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Subset Correspondence Analysis: Visualizing 

Relationships Among a Selected Set of Response 

Categories from a Questionnaire Survey 
 

 

Abstract:  It is shown how correspondence analysis may be applied to a 

subset of response categories from a questionnaire survey, for example the 

subset of undecided responses or the subset of responses for a particular 

category.  The idea is to maintain the original relative frequencies of the 

categories and not re-express them relative to totals within the subset, as 

would normally be done in a regular correspondence analysis of the subset.  

Furthermore, the masses and chi-square metric assigned to the data subset 

are the same as those in the correspondence analysis of the whole data set.  

This variant of the method, called Subset Correspondence Analysis, is 

illustrated on data from the ISSP survey on Family and Changing Gender 

Roles. 

  

Keywords : categorical data, correspondence analysis, questionnaire 

survey. 

 



1.  Introduction 

Simple correspondence analysis (CA) and multiple correspondence analysis (MCA) are 

statistical methods which are particularly useful for exploring relations amongst a large set of 

categorical variables.   The associations between the categories of the variables are visualized 

in a spatial map, allowing interpretations of their similarities and differences in order to 

provide empirical indicators which can lead to formulations of hypotheses, more formal 

parametric analyses or even the redesign of the data-gathering instruments (for example, 

questionnaires).    

It is common practice in CA to include all the categories of the variables under 

consideration in the analysis, since this gives the most comprehensive and global view of 

their interrelationships.  However, for substantive as well as methodological reasons it is 

likely that after a global view of the data, it would be interesting to focus attention on a 

reduced set of response categories.  Suppose, for example, we have a response scale with 

categories “agree”, “neither agree nor disagree”, “disagree” and “don’t know”, with the 

possibility  of missing data as well.   Then we might want to analyse the categories of 

“agreement” only, or all “substantive” response categories, that is excluding the “non-

substantive responses” (NSRs, such as “don’t know”, the missing response and also, in some 

cases,  the neutral “neither agree nor disagree”).  It may even be interesting to study the NSRs 

by themselves, that is excluding all the “substantive” response categories.   

Another reason for restricting the categories analysed to a subset is when there are 

many variables and thus many category points in the graphical displays.  It is true that in 

situations where the variables of interest and their categories are few, the maps resulting from 

CA and MCA and all the associated numerical diagnostics maps are easily interpretable.  On 

the contrary, when it is a question of exploring many variables, where we wish to preserve 

their individual character rather than collapse them into summated scales, and where we 

furthermore wish to explore their associations with a large number of socio-demographic 

variables, the resulting maps are saturated with points and are difficult to interpret.  In this 

situation we can seldom proceed beyond an interpretation of broad generalities which are 

usually expected anyway and not surprising, and even if we try to interpret more dimensions 

of the solution there are so many points contributing to each dimension that only vague 

conclusions are possible.  So for this practical reason too, it would be interesting to be able to 



analyse reduced sets of categories, to facilitate the interpretation as well as to make the 

conclusions substantively richer and more interesting. 

Since CA and MCA inherently assume that we are analysing the full set of categories 

for each variable, we shall demonstrate how these methods should be adapted to cope with the  

analysis of a subset of categories.  As an application of our proposal, we consider the 

following data taken from the International Social Survey Programme (ISSP) survey of 

family and changing gender roles in 1994, involving a total sample of 33,123 respondents and 

conducted in 24 countries (former East and West Germany are still considered separately 

here).  We shall focus on four questions, listed in Table 1, which capture attitudes towards a 

crucial facet of women’s role at the end of the 20th century, namely their participation in work 

outside the home environment.  Even though the number of questions is quite small, the 

benefits of looking at subsets of response categories are still evident.  The questions 

specifically ask whether married women should work or stay at home at four different points 

of time in their married lives: (1) before having a child, (2) with a preschool child, (3) when 

the youngest child is at school, and (4) when the children have left home.  The possible 

responses in each case are “work full-time”, “work part-time”, “stay at home”, or 

“unsure/don’t know”.  A few non-responses are also observed, which we grouped with the 

category of “unsure” to form a category of “non-substantive response” (NSR).   In addition to 

the responses to these four questions, we have data on several categorical variables for each 

respondent: sex, age, marital status, education, social class and country – Table 1 lists all six 

of these exogenous variables and their respective categories which we wish to relate to the 

attitudes about women’s participation in the labour market.  The raw data of interest are thus 

of the form given in Table 2(a), while Table 2(b) shows the equivalent data where the 

response categories are coded as zero-one dummy variables in the columns of an indicator 

matrix.   

Insert Tables 1 and 2 about here 

There are two possible strategies to visualize the relationship amongst the attitudinal 

categories and how these are related to the exogenous variables: firstly, multiple 

correspondence analysis (MCA), that is CA of the indicator matrix of dummy variables, with 

the categories of the exogenous categories displayed as so-called “supplementary points” in 

the map (see, for example, Greenacre, 1993, chapter 11); or secondly, CA of the 

crosstabulations of the variables with the exogenous variables, where these crosstabulations 

are concatenated in a super-matrix (Greenacre, 1994).  In the former case, the associations 



amongst the attitudes are displayed and then the exogenous variables are related a posteriori 

to these associations.  We have chosen to illustrate our approach using the latter strategy, 

which more directly relates the attitudes to the exogenous variables.  We shall comment 

further on the MCA approach in the discussion in Section 5.  

In Section 2 we describe the CA of the complete set of data, showing the problems 

that result and motivating the need for a adaptation of the method for a subset of points.  As 

we shall demonstrate, it is not appropriate to simply apply CA to the submatrix of data on 

which we want to concentrate.  In Section 3 we outline the technical features and properties 

of the new methodology, which we call subset correspondence analysis.  Its application  to 

the subset of “stay at home” responses is given in Section 4, and Section 5 concludes with a 

discussion. 

2. Correspondence analysis of the complete matrix 

Table 3 shows part of the data matrix of interest, the crosstabulations of the attitudes with the 

first two exogenous variables concatenated row-wise and column-wise.   CA applied to this 

super-matrix of tables leads to a map where the row and column categories are depicted as 

points (Figure 1).  This map is typical of the results obtained when analysing survey data such 

as these, and also for MCA for that matter: the response categories form a horseshoe curve 

from left to right, with the “work full-time” categories towards top left, the “work part-time” 

categories in the lower central part of the map, and the “stay at home” categories towards top 

right.  The NSRs are close to the origin, slightly to the left, and in fact differentiate 

themselves more on the third dimension of the solution, not shown here.   Thus the first 

dimension is an overall dimension which ordinates the respondents and their various 

biographical categories from “liberal” on the left to “conservative/traditional” on the right in 

terms of this issue, with groups on the left favourable to working women and those on the 

right unfavourable.  The second dimension would line up the groups in terms of their 

“polarization” on this issue, for example Spain is the highest positive on the second 

dimension because it has higher than average frequencies of response both in favour of 

women working full-time and staying at home, while West Germany is very low down on this 

axis showing less than average of these extreme responses and more than average in favour of  

women working part-time.    

Insert Table 3 and Figure 1 about here 



None of these results are particularly surprising: the first dimension which is similar to  

the summated rating scale, the quadratic effect on the second dimension and the categories of 

missings coming together along the third dimension.  It is difficult to make more specific 

interpretations in maps such as Figure 1.  For example, consider the responses “stay at home” 

for the four questions.  In Figure 1 we can see that “stay at home before first child” and “stay 

at home when children have left home” are at the extreme conservative end of the scale, 

whereas “stay at home with preschool child” and “stay at home when youngest child at 

school” are not seen as so conservative, particularly the latter.  This ordering is very much 

what one would expect and is not very surprising.  The association between these four 

categories and the countries, for example, is only shown within the broad dimensions of the 

map, which has been determined by all the response categories.  We can see the more 

traditional countries on the right and the more liberal countries on the left, but the specific 

relationship of the countries with the “stay at home” responses is not so clear.  As we shall 

show later (Section 4), there is a very interesting variation of “stay at home” responses within 

the conservative countries which is not represented in the above map.  Neither will it help us 

to look at further axes, from the fourth axis onwards, since there are so many points 

contributing and being mapped to each axis that the results are really quite confused. 

Therefore, having seen the overall spread of the countries and other groups in terms of 

all these categories, the question is how we can focus on one type of response, for example 

the traditional attitude of “stay at home”, and compare the countries, age groups, and so on, 

just on these responses.  Thus we would like to construct maps restricted to a subset of 

responses, whatever that subset might be.  Using as an example the subset of “stay at home” 

responses, we might be tempted simply to omit all other columns in the data matrix of Table 3 

and apply CA to the subset of “stay at home” columns.  This would be undesirable for two 

important reasons.  First, and more importantly, CA would express the frequencies of “stay at 

home” across the four questions in each row relative to the total frequency of “stay at home” 

in that row.  This means that if Swedes generally give low frequencies of “stay at home” 

compared to Poles (which is actually the case), this fact would be lost in the calculation of the 

“stay at home” profiles for Sweden and Poland.  What we visualize in the analysis would be  

the “shape” of the pattern of responses, that is where the peaks and troughs are in the profile, 

losing the effect of “size” or overall level of “stay at home” response.  Second, the masses 

allocated to the row categories would be proportional to the frequency of “stay at home” 

responses across all four questions, not to the sample sizes associated with the categories: for 



example, Swedes would be weighted much less than Poles rather than proportional to their 

actual sample sizes in the survey.  

 We shall show that it is possible to avoid both of these drawbacks by introducing a 

simple variant into the CA procedure.  In fact, the novelty is to suppress the automatic feature 

of CA to calculate profiles of the given data.  Specifically, we use the profiles and masses of 

the full data matrix and select the subset of response categories from the profile matrix, 

without further re-expression of the profiles with respect to their new totals within the subset.  

With this simple modification of the CA algorithm, the procedure is completely satisfactory 

and resolves both difficulties described above.  

3. Correspondence analysis of a subset of a data matrix 

CA is a particular case of weighted principal components analysis (see, for example, 

Greenacre, 1984, chapter 3).  In this general scheme, a set of multidimensional points exists 

in a high-dimensional space in which distance is measured by a weighted Euclidean metric 

and the points themselves have differential weights, called masses to distinguish them from 

the dimension weights.  A two-dimensional solution, (in general low-dimensional), is 

obtained by determining the closest plane to the points in terms of weighted least-squared 

distance, and then projecting the points onto the plane for visualization and interpretation.   

The original dimensions of the points can also be represented in the plane by projecting unit 

vectors onto the plane – these are usually depicted as arrows rather than points, since they 

may be considered as directions in the biplot style of joint interpretation of row and column 

points (Gower & Hand, 1996; Greenacre, 1993, 2004).  

The most general solution is as follows.  Suppose that we have a data matrix Y (n×m), 

usually pre-centred with respect to rows or columns or both.  We assume that the rows 

represent sampling units such as respondents or groups of respondents and that the columns 

represent variables, which in our context are categories of response.   Let Dr (n×n) and  

Dw (m×m) be diagonal matrices of row masses and column weights respectively, where the 

masses give differentiated importance to the rows and the column weights serve to normalize 

the contributions of the variables in the weighted Euclidean distance function between rows. 

With no loss of generality the row masses are presumed to have a sum of 1.  The rows of Y 

are thus presumed to be points with varying masses, given in Dr, in an m-dimensional 



Euclidean space, structured by the inner product and metric defined by the weight matrix Dw .    

The solution, a low-dimensional subspace which fits the points as closely as possible using 

weighted least-squares, minimizes the following function: 

∑
=

−−=−
n

i
iiwiiir
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)ˆ()ˆ()ˆ(In yy Dyy YY T                                 (1) 

where iŷ , the i-th row of Ŷ , is the closest low-dimensional approximation of yi  

(equivalently, Ŷ is the best optimal low-rank matrix approximation of Y).   The function In(·) 

stands for the inertia, in this case the inertia of the difference between the original and 

approximated matrices.   The total inertia, a measure of dispersion of the points in the full m-

dimensional space, is equal to In(Y).    

As is well-known (see, for example, Greenacre, 1984, Appendix), the solution can be 

obtained neatly using the generalized singular value decomposition (GSVD) of the matrix Y.  

Computationally, using the ordinary SVD algorithm commonly available in software 

packages such as R (Venables & Smith, 2003), the steps in finding the solution are to first 

transform the matrix Y by pre- and post-multiplying by the square roots of the weighting 

matrices, then calculate the SVD and then post-process the solution using the inverse 

transformation to obtain principal and standard coordinates.  The steps are summarized as 

follows: 

   1.  2/12/1
wr

YDDS =                 (2) 

   2.  TVUDS a=                 (3) 

3. Principal coordinates of rows:       ar UDDF 2/1−=            (4) 

4. Principal axes of rows: VD 2/1−
w                          (5) 

5. Standard coordinates of columns: VDG 2/1
w=                        (6) 

Notice that the row coordinates are scaled such that 2
ar DFDF =T , that is the weighted sum-

of-squares of the row points (i.e., their inertia) on the k-th dimension is equal to αk
2, secondly 

that the principal axes are orthonormal basis vectors in the metric Dw : 



IVDDVD =−− )()( 2/12/1
www

T , and thirdly that the standard coordinates are the projections of 

the unit vectors in the row space (i.e., the original basis vectors in the identity matrix I) onto 

the principal axes, where the projections are in the metric Dw: VDVDIDG 2/12/1
www == − . 

A two-dimensional solution, say, would use the first two columns of F and G.  As 

mentioned before, the columns (variables) are conventionally depicted by arrows and the 

rows (respondents or groups of respondents) by points.  Furthermore, the different scales of 

the two sets of coordinates often necessitate having a different scale for the row and column 

points,  but respecting the aspect ratio in each case, i.e. a scale unit on the horizontal axis 

should be equal to a scale unit on the vertical axis.  The total inertia is the sum of squares of 

the singular values α1
2+α2

2+…,  the inertia accounted for in a two-dimensional solution is the 

sum of the first two terms α1
2+α2

2, while the inertia not accounted for (minimized in formula 

(1)) is the remainder of the sum: α3
2+α4

2+… .  

Now ordinary CA is the above procedure applied to a table of frequencies, usually a 

two-way contingency table N, as follows.  First divide N by its grand total n to obtain the 

correspondence matrix  P = (1/n) N.   Let the row and column marginal totals of P be the 

vectors r and c respectively, and Dr and Dc be the diagonal matrices of these vectors.  

Thinking of the table as a set of rows (an identical argument applies if we think of it as 

columns), calculate the row profiles by dividing the rows of P by their row totals:  Dr
–1P .  

Then CA is a weighted principal components analysis of the row profiles in Dr
–1P, where 

distances between profiles are measured by the so-called chi-squared metric defined by Dc
–1 

and the profiles are weighted by the row masses in Dr.   Since the centroid of the row profiles 

turns out to be exactly the vector cT of marginal column totals, the solution is given by (1)-(5) 

above with the centred Y equal to Dr
–1P – 1cT,  Dr equal to the present Dr and Dw equal to  

Dc
–1.  

  We now wish to apply the above theory to a subset of the table, maintaining the same 

row and column weighting as in classical CA described above, but applied to a subset of the 

profiles rather than a subset of the original frequency table, hence avoiding the recalculation 

of profiles for the selected subset.  That is, suppose that H is a selected subset of the columns 

of  Dr
–1P and that the corresponding subset of the column totals c is denoted by h, that is (as 



in ordinary CA) h is the weighted average of the rows of H: HTr = h.  Then subset 

correspondence analysis (abbreviated as s-CA) is defined as the weighted principal 

components analysis of H with row masses r in Dr as before and metric defined by Dh
-1 

where Dh is the diagonal matrix of h.  Hence the s-CA solution is obtained using (1)-(5) with 

Y equal to H – 1hT= (I – 1rT)H, Dr equal to the present Dr and Dw equal to Dh
– 1.   The matrix 

(2) which is decomposed is thus: 

                             2/12/1 )( −−= hr HD1rIDS T                                                             (7) 

and the biplot decomposition using the row principal and column standard coordinates from  

(4) and (6) is thus: 

             VDGUDDF 2/12/1                        −− == har                                                     (8) 

In the special case of CA and MCA the alternative biplot scaling VDGD 2/1
hh = for the 

columns, proposed by Gabriel and Odoroff (1990), is particularly useful since it reduces the 

length of the column vectors proportionally to their respective masses, giving shorter vectors 

for the rare categories which are usually in outlying positions in the CA map.  All the usual 

numerical diagnostics (or contributions) of ordinary CA apply as before, since the total 

inertia, equal to the sum-of-squares of (7), can be broken down into parts corresponding to 

points and to principal axes, thanks to the SVD decomposition (see Greenacre, 2004). 

4. Application to attitudes about women in labour market  

Table 4 shows the subset of the profile matrix which we wish to analyze, the profile values 

for just the “stay at home” response categories for the four questions.  Also shown are the 

masses assigned to each row point and the (weighted) average profile values used in the chi-

square distance between rows.  Figure 2 shows the s-CA map of the data of Table 4.   

Insert Table 4 and Figure 2 about here 

The first feature to notice here and the main difference to ordinary CA is that the 

column points, shown here as vectors, are not necessarily centred.  In fact, the first 

(horizontal) dimension has all the vectors pointing to the positive side, indicating a dimension 

of overall “size” or level of response of the “stay at home” categories to the four questions.  



The lining up of the row points, that is the countries, age groups, etc., along this axis will be 

quite similar to that of the first axis of Figure 1, since they reflect the same liberal–traditional 

dimension.  The directions of the four arrows in Figure 2, however, give us a much better 

appreciation of the differences between the four questions.  The “stay at home” responses to 

questions 1 and 4 are highly correlated, but both much less correlated with the response to 

question 3, with response to question 2 between these extremes.  This shows features which 

we could not see in Figure 1: for example, the Philippines is clearly the most conservative 

overall, being most positive on dimension 1 (average percentage “stay at home” response to 

the four questions = 34.5%) but in terms of question 3 (for women with preschool child) they 

are not by any means the most conservative – Philippines has a “stay at home” response 

percentage for this question of 39.0% whereas Poland, Hungary, Bulgaria and Russia have 

percentages of 69.7%, 62.7%, 56.7% and 56.1% respectively (these latter countries have 

average percentages of “stay at home” response over the four questions of 33.3%, 27.2%, 

24.3%, and 25.7% respectively – see Table 4).  In fact, the average percentage response over 

all countries for question 3 is 48.6%, so the Philippines is actually below average.  In Figure 2 

Poland, Hungary, Bulgaria and Russia all project more positively than Philippines onto the 

direction defined by the vector VAR3, verifying the data.  The map thus shows differences in 

“shape” for the “stay at home” responses which were impossible to see in Figure 1, since that 

map was dominated by the broad dimensions of size and polarisation mentioned previously 

(Section 2).  A similar feature at the liberal end of dimension 1 is observed for Israel, for 

example.  Israel is the third most liberal country (see Table 4) but on questions 1 and 4 it is 

much closer to average than one might expect: for these questions its percentages are 3.2% 

and 5.3% respectively, which are close to median va lues in both cases, with 12 countries 

having smaller percentages than 3.2% for question 1, and 13 countries having percentages 

lower than 5.3% for question 4.  

The countries show much more dispersion than the other exogenous variables, but 

these variables also show interesting patterns.  For example, the male-female difference is, as 

might be expected, that males have a more traditional attitude than females, but as we see in 

Figure 2 the differences are greater in the direction of variables 1 and 4 than fo r the other two 

variables.  This can also be verified in the data: for example, the ratio of differences between 

males and females for question 1 is 0.0802/0.0467 = 1.71, whereas it is 0.2060/0.1568 = 1.31 

for question 2. 



4. Discussion and conclusions  

Correspondence analysis is primarily applicable for the analysis of contingency tables or 

other frequency tables where relative frequencies in rows or columns are visualized as points, 

while using the marginal frequencies as point masses or as estimates of variance to define a 

normalized distance function, the chi-square distance, between points.  One of Benzécri’s 

(1973) basic principles of Analyse des Données (Data Analysis) is that one should analyse the 

full extent of available information, a principle which  implies that every possible category of 

response, including missing responses, be analysed together.  When analysing several 

variables, however, it is almost always the case that the interpretation is obscured by the large 

number of category points in the map, all of which load to a greater or lesser extent on every 

dimension, so that interpretation and conclusions are limited to broad generalities.  For 

example, one might find that the categories of missing response generally separate from other 

categories along a particular dimension, but at the same time all the other response categories 

also contribute in varying amounts to this dimension so that it is not easy to make specific 

conclusions about the pattern of missing data.  Once the broad picture is seen in the complete 

analysis, there is value in focusing on different subsets of categories, thus simplifying the 

maps and compartmentalizing the interpretation. 

Given the interest to restrict our view to subsets of points, we have argued that CA 

should not simply be applied to the corresponding submatrix of data.  We are interested in the 

same relative frequencies as in the complete analysis, that is the profiles, but want to map a 

subset of the profiles, which should not be re-expressed relative to their own subtotals.  

Similarly, the masses assigned to the points should also be the same as in the complete 

analysis, and not be determined by the masses in the subgroup.  The simple variant of the 

method which we propose in the form of s-CA has these properties and notice that s-CA 

applied to the full set of categories is just regular CA.   

The requirement here that a subset of relative frequencies should not be re-expressed 

relative to its subtotal is in contrast to the treatment of so-called “subcompositions” in 

compositional data analysis (Aitchison, 1986).   Usually in a physical or chemical context,  

where samples are decomposed into components which are then measured and expressed in 

percentages by weight of the total sample, it is a basic principle that analytical methods have 

subcompositional invariance.  That is, suppose a sample has organic and inorganic 

compounds, and we choose to restrict our attention to the organic compounds, then it would 



be natural in this context to re-express the organic compounds relative to the total weight of 

the organic compounds.  Subcompositional invariance would imply that any relationship we 

now find between the organic compounds should be identical to the relationship found if we 

had analysed the full set of data.  As shown by Aitchison & Greenacre (2002), most 

multivariate methods including CA do not have subcompositional invariance, so special 

methods and transformations such as logratios are used  in compositional data analysis which 

obey this principle.  In our context of social and behavioural research, however, when we are 

dealing with multi-attribute data on several variables, it is clear that the notion of a 

subcomposition does not apply, since we are restricting our attention to selected categories 

from several variables, that is from several tables.  There could be a situation, however, when 

we analyse a single contingency table and wish to restrict our map to a subset of categories of 

a single variable, where the subcompositional invariance principle would apply, and in this 

situation we would recommend biplots based on compositional data analysis as an alternative 

to CA. 

Everything we have proposed here applies in exactly the same way to multiple 

correspondence analysis (MCA), which is the analysis of the individual responses in the form 

of an indicator matrix (see, for example, Table 2(b)).  Technically, MCA is just CA applied to 

the indicator matrix, so if we were interested in a subset of categories, for example the “stay 

at home” categories, we would select this subset of the profile values and maintain the same 

masses and metric as in MCA.  Notice that the row profiles in MCA consist of zeros with a 

value of 1/Q for every response (where Q is the number of variables or questions, in our 

example Q = 4).  Hence in our example, performing MCA on a subset would involve picking 

out the subset of the profiles, consisting of zeros and values of  ¼  as the case may be, with 

row masses all equal to 1/n (where n is the number of respondents) and the metric determined 

by the usual average values for each category.  The exogenous variables, also coded as 

dummy variables for their categories are then depicted on the map in the usual way, as 

averages of the respondent points giving the respective responses.  
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Table 1 

List of variables used in this study, taken from the survey on family and changing gender 

roles in 1994 by the International Social Survey Program (ISSP). 

Should married women work… 

(1) … before first child?   

(2) … with preschool child? 

(3) … when youngest child at school? 

(4) … when children have left home? 

Response scales for each question: W (work full- time), w (work part-time),  

             H (stay at home), ? (unsure/don’t know) 

Exogenous variables: 

Sex   2 categories: M, F 

Age   6 groups: A1 (up to 25), A2 (26-35), A3 (36-45) 
    A4 (46-55), A5 (56-65), A6 (66 and over) 

Marital status 5 groups: ma (married), wi (widowed), di (divorced), se (separated),  
    si (single) 

Education 7 groups: E0 (none), E1 (incomplete primary), E2 (primary), 
                  E3 (incomplete secondary), E4 (secondary),  

                E5 (incomplete tertiary), E6 (tertiary) 

Social class  7 groups: S0 (other), S1 (lower class), S2 (working class),  
                                                   S3 (upper working/lower middle), S4 (middle),   
                                                   S5 (upper middle),  S6 (upper) 

Country 24 countries: AUS (Australia), DW (West Germany), DE (East Germany)  
      GB (Great Britain), NI (Northern Ireland), USA, 

      A (Austria), H (Hungary), I (Italy), IRL (Ireland), 
      NL (Netherlands), N (Norway), S (Sweden),  
      CZ (Czechoslovakia), SLO (Slovenia), PL (Poland), 
      BG (Bulgaria), RUS (Russia), NZ (New Zealand), 

      CDN (Canada), RP (Phillipines), IL (Israel),  
      J (Japan), E (Spain) 



Table 2 

Raw data in two different but equivalent forms: (a) the original response pattern data for 

questions 1 to 4 and the first two exogenous variables sex and age; (b) the indicator (dummy 

variable) form of coding.  Response categories for questions 1 – 4 are:  1 = W “work full-

time”, 2 = w “work part-time”, 3 = H “stay at home” and 4 = ? “unsure/don’t know” and 

non-response; for sex: 1 = M “male”, 2 = F “female”; for age: six groups, 1 – 6.  Data is 

shown only for first six respondents out of  n = 33123.     

 

        (a)                                                (b)                                                                               
                                      1        2        3        4      Sex      Age    ...    
        1  2  3  4  Sex Age...      W w P ?  W w P ?  W w P ?  W w P ?   M F  1 2 3 4 5 6  

                                                             
                                                            
                                                           
33123 
cases                                                                      
                                                            
                                                      
  

 

 

 

 

 

 

 1  3  2  2   2  6  ... 
 1  2  2  2   2  4  ... 
 1  3  4  4   2  1  ... 
 1  2  2  1   2  4  ... 
 1  3  2  4   1  5  ... 
 1  2  1  1   2  1  ... 
 .  .  .  .   .  .  ... 
 .  .  .  .   .  .  ... 
 .  .  .  .   .  .  ... 
 .  .  .  .   .  .  ... 

1 0 0 0  0 0 1 0  0 1 0 0  0 1 0 0   0 1  0 0 0 0 0 1 ... 
1 0 0 0  0 1 0 0  0 1 1 0  0 1 0 0   0 1  0 0 0 1 0 0 ... 
1 0 0 0  0 0 1 0  0 0 0 1  0 0 0 1   0 1  1 0 0 0 0 0 ... 
1 0 0 0  0 1 0 0  0 1 0 0  1 0 0 0   0 1  0 0 0 1 0 0 ... 
1 0 0 0  0 0 1 0  0 1 0 0  0 0 0 1   1 0  0 0 0 0 1 0 ... 
1 0 0 0  0 1 0 0  1 0 0 0  1 0 0 0   0 1  1 0 0 0 0 0 ... 
. . . .  . . . .  . . . .  . . . .   . .  . . . . . . ... 
. . . .  . . . .  . . . .  . . . .   . .  . . . . . . ... 
. . . .  . . . .  . . . .  . . . .   . .  . . . . . . ... 
. . . .  . . . .  . . . .  . . . .   . .  . . . . . . ... 
 



 
Table 3 

Super-table of contingency tables crosstabulating the exogenous variables with the attitudinal 

questions on women working or staying at home, showing first two exogenous variables only 

(cf. Tables 1 and 2). 
     
                    1                   2                  3                  4              
            W    w    H   ?     W    w    H   ?    W    w    H   ?    W    w    H   ?    

Sex M 
Sex F  
Age A1 
Age A2 
Age A3 
Age A4 
Age A5 
Age A6 
  ... 
  ... 
  ... 

 

 

10309 2436 1207 1091   3220 7634 3099 1090   1360 4972 7732  979   9300 3030 1182 1531 
13712 2435  842 1056   4020 9999 2829 1197   1628 6926 8324 1167  12100 3408  893 1644   

 3562  744  272  361   1621 2408  527  383    494 2095 1947  403   3448  741  261  489    
 5192  885  337  459   1829 3659  864  521    804 2840 2710  519   4668 1151  334  720   
 5173  879  332  486   1523 3795 1038  514    738 2603 3053  476   4516 1337  321  696    
 4006  767  321  326    953 3065 1062  340    399 1833 2879  309   3436 1154  326  504  
 3158  749  338  231    711 2406 1120  239    317 1397 2577  185   2691 1037  397  351 
 2953  851  453  288    609 2320 1322  294    240 1139 2908  258   2660 1027  436  422  
   .    .    .    .      .    .    .    .      .    .    .    .      .    .    .    . 
   .    .    .    .      .    .    .    .      .    .    .    .      .    .    .    . 
   .    .    .    .      .    .    .    .      .    .    .    .      .    .    .    . 



 
Table 4 

Subset of profiles analysed, for “stay at home” (H) responses only, showing masses allocated 

to each row and the subset of column averages used as inverse weights in the chi-square 

distance between rows.  Since the masses sum to 1, multiply the masses by 6 (the number of 

variables) to obtain the sample proportions, for example the proportions of males and females 

are 0.4542 and 0.5448 respectively.  See Table 1 for abbreviations. 

              1H      2H      3H      4H       mass 

M 
F 
A1 
A2 
A3 
A4 
A5 
A6 
ma 
wi 
di 
se 
si 
E0 
E1 
E2 
E3 
E4 
E5 
E6 
S0 
S1 
S2 
S3 
S4 
S5 
S6 
AUS 
DW 
DE 
GB 
NIRL 
USA 
A 
H 
I 
IRL 
NL 
N 
S 
CZ 
SLO 
PL 
BG 
RUS 
NZ 
CDN 
RP 
IL 
J 
ave 
 

0.0802  0.2060  0.5140  0.0786 0.075693 
0.0467  0.1568  0.4613  0.0495 0.090798 
0.0551  0.1067  0.3942  0.0528 0.024852 
0.0490  0.1257  0.3943  0.0486 0.034583 
0.0483  0.1511  0.4444  0.0467 0.034568 
0.0592  0.1959  0.5312  0.0601 0.027272 
0.0755  0.2502  0.5757  0.0887 0.022522 
0.0997  0.2909  0.6398  0.0959 0.022869 
0.0647  0.1943  0.5016  0.0665 0.107176 
0.0943  0.2813  0.6077  0.0927 0.012594 
0.0430  0.1274  0.4625  0.0384 0.008650 
0.0507  0.1812  0.4589  0.0676 0.002083 
0.0481  0.1109  0.4004  0.0466 0.035650 
0.1127  0.2077  0.5352  0.0986 0.001429 
0.1971  0.3869  0.5995  0.1998 0.005540 
0.0705  0.2498  0.5758  0.0677 0.033542 
0.0553  0.1695  0.5136  0.0491 0.032057 
0.0472  0.1507  0.4739  0.0476 0.043303 
0.0358  0.1278  0.4196  0.0415 0.019257 
0.0279  0.1043  0.3642  0.0274 0.018195 
0.0855  0.1765  0.4920  0.0703 0.040646 
0.1716  0.3201  0.5182  0.1542 0.006068 
0.0706  0.2183  0.5125  0.0729 0.039046 
0.0516  0.1889  0.5224  0.0673 0.007407 
0.0359  0.1503  0.4736  0.0455 0.057830 
0.0244  0.1151  0.3872  0.0297 0.008655 
0.0632  0.1154  0.3599  0.0714 0.001832 
0.0189  0.1014  0.5969  0.0401 0.008539 
0.0304  0.2520  0.6201  0.0377 0.011603 
0.0082  0.0567  0.1967  0.0091 0.005500 
0.0157  0.0722  0.5649  0.0126 0.004810 
0.0302  0.1175  0.5587  0.0175 0.003170 
0.0234  0.0760  0.4915  0.0213 0.007085 
0.0175  0.2082  0.5804  0.0443 0.004881 
0.0673  0.2980  0.6273  0.0967 0.007548 
0.0756  0.1640  0.3870  0.1483 0.005122 
0.0390  0.2221  0.4518  0.0509 0.004644 
0.0093  0.0727  0.3889  0.0119 0.009691 
0.0134  0.1008  0.4270  0.0124 0.010134 
0.0024  0.0316  0.2751  0.0032 0.006219 
0.0647  0.1931  0.5333  0.0186 0.005132 
0.1088  0.2157  0.5238  0.0933 0.005178 
0.1879  0.3694  0.6970  0.0784 0.007955 
0.0573  0.2999  0.5667  0.0501 0.005620 
0.0946  0.2753  0.5611  0.0976 0.010053 
0.0120  0.0692  0.6309  0.0191 0.005017 
0.0104  0.0750  0.3431  0.0153 0.007246 
0.3150  0.4033  0.3900  0.2733 0.006038 
0.0319  0.0715  0.1788  0.0529 0.006471 
0.0660  0.2387  0.5741  0.0767 0.006556 
0.0611 0.1788  0.4860  0.0615 



Figure 1 

CA map of Table 3, showing the four response categories for each question (W = “work full-

time”, w = “work part-time”, H = stay at home”, ? = “unsure/don’t know/missing”).  See 

Table 1 for abbreviations of row category points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Symmetric Plot (axes F1 and F2: 70,82 %)
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Figure 2 

Subset CA map of “stay at home” categories of Table 4, showing dimension of size on axis 1.  

Inertias on the first axis:  0.0536 (78.0%), second axis: 0.0120 (17.5%); thus 95.5% of the 

inertia of the “stay-at-home” response values is displayed here. 
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