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Abstract 

This paper explores three aspects of strategic uncertainty: its relation to risk, predictability of 
behavior and subjective beliefs of players. In a laboratory experiment we measure subjects’ 
certainty equivalents for three coordination games and one lottery. Behavior in coordination 
games is related to risk aversion, experience seeking, and age. 

From the distribution of certainty equivalents we estimate probabilities for successful 
coordination in a wide range of games. For many games, success of coordination is 
predictable with a reasonable error rate. The best response to observed behavior is close to the 
global-game solution.  

Comparing choices in coordination games with revealed risk aversion, we estimate subjective 
probabilities for successful coordination. In games with a low coordination requirement, most 
subjects underestimate the probability of success. In games with a high coordination 
requirement, most subjects overestimate this probability.  

Estimating probabilistic decision models, we show that the quality of predictions can be 
improved when individual characteristics are taken into account. Subjects’ behavior is 
consistent with probabilistic beliefs about the aggregate outcome, but inconsistent with 
probabilistic beliefs about individual behavior. 
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1. Introduction 

Since Knight (1921) the literature distinguishes two kinds of uncertainty: exogenous 
uncertainty (or risk) is characterized by the existence of given (not necessarily known) 
probabilities for all possible states of the world. A lottery is the prototype of a risky situation. 
More generally, risky situations are games against nature. Endogenous uncertainty arises in 
situations, where the outcome depends on social interaction. These are situations of 
participation in a strategic game.    

There is a long going discussion in economics whether and how strategic decision making can 
be modelled as a game against nature. Luce and Raiffa (1957, p.306) suggest assigning 
subjective probabilities to an adversary’s choices in a game, (without being more specific how 
to model it): “The problem of individual decision making under uncertainty can be considered 
a one-person game against a neutral nature. Some of these ideas can be applied indirectly to 
individual decision making (...) where the adversary is not neutral but a true adversary.” 
Manski (2004) gives an overview of methods for eliciting subjective beliefs and analyses 
whether they achieve the objective to “improve our ability to predict choice behavior” (p. 
1365). 

Aumann and Dreze (2004) emphasize that measuring subjective probabilities requires staking 
a prize on the outcome. In strategic games, staking a prize changes the payoff function and 
thereby the “rules of the game”. To solve this problem they posit a preference order on 
lotteries whose prizes may be either a pure strategy in a strategic game or a certain outcome. 
If the preference order satisfies the von Neumann-Morgenstern axioms, it implies the 
existence of two functions that may be interpreted as a utility function on outcomes and a 
subjective probability distribution on the adversary’s strategies.  

We develop a similar method and suggest to measure strategic uncertainty by certainty 
equivalents. We measure the amount of money at which a subject is indifferent between 
receiving this money and a situation in which the payoff is subject to strategic uncertainty. 
Combining certainty equivalents of strategic games with the same subjects’ certainty 
equivalents of lotteries relates strategic behavior to risk aversion and allows measuring 
subjective beliefs. We apply this method to coordination games with multiple equilibria and 
show that the predictive power of decision models can be increased by accounting for 
individual differences in risk aversion and other personal characteristics. 

Currently, a number of experimental economists develop new methods to relate risk and 
uncertainty by comparing behavior of the same subjects in lottery-choice tasks and strategic 
games. Goree, Holt and Palfrey (2002) combine individual decisions for lotteries with the 
matching pennies game to show that the inclusion of risk aversion in a quantal response 
equilibrium can explain systematic deviations of subjects’ behavior from Nash equilibrium. 
Lange, List and Price (2004) relate lottery choices with resale auctions to estimate equilibria 
under risk aversion. Schechter (2004) and Bohnet and Zweckhauser (2003) combine lottery 
choices with trust games and show that risk averse subjects make lower contributions. Nyarko 
and Schotter (2002) estimate subjective beliefs about opponents’ behaviour in a repeated 
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game to study social learning of beliefs. To our knowledge, we are the first to estimate 
subjective probabilities in situations of strategic uncertainty by relating strategic choices to 
risk aversion. 

Coordination games with strategic complementarities typically have multiple equilibria. 
Multiplicity of equilibria is associated with strategic uncertainty to which we cannot assign 
probabilities by pure deductive reasoning. Imagine a situation, where an investment pays off, 
if and only if a sufficient number of firms invests in the same industry. If nobody invests, then 
the investment of a single agent fails. Not investing is an equilibrium. If everybody invests, 
the investment is profitable. Investing is another equilibrium and it is the efficient strategy 
profile. In this situation, neoclassical theory cannot predict behavior, nor assign probabilities, 
because both outcomes are consistent with optimizing behavior and rational expectations. 
Efficiency considerations are relevant for normative statements, but one cannot rely on them 
having any descriptive power.   

Experiments on coordination games, however, show clear patterns of behavior. Van Huyck, 
Battalio and Beil (1990, 1991) show that subjects coordinate rather quickly on an equilibrium 
that depends on group size, coordination requirement and experience. A high degree of 
efficiency can be achieved by matching in pairs, but not in situations that require the 
coordination of all members in a group of seven or more players. Berninghaus and Erhart 
(1998, 2001) show that disaggregate information and a larger time horizon enhance 
efficiency. Heinemann, Nagel and Ockenfels (2004) compare coordination games with public 
and private information and find no significant difference in predictability of aggregate 
behavior, even though the private information game has a unique equilibrium, while the 
public information game has multiple equilibria. Subjects coordinate on equilibria that are 
fairly predictable and vary (depending on the payoff function) from the payoff-dominant to 
the risk-dominant equilibrium. Public information does enhance efficiency. Comparative 
statics with respect to parameters of the payoff function follow the risk-dominant equilibrium. 
Schmidt et al. (2003) use different coordination games, in which they vary either risk 
dominance or the level of payoff dominance, holding the other constant. They show that 
changes in risk dominance affect behavior, while changes in the level of payoff dominance do 
not.  

Risk dominance and other theoretical refinement concepts are characterized by assumptions 
on players’ beliefs about other players’ behavior. While some concepts are rather ad hoc, risk 
dominance has an axiomatic justification, laid out in Harsanyi and Selten (1988). Related to 
this, the theory of global games, developed by Carlsson and van Damme (1993) and advanced 
by Morris and Shin (2000), assumes that players behave as if they have private information 
about payoffs. In the limit, when the variance of private information vanishes, the global 
game is characterized by the belief that the proportion of players, who contribute to a 
coordination game has a uniform distribution in [0,1]. In binary-action games with two 
players the global-game solution coincides with risk dominance. In other games both concepts 
give similar predictions. Risk dominance has a firm axiomatic foundation, the global-game 
solution is easier to calculate. 
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Morris and Shin (2002) propose that strategic uncertainty can be measured in a game, where 
private beliefs about the payoff function are combined with private values. We follow this 
suggestion by exploiting subjects’ risk aversion. The degree of risk aversion is private 
information, and it affects the private value (utility) of a monetary payment. Hellwig (2002) 
explores the theoretic relation between risk aversion and the global-game approach and finds 
that the global-game solution can be approached by uncertainty about other player’s risk 
aversion. 

In our experiment, we compare lottery choices with choices to engage in coordination games. 
Thereby, we measure risk aversion and attitudes towards strategic uncertainty. Using the 
multiple-price-list technique introduced by Holt and Laury (2002), the experiment elicits 
certainty equivalents for a lottery to win 15 Euro with probability 2/3 and thresholds to 
participate in a coordination game, where a subject gets 15 Euro, provided that a fraction  k  
of the other players joins the coordination game. Observed thresholds may be interpreted as 
certainty equivalents for the respective coordination game. Thereby, we have comparable 
measures for both kinds of uncertainty. The experiment combines these games with an 
extended questionnaire containing Zuckerman’s Sensation Seeking Scale V (SSS-V) that 
psychologists use to characterize personalities.1 

Naturally, the higher the fraction of players needed for coordination, the more likely players 
opt out for the safe payoff. For most subjects, the certainty equivalent of the lottery is in 
between the thresholds for coordination games with k = 1/3 and k = 2/3. These subjects view 
actions that require one third of the other players to join as less risky than the lottery, which in 
turn appears less risky than an action that requires 2/3 of the others to join. 

Certainty equivalents of coordination games are positively related to certainty equivalents of 
lotteries and to the “experience seeking” subscale of the Zuckerman test. Subjects, who avoid 
risk or new experience, do also avoid strategic uncertainty. Our evidence indicates that 
behavior in coordination games might also be affected by age. Older participants tend to have 
higher certainty equivalents than younger subjects.  

The distribution of certainty equivalents is sensitive to the subject pool. Running the 
experiment at three places with tractable differences in the composition of subject pools, we 
find significant differences in behavior. A possible explanation is that homogeneity of a group 
increases the expected success of coordination. But, even across the three groups, many 
coordination games with multiple equilibria have a predictable outcome. For one half of the 
games covered by our experiment, success or failure can be predicted with an error rate below 
five per cent for all three data sets. The probability that a randomly selected player chooses 
the uncertain action can be approximated by a logistic distribution.  

For most subjects, the best response to observed behavior is close to the global-game solution. 
Using lottery choices as measures of individual risk aversion, we estimate utility functions 
and compare expected utilities of various refinement strategies. For most subjects, the global-
game solution calculated under risk neutrality leads to a higher expected utility than any other 
considered strategy. From this, we conclude that the global-game solution can be 

                                                 
1 For details, see Zuckerman (1994). 
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recommended to agents who are engaged in a one-shot coordination game with a maximum 
payoff of about 15 Euro. For higher payoffs, risk aversion is likely to increase, which may 
result in another strategy being optimal. 

Using revealed risk aversion, we estimate subjective probabilities for successful coordination. 
In games that require 1/3 of the other players to get a reward, most subjects underestimate 
success probabilities. In games that require 2/3 of the others or all group members, most 
subjects overestimate success probabilities. Simulations indicate that subjects have 
probabilistic beliefs about success or failure of coordination rather than beliefs about the 
behavior of other players.  

For a quantitative analysis of how behavior is affected by parameters of the game and by 
personal characteristics, we develop and compare four probabilistic decision models. 
Parameters of the models are estimated by maximizing the likelihood of observed choices.  
Two models treat decisions as a random functions described by logistic distributions. It is 
shown that including personal characteristics increases the likelihood of observations 
significantly. The other two models assume that subjects respond to subjective beliefs that 
depend on parameters of the game and on personal characteristics. Observed behavior is 
consistent with probabilistic beliefs about success or failure of coordination. Observations are 
inconsistent with probabilistic beliefs about other subjects’ individual actions.  

In Section 2, we define the type of coordination games covered by our experiment. Section 3 
describes the experimental design. Section 4 presents results and explores predictability of 
behavior in coordination games. Section 5 analyzes which strategy can be recommended to a 
participant of a coordination game as a best response to average behavior. In Section 6, we 
estimate subjective beliefs and compare them to objective probabilities. Section 7 describes 
and estimates probabilistic decision models and Section 8 concludes.  

 

2. Coordination Game 

We are interested in the following coordination game:  N  players simultaneously decide 
whether to invest an amount  Z  in a network technology that is installed if the total revenue is 
at least  Z K,  where  1 < K ≤ N.  Contribution yields a return greater than  Z,  if and only if at 
least  K  players contribute. Games of this structure are also used to model currency and 
liquidity crises and bubbles.  

Players’ choices are strategic complements, and the game has two equilibria in pure strategies 
for any non-negative  Z  below the value of the network. If everybody else contributes, the 
best response is to contribute as well and receive the high payoff. If nobody else decides to 
invest, then it is a best response to stay out and save the costs. 

Suppose that contributions are 5 Euro, the return is 15 Euro to each contributor, and the 
network is installed, if at least 7 out of 10 players contribute. How many contributions may 
we expect in this situation and how likely is it that the network is installed and positive 
externalities unfold? 
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Suppose, contributions are 12 Euro and all 10 players must contribute. Here, the payoff to 
coordination is low and the hurdle is high. May we dare to hope for coordination on the 
efficient equilibrium in such a situation, and which action should we recommend to a player?  

Our experiment is designed to answer these questions, by assigning measures of strategic 
uncertainty and estimating probabilities for efficient outcomes for this kind of coordination 
games. In addition, we analyze how behavior in coordination games is related to risk aversion 
and other personal characteristics.  

 

3. Design of the Experiment 

Sessions were run at a PC pool in the economics department at the University of Frankfurt 
and in the LEEX at Universitat Pompeu Fabra, Barcelona, from May until July 2003. In 
Frankfurt we announced the experiment by e-mail to all students with an e-mail account at the 
department of business and economics and via leaflets and posters at various places in the 
university. In order to participate, students replied by e-mail. In Barcelona students were 
notified via posters within the university and signed up on a list at the door of the laboratory. 
In both places, most of the participants were business and economics undergraduates. The 
procedure during the sessions was kept the same throughout all sessions at both places, 
besides the languages (German and Spanish, respectively). All sessions were computerized, 
using a program done with z-tree (Fischbacher, 1999). Students were seated in a random order 
at PCs. Instructions (see Appendix A1) were then read aloud and questions were answered in 
private. Throughout the sessions students were not allowed to communicate and could not see 
others’ screens.  

Subjects were randomly assigned to groups of size N, where N was 4, 7 or 10 in different 
sessions. There were at least two groups in each session, and subjects did not know who the 
other members of their group were. Before starting the experiment, subjects had to answer a 
few questions concerning their understanding of the rules. The experiment started, when all 
subjects gave the correct answers to these questions.2  

In the experiment, subjects face 4 bocks of 10 independent decision situations. One block 
contains lottery choices and 3 blocks contain coordination games. In each situation subjects 
decide between two options, A and B. Option A gives a secure payoff that ranges from € 1.50 
to € 15.00 in steps of € 1.50 within each block. The payoff for a B-choice is either zero or € 
15.00 in each situation. In the lottery setup the payoff for B depends on the result of throwing 
a die (simulated by the computer): if the result of the die is 1 or 2, the payoff is zero and if the 
result of the die is 3, 4, 5 or 6, the payoff is € 15. Figure 1 shows a sample screen of the 
lottery setup.  

 

                                                 
2 Sample questions are given in Appendix A2. 
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Sample Screen 

 
Figure 1. Screen of the lottery setup. “ditto” means that in each situation the payment for B 
follows the same structure. 

Coordination-game choices are as similar as possible: here, the payoff for option B is € 15, 
provided that at least K out of N members of the subject’s group (including her- or himself) 
chose B in this situation, and otherwise 0 Euro, where K varied across sessions and setups, but 
is kept constant throughout the ten situations of a setup. In the coordination-game setup, the 
last column on the screen shows the text “Payment for B: 0 Euro if less than K members of 
your group choose B. 15 Euros if at least K members of your group choose B.” Parameter K is 
replaced by the appropriate number.  

To avoid hedging, only one out of the 40 situations is selected randomly for payments. In 
addition, we paid each subject a show-up fee of  € 5.  

The four setups were given one after another without feedback. After completing all four 
setups, subjects were informed about the selected situation, on the result of the die (if the 
selected situation was a lottery choice) or how many members of their group had chosen B in 
this situation (if the selected situation contained a coordination game), and on their own 
profit.  

Afterwards, each player had to answer a questionnaire asking for personal data, questions 
concerning the experiment, questions about attitudes towards various kinds of risk, and the 
Zuckerman Sensation Seeking Scale V (SSS-V). The duration of the experiment was 40 to 60 
minutes with an average payoff of  € 16.68 per subject.  

In each session, we used one particular group size N, the same lottery block and three blocks 
with different coordination requirements K. Combinations of N and K were chosen in such a 
way that each subject was faced with situations that required one third, two third or all of the 
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other group members to take the same position in order to be successful with option B. Thus,  
k = ( K – 1 ) / ( N – 1 )  equals  1/3 ,  2/3 or 1  in the three coordination setups of each session. 
Table 1 shows the parameter combinations used in the experiment. 

 
Parameters used in the experiment 

 k = 1/3 k = 2/3 k = 1 

N = 4 K = 2 K = 3 K = 4 

N = 7 K = 3 K = 5 K = 7 

N = 10 K = 4 K = 7 K = 10 

Table 1. 

As subjects did not receive any feedback until they had completed all forty decisions, the 
order of the four decision blocks should not matter too much. To minimize systematic order 
effects on the data, we changed the order between sessions with otherwise equal parameters. 
Table 2 gives an overview of the sessions and applied parameters. In total we ran 10 
computerized sessions with 174 participants. Each session had a different treatment. 

Heinemann, Scivos and Stein (2004) have done a hand-run experiment that combines our 
treatments 4C, 7C, or 10C (with payoffs scaled down by 0.4) with some other games but no 
Zuckerman test. Subjects were 86 participants of a meeting for particular intelligent people3 in 
Köln. We include these data in our presentation. 

 
Overview of sessions 

treatment Group size
N 

Order of blocks  
(L = lottery,  numbers = K) 

location Number of subjects 

4A 4 L – 4 – 3 – 2 Frankfurt 20 
4B 4 L – 2 – 3 – 4 Frankfurt 16 
4C 4 4 – 3 – 2 – L Frankfurt 12 
4D 4 2 – 3 – 4 – L Frankfurt 16 
7A 7 L – 7 – 5 – 3 Frankfurt 21 
7B 7 L – 3 – 5 – 7 Barcelona 14 
7C 7 7 – 5 – 3 – L Frankfurt 21 
7D 7 3 – 5 – 7 – L Barcelona 14 
10C 10 10 – 7 – 4 – L Frankfurt 20 
10D 10 4 – 7 – 10 – L Frankfurt 20 

Total number of subjects in computerized sessions:  174 
4C 4 4 – 3 – 2 – L Köln 28 
7C 7 7 – 5 – 3 – L Köln 28 
10C 10 10 – 7 – 4 – L Köln 30 

Total number of subjects in hand-run sessions: 86 
Table 2. 
                                                 
3 65 Members of MENSA in Germany and 21 interested visitors. 
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The chosen design has been motivated by several considerations: we use a one-shot game, 
because Van Huyck, Battalio and Beil (1991) and Heinemann, Nagel and Ockenfels (2004) 
have shown that in repeated coordination games the final outcome is often determined by 
initial behavior. We are interested in explaining the starting points of such a convergence 
process. We select a single situation for payments to avoid hedging. This gives us the highest 
possible impact of risk aversion on any decision. Two high-stake sessions in Heinemann, 
Nagel and Ockenfels (2004) indicate that paying a randomly selected situation does indeed 
evoke risk-averse behavior in coordination games.  

We present the ten situations in each block ordered for the safe payoff, because Heinemann, 
Nagel and Ockenfels (2004) show in a similar coordination game that a vast majority of 
subjects plays threshold strategies with at most one switch between actions even when 
situations are presented in a random order. Presenting options in an ordered fashion 
strengthens the selection of thresholds and, thereby, increases the number of data sets that can 
be used for statistical analyzes.  This design is called a “multiple-price-list” and has been 
introduced by Holt and Laury (2002) for measuring risk aversion. 

For measuring subjective beliefs, we could also have asked subjects to decide between 
lotteries and strategic uncertainty directly. But, measuring separate certainty equivalents for 
both kinds of uncertainty yields identified measures for risk aversion and strategic uncertainty 
that we use to analyze optimal behavior and to estimate probabilistic decision models.  

We did not ask subjects for their beliefs about success or failure of coordination directly. 
Eliciting beliefs requires an incentive. A direct mechanism asks for beliefs and rewards 
subjects according to the distance between their guess and the outcome of a game. Point 
beliefs give less precise measures of strategic uncertainty. Asking for probabilities would 
have imposed that beliefs are probability distributions, while our design has the possibility of 
behavior being inconsistent with beliefs in form of probability distributions.  

The literature distinguishes between risk aversion and ambiguity aversion. The latter adds to 
risk aversion in games, where probabilities are not known. Camerer and Karjalainen (1994) 
conduct a series of experiments to measure ambiguity aversion in strategic games by 
subadditivity of subjective beliefs. They find only small degrees of subadditivity. 
Furthermore, in most games the effects of ambiguity aversion are very similar to risk 
aversion. In our experiment, subadditivity cannot be tested, ambiguity aversion is not 
identified. When we measure subjective probabilities for successful coordination in Sections 5 
and 6, they may be viewed at as a compound of additive probabilities and a factor smaller 
than one that accounts for uncertainty aversion. However, it is not possible to separate both 
effects without complicating the design to such an extent that our main objectives would have 
been endangered.   
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4. Results  

4.1. Individual Choices 

Lottery and coordination-game setups are framed as similar as possible: within a setup, 
subjects decide between an option A with increasing safe payoffs and an option B with a risky 
or uncertain payoff. In all setups, subjects typically choose B when the alternative safe payoff 
is low and opt for A when the safe payoff is high, with only one switch. Thereby, we have 
approximate measures of certainty equivalents for the lottery up to an interval of € 1.50 and 
comparable thresholds for coordination games that may be interpreted as certainty equivalents 
for the coordination games. Data are displayed in Appendix B.  

 

 Result 1: About 90 per cent of all subjects use threshold strategies. 

We call a subject’s behavior “threshold strategy”, if the subject never switches from A to B 
for rising safe payoffs. In Frankfurt, 131 out of 146 subjects use threshold strategies in all four 
setups (including those, who chose the same action in all ten situations of a setup). In 
Barcelona, threshold strategies were chosen by 27 out of 28 subjects. In Köln threshold 
strategies were used by 85 out of the 86 subjects. The widespread use of threshold strategies is 
in line with previous experiments that presented situations without the alternatives being 
ordered.4  

Some subjects (7 in Frankfurt, 4 in Barcelona, and 1 in Köln) chose the lottery in all ten 
situations, even when the alternative safe payoff was 15. This is inconsistent with utility 
maximization. Three subjects in Frankfurt and one in Barcelona did not qomplete the 
Zuckerman test. Two subjects in Köln failed to state their age gender. Some statistical 
analyses will only consider data from subjects, who used threshold strategies in all four 
setups, completed the relevant part of the questionnaire, and chose a safe payoff of 15, when 
the alternative was a lottery yielding 15 with probability 2/3. These are 121 subjects in 
Frankfurt, 22 in Barcelona, and 84 in Köln. 

Table 3 gives a summary statistic of the number of B-choices by these subjects. Note that for 
a threshold strategy, the highest safe payment, at which B is chosen, equals the number of B-
choices times € 1.50.  

 

                                                 
4 For details, see Heinemann, Nagel and Ockenfels (2004). 
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Average number of B-choices (standard deviation) 

Group size Lottery Coordination games 
Location 

Number of 
subjects  k = 1/3 k = 2/3 k = 1 

N = 4 
Frankfurt 

  56 5.04 
(1.73) 

6.18 
(2.01) 

4.41 
(2.16) 

3.25 
(2.57) 

N = 7 
Frankfurt 

  35 4.97 
(1.95) 

5.74 
(2.41) 

4.11 
(2.18) 

2.91 
(2.17) 

N = 10 
Frankfurt 

  33 5.03 
(1.76) 

6.24 
(2.26) 

4.36 
(2.50) 

2.67 
(2.57) 

N = 7  
Barcelona 

  23 6,09 
(2,09) 

7,39 
(2,57) 

6,61 
(2,93) 

5,78 
(3,67) 

N = 4 
Köln 

  27 5.41 
(1.25) 

7.63 
(1.64) 

5.52 
(2.29) 

3.81 
(2.82) 

N = 7 
Köln 

  28 5.64 
(2.23) 

8.04 
(1.62) 

6.50 
(2.62) 

5.04 
(3.35) 

N = 10 
Köln 

  29 5.66 
(1.47) 

7.31 
(1.97) 

5.62 
(2.13) 

3.93 
(2.46) 

Table 3. Data from subjects with threshold strategies and less than 10 B-choices in the lottery 
setup.  
 

Table 4 presents results from linear regressions with the number of B-choices in coordination 
setups as explained variable. Here, we also use age and gender and the four subscales of 
Zuckerman’s SSS-V as explaining variables. Since each subject selects a threshold for three 
coordination games, a simple OLS-regression overestimates significance levels. We correct 
this by using a clustered OLS-regression with clusters being defined by subjects. The session 
in Köln did not include the Zuckerman Test. We present results for different subject pools 
separately. Some of the further analyses consider only data from Frankfurt and Köln, because 
the sample from Barcelona is too small.  
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Linear regressions on the number of B-choices in coordination setups 

 Coefficients (t-values) of regression with data from 

Explaining Variables Frankfurt Barcelona Köln all locations 

constant    2.79  
   (1.68) 

  1.73  
  (0.27) 

         5.38 *** 
  (4.50) 

   0.60  
   (0.75) 

Dummy: 1=Barcelona              1.85 *** 
   (3.29) 

Dummy: 1=Köln              0.99 *** 
   (3.59) 

Group size N  - 0.06 
 (- 0.68) 

 - 0.07 
(- 0.81) 

 - 0.06 
 (- 1.26) 

Coordination 
requirement k 

        - 4.56 ***
(- 14.04) 

       - 2.52 ***
(- 3.44) 

      - 5.05 *** 
(- 12.76) 

      - 0.93 ** 
 (- 2.44) 

Number of B-choices 
in lottery 

          0.55 ***
   (5.94) 

         1.18 *** 
  (5.03) 

       0.38 *** 
(2.65) 

        0.57 *** 
 (7.07) 

Age    0.04 
   (0.77) 

  0.11 
  (0.45) 

      0.07 ** 
 (2.62) 

        0.07 *** 
 (2.87) 

Gender (0=female, 
1=male) 

   0.57  
   (1.56) 

  0.52 
  (0.40) 

 0.37 
 (0.90) 

  0.40  
 (1.58) 

Boredom 
suspectability (BS) 

- 0.09 
(- 1.28) 

 - 0.70  
(- 1.29) 

  

Disinhibition (DIS) - 0.05  
(- 0.64) 

  0.36  
  (1.54) 

  

Experience seeking 
(ES) 

         0.23 ***
  (2.83) 

- 0.11 
(- 0.43) 

  

Thrill and adventure 
seeking (TAS) 

  0.04 
  (0.59) 

- 0.25 
(- 0.98) 

  

R2 (adjusted R2) 0,44  (0,43) 0.50  (0.44) 0.35  (0.34) 0.24  (0.24) 

Number of subjects 121 22 82 229 
Table 4.  Significance levels:  * 5%,  ** 2.5%,  *** 1%. 

 

The following results summarize the insights from Table 3 and 4. 

 

Result 2: The number of B-choices decreases with increasing coordination 
requirement k. 

The number of B-choices in coordination games is significantly affected by the coordination 
requirement k, because most subjects lower their threshold when k increases (see Table 5 
below). 
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Result 3: In coordination games the dispersion of thresholds (standard deviation) 
is higher than in lottery setups. It tends to increase in k. 

Table 3 shows (with one exception: Köln, N = 7, k = 1/3) that the standard deviation of 
thresholds in coordination games are higher than in lottery setups. In lottery setups, different 
thresholds are an expression of different degrees of risk aversion. In coordination games, there 
is an additional source of diversity: subjective beliefs about successful coordination. With 
rising coordination requirement k the standard deviation of thresholds increases (with one 
exception: Frankfurt, N = 7). This indicates that subjective beliefs are more diverse when 
coordination becomes more difficult.  

 

 Result 4: Group size N has no significant effect on the number of B-choices.  

We have chosen parameters such that for each subject success with B requires certain 
fractions of other group members to take the same action. This has the effect that subjects do 
not respond to N, when k is held constant. If, instead K is held constant, N has a strong effect, 
because then N determines the relative hurdle to coordination. To see this, compare the 
average number of B-choices in situations with the same K but different N: situations with (N 
= 4, k = 2/3) and those with (N = 7, k = 1/3), both have K = 3. Similarly (N = 4, k = 1) and (N 
= 10, k = 1/3) have K = 4, and (N = 7, k = 1) and (N = 10, k = 2/3) have K = 7. In these pairs 
of situations a larger group size eases coordination and leads to a higher number of B-choices. 
While behaviour does not respond to N for constant k, the group size N has a negative impact 
on the objective probability of success, as will be shown in Table 6, below. Apparently, 
subjects do not expect this effect.  

  

Result 5: There are significant differences between subject pools. 

In Barcelona and Köln thresholds are significantly higher than in Frankfurt. The session in 
Köln is not entirely comparable though, because it was done in paper form and combined our 
treatments with four other types of games. But, there are differences in the subject pool as 
well. 76 per cent of the participants in Köln are members of MENSA. Membership requires 
an IQ above 130. Some knew each other from previous meetings. With respect to profession 
and age, subjects in Köln are more diverse than student populations. With respect to origin 
and nationality, student population in Frankfurt is more diverse than subject pools in Köln and 
Barcelona. Students in Barcelona have more experience with experiments.  

Sessions in Barcelona and Köln do also show higher numbers of B-choices in the lottery setup 
than sessions in Frankfurt. This indicates that risk aversion differs among these groups. For 
the session in Köln, lower risk aversion can be explained by the down-scaled payoff and 
combination with other games that also contributed to subjects’ earnings. In Barcelona, most 
subjects behave as risk lovers. This may be an effect of the small sample.5 Because of these 
                                                 
5 In Barcelona, one of the two sessions had 10 out of 14 subjects choosing the lottery, when the alternative safe 
payoff was higher than the expected value of the lottery.  Three subjects chose B in all situations of the 
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differences, we present results for different subject pools separately throughout this paper and 
use the different groups for out-of-sample tests. 

 

Result 6: The number of B-choices in coordination games is positively related to 
the number of B-choices in the lottery setup. 

The number of B-choices in the lottery setup is a measure of risk aversion. The higher this 
number, the lower is a subject’s revealed risk aversion. Regression results indicate that risk 
averse subjects choose B less often in coordination games. It is highly significant in all three 
samples. This observation has an important consequence: assume that subjective beliefs and 
risk aversion are distributed independently. If subjects have probabilistic beliefs about others’ 
strategies, those with higher risk aversion should, on average, have lower certainty 
equivalents for coordination games. Otherwise, we could reject the hypothesis that beliefs are 
probabilities that are independently distributed from risk aversion. Result 6 supports this 
hypothesis and tells us that subjects behave as if they have probabilistic beliefs about the 
outcome of coordination games. This justifies the common approach to model beliefs as 
probability distributions, even when there is no exogenous random process.  

 

Result 7: The number of B-choices in coordination games is positively related to 
the experience seeking subscale of the Zuckerman test. 

Combined, Results 6 and 7 tell us, that subjects, who avoid risk or new experience, tend to 
avoid strategic uncertainty. In Barcelona, experience seeking has no significant impact. We 
attribute this to the small sample.  

 

Result 8: The number of B-choices in coordination games tends to be higher for 
older participants. Gender has no significant impact. 

There is little age variation among subjects in Frankfurt and Barcelona. Participants of the 
MENSA meeting in Köln are more diverse in respect of age (16 to 51). Here, age is 
significant. Older subjects opt more often for coordination.6 Males tend to choose the 
uncertain action more frequently than females, but p-values are above 10%. 

 

Thresholds tell us, how risky a subject views a situation to be. The lower the certainty 
equivalent of a game is, the more risk seems to be associated with it. This allows ranking and 
comparing situations of strategic uncertainty with situations of exogenously given 
probabilities. Table 5 shows how subjects in Frankfurt changed their thresholds between the 
four decision blocks.  

 

                                                                                                                                                         
experiment. This session may be an outlier. We could not find any control-mistakes, and we do not want to 
“clean” the sample. Therefore, we keep these data in.  
6 We did not ask subjects to state their personal income that may be related to age among the subjects in Köln. 
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Pair wise comparison of thresholds 

Percentage 
of subjects, 
who choose  

in games 
with  k = 1/3  

than in 
lottery 

in games 
with  k = 2/3 

than in 
lottery 

in games 
with  k = 1 

than in 
lottery 

in games 
with k = 2/3 

than for 
 k = 1/3 

in games 
with k = 1 
than for  
k = 2/3 

in games 
with k = 1 
than for  
k = 1/3 

a lower 
threshold 

15% 52% 76% 80% 72% 88% 

the same 
threshold 

30% 31% 12% 18% 25% 9% 

a higher 
threshold 

55% 18% 11% 2% 3% 3% 

Table 5. Data from subjects with threshold strategies in Frankfurt. 

 

Result 9: Most subjects have higher certainty equivalents for a coordination 
game with k = 1/3 than for a lottery with a winning probability of 2/3, while they 
have lower certainty equivalents for a game with k = 1. 

For k = 1/3, a majority of 55% chose a higher threshold than in the lottery. They view this 
coordination game as less risky than the lottery. Only 15% reveal an opposite view. In the 
coordination game with k = 2/3, the proportions are turned around: more than half of all 
subjects view the coordination game with k = 2/3 as more risky than the lottery, while 18% 
have the opposite view. 76% view the coordination game with k = 1 as more risky than the 
lottery, but still 11% take the other side. 

Subjects in Barcelona and Köln seemed to have different perceptions of strategic uncertainty. 
In these locations, the median subjects chose the same threshold in the coordination game 
with k = 2/3 and in the lottery. The common feature of behavior in all three subject pools is 
that most subjects view a coordination game with k = 1/3 as less risky than the lottery, while a 
game with k = 1 is viewed as riskier than this lottery. 

The right three columns of Table 5 show that a vast majority of all subjects lowered their 
thresholds with increasing in k. In only 2% thresholds are increasing in k. Thus, subjects view 
a situation as more risky, when the coordination requirement rises. This further explains 
Result 2. In Barcelona this effect is lower, because half of the subjects did not change their 
threshold in response to an increase in k.  

 

4.2.  Aggregate Outcomes 

Next, we analyze the distribution of individual thresholds and its implications for the 
probability of successful coordination in the various coordination games. The experiment 
covers a range of 90 binary-choice games, distinguished by group size, payoff for A, and 
hurdle to coordination on B. For each of these games, we have data from more than 60 
subjects, at least 23 in one location. The proportion of subjects playing B serves as a measure 
for the probability that a randomly drawn subject chooses B. This allows calculating the 
probability of successful coordination for each game. 
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Figures 2 and 3 show the proportion of subjects, who chose B conditional on the alternative 
safe payoff, denoted by X. Figure 2 rests on data from all subjects in Frankfurt who played 
threshold strategies. Figure 3 rests on threshold players in Köln. Aggregate behavior of 
subjects, who did not play threshold strategies in all four setups, cannot be distinguished from 
random behavior. 

The proportion of B-choices can be estimated with a logistic distribution. As a first step to an 
empirical theory of coordination, we suggest to describe the probability that a person chooses 
B, when the alternative is a safe payoff of X Euro and success of B requires a fraction k of 
other people to yield a payoff of 15 Euro, by a logistic function 

 
)exp(1

1
ckbXa

p
−−+

= . 

Table 7 presents parameter estimates based on the decisions of threshold-players in all three 
locations. Estimated probabilities p̂  are presented as curves in Figures 2 and 3 to display the 
data fit. The obtained fit is high and the estimates allow out of sample tests. We can reject the 
parameters estimated in Frankfurt by the data from Köln and vice versa. 

  

Estimated logit model  

 â b̂  ĉ  

Estimates from Frankfurt data - 5.69 - 0.45 - 3.55 

Estimates from Barcelona data - 4.13 - 0.27 - 1.26 

Estimates from Köln data - 6.81 - 0.44 - 3.78 

Table 7.  
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Proportion of B choices (Frankfurt)

0,0
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0 3 6 9 12 15 X
proportion of B in lottery proportion of B for k = 1/3
proportion of B for k = 2/3 proportion of B for k = 1
estimated probability for k=1/3 estimated probability for k=2/3
estimated probability for k=1

Figure 2. Data from 131 subjects in Frankfurt who played threshold strategies. 

 

 

Proportion of B choices (Köln)
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proportion of B in lottery proportion of B for k = 1/3
proportion of B for k = 2/3 proportion of B for k = 1
estimated probability for k=1/3 estimated probability for k=2/3
estimated probability for k=1

Figure 3. Data from 85 subjects in Köln who played threshold strategies. 

 

In the lottery setup, the proportion of B choices sharply declines between X = 9.00 and  
X = 10.50. Recall that the expected payoff of the lottery is € 10.00. In Frankfurt, 31 per cent 
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of participants are approximately risk neutral. 49 per cent prefer 9 Euro to the lottery, which 
reveals a non-negligible risk aversion. 20 per cent appear to be risk lovers. In Köln 29 per cent 
are risk averse, 16 per cent risk loving and 55 per sent switch at the expected value. In 
Barcelona 37 per cent are risk averse and 48 per cent are risk loving.  

The distributions of thresholds for coordination games are flatter than for the lottery. 
Uncertainty about the probability of getting a reward for B adds to individual differences in 
the evaluation of this uncertainty, i.e. risk aversion. The difference in slopes of distribution 
functions is most pronounced in the sample from Köln. Stochastic dominance between the 
four curves in Figure 2 is another expression for the relative order of risk that most subjects 
associate with the four types of games.  

In a coordination game, there are N randomly selected subjects who decide simultaneously 
between A and B. If each subject chooses B with probability p, than the probability for getting 
at least K subjects choosing B is 1–Bin(K–1, N, p), where Bin is the cumulative binomial 
distribution. Replacing p by the observed proportion of B-choices, we derive objective 
probabilities for successful coordination of randomly drawn subjects. These probabilities are 
given in Table 6. For these calculations, we use data from all subjects, including non-
threshold players. 
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Probabilities for successful coordination 

N K k X=1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 13.50 15.00 

Frankfurt 

4 2 1/3 1.00 1.00 1.00 0.99 0.98 0.86 0.59 0.29 0.16 0.06

7 3 1/3 1.00 1.00 1.00 1.00 0.98 0.92 0.64 0.27 0.10 0.10

10 4 1/3 1.00 1.00 1.00 1.00 1.00 0.94 0.73 0.49 0.22 0.12

4 3 2/3 0.92 0.92 0.88 0.66 0.27 0.06 0.01 0.01 0.00 0.00

7 5 2/3 0.90 0.68 0.73 0.36 0.13 0.04 0.00 0.00 0.00 0.00

10 7 2/3 0.95 0.95 0.88 0.22 0.04 0.00 0.00 0.00 0.00 0.00

4 4 1 0.37 0.27 0.14 0.04 0.01 0.00 0.00 0.00 0.00 0.00

7 7 1 0.09 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 1 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Barcelona 

7 3 1/3 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.87 0.87 0.32

7 5 2/3 0.99 0.99 0.97 0.89 0.83 0.52 0.29 0.29 0.29 0.01

7 7 1 0.45 0.25 0.18 0.18 0.07 0.02 0.01 0.01 0.01 0.00

Köln 

4 2 1/3 1.00 1.00 1.00 1.00 1.00 0.98 0.97 0.83 0.45 0.01

7 3 1/3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.83 0.07

10 4 1/3 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.35 0.00

4 3 2/3 0.99 0.99 0.94 0.85 0.55 0.17 0.13 0.07 0.02 0.00

7 5 2/3 1.00 1.00 0.99 0.89 0.68 0.52 0.23 0.13 0.09 0.00

10 7 2/3 1.00 1.00 1.00 0.97 0.65 0.30 0.03 0.00 0.00 0.00

4 4 1 0.38 0.38 0.26 0.03 0.01 0.00 0.00 0.00 0.00 0.00

7 7 1 0.45 0.34 0.13 0.03 0.00 0.00 0.00 0.00 0.00 0.00

10 10 1 0.24 0.16 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 6.  Probability for getting at least K  B-choices from N subjects, who are randomly 
selected from the respective subject pools (including non-threshold players).  

 

While the proportion of B-choices is almost independent from the group size, probabilities for 
successful coordination depend on N.  However, the major influence comes from the hurdle k. 
It is stunning that for most games success or failure can be predicted (in sample) with an error 
of less than five per cent although all games with X < 15 have two equilibria. Even across 
different subject pools, 43 per cent of all games are predictable with an error rate below 0.05. 
So, even if we do not know the subject pool from which players are drawn, we can predict the 
outcome in half of all coordination games.  
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Coordination games with k=1/3 are successful with a probability of at least 0.95, whenever 
the alternative safe payoff is 7.50 or lower. Games that require coordination of all group 
members are successful with a probability of at most 0.07, when the alternative safe payoff is 
7.50 or higher. These results give an impression of some circumstances under which one may 
expect coordination or coordination failure. For some games, however, the subject pool has 
extreme effects on the probability of successful coordination. Consider, for example, the game 
with N = 7, k = 2/3 and X = 7.50. In Frankfurt, the probability for successful coordination is 
only 0.13, while it is 0.83 in Barcelona, and 0.68 in Köln. 

With an estimated probability p̂  of a randomly selected subject choosing B, the estimated 
probability of successful coordination is given by 

prob(success) = 1 – Bin (K–1, N, p̂ ). 

Comparing estimated success probabilities with those from randomly drawn subjects, we find 
that in 60 per cent of all games, the estimates from Frankfurt deviate by less than 5 per cent 
from objective probabilities of success in Köln. To be more precise, in 21 out of 30 situations, 
in which success probabilities in Köln are above 0.95, estimates from Frankfurt data predict a 
success probability above 0.95. Also, in 33 out of 39 cases, where Frankfurt data predict a 
success probability below 0.05, the objective probability in Köln is below 0.05. But, 
whenever estimated success probabilities are between 0.05 and 0.95, they deviate from 
objective probabilities in Köln by more than 5 per cent. Similar results are obtained, when 
estimates from Köln are compared to data in Frankfurt.  

We conclude that observations of behavior in coordination games are useful to detect the 
extreme cases, in which successful coordination is very likely or very unlikely. But, they do 
not give reliable estimates of success probabilities for intermediate cases. These are extremely 
important to know, if an agent participates in a coordination game and thinks about the right 
switching point. This raises the question, how a player should behave who happens to 
participate in a coordination game. 

 

5. Best response strategies 

In this section we analyze which strategy can be recommended to a player of a coordination 
game. While collective advice would recommend the efficient equilibrium, there is almost no 
chance to achieve this in situations with a high hurdle or low gains from coordination. We 
evaluate different refinement concepts for the expected utility that these concepts induce to a 
single player who interacts with randomly chosen group members.  

For a participant, opting for B pays off, if at least K–1 other group members decide for B. 
Thus, from a player’s point of view, the probability to be successful with opting for B at an 
alternative safe payoff X is given by 1–Bin(K–2, N–1, p), where p is again the probability that 
a randomly selected subject chooses B in this situation. The best response of a player is to 
choose B if and only if   

( 1 – Bin ( K – 2, N – 1,  p )) U ( 15 )  > U ( X ) ,  
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where U is the player’s utility function. In Table 8, we compare the recommended numbers of 
B-choices with two theoretical concepts: the global-game solution and the risk-dominant 
equilibrium. We give the results for three different utility functions with (i) risk neutrality, (ii) 
constant absolute risk aversion (CARA), and (iii) constant relative risk aversion (CRRA).   

The CARA utility function is given by  

 1 exp( )( ) xU x α
α

− −
= , 

where a is the Arrow-Pratt measure of absolute risk aversion. The CRRA utility function is 

 
1

( )
1

rxU x
r

−

=
−

 

with relative risk aversion r. In the calculations, x is replaced by payoffs from the respective 
situation. Applied parameter values α = 0.092 and r = 0.415 are such that a player with any of 
these utility functions is indifferent between the lottery and a safe payoff of  € 7.50. 

The global-game solution is the best response of a player who believes that the proportion of 
other players who choose B has a uniform distribution in [0,1]. Such a player should switch 
from B to A at a threshold Z*, given by the solution to  

 *11 (15) ( )K U U Z
N
−⎛ ⎞− =⎜ ⎟

⎝ ⎠
. 

The risk-dominant equilibrium is the best response to a bi-centric prior. The associated 
threshold Z* is given by the solution to 

 (1 – Bin(K – 2, N – 1, 1 – )15(/)( * UZU )) )()15( *ZUU = . 

The risk-dominant equilibrium is always close to the global-game solution. Parameters of the 
experiment have been chosen to yield a notable difference between the two equilibium 
refinements.  

From Table 8 one can see that the global-game solution gives a good recommendation for 
behavior of a risk neutral player in Frankfurt. In Barcelona and Köln, a risk neutral player 
should choose a higher threshold, but the global-game solution is still a good guide. Risk 
aversion lowers the optimal number of B-choices. However, with increasing risk aversion the 
optimal number of B-choices falls less than predicted by global-game solution or risk 
dominance. In Frankfurt, a risk-averse player can achieve a higher expected payoff by 
choosing a threshold that is in between the global-game solution calculated for risk-neutrality 
and the global-game solution based on the player’s own utility function. In Barcelona and 
Köln, even a risk-averse player should choose a higher threshold than predicted by the global-
game solution based on risk neutrality.7 

 

                                                 
7 This in line with previous observations by Heinemann, Nagel and Ockenfels (2003) and Cabrales, Nagel and 
Armenter (2003), who detect systematic deviations of behavior from the global-game solution towards the 
payoff-dominant equilibrium. 
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Optimal and theoretical number of B-choices 

 k = 1/3 k = 2/3 k = 1 

 N=4 N=7 N=10 N=4 N=7 N=10 N=4 N=7 N=10

(i) Best response of a risk neutral player 

     in Frankfurt 7 7 7 4 4 3 2 1 0 

     in Barcelona  9  6   2  

     in Köln 8 9 8 5 6 5 3 2 1 

     Equlibrium refinements assuming risk neutrality  

     Global-game solution 7 7 6–7 4–5 4 3–4 2 1 0–1  

     Risk-dominant equilibrium 6 6 6 4–5 4 4 3 2 1 

(ii) Best response of a player with CARA,  α = 0.092 

     in Frankfurt 6 6 7 4 3 3 2 0 0 

     in Barcelona  8  5   1  

     in Köln 8 8 8 5 5 5 2 2 1 

     Equlibrium refinements assuming CARA,  α = 0.092 

     Global-game solution 5 5 5 3 2 2 1 0 0 

     Risk-dominant equilibrium 5 4 4 3 2 2 1 1 1 

(iii) Best response of a player with CRRA,  r = 0.415 

     in Frankfurt 7 6 7 4 3 3 1 0 0 

     in Barcelona  8  5   1  

     in Köln 8 8 8 5 5 5 2 2 1 

     Equlibrium refinements assuming CRRA,  r = 0.415  

     Global-game solution 6 5 5 3 2 2 0 0 0 

     Risk-dominant equilibrium 5 4 4 3 2 2 1 0 0 

Table 8.   

 

If a risk averse subject in Köln would have known the data from Frankfurt, she would have 
been better off following the predictions derived from Frankfurt data than following the 
global game solution. The reverse is not true: the best response in Frankfurt is closer to the 
global-game solution than to the best response in Köln. Whether risk aversion is described by 
CARA or CRRA has no big effects, neither on best responses nor on equilibrium refinements. 
This is also true, when results are calculated for the degrees of risk aversion that are 
associated with other thresholds in the lottery setup. Comparing recommendations with actual 
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behavior (see Table 3), it is obvious that in all three locations most subjects choose B too 
often in games that require coordination of all subjects (k=1). 

When participating in a coordination game, players usually do not know success probabilities 
and, therefore, cannot predict best responses. Next, we analyze, which general strategy we can 
recommend to an arbitrary participant in a coordination game. We consider the following 
strategies: 

GGS(α) global-game solution: choose B if  

)()15(11 ZUU
N

K
αα >⎟

⎠
⎞

⎜
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⎛ −
−  

and A if the reverse inequality holds. Choose B with probability ½ if both sides 
are equal, 

RDE(α) risk-dominant equilibrium: choose B if  

(1 – Bin(K – 2, N – 1, 1 – )(ZUα / )15(αU )) )()15( ZUU αα > , 

and A if the reverse inequality holds. Choose B with probability ½ if both sides 
are equal. 

P2/3(α) best response to other players choosing B with probability 2/3: choose B if  

(1 – Bin(K – 2, N – 1, 2 / 3 )) )()15( ZUU αα > , 

and A if the reverse inequality holds. Choose B with probability ½ if both sides 
are equal. We include this strategy, because it gives the best prediction in the 
experiment studied by Heinemann, Nagel and Ockenfels (2004). 

LLE(α) limiting logit equilibrium, introduced by McKelvey and Palfrey (1995): for any 
non-negative λ , a quantal response equilibrium desribes the probability that a 
player chooses B by the solution to   

  
 (15)])))(,1,2(Bin1()([exp(1

1)(
αα λλ

λ
UpNKZU

p
−−−−+

= . 

The limit of the continuous path of the solution correspondence )(λp  for 
∞→λ  defines the limiting logit equilibrium. The associated threshold Z* is 

given by 

(1 – Bin(K – 2, N – 1, 1 / 2 )) )()15( *ZUU αα = . 

It amounts to the best response of a player who beliefs that others choose B 
with probability ½. 

α  is the absolute risk aversion. We distinguish strategies based on a subject’s own risk 
aversion, iαα = , and strategies based on 0=α , for which  U(x) = x. Strategies based on risk 
neutrality are easier to calculate and do not require to know one’s own risk aversion. 
However, neglecting risk aversion may lead to losses in expected utility. 

The left columns in Table 9 compare, how many subjects could have improved their expected 
utility (given the absolute risk aversion iα , associated with a threshold that is in the middle 
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between the highest safe payment, at which the subject chooses the lottery and the lowest safe 
payment that is preferred to the lottery) by choosing any of the above strategies in comparison 
to their actual choices. For these comparisons we consider only subjects who played threshold 
strategies and did not choose the lottery, when the alternative safe payoff was 15. Success 
probabilities are calculated from actual choices of the respective subject pool. A vast majority 
of subjects could have improved their expected utility by any of the considered refinement 
strategies. 

For the right three columns in Table 9 we compare expected utilities from GGS(0) with 
expected utilities from other strategies. For most subjects in Frankfurt and Köln, GGS(0) 
leads to a higher expected payoff than any other strategy in pair-wise comparisons. In 
Barcelona, however, a majority of subjects would achieve higher expected payoffs by using 
P2/3(0) or P2/3(α i).  

 

Comparison of expected utilities from different strategies 
 

 Percentage of subjects who would 
have achieved higher expected utility 

by using the refinement strategy 
instead of their actual choices 

Percentage of subjects for whom 
GGS(0) leads to a higher expected 

utility than the respective other 
refinement strategy 

 Frankfurt Barcelona Köln Frankfurt Barcelona Köln 

GGS(0) 78% 65% 88%    

RDE(0) 77% 65% 85% 100% 100% 74% 

P2/3(0) 66% 65% 81% 99% 43% 74% 

LLE(0) 75% 65% 81% 94% 85% 95% 

GGS(α i) 77% 70% 86% 65% 61% 81% 

RDE(α i) 77% 65% 85% 94% 61% 71% 

P2/3(α i) 77% 70% 81% 91% 43% 65% 

LLE(α i) 73% 70% 81% 94% 63% 89% 

Number of 
subjects 

 
124 

 
23 

 
84 

 
124 

 
23 

 
84 

Table 9. 

 

It is a striking and surprising result that GGS(0) does so well in all of these comparisons, 
although the aggregate behavior differs so much between subject pools. Results do not change 
much, if we replace iα  by minimal or maximal risk aversion consistent with subjects’ 
choices. For most subjects in Frankfurt and Köln, GGS(0) is also the best strategy when 
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compared to all others simultaneously. The threshold associated with GGS(0) is simply given 
by   

  Z*  =  ⎟
⎠
⎞

⎜
⎝
⎛ −
−⋅

N
K 1115 . 

This strategy is easy to calculate and does not even require knowing one’s own risk aversion.  

When payoffs are scaled up, one should expect thresholds to fall, because Holt and Laury 
(2002) show that risk aversion rises with higher payoffs. Given our results on the close 
relationship between risk aversion and thresholds in coordination games, we expect that high-
scale payoffs also reduce certainty equivalents for strategic games. This effect shows up in 
data from two high-stake coordination games in Heinemann, Nagel and Ockenfels (2004). In 
consequence, we expect that strategies that account for risk aversion may be better than 
GGS(0) in games with higher payoffs than in our experiment.  

 

6. Subjective Probabilities 

To find precise measures of individual attitudes towards strategic uncertainty, we estimate 
subjective beliefs by comparing choices in coordination games with those in the lottery setup. 
For example, consider a subject who chooses the lottery (B), when the payoff for A is smaller 
or equal than 6 Euro, but chooses B in a coordination setup, when the safe alternative is 
smaller or equal to 9 Euro. This subject seems to believe that successful coordination in 
situations where A pays 7.50 or 9 Euro has a higher probability than 2/3. If this person 
expects others to follow threshold strategies (in the questionnaire 83.6% of all subjects 
answered yes to the question, whether they expected other subjects to play threshold 
strategies), she should attribute even higher probabilities to successful coordination on B in 
situations, where the payoff to A is smaller than 7.50. On the other hand, if this subject 
chooses B in a coordination game, only when the payoff to A is smaller or equal to 4.50, she 
reveals that she attributes a probability below 2/3 to a successful coordination on B, whenever 
the payoff to A is 6 Euro or higher. 

More precise measures of subjective beliefs can be obtained by assuming a particular utility 
function. Here, we use the CARA utility function, but we checked that the CRRA utility 
function yields about the same results.  

Let X be a subject’s certainty equivalent of the lottery and Z her threshold in a coordination 
game. Then, 

 U(X) = 2/3 U(15) + 1/3 U(0)     and     U(Z) = q U(15) + (1 – q) U(0), 

where q is the subjective probability for successful coordination on B, when the alternative 
safe payoff from A is Z. Assuming CARA, this is equivalent to 

       exp( – α X ) = 1 – 2/3 ( 1 – exp ( –15 α ))    and     exp( – α Z ) = 1 – q ( 1 – exp ( –15 α )).     

The first equation gives us an estimate for α(X) that we use in the second equation to estimate 
the subjective probability for successful coordination in the situation, where A gives a certain 
payoff of Z,  q(X, Z).  
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In our experiment, we measure certainty equivalents up to an interval of 1.50. Consider a 
subject, who chooses the lottery (B), when the payoff for A is smaller or equal to X Euro, but 
chooses B in a coordination setup, when the safe alternative is smaller or equal to Z Euro.  

At Z, this subject chooses B and prefers the coordination game to the safe payoff Z. Thereby, 
she reveals a subjective probability that is at least  q(X+1.50, Z). If this exceeds the objective 
probability of success in the coordination game with alternative safe payoff of Z, then we say 
that this subject overestimates the probability for successful coordination. 

At Z+1, the subject chooses A and prefers the safe payoff Z+1 over the coordination game. 
Here, she reveals a subjective probability that is at most  q(X, Z+1.50). If this is lower than 
the objective probability of success in the coordination game with alternative safe payoff of 
Z+1.50, then we say that this subject underestimates the probability for successful 
coordination. 

Subjects, for whom neither of the two conditions above holds, are said to have subjective 
probabilities that are approximately equal to the objective ones. Table 10 presents these 
comparisons and shows that most subjects overestimate the probability of success in games 
with a high coordination requirement, but underestimate success in games with a low hurdle.  

 

Estimated number of subjects, who over- or underestimate the probability of successful 

coordination 

Game k = 1/3 k = 2/3 k = 1 

 N=4 N=7 N=10 N=4 N=7 N=10 N=4 N=7 N=10 

12 6 10 23 19 18 36 26 25 Subjects who 
overestimate 
success 
probability 

 23%   48%   70%  

18 13 6 17 4 11 7 6 7 Subjective 
probability 
approximately 
equal to 
objective 

 31%   26%   16%  

26 14 16 16 12 5 13 3 2 Subjects who 
underestimate 
success 
probability 

 46%   26%   14%  

Table 10.  

 

Most subjects underestimate the probability of successful coordination, when they need only 
one third of the other players to be successful, while most subjects overestimate the 
probability of successful coordination in games with k = 2/3 or k = 1. The proportion of 
subjects who overestimate probabilities to win in the coordination game tends to rise in k and 
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N, while the proportion of subjects, who underestimate success probabilities tends to fall in k 
and N.  

What are the subjective probabilities associated with the situations at which subjects switch 
from B to A? To get a precise measure for each subject, we calculate q(X, Z) based on the 
assumption that the true thresholds X and Z are the highest value of the safe payment, at 
which a subject chooses B. This overestimates risk aversion, but has no systematic effect on 
estimated subjective probabilities q. Table 11 presents average subjective probabilities for 
success in the coordination game with hurdle k, when the alternative safe payoff is Z. 
Numbers in round brackets are standard deviations, numbers in squared brackets give the 
number of subjects, who chose this threshold and revealed a finite degree of risk aversion. 
Again, these estimates do not change substantially, if we apply other utility functions.  

 

Subjective probabilities for successful coordination 

Estimated q-values:  Mean   (standard deviation)  [number of subjects]  

Safe payoff  Z k = 1/3 k = 2/3 k = 1 

0.00 n.a.       (  -  )          [0] 0          (0)             [4] 0          (0)           [22] 

1.50 0.67      (  -  )          [1] 0.40     (0.16)        [6] 0.20     (0.14)        [9] 

3.00 0.67      (  -  )          [1] 0.43     (0.17)        [4] 0.35     (0.11)      [21] 

4.50 0.62      (0.17)        [7] 0.46     (0.14)      [25] 0.45     (0.12)      [20] 

6.00 0.61      (0.17)        [9] 0.57     (0.14)      [24] 0.51     (0.08)      [15] 

7.50 0.66      (0.12)      [25] 0,60     (0.08)      [21] 0.56     (0.13)      [14] 

9.00 0.75      (0.09)      [26] 0.67     (0.07)      [17] 0.71     (0.08)        [9] 

10.50 0.76      (0.08)      [21] 0.71     (0.09)      [10] 0.73     (0.05)        [3] 

12.00 0.81      (0.06)      [12] 0.91     (0.03)        [2] 0.89     (  -  )          [1] 

13.50 0.90      (0.09)      [11] 0.80     (0.13)        [3] 0.87     (0.07)        [2] 

15.00 1           (0)             [7] 1          (0)             [3] 1          (0)             [3] 

Total*                            [120]                           [119]                           [119] 
Table 11. Data from Frankfurt sessions.  *These numbers are smaller than the number of 
subjects who chose threshold strategies, because q can not be calculated, when a subject 
chooses thresholds of zero or 15 in lottery and coordination game.   

 

At first sight it might surprise that subjective probabilities are increasing in Z. It must be 
emphasized that these are beliefs of different subjects, who actually switched at the respective 
safe payment. Since 83.6% of all subjects expected others to follow threshold strategies, 
subjective probabilities of any single subject should be decreasing in Z. E.g., a subject that 
switches at 10.50 and has an estimated subjective probability for success of 0.76 in this 
situation should have higher subjective probabilities for success in situations with lower safe 
payments and lower subjective probabilities in situations with higher safe payments. 
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It is an open question, whether subjective beliefs are formed over the outcome of the order 
statistic (here: success or failure of coordination on B), or over individual choices. Our 
experiment provides some answers to this question. 

If player i attributes subjective probability πi to another randomly selected subject choosing B 
then her subjective probability for success with action B is qi = 1–Bin(K–2, N–1, πi). This 
function is invertible, so that we can estimate the subjective probability for another player 
choosing B by the value πi that solves the equation for the estimated qi.  

For each subject we get estimated subjective probabilities at three different levels of k and Z. 
For a single subject, πi and qi should decrease with rising k and Z. For more than 70 per cent 
of subjects, estimated values of qi at the respective threshold are decreasing in k, in Frankfurt 
there were only 3 cases with a reverse order. But, estimated values for πi are increasing in k 
for two third of all subjects. This hints at subjective beliefs being inconsistent with 
probabilistic beliefs about individual behavior. At the same time, however, subjects reduce 
their threshold with rising coordination requirement. The lower threshold might compensate 
the higher hurdle in its effect on beliefs.  

Simulations show that subjective beliefs about individual behavior that respond to k and X in 
the right direction must have variances that do not exceed the variance of the measured 
distribution of B-choices. The hypothesis that subjects have beliefs about individual actions is 
consistent with observations only if subject’s confidence in their estimates is as high as our 
confidence in predictions that we can derive from the results of the experiment. It is hard to 
imagine that subjects have that much trust in the optimality of their decisions. This may be 
viewed as weak evidence against the hypothesis that subjects form beliefs about individual 
behavior. The question of how subjective beliefs can be modeled appropriately is analyzed 
more rigorously in the next section.  

 

7. Probabilistic Decision Models with Endogenous Beliefs  

Drawing on our previous results, we develop probabilistic decision models to describe 
behavior. These models include functions describing subjective beliefs. To our knowledge, 
this is one of the first empirical analyses of probabilistic decision models with endogenous 
beliefs.8 Parameters of the models are estimated by maximizing the likelihood of observed 
choices.  

The reference model (Model 1) treats decisions as a random function that depends on the 
games’ parameters. Model 2 includes personal characteristics, such as risk aversion, gender, 
age, and the Zuckerman scales as explanatory variables. Including personal characteristics 
increases the likelihood of observations significantly.9 Models 3 and 4 assume that subjects 

                                                 
8 Nyarko and Schotter (2002) estimate subjective beliefs about opponents’ behaviour in a repeated game to study 
changes of beliefs.   
9 While it is common practice in probabilistic decision models to treat all subjects as being identical, McKelvey, 
Palfrey and Weber (2000) have demonstrated that the data fit can be significantly better, if heterogeneity of 
agents is considered. They introduce heterogeneity by a distribution of error rates and estimate the parameters of 
this distribution. Our data allow a more sophisticated treatment of individual differences, because we actually 
know differences that affect behavior. Besides, we do not see the error rate as a measure of individual error 
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respond to subjective probabilities that depend on parameters of the game and on personal 
characteristics. Observed behavior is consistent with probabilistic beliefs about success or 
failure of coordination. Observations are inconsistent with probabilistic beliefs about other 
subjects’ individual actions.  

Model 1 assumes that players respond to the parameters of the payoff function and choose B 
with a probability that is described by a logistic function, 

Prob(B)
)exp(1

1

0 NbkbXbb NkX −−−+
= .  

Model 2 includes personal characteristics as explanatory variables. Risk aversion is measured 
by the number B-choices in the lottery setup BL. Other explaining variables are gender, age, 
and the four Zuckerman scales. 

Prob(B)
)exp(1

1

0 TASbESbDISbBSbagebgenderbBLbNbkbXbb TASESDISBSagrNkX −−−−−−−−−−+
= . 

Models 3 and 4 assume that players have probabilistic beliefs about success of coordination. 
Players respond by maximizing expected utility, but their actual choice is given by a 
probabilistic choice function that accounts for errors and for individual differences that are not 
captured in a model’s structure. We use the error response function introduced by Luce 
(1959),  

 Prob(B) = 
1/

1/ 1/
B

A B

U
U U

µ

µ µ+
 .        

Parameter µ  may be interpreted as an error rate. For 0→µ , agents always choose the 
alternative with the higher expected utility (rational behavior).  For ∞→µ , agents choose 
both alternatives with probability ½ (random behavior). However, it should be kept in mind 
that our model (like any econometric model) can just measure average behavior and average 
beliefs. All individual differences are attributed to random effects that enter models 3 and 4 
by the probabilistic choice function for 0>µ . In this sense, µ  is rather a measure of diversity 
than a measure of irrationality. 

Utility functions are estimated by observations from the lottery setup. Again, we apply the 
CARA utility function after checking that CRRA leads to a similar fit of data. For the 
individual degrees of risk aversion iα  we take the values that result from a subject’s certainty 
equivalent being the median between the highest safe payoff at which the subject chooses B 
and the lowest safe payoff at which the subject chooses A. 

 i

i

A
XU

α
α )exp(1 −−

=  

is the utility from choosing A in a situation with a safe payoff is X, and  

                                                                                                                                                         
probabilities but rather as a compound including unexplained differences between subjects. Allowing different 
error rates for subjects would blur this measure. Instead, we use known differences, as revealed risk aversion and 
other personal characteristics to explain differences in individual choices.  
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i

i

B qU
α
α )15exp(1 ⋅−−

=  

is the expected utility from choosing B in this situation. In lottery decisions q = 2/3. In 
coordination games,  q  is the subjective probability for success. Model 3 assumes that players 
respond to expectations about success of action B formed by a logit model. The subjective 
probability for success of B is  

)exp(1
1

0 TASbESbDISbBSbagebgenderbBLbNbkbXbb
q

TASESDISBSagrNkX −−−−−−−−−−+
= .  

Model 4 assumes that players respond to logit expectations about other players’ individual 
choices. The subjective probability for another player choosing B is  

)exp(1
1

0 TASbESbDISbBSbagebgenderbBLbNbkbXbb
p

TASESDISBSagrNkX −−−−−−−−−−+
= . 

Here, the resulting subjective probability for success of action B is given by 

  q = 1 – Bin ( K – 2, N – 1, p ). 

The likelihood function is constructed to describe the probability of observing actual choices. 
To compare the estimates, we only use the data from subjects who played threshold strategies, 
had a finite risk aversion, and completed the questionnaire. Results are displayed in Table 12.  

 

Model Estimates 

 Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 
µ      0.51   0.53   0.32   0.44

b0 - 6.13 - 2.64 - 2.21   2.44 - 6.87 - 4.14 - 3.17   1.16

bX - 0.48 - 0.58 - 0.30 - 0.20 - 0.44 - 0.48 - 0.08 - 0.16

bk - 3.55 - 4.25 - 3.53   2.32 - 3.70 - 4.03 - 3.25   2.56

bN - 0.02 - 0.05 - 0.06   0.09 - 0.01 - 0.06 - 0.03   0.06

br    0.54   0.13   0.13   0.31 - 0.16 - 0.02

bg    0.56   0.67   0.37   0.28   0.62   0.49

ba    0.04   0.04   0.04   0.06   0.05   0.05

bBS  -0.08 - 0.09 - 0.07  

bDIS  -0.03 - 0.08 - 0.05  

bES    0.30   0.21   0.12  

bTAS  - 0.02   0.07   0.05  

LL - 1445.9 - 1224.6 - 1341.7 - 1342.0 - 1022.3 - 994.9 - 989.3 - 1006.5

Av.l. 0.671 0.714 0.691 0.691 0.660 0.667 0.669 0.664

Data 121 subjects in Frankfurt 82 subjects in Köln 
Table 12.  
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LL is the loglikelihood of observed choices and Av.l. is the average likelihood of a binary 
choice, calculated by Av.l. = exp ( LL / (30 n)), where n is the number of subjects in the data 
set. The average likelihood is a measure of predictability of an individual’s decision. The 
reference value is 0.5 for pure random. Model 1 yields an average likelihood of 0.671 in 
Frankfurt and 0.660 in Köln. A likelihood ratio test reveals that personal characteristics in 
model 2 increase the likelihood significantly in both locations. For Frankfurt data, this 
increase is more pronounced than in Köln, where we had no Zuckerman test.   

Models 2, 3 and 4 are not nested. Therefore the likelihood ratio cannot serve as a criterion of 
model selection. However, it is disappointing that modeling beliefs does not increase the 
average likelihood in comparison to a simple logistic response function. Model 2 clearly 
delivers the best fit of data in Frankfurt. In Köln, Model 3 does only slightly better.  

Whether behavior is consistent with a model can be tested by checking parameter restrictions. 
Rising safe payoff X and rising hurdle to coordination k should reduce the subjective 
probability of successful coordination and the subjective probability for another player 
choosing B. While in Model 3 the coefficients bX and bk are indeed negative, Model 4 predicts 
that a rising hurdle k increases the subjective probability for another player choosing B, 
because bk is positive. This result indicates that Model 4 is misspecified and confirms the 
impression from Section 5 that subjects have subjective probabilities over aggregate outcomes 
rather than on individual strategies.  

Strategic uncertainty might be also be measured by the response precision in a quantal 
response equilibrium (QRE), introduced by Mc Kelvey and Palfrey (1995). Fitting a single 
response precision to all situations gives an extremely low likelihood of observations, which 
raised the idea to estimate response precisions separately for different games. For an observed 
proportion of B-choices p, the response precision in a QRE is given by  

[ ] 1(15)),1,2(Bin1()(1ln),,( −−−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ααλ UpNKXU

p
pNKX  

provided that the solution is on the continuous path of the solution correspondence )(λp , 
otherwise it is 0=λ . Response precisions are relatively high in situations, where we could 
also get reliable forecasts from comparing the outcomes of the experiment at three different 
places. In situations, for which we cannot predict the outcome, response precisions are low, 
often zero. A response precision of zero means that the QRE model has no prediction better 
than random play. This concerns one or two situations in each setup and leads to a poor data 
fit. The likelihood of observations is lower than for any of the other models.  

The frequent occurrence of equilibria with 0=λ  is due to the following property of QRE: λ  
is non-negative if and only if a majority of subjects chooses the action that yields the higher 
expected utility. In coordination games, the hurdle is often such that a majority may be on the 
wrong side. For example, if all group members are needed, but only 70% actually choose B, 
the likelihood of success is so small that those who choose A have the higher expected utility. 
Thus, the majority chooses the wrong action and the associated λ  equals zero. This feature of 
QRE makes it unsuitable for analyzing coordination games. When λ  is positive, it provides 
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an inverse measure of the variance of individual behavior weighted with the difference 
between expected payoffs from both actions.  

 

8. Conclusions  

We have designed an experiment that allows measuring strategic uncertainty and estimating 
subjective probabilities in coordination games with multiple equilibria. The strategic 
uncertainty associated with the requirement to coordinate a certain number of group members 
is measured by the certainty equivalent, i.e. the certain payoff that a subject is willing to give 
up for the uncertain payoff from coordination. The lower the certainty equivalent of a 
coordination requirement is, the more risk seems to be associated with it.  

The experiment shows that attitudes towards strategic uncertainty are closely related to risk 
aversion. Certainty equivalents for lotteries and coordination games are positively correlated. 
This indicates that risk aversion matters in situations of strategic uncertainty. Apparently, 
subjects treat situations of risk and situations with strategic uncertainty in a similar way, 
which supports the view that subjective beliefs can be modeled as probabilities. This result 
should already be valuable for theorists who commonly model subjective beliefs by 
probability distributions. Estimated subjective probabilities are sensitive to payoffs and to the 
coordination requirement, while the group size has no significant impact. However, subjective 
beliefs respond less sensitive to the coordination requirement than objective probabilities.  

The outcome of a coordination game with multiple equilibria can be highly predictable, 
especially when the attitudes of a population towards risk and strategic uncertainty are known. 
The same knowledge allows recommendations for behavior and will thereby enhance 
efficiency in the process of achieving coordination. Without precise knowledge of the 
environment, the global-game solution can be recommended to agents who are engaged in 
coordination games. Note that this is an advice for a single agent. An advice given to the 
whole group should always try to move behavior towards the efficient equilibrium. 

The quality of predictions can be improved when individual characteristics are taken into 
account. Subjects who avoid risk or new experiences are less likely to engage in coordination 
games. But, modeling beliefs does not improve the likelihood of observations compared to a 
simple logistic response function. The quantal response equilibrium can be used to find 
separate measures of strategic uncertainty for each decision situation, while certainty 
equivalents measure subjective beliefs only at the marginal situation at which a subject 
switches actions. The drawback of quantal response equilibria is that they yield only an 
aggregate measure depending on the behavior of the whole group, while certainty equivalents 
measure individual attitudes towards strategic uncertainty.  

The design of our experiment opens ways to measure strategic uncertainty in other games as 
well. A generic approach would ask subjects to decide between safe payoffs of various 
amounts or lotteries with various success probabilities on one side and participation in a 
strategic game on the other side. If a subject ever decides for the game, she must also state her 
decision in the strategic game. Her beliefs about the payoff from the strategic game can then 
be measured by the marginal payoff or lottery, at which she switches actions. This procedure 
can actually be applied to a wide variety of games. Analyzing strategic uncertainty helps 
forecasting behavior and giving advice to players.  
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Appendix A1: Instructions 

 

Instructions for different treatments varied according to group size and order of set-ups. Here, 
we give the instructions for treatment 7A, which has seven members in each group, starts with 
lottery choices and ends with coordination games that require unanimity for success with B. 

 

Instructions 
Thank you for participating in this experiment, a project of economic investigation. Your earning 

depends on your decisions and the decisions of the other participants. From now on until the end of the 

experiment you are not allowed to communicate with each other.  If you have some question raise 

your the hand and one of the instructors will answer the question in private. Please, do not ask aloud.  

Thank you very much. 

The rules are equal for all the participants.  

 
The experiment consists of 2 stages. The first stage consists of 40 situations. Each situation is 
independent of the other. In each situation you can decide between A and B. Your payment at 
the end depends on these decisions. 

 

In the second stage we ask you to fill out a questionnaire.  

 

Stage I 

In this stage two groups are formed of 7 participants in each group. You don’t know who will 

be in your group.  

This stage consists of 4x10 situations, which we explain below. In all situations you have to 

decide between A and B. At the end of the first stage 1 out of the 40 situations is chosen 

randomly. Your payment will be according to the situation picked. Additionally you will get 

5 Euros as a show-up fee.   
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Situations of decisions 1 – 10: 
If one of the situations 1-10 is picked at the end, you will be paid according in the following 

way (have also a look at the table below):  

1. If you choose A, you receive a sure payment given in the second column. The payment 

which is actually chosen depends on the situation chosen randomly.  

2. If you choose B, you payment depends on the result of the throw of a die (thrown by the 

computer).  

• If the result of the die is 1 or 2, you receive 0 Euros. 

• If the result of the die is 3, 4, 5, or 6, you receive 15 Euros.  

 

 

 
You have to choose between A and B for each situation and you can do it in any order. When 
you have decided you have to click the button ok. Until you have not pressed the button, you 
can change your decisions.  
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Situations of decisions 11 – 20: 
If one of the situations 11-20 is picked at the end, you will be paid according in the following 

way (have also a look at the table below):  

1. If you choose A, you receive a sure payment given in the second column. The payment 

which is actually chosen depends on the situation chosen randomly.  

2. If you choose B, you payment depends on how many members of your group (including 

yourself) have chosen B:  

- If at least 3 out of 7 members of your group have chosen B, you receive 15 Euros.  

- If less than 3 members of your group have chosen B you receive 0 Euros.  

 

 
 

 
You have to choose between A and B for each situation and you can do it in any order. When 
you have decided you have to click the button ok. Until you have not pressed the button, you 
can change your decisions.  
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Situations de decisions 21 – 30: 
If one of the situations 21-30 is picked at the end, you will be paid according in the following 

way (have also a look at the table below):  

1. If you choose A, you receive a sure payment given in the second column. The payment 

which is actually chosen depends on the situation chosen randomly.  

2. If you choose B, you payment depends on how many members of your group (including 

yourself) have chosen B:  

- If at least 5 out of 7 members of your group have chosen B, you receive 15 Euros.  

- If less than 5 members of your group have chosen B you receive 0 Euros.  

 

  
You have to choose between A and B for each situation and you can do it in any order. When 
you have decided you have to click the button ok. Until you have not pressed the button, you 
can change your decisions.  
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Situations de decisions 31 – 40: 
If one of the situations 21-30 is picked at the end, you will be paid according in the following 

way (have also a look at the table below):  

1. If you choose A, you receive a sure payment given in the second column. The payment 

which is actually chosen depends on the situation chosen randomly.  

2. If you choose B, you payment depends on how many members of your group (including 

yourself) have chosen B:  

- If at least 7 out of 7 members of your group have chosen B, you receive 15 Euros.  

- If less than 7 members of your group have chosen B you receive 0 Euros.  

 

  
You have to choose between A and B for each situation and you can do it in any order. When 
you have decided you have to click the button ok. Until you have not pressed the button, you 
can change your decisions.  
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When all participants made all 40 decisions and clicked the last OK-button, the computer 
randomly selects one of the situations 1 – 40. Your payment is determined by the rules of the 
selected situation. 

On the screen you will then be informed about which of the 40 situations has been selected, 
how many members of your group have decided for A or B, respectively, in this situation, and 
how much money you will get. 

 

Phase II 

In the secon phase we ask you to fill in a questionnaire. The personal data will be treated 
confidential and are only used for research. To prove our spendings in case of investigation, 
we must ask you for your name and address. These data will be stored in separately from the 
others.  

Once you complete the questionnaire, we pay you amount that you earned in phase I 
including the show-up fee of 5 Euro. 

To make sure that everybody understands the rules of the game, we ask you some questions 
about the game. Phase I will start, when everybody gave the corect answers to these 
questions. 

 

Appendix A2:  Quiz 

Before the experiment started, subjects had to answer a few questions concerning the rules. 
Here a sample of the quiz for treatment 7A which has been discribed by the instructions 
Appendix A1. This quiz was done with z-tree. Questions 1 – 5 were presented one after 
another. A candidate got the next question only after correctly answering the previous one. 

 

The following questions serve to see if you have understood the instructions. They do not 
have any influence in decisions or possible payments that follow.  
 
1.  How many members does your group have?      ____ 

How many have to choose B in situation 17, so that they receive 15 euros?  ____  
In order to receive 15 Euro in situation 37, how many must choose B?  ____ 

 
2.  In situation 25 you choose A and 4 of the 6 others choose B.  

What is your payment?        ____  
What is the payment to the other 4 members who chose B?    ____ 
What would have been your payment if you had chosen B?   ____ 

 
3.  In situation 39 you choose B and 5 of the other 6 members also choose B.  

What is your payment?         ____ 
What is the payment to the other 5 who chose B?      ____ 
What would have been your payment if you had chosen A?    ____ 
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4.  In situation 3 you have chosen A, and all the other B.  

What is your payment?         ____ 
What is the payment of the others, if the result of the dice is 5?    ____ 
What is your payment, if you had chosen B and the result of the dice had been 2? ____ 

 
5.  In situation 16 you have chosen B.  

What is your payment, if all the others chose A?      ____ 
What is your payment, if one of the others chooses B?     ____ 
What is your payment if  2 of the others choose B?      ____ 
What is your payment if 3 of the others choose B?      ____ 

 
Your answers are correct. The experiment begins when everybody has responded correctly. 
 
 

Appendix B: Data 

The next table gives the number of B-choices in the four setups by threshold players from 
sessions in Frankfurt. For non-threshold players we give the sequence of decisions instead. In 
addition, the table presents each subject’s gender and score in the experience seeking (ES) 
subscale of Zuckerman’s SSS-V. 

Subject 
number Session #B(Lottery) #B(k=1/3) #B(k=2/3) #B(k=1) gender ES 

1 4A 7 6 4 2 F 3 
2  6 6 4 4 M 6 
3  6 5 4 3 F 6 
4  3 6 4 5 M 7 
5  5 7 6 5 F 5 
6  6 7 4 3 M 6 
7  5 7 5 4 M 2 
8  3 6 3 2 M 5 
9  5 6 5 10 M 4 
10  5 6 5 4 M 3 
11  6 8 7 7 M 5 
12  4 5 4 3 M 5 
13  3 6 10 10 F 6 
14  6 9 0 0 M 7 
15  6 6 4 2 M 4 
16  3 5 4 3 F 5 
17  3 5 4 2 F 6 
18  6 7 6 5 M 3 
19  6 5 5 4 M 6 
20  AAABBBAAAA BBBBBBBBBB AAAAAAAAAA AAAAAAAAAA M 9 
21 4B 9 9 9 0 F 6 
22  5 6 5 3 M 6 
23  5 7 5 8 F 8 
24  5 6 4 3 M 4 
25  4 4 2 1 M 3 
26  5 3 3 2 F 6 
27  6 6 6 5 M 8 
28  7 9 7 7 M 6 
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29  5 5 3 0 M 8 
30  5 7 4 3 M 9 
31  4 3 1 1 M 3 
32  AABAABBABA AABAABBAAB ABAABAABAB BABAAABABA F 4 
33  2 3 1 0 F 4 
34  2 2 3 3 F 1 
35  6 9 9 9 M 8 
36  0 0 0 0 F 6 
37 4C BBBBBBBBBA BBBBBBABAA BBBBBBABBA BBBBBBBAAA M 2 
38  6 5 3 1 M 8 
39  4 5 3 2 F 5 
40  7 8 6 5 M 7 
41  5 8 6 4 M 3 
42  5 5 3 2 M 5 
43  6 9 6 4 F 6 
44  BBBBBBAAAB BBBAAAAAAB BBBBAAAAAA ABBBBBAAAA F 7 
45  8 7 4 0 F 6 
46  6 6 4 3 M 8 
47  5 9 7 6 F 8 
48  4 5 4 3 F 5 
49 4D 10 10 0 0 M 5 
50  4 9 8 6 M 8 
51  3 4 0 0 F 8 
52  5 5 3 0 M 4 
53  10 10 10 10 M 4 
54  6 6 5 4 M 5 
55  5 4 3 0 F 2 
56  6 7 5 4 M 8 
57  7 8 5 1 M 5 
58  7 10 6 5 M 4 
59  BBBAAAAAAA ABAAAABAAA ABBBBAAAAA BBAAAAAAAA F 5 
60  0 10 0 0 M 5 
61  6 5 5 0 M 9 
62  6 7 6 5 M 6 
63  10 4 4 4 M 6 
64  7 7 5 4 M 2 
65 7A 6 8 6 5 F 9 
66  0 0 0 0 F 5 
67  0 0 0 0 F 5 
68  6 9 5 5 M 4 
69  6 10 6 0 M 3 
70  6 7 6 4 M 4 
71  4 4 2 2 F 6 
72  5 6 3 2 M 5 
73  7 7 7 5 M 5 
74  10 10 0 0 F 3 
75  1 1 1 0 F 4 
76  5 5 4 3 F 5 
77  10 10 3 3 M 6 
78  8 8 7 5 F 6 
79  5 6 5 3 M 6 
80  ABBABBBABB BAABBBAAAA AABBABBBAB BAABABBBBA M 1 
81  6 5 5 3 M 4 
82  5 7 6 5 F 5 
83  6 8 6 3 M 7 
84  5 7 6 6 F 8 
85  5 6 5 4 M 7 
86 7C BBBABAABAA BBBAABBBBB AAAAAAAAAA AAAAAAAAAA F 8 
87  7 4 3 2 F 6 
88  6 8 7 7 M 6 
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89  6 6 6 6 M 7 
90  BBAAABBBAA AAABBAABAB BABBAABBAA BAAABABBAA M 4 
91  6 6 3 2 M 6 
92  2 3 1 0 M 4 
93  6 4 3 2 M 6 
94  7 5 3 1 F 5 
95  3 3 0 0 M 1 
96  7 7 5 4 M 7 
97  BAABABABAA AABBAABABA BABAABBABA ABABABABBA M 4 
98  4 6 4 0 F 4 
99  6 7 4 3 M 3 

100  6 6 6 6 M 6 
101  6 5 4 3 F 5 
102  5 7 7 6 M 5 
103  4 6 1 0 F 4 
104  2 4 2 1 F 4 
105  5 10 5 4 M 9 
106  BBBBBBBBBA AAAAAAAAAB AAAAAAAAAB AAAAAAAAAA M 6 
107 10C 5 5 3 2 M 9 
108  4 6 5 4 F 3 
109  2 9 1 1 F 8 
110  5 5 4 4 M 5 
111  6 5 0 0 F 6 
112  AAAAABBBBB BBBBBBBBBB AAAAAAAAAA AAAAAAAAAA M 5 
113  7 8 7 6 M 6 
114  4 7 3 2 M 9 
115  6 3 2 1 M 4 
116  6 5 5 3 M 3 
117  6 8 7 6 M 9 
118  6 5 3 0 M 4 
119  5 9 8 6 M 7 
120  0 0 0 0 M 3 
121  5 6 4 3 M 7 
122  5 5 4 2 M 3 
123  3 5 3 2 M 6 
124  6 4 3 0 M 4 
125  ABAAAAAAAA ABAAAAAAAA ABAAAAAAAA ABBBBBBBBB M 4 
126  6 6 3 2 M 6 
127 10D 7 5 3 1 M 6 
128  3 3 3 2 F 3 
129  AAAABBBBBB AAABBBBBBB BBBBBBBBBB AAABBBBBBB M 5 
130  6 8 5 2 M 9 
131  4 4 3 2 F 4 
132  7 10 10 10 M 2 
133  4 10 3 0 M 2 
134  BBBBBBBBAB BBBABBAAAB AAAAAAAAAA BBBBBBBBAA M 3 
135  6 7 6 5 M 8 
136  BABABABABA AAAAAAAAAA BBBBBBBBBB AAAAAAAAAA F 6 
137  3 6 4 0 F 4 
138  4 5 4 2 F 8 
139  6 7 5 3 F 7 
140  7 8 7 5 M 9 
141  10 10 0 0 M 3 
142  8 9 9 9 M 6 
143  5 6 4 3 F 8 
144  6 10 10 0 M 8 
145  7 7 3 0 M 3 
146  10 10 5 6 M 7 
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The next table gives the number of B-choices in the four setups by threshold players from 
sessions in Barcelona. For non-threshold players we give the sequence of decisions instead. In 
addition, the table presents each subject’s gender and score in the experience seeking (ES) 
subscale of Zuckerman’s SSS-V. 

Subject 
number Session #B(Lottery) #B(k=1/3) #B(k=2/3) #B(k=1) gender ES 

1 7B ABBAAAAAAA BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB F 6 
2  9 6 4 5 F 10 
3  9 10 10 10 F 9 
4  7 9 9 7 M 10 
5  5 7 5 4 M 6 
6  5 9 9 9 M 7 
7  5 5 5 5 F 3 
8  6 7 6 6 M 6 
9  6 7 5 4 M 4 
10  5 6 3 1 F 8 
11  3 6 5 0 F 6 
12  6 7 6 5 M 6 
13  3 0 0 0 F 8 
14  4 3 2 1 M 5 
1 7D 2 9 9 9 M 5 
2  5 4 3 0 M 9 
3  7 10 10 10 F 5 
4  10 10 10 10 F 7 
5  10 10 10 10 F 6 
6  10 10 10 10 F 5 
7  9 9 9 9 F 6 
8  10 5 0 4 F 2 
9  7 9 9 9 F 7 
10  9 10 9 9 F 7 
11  6 9 6 2 M 8 
12  9 9 9 9 F 3 
13  8 10 10 10 F 7 
14  5 9 9 9 M 7 

 


