(see, e.g., Efron and Tibshirani (1986)).12 About 30% of the choices in the overall sample

correspond to a Level-0 of reasoning. The remaining choices are distributed among levels

1, 2 or ∞ in different proportions. Not surprisingly, a large number (62%) of “Theorists”

choose Level-∞, while only 4% of “Lab” subjects reach this level of iteration.

The standard errors for the estimates of the various components’ weights give a (95%

confidence interval) variation of a tight ±0.05 for the Newspaper experiment, and a much

more variable ±0.10 for the smaller sample size experiments. A similar pattern arises when

computing the 95% confidence intervals for means and variances.

————– Table 2 about here ————-

————-Figure 2 about here ————-

Figure 2 shows the density functions of the four components of the mixture model for the

overall sample as well as the fitted mixture. To test whether each group should be analyzed

separately, we compute the log-likelihood ratio test for the null hypothesis of a single-group

model versus a model with parameters specific for each group. From the values in the last

column of Table 2 we obtain χ2 = 234.76 with 10 degrees of freedom, p-value < .0001. For

12We used 200 as the number of bootstrap samples.
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model comparison, a different option that is free from sample size dependence and applies

also to non-nested models is an information criteria such as the AIC. The AIC difference

for the “all sample” model and the model with parameters specific for each group equals

134.7, favoring again the multiple-group model. The maximized log-likelihood values and

the estimates of πs and θs for each group are reported in Table 2.

An interesting feature is the increasing variance from Level-1 to Level-∞. With few

exceptions, people who reach Level-1 choose tightly around 33. Those reaching Level-2

choose around 22, but, in general, not so tightly. Level-∞ presents, in general, a higher

variance.13 This observation is supported even when taking into account the variation of the

standard errors of the variances, shown in Table 2. A plausible interpretation of this result

is that as subjects take further steps of reasoning they become more and more aware of the

complexity of the game, and assume that the rest of participants may make more dispersed

choices.

We also want to assess whether the IBRd model (where H = 50) fits better the data

than the (not nested) IEDS model (where H = 100). For the same number of levels of

reasoning, IBRd clearly outperforms IEDS for all samples. Table 3 shows, in particular, the

AIC differences when comparing IBRd with four levels of reasoning (K = 2) to IEDS with

five levels (K = 3). Since the difference is positive, the preferred model is IBRd.14

Finally, for the IBRd model, the AIC taking into account the number of components

shows no gain when increasing from K = 2 ( L = 4 components) to K = 3 (L = 5

components).

13This is in contrast with Ho et al. (1998) and Stahl (1996), where variances were postulated to follow a
decreasing pattern, but in accordance with the observations of Kübler and Weizacker (2000) and Goeree and
Holt (2004).

14The same conclusion is obtained if the model comparison is based on the likelihood principle, or if the
Schwarz information criterion is used instead of the AIC.
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These results compare favorably with our previous specification in Nagel et al. (1999)

which uses (truncated) normal distributions instead of beta distributions, where we obtained

for the Newspaper data a maximized log-likelihood of −32, 045.7 (see Table 4 in that paper)

for the best fitting model, a model with five components, a value that is 528.7 less (worse)

than the one in the present model (see second row of Table 2), with only four components

based on beta distributions, a more parsimonious model.15 For the same data and the same

number of components, the approach of Stahl (1996) would yield an even smaller likelihood

than the reported likelihood of Nagel et al. (1999), since Stahl’s model imposes additional

restrictions on the means and variances of the composing normals and does not add the

Level-∞ component.16

5 Conclusions

This paper provides an analysis of a finite mixture of beta distributions, without pre-

established means and variances, for data obtained from experiments on the BC game, with

diverse samples of subjects amounting to more than 8, 000 observations. In contrast with

the mixture of normal distributions, that imposes symmetry or truncation on the compos-

ing distributions, the mixture of beta distributions allows varying shapes for the composing

distributions of the mixture. Therefore, for our specific experimental data, the beta family

of distributions confers more flexibility to the statistical analysis, thus providing a better fit

15In relation to the estimated proportions, we do not obtain noticeable differences in both approaches for
Level-0, Level-1 and Level-2 (27, 11, 23 in the normal versus 30, 9, 22 for the beta); thus Level-3 plus Level-∞
for the normal case gives the same proportion as the Level-∞ of the beta model (39%). Also the beta model
gives a variance more than six times smaller than the normal approach for Level-1, while the variances are
similar for Level-2, but for Level-∞ the variance is almost twice as large for the beta approach (as Level-3
disappears in the beta model)

16Since Camerer et. al. (2004) model does not contain a stochastic random term, their approach cannot be
compared with ours in terms of log-likelihood. Costa-Gomes, Crawford (2006) and Costa-Gomes, Crawford,
and Broseta (2001) analyze the data from 3×3 normal form games, thus providing insights about a different
sort of strategic behavior than the one confronting BC players.
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to this set of BC data than previous attempts based on a mixture of normals.

Our model assumes that all individuals playing the BC game share a common pattern

of reasoning, described as iterated best reply (degenerate), and the composing distributions

are anchored according to the specifications of the theoretical model. However, their means

and variances are let free, to be estimated, and so are, obviously, the proportions of choices

at the different levels of reasoning. Similarly, the number of distributions involved is not

predetermined. The estimation shows that about 30% of our 8, 000 subjects use Level-0,

10% Level-1, 20% Level-2 and 40% Level-∞. Thus, it appears that once a player has moved

up from Level-0 she, most often, tends to further proceed beyond Level-1. The analysis

indicates that the hypothesis that individuals reason according to the Iterated Best Reply

(degenerate) model fares well when compared to the Iterated Elimination of Dominated

Strategies model. It also shows that, in the Beauty Contest game, the number of Level-3

choices is not large, suggesting that most players who manage to reach Level-3 decide to

jump from there to the equilibrium solution.

As a general conclusion for wider application, it appears that for some experimental

data, the beta distribution can be a useful alternative to the normal and, as it avoids trun-

cation and restrictions of symmetry, it yields a simpler analysis with better fit, at no added

computational cost.
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Table 1: The six different groups of experiments

Group # of Description of Sample size
experiments subjects ng

1 Lab 5 Undergraduate students 86
in labs (Bonn & Caltech)

2 Class 2 Undergraduate students, UPF 119
3 Take-home 2 Undergraduate students 138

in take-home tasks, UPF
4 Theorists 4 Game Theory students 146

and experts in game theory
in conferences and e-mail

5 Internet 1 Newsgroup in internet 150

6 Newspapers 3 Readers of FT, E and S 7889

Financial Times 1468
Expansión 3696
Spektrum der Wissenschaft 2725
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Table 2: Fit of the four-component (K = 2) mixture model

Level (anchor)

L∞ (0) L2 (22.22) L1 (33.33) L0 (50) Log-lik

Est (se) Est (se) Est (se) Est (se)

All sample (8528)

Mean 6.65 (0.39) 22.78 (0.23) 33.35 (0.27) 50.00 † –34 023.33
sd 6.51 (0.18) 4.22 (0.92) 0.37 (1.04) 28.87 †

πk 0.39 (0.02) 0.22 (0.03) 0.09 (0.03) 0.31 (0.02)

Newspaper (7889)

Mean 6.71 (0.33) 22.80 (0.23) 33.36 (0.22) 50.00 –31 517.79
sd 6.48 (0.17) 4.22 (0.73) 0.37 (0.80) 28.87
πk 0.39 (0.02) 0.22 (0.02) 0.09 (0.03) 0.30 (0.02)

Lab (86)

Mean 9.04 (0.99) 23.22 (1.34) 33.72 (0.31) 50.00 –363.72
sd 2.05 (1.00) 2.57 (1.05) 2.07 (0.90) 28.87
πk 0.04 (0.03) 0.25 (0.05) 0.21 (0.09) 0.50 (0.06)

Classroom (119)

Mean 9.31 (2.41) 20.14 (1.13) 32.70 (0.98) 50.00 –480.36
sd 7.07 (2.32) 4.21 (1.63) 3.42 (1.45) 28.87
πk 0.24 (0.09) 0.35 (0.11) 0.18 (0.06) 0.23 (0.07)

Take home (138)

Mean 7.40 (1.41) 22.81 (0.67) 33.17 (0.52) 50.00 –541.03
sd 6.85 (0.76) 3.36 (1.39) 0.19 (1.03) 28.87
πk 0.23 (0.05) 0.24 (0.06) 0.15 (0.08) 0.38 (0.08)

Theorist (146)

Mean 4.67 (0.62) 22.00 (1.26) 34.15 (1.79) 50.00 –487.27
sd 6.01 (0.65) 1.65 (1.521) 3.81 (2.01) 28.87
πk 0.62 (0.06) 0.09 (0.03) 0.08 (0.03) 0.21 (0.06)

Internet (150)

Mean 4.14 (1.46) 22.38 (1.06) 32.85 (1.08) 50.00 –515.78
sd 5.76 (0.64) 5.05 (1.70) 0.44 (0.07) 28.87
πk 0.37 (0.06) 0.26 (0.04) 0.12 (0.03) 0.26 (0.04)

† Equal to zero because it refers to a value set in the analysis.



Table 3: Comparison of the models IBRd (K = 2) and IESD (K = 3) by the AIC criteria.
Positive difference favors IBRd.

Groups Sample size AICIRBd AICIESD Difference

All sample 8 525 68 066.66 68 264.71 198.05
six groups 8 525 67 931.90 68 214.96 283.06

Newspaper 7 889 63 055.59 63 286.86 231.27
Lab 86 747.44 751.33 3.88
Classroom 119 980.71 1004.07 23.35
Take-home 138 1102.05 1104.28 2.23
Theorist 146 994.55 999.23 4.68
Internet 150 1051.56 1069.21 17.65
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Figure 1: Histogram for the aggregate of all the experiments. The points Level -1, Level-
2, Level-3 and Level-∞ correspond to the choices of subjects with first, second, third and
infinite levels of reasoning.
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Figure 2: The graph shows the fitted probability density functions of the components for
levels of reasoning 0, 1, 2 and ∞ (All sample). Level-0 is the straight line parallel to the
x-axis, Level-1 is centered at 33.33 and Level-2 at 22.22, Level-∞ is the density more in the
left. The probability density for Level-1 is shown truncated for clarity of presentation of the
whole graph. The graph shows also the probability density function of the fitted mixture
that results from applying the (fitted) weights .31, .09, .22 and .39 on components 0, 1, 2 and
∞. 26


