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Abstract

We study a novel class of noisy rational expectations equilibria in markets with large
number of agents. We show that, as long as noise increases with the number of agents in
the economy, the limiting competitive equilibrium is well-defined and leads to non-trivial
information acquisition, perfect information aggregation, and partially revealing prices,
even if per capita noise tends to zero. We find that in such equilibrium risk sharing
and price revelation play different roles than in the standard limiting economy in which
per capita noise is not negligible. We apply our model to study information sales by a
monopolist, information acquisition in multi-asset markets, and derivatives trading. The
limiting equilibria are shown to be perfectly competitive, even when a strategic solution
concept is used.
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1 Introduction

Ever since the seminal work of Grossman (1976) and Grossman and Stiglitz (1980), the in-
formational content of prices in competitive market settings has been a subject of significant
interest in economics as well as in different areas of applied research.1 As emphasized in Black
(1986), noise plays a crucial role in preventing prices of traded assets from fully revealing
agents’ private information.2 The purpose of this paper is to study the effects that the level of
noise plays in the acquisition, revelation and aggregation of private information in competitive
markets. By decoupling the concepts of a large number of agents and a large level of noise,
and allowing for endogenous information acquisition of costly private signals, we uncover a new
class of tractable competitive rational expectation equilibria (REE) that generalizes previously
known results. We find that in order for prices not to fully reveal private information the level
of noise and the size of the informed trader population must be of the same order of magnitude,
as measured by the total number of agents in the economy. We demonstrate that even if per
capita noise is negligible a well-defined competitive equilibrium exists. In such equilibrium,
the endogenously determined number of informed traders is negligible in comparison to the
total trader population, and, as a result, prices only partially reveal private information. We
refer to this novel class of equilibria as the “diversifiable endowment risk model.”

We compare and contrast this new class of equilibria with the standard model (see Hellwig
(1980) and Verrecchia (1982)). In that model, which we refer to as the “systematic endowment
risk model”, per-capita noise in the large economy is positive and, as a result, the equilibrium
fraction of informed traders is positive as well.3 Models with systematic and diversifiable risk
have some important features in common. In particular, prices in both are strictly partially
revealing.4 In addition, prices perfectly aggregate information, i.e. individual signals do not
show up in the price function (Hellwig (1980)).5 Yet another similarity between the two models
is that in terms of information revelation in both models the informed agents are marginal even

1In Finance, rational expectations models have been used to study markets for information (Admati and
Pfleiderer (1986), Admati and Pfleiderer (1990)), derivatives (Brennan and Cao (1996), Cao (1999)), insider
trading (Ausubel (1990a), Bushman and Indjejikian (1995)), security design problems (Duffie and Rahi (1995),
Demange and Laroque (1995), Rahi (1996)), and the dynamics of asset prices and volume (Campbell, Grossman,
and Wang (1993), Wang (1993)), among other topics. In Accounting, many issues around disclosure and
compensation have been studied within the standard rational expectations paradigm (see, for example, Diamond
and Verrecchia (1982), Diamond (1985), Banker and Datar (1989), Bushman and Indjejikian (1993), Kim and
Verrecchia (1991) and the references in Verrecchia (2001)).

2Interpretation of a source of noise may vary from model to model: noise can be the result of noise traders’ de-
mand or agents’ aggregate endowment shocks, for example. While the exact interpretation of noise is immaterial
in what follows, we frequently use the latter interpretation.

3Other tractable REE models of financial markets can be found, for example, in Ausubel (1990b) and
DeMarzo and Skiadas (1998).

4By this we mean that the conditional variance of the final payoff of the risky asset, given the asset price, is
strictly greater than zero and strictly less than the unconditional variance of the payoff.

5In other words, as the number of agents in the economy grows without bound, the price of a risky asset
depends only on its final payoff and on a variable that parameterizes the risky aggregate supply.
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though the size of the informed population is negligible in the diversifiable risk model and not
negligible in the systematic risk model.

Despite these similarities, there are also significant differences between the two classes of
models. In particular, since in the diversifiable risk model the equilibrium fraction of informed
agents vanishes in the limit, risk sharing and price revelation play a different role than in the
standard model. As a result, in the diversifiable risk model only the most risk-tolerant agents
become informed, while less risk-tolerant agents never do. In such an economy, in terms of risk-
sharing capacity the marginal trader is an uninformed agent. On the other hand, populations
of both informed and uninformed traders are not negligible in the systematic risk model and
both contribute to the risk sharing capacity in the economy (see Verrecchia (1982)). This
difference drives a wedge between the two models in terms of the shape of the risk premia, as
well as several important comparative statics.

We, then, compare and contrast the two models in three applications from the literature,
namely in studies of markets for information (Admati and Pfleiderer (1986)), information ac-
quisition in multi-asset securities markets (Admati (1985)), and derivatives trading (Brennan
and Cao (1996)). We show that a monopolist seller of information will have very different
types of optimal sales in the diversifiable and systematic-risk models. In the systematic risk
case information monopolist would optimally sell information to the whole population adding
personalized noise to her private signal in order to prevent full information revelation. In the
diversifiable risk case, the optimal strategy involves selling a signal of the smallest possible
precision to a proper fraction of the population. In our analysis of information acquisition in
multi-asset markets, we study a model where one asset has systematic risk and the other has
diversifiable risk. We show that the incentives to gather information on the asset with system-
atic risk can be significantly altered once the diversifiable asset is introduced. Moreover, when
there are complementarities in the information acquisition technology, the equilibrium signifi-
cantly differs from that in which both assets have systematic risk. As our third application, we
study an equilibrium with derivatives. While there are differences in terms of functional forms
in the diversifiable and systematic risk model, some of the qualitative aspects of the solution
are similar in both types of large markets.

The early papers by Hellwig (1980), Diamond and Verrecchia (1981) and Verrecchia (1982)
are closest to our work, both in terms of the motivation and the model setup. Our diversifiable-
risk equilibrium follows the setup in Diamond and Verrecchia (1981), endogenizing, in addition,
the information acquisition decisions as in Verrecchia (1982). The literature on aggregation of
information in auction settings is also related.6 There are relatively few papers that consider

6See Wilson (1977), Milgrom (1979), and Milgrom (1981) for some of the early references. Recent work in
this area includes Pesendorfer and Swinkels (1997), Pesendorfer and Swinkels (2000), Kremer (2002), Hong and
Shum (2004), Jackson and Kremer (2004).
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the endogenous acquisition of information in such settings (see Matthews (1984) and Jackson
(2003)).7 In order to make an explicit connection with the auctions literature we extend the
model by allowing agents to act strategically, as in Kyle (1989). We show that the perfectly
competitive equilibria in diversifiable and systematic risk economies can be seen as limiting
economies of such strategic model.8 Since the market described in Kyle (1989) can be viewed
as a share auction market, our paper also contributes to the literature on large auction markets.
In particular, the paper provides necessary and sufficient conditions on the level of noise in
the economy needed to support endogenous acquisition of information in a particular type of
auction environment.

The structure of the paper is as follows. In section 2 we present our main model based on
the assumptions of agents’ homogeneity and the existence of an exogenous random aggregate
supply shock (or, equivalently, noise traders). Section 3 is the central section of the paper and
contains its main results. Section 4 studies the applications of the diversifiable risk model to
problems of sales of information, information acquisition in multi-asset markets, and deriva-
tives trading, and compares the results with those obtained in the standard systematic risk
framework. Section 5 considers various extensions of the basic model and shows that the main
results of the paper are robust. Proofs are collected in the Appendix.

2 The finite-agent model

Consider a symmetric one period economy with N traders. We assume that all agents have
CARA preferences with a risk aversion parameter τ .9 Thus, given a final payoff Wi, each
agent i derives the expected utility E [u(Wi)] = E [− exp(−τWi)]. There are two assets in the
economy: a risk-less asset in perfectly elastic supply, and a risky asset with a random final
payoff X ∈ R and variance normalized to 1. All random variables in the economy are defined
on some probability space (Ω,F ,P), and unless stated otherwise, are normally distributed,
uncorrelated, and have zero mean. The risky asset is in a random aggregate supply ZN .
This variable, which we will refer to loosely as noise, is the main driver in preventing private
information to be revealed perfectly to other market participants.

One of the key assumptions of the model is that agents endogenously decide, in a process
described below, whether or not to become informed, i.e. to purchase costly private signal of
the form Yi = X + εi, where var(εi) = σ2

ε , for all i. We let mN ≤ N denote the number of
agents that decide to become informed. Without loss of generality we can label the informed

7Vives (1988) studies the aggregation of information in a Cournot-type product market and also studies
information acquisition decisions.

8While in spirit the convergence results are similar to the results of Section 9 of Kyle (1989), in our case the
size of the informed population is, in contrast to Kyle (1989), determined endogenously .

9We allow for heterogeneous risk aversion in section 5.
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agents with the subscripts 1, . . . ,mN , and the uninformed with the subscripts mN + 1, . . . , N .
We use θi, for i = 1, . . . , N , to denote the trading strategy of agent i, i.e. the number of shares
of the risky asset that agent i acquires. With this notation, the final wealth for an agent of
type i is given by Wi = θi(X − PN ), where PN denotes the price of the risky asset in the
economy with N agents.10 We use Fi to denote the information set at the time of trading of
an agent of i.11

A rational expectations equilibrium, fixing the number of informed agents mN , is charac-
terized by a set of trading strategies {θi}N

i=1 and a price function PN : Ω → R such that:

(1) Each agent i chooses her trading strategy θi so as to maximize her expected utility
conditional on her information set Fi, i.e.

θi ∈ arg max
θ

E [u(Wi)|Fi] i = 1, . . . , N. (1)

(2) Markets clear, i.e.
N∑

i=1

θi = ZN . (2)

We remark that agents act as price takers in (1), an assumption which we will revisit in
section 5.1. As is customary in the literature, we conjecture that the equilibrium price is linear
in the signals and the aggregate random supply. Given the symmetry of the economy this
conjecture implies that prices are described by two parameters bN and dN , namely

PN = bN

mN∑
i=1

Yi − dNZN (3)

At the information gathering stage each agent can acquire a signal Yi at the cost (measured
in units of account) of c > 0. Therefore, upon acquisition, an agent’s expected utility reads
E [u(Wi − c)]. It should be noted here that this expectation is unconditional, i.e. that it is
taken before the signals are realized. In addition, it presumes that the agents anticipate the
rational expectations equilibrium price given in (3). Due to the symmetry of the model, we
determine the Nash equilibrium at the information acquisition stage, characterized by mN

agents becoming informed, by simply equating the ex-ante expected utilities of informed and
uninformed agents.

10We normalize here, as is customary in the literature, the agents’ initial wealth and the risk-free rate to zero.
These assumptions are innocuous since the model contains only one period of trading. In addition, there are no
borrowing or lending constraints imposed on the agents.

11Note that Fi = σ(Yi, PN ) for i = 1, . . . , mN , and Fi = σ(PN ) for i = mN + 1, . . . , N , where σ(X) denotes
the σ-algebra generated by a random variable X.
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Thus far we have described a sequence of economies, which we will denote by {EN}∞N=1,
characterized by the primitives (τ, σ2

ε , c, ZN ), with associated equilibrium prices PN and in-
formed agents mN . Since the focus of the paper is on aggregate noise, we formalize in the next
definition the assumptions we make on ZN .

Definition 1. We say that a sequence of economies EN has large noise if there exist β > 0
and σ2

z > 0 such that
lim
N↑∞

var(N−βZN ) = σ2
z . (4)

If β = 1, we say that the sequence of economies has systematic risk. If β ∈ (0, 1), we will use
the term diversifiable risk.

Among all sequences of economies with unbounded noise, this definition makes a distinction
among those which have finite per-capita risk, the case β = 1, and those with zero per-capita
risk, the case β ∈ (0, 1). In order to motivate these choices, let aggregate noise be the sum
of N i.i.d. random variables. In particular, let ZN =

∑N
i=1 Zi, for a set of random variables

{Zi}N
i=1. If the individual shocks {Zi}N

i=1 are i.i.d. with constant variance, it is simple to verify
that (4) holds for β = 1/2. Aggregate noise in this case grows with the number of agents, but
it is negligible on a per capita basis. On the other hand, if the random variables {Zi}N

i=1 are
sufficiently correlated with each other, one can verify that (4) holds with β = 1.12 The names
diversifiable and systematic are borrowed from portfolio theory in a natural way.

This completes the description of the model. In order to emphasize the dependence of
equilibrium variables on the type of noise they possess (systematic or diversifiable), we will use
the notation EN (β), PN (β) and mN (β) to denote the sequence of economies, prices and number
of informed agents respectively. In a slight abuse of notation, we let Pβ ≡ limN↑∞ PN (β)
denote the limiting prices.13 Lastly, we say that a sequence of economies EN (β) has a partially
revealing REE if var(X|Pβ) ∈ (0, 1), i.e. if prices neither fully reveal information nor are they
completely uninformative.

12Verrecchia (1982) motivates the systematic risk model by assuming the individual shocks {Zi}N
i=1 are i.i.d.

with variance that grows linearly in N . This reduces to a limiting economy satisfying (4) for β = 1. Also, if the
shocks {Zi}N

i=1 are identically distributed, but with non-trivial correlation with each other, (4) also holds for
β = 1.

13One technical caveat is in order. In the next section we will discuss convergence properties of the sequence
of prices PN . The reader should bear in mind that all convergence statements there are both a.s. as well as in
L2, although, for brevity, we omit these qualifiers in what follows.
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3 The limiting equilibria in large competitive economies

This section contains some of the key results of the paper. We first establish the existence of a
limiting rational expectations equilibria with endogenous information acquisition in both the
diversifiable and the systematic risk models. We then discuss qualitative differences between
the two models.

3.1 Partially-revealing rational expectations equilibria

We begin our analysis by establishing an important preliminary result: prices in a limiting
economy are partially revealing if and only if the number of informed agents grows at the same
rate as the level of noise in the economy.

Lemma 1. Consider a sequence of economies EN (β), where β ∈ (0, 1]. Suppose that the
endogenously determined number of informed agents mN satisfies

lim
N→∞

N−αmN (β) = λα; (5)

for some positive real numbers α and λα. A necessary and sufficient condition for prices in
the limiting economy to be partially revealing is that α = β. Furthermore, when α = β there
exist some positive constants aβ, dβ such that:

Pβ = aβX − dβZβ; (6)

where Zβ ≡ limN→∞N−βZN .

The lemma states that in order for prices in the limiting economy to be partially revealing,
it is necessary for mN to grow at the rate β, i.e. at the same rate as the standard deviation of
the aggregate noise ZN . In order to gain some intuition for this result, it is useful to re-write
the price function in the finite-agent economy (3) as follows:

PN = dNN
β

(
N−βmN

(
bN
dN

)
ȲN −N−βZN

)
; (7)

where ȲN = m−1
N

∑mN
i=1 Yi. Price in the finite-agent economy is a weighted average of the sum

of the signals received by the agents, ȲN , and a random variable, N−βZN , that parameterizes
the aggregate supply shocks. Further note that this “average noise” term N−βZN has a non-
degenerate limit in economies with large noise, namely the random variable Zβ defined in the
lemma, which from Definition 1 satisfies var(Zβ) = σ2

z . The lemma establishes that the relative
price coefficients bN/dN converge to a positive limit for large N ; from (7) it follows that the

7



existence of a finite limit for N−βmN is a necessary and sufficient condition for prices to be
partially revealing.

The following theorem represents the central result of the paper.

Theorem 1. Consider a sequence of economies EN (β), where β ∈ (0, 1]. Let C ≡ e2τc − 1,
and assume that C−1 > σ2

ε . In a limiting information acquisition equilibrium asset prices are
partially revealing and perfectly aggregate private information. In particular, the price function
is given by (6) and the equilibrium number of informed traders satisfies

lim
N→∞

N−βmN (β) = λβ ; (8)

for some aβ , dβ, λβ > 0.

(i) In the systematic risk model, where β = 1, the price coefficients satisfy:

a1 = λ1r1d1; d1 =
1 + λ1r1

τσ2
z

λ1r1 + 1
τ

(
1 + (λ1r1)2

σ2
z

) ; r1 =
1
τσ2

ε

. (9)

Moreover, if C−1 < σ2
ε

(
1 + r21/σ

2
z

)
then

λ1 = τσzσε

√
C−1 − σ2

ε ; (10)

otherwise λ1 = 1.

(ii) In the diversifiable risk model, where 0 < β < 1, the price coefficients are given by

aβ = λβrβdβ dβ =
λβrβ/σ

2
z

1 + (λβrβ)2

σ2
z

; rβ =
1
τσ2

ε

. (11)

Moreover, when 0 < β < 1, λβ = λ1, as given in (10).

Theorem 1 formalizes the intuitive idea that in order to have a well defined limiting econ-
omy with endogenous information acquisition decisions, the conditions in Lemma 1 must be
satisfied. Moreover, the Theorem characterizes the limiting prices Pβ in closed-form for both
the systematic and diversifiable risk models. We remark that the condition C−1 > σ2

ε simply
rules out limiting equilibria in which prices are uninformative and all agents optimally stay
uninformed.

The parameter λβ in (8) measures the amount of informed trading per unit of noise. In
the systematic risk model, λ1 corresponds to the fraction of agents that becomes informed.
In the diversifiable risk model, the equilibrium fraction of informed agents goes to zero at the
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rate N−(1−β). However, the amount of informed agents per unit of noise in this case is not
zero and is given by λβ. In equilibrium, the “right” mass of agents becomes informed and the
asset price acts as an aggregator of information possessed by the traders. It is interesting to
note that in the systematic risk case there are economic primitives under which all agents in
the economy become informed (λ1 = 1). This can never occur in economies with diversifiable
risk, since the population of informed traders in that case is negligible in size with respect to
the total number of agents in the economy N .

We conclude this section by mentioning that when either β = 0 or β > 1 in Definition 1
limiting information acquisition equilibrium may exist, but would have undesirable properties.
In particular, when β = 0 only a finite number of agents becomes informed in equilibrium, and,
therefore, individual signals show up in the expression for the equilibrium price making the
price aggregation of information imperfect, as well as hindering the tractability of the model.
On the other hand, if β > 1 noise grows “too fast”: one can check that in this case limiting
prices would reveal no information about the fundamental value of the asset, even if all agents
would choose to become informed.

3.2 Comparing the systematic and diversifiable risk models

In this section we compare systematic and diversifiable risk limiting information acquisition
equilibria along three economic characteristics: price informativeness, the effect of the intro-
duction of asymmetric information, and price volatility. As customary, price informativeness is
measured by the conditional precision of the fundamental asset value, given the market price:

var(X|Pβ)−1 = 1 +
1
σ2

z

(
aβ

dβ

)2

; β ∈ (0, 1].

As long as the constraint λ1 ≤ 1 does not bind, Theorem 1 establishes that var(X|Pβ) = Cσ2
ε

for both the systematic and diversifiable risk models. This implies that comparative statics
on price informativeness in the two models yield identical results.14 The trade-off between
becoming informed or staying uninformed coincides in both classes of models, so price revelation
depends on the same parameters as long as we have interior solutions.

On the other hand, the coefficients dβ , which measure the risk premium demanded by
agents for a given supply shock Zβ, have different functional forms in the systematic and
diversifiable risk models. Let us first consider what would happen in the two economies if no
agent acquired information. In the systematic risk model where per-capita supply of noise is
non-trivial agents will demand a premium d1Z1 for holding the risky asset. On the other hand,

14From the results of subsection 5.2 it follows that this result critically depends on the assumption of agents’
homogeneity and fails to hold, for example, when agents have heterogeneous risk aversion coefficients.
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in the diversifiable-risk model per-capita noise is negligible and the price of the risky asset
would simply be zero (i.e. equal to its unconditional expected value), since no risk premium
would be demanded by agents in equilibrium. Once it becomes possible to acquire information,
the equilibrium price in the systematic-risk model would include a new term that would depend
on the final payoff of the risky asset, thereby making the asset price partially revealing (and at
the same time changing the risk premium demanded by agents). The diversifiable-risk model
would exhibit an even more dramatic change: the price of the risky asset would change from
zero to a non-trivial random variable. In that case a new term proportional to the final payoff
X would show up in the price function due to trading by the informed; in addition, a non-trivial
risk-premium arises (the dβZβ term). This allows us to conclude that asymmetric information
considerations increase the volatility of the risky asset price. In the systematic risk model, on
the other hand, the introduction of asymmetric information has an ambiguous sign: in some
cases it increase and in others decrease price volatility.15 Along this dimension, therefore, the
models behave quite differently.

Difference in the risk-premium coefficients dβ drives a wedge between the two models
and leads to some interesting comparative statics differences. In the systematic risk model,
informed agents play a non-trivial role in terms of risk-sharing with respect to the whole investor
population. Therefore both their risk-aversion and their conditional variance affect the risk-
premium term d1. When the supply risk is negligible on a per-capita basis, informed agents’
risk-sharing capabilities are negligible compared to that of the uninformed. The equilibrium
risk-premium is therefore affected by the informed agents only to the extent that their trades
affect the information revealed by prices. To see the effects of this difference, consider the
unconditional volatility in both models. In the diversifiable-risk model it is straightforward to
check that var(Pβ) = 1 − Cσ2

ε , for all 0 < β < 1. In this case, unconditional volatility has
simple comparative statics with respect to the model’s primitives: it is decreasing in σ2

ε , c and
τ , and is completely independent of σ2

z . It is worth remarking that these comparative statics
do not hold in the systematic risk model, where it is possible for the unconditional asset price
volatility to be either increasing or decreasing in these variables depending on the values of
the primitives of the model.16 In addition, the difference in dβ values for the two models yields
distinct comparative statics for welfare measures and trading volume which we, for brevity,
do not report. Thus, despite some similarities, the two classes of symmetric models have very

15To see that, consider the systematic risk model with parameter values equal to σ2
ε = σ2

z = 1, and c = 0.25.
It is easy to check that if τ = 1 introducing asymmetric information would decrease price volatility, whereas if
τ = 3/4 introducing asymmetric information would increase it.

16One can easily verify that in the systematic risk model

var(P1) =
σ2

zvar(X|P1)
−1„

λ1r1 + 1
τ

“
1 + λ1r1

τσ2
z

”−1
«2 .
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different comparative statics.

4 Applications

In this section we apply the results of the previous section to analyze direct sales of informa-
tion by an information monopolist, and study information acquisition in multi-asset markets
and derivatives markets under conditions of asymmetric information. We find that despite
some similarities, the systematic and diversifiable risk models lead, often, to very different
predictions.

4.1 Markets for information

Our discussion in this subsection closely follows Admati and Pfleiderer (1986). We consider the
problem facing a monopolist seller of information, who has perfect information about the value
of the risky asset and considers selling her information directly, e.g. through a newsletter. The
assumption of perfect information implies that the information seller would add noise to her
signal before selling it, since otherwise price would fully reveal her information. We assume
that there are N agents who consider purchasing the signal, with the set of economic primitives
as described in section 2. As before, we differentiate among large noise economies by studying
the systematic and diversifiable risk models, and compare the optimal strategy of a monopolist
seller of information in the two models.

We focus on the case where noise that the monopolist adds to the signal, before selling
it, is personalized. As Admati and Pfleiderer (1986) demonstrate in the systematic risk case,
adding personalized noise is the optimal way of adding noise to the signal in such an economy.
In particular, the monopolist sells signals Yi = X + εi to mN ≤ N agents, where εi are i.i.d.
random variables with precision sN . The monopolist seller can choose both the number of
agents he would like to serve, mN , and the precision of the signal he offers, sN (both of these
quantities, in general, depend on the number of agents in the economy, N). We restrict the
precision of noise to be bounded from below by a positive constant `. The economic motivation
for the introduction of the lower bound on precision is that the seller of information cannot
reasonably expect to sell information without any content.

From the model setup it is clear that, after the information sales stage of the game has been
completed, the rational expectations equilibrium that arises coincides with the one described in
section 2. The interesting question is what happens at the information sales stage. Following
Admati and Pfleiderer (1986), for a finite N , the problem that the information seller faces at
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that stage reduces to

max
mN≤N,sN≥`

mN log
(

var(X|Yi, PN )−1

var(X|PN )−1

)
; (12)

where the conditional variances in (12) depend both on sN and mN , and are stated explicitly
in Lemma 0 in the Appendix.17 Given the model specification, i.e. the choice of β, the
equilibrium size of the market for information and the precision of the signals may vary. We
denote them as mN (β) and sN (β), respectively, and study their limiting behavior as N ↑ ∞.
Let sβ = limN→∞ sN (β).

The following proposition extends the results of Admati and Pfleiderer (1986) to the diver-
sifiable risk case.

Proposition 1. The optimal information sales for the monopolist satisfy (8). Moreover:

(i) In the systematic risk model the monopolist serves all agents, λ1 = 1, and adds a finite
amount of noise s1 = max(`, 1/(τσz)).

(ii) In the diversifiable risk model the monopolist sets sβ = `, and the information sales
satisfy

λβ = arg max
λ

λ log
(

1 + `+ λ2`2/(τσz)2

1 + λ2`2/(τσz)2

)
. (13)

Intuitively, the monopolist is facing a trade-off between, on one hand, selling to as many
agents as possible while, on the other, controlling the information that is revealed by the price.
In the systematic risk model, as discussed in Admati and Pfleiderer (1986), the information
seller extracts surplus from all agents in the economy by serving everyone, and controls the
damaging effects of price informativeness by adding non-trivial amount of noise to the signal
that she sells. The nature of the solution in the diversifiable risk model is substantially different.
If noise is diversifiable the monopolist cannot sell to the whole trader population: given any
signal with bounded precision prices will become fully revealing in the large N limit. Therefore,
an interior solution for the size of the investor population being served arises (measured by
parameter λβ); in addition, the information seller controls the information revelation through
prices by electing the precision of the signal to be as low as possible.18 For completeness of
the discussion, note that the limiting equilibrium asset prices in both cases satisfy the linear
functional form (6). However, pricing coefficients differ in the two models leading to different

17In a finite-agent economy, when solving (12) one would face an integer programming problem. Since we are
solely interested in the limiting economies the issue can be ignored, however, because it leads to a negligible
approximation error.

18If the lower bound on the signal precision did not exist, the monopolist would like to design a pricing scheme
that would satisfy limN sN (β) = 0 when β ∈ (0, 1). In this way, she would control the price revelation through
the added signal error noise, and still sell to the whole investor population. However, it is not clear how such
limiting information sales would be implemented.
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predictions with respect to price informativeness of trades as well as the expected trading
volume.

4.2 Information acquisition in multi-asset markets

Up to now, we studied the economy with only one risky asset. Now, analyze what happens
to the original asset price and the incentives to gather information when a second risky asset
is introduced. For definiteness, we assume that initially there was a systematic risk asset
in the economy and consider how the limiting equilibrium changes if we introduce another
systematic risk asset (this extends the analysis of Admati (1985)). We, then, compare such
limiting economy with the case when a diversifiable risk asset is introduced instead. This
allows to extend our main result, Theorem 1, to the case when there are several risky assets
in the economy.

Let us introduce a vector of payoffs X = (Xa, Xb), a two-dimensional normally distributed
random variable with variances set equal to one and the correlation coefficient ρ; we use
index j = a, b to enumerate the risky assets. Unless otherwise specifically stated, all other
assumptions and conventions of section 2 apply. Recall that there are N agents in the economy
with CARA preferences and risk aversion parameter τ . At the information acquisition stage,
an agent i can choose to stay uninformed, purchase a signal Yij = Xj + εij on one of the assets
j = a,b only (at a cost cj), or purchase signals on both assets (at a cost cd = (1−δ)(ca +cb), for
some δ ≥ 0; note that we allow here for possible economies of scale). Here, εij are i.i.d. random
variables such that var(εij) = σ2

ε . We introduce an augmented index t = a, b, d to enumerate
three informed agent “types” that can emerge at the information acquisition stage: index a

corresponds to agents who purchase only a signal on asset a, index b for those that become
informed only on asset b, and index d for agents who buy signals on both assets. We will refer
to agents of types a or b as “specialist,” whereas agents of type d will be called “generalists.”
Finally, we introduce Ct = e2τct − 1, for t = a, b, d.

Each of the assets j = a, b is subject to an aggregate supply shock ZNj . Generalizing
the one-asset case definitions, let Zβj = limN→∞N−βjmNj(β), for some βj ∈ (0, 1], j = a, b.
Also define Zβ = (Zβa , Zβb

). As in the economy with one risky asset, an asset j can have
diversifiable endowment risk, βj ∈ (0, 1), or systematic endowment risk (when βj = 1). We
further assume that var(Zβ) = σ2

zI, where I denotes the two by two identity matrix. While
we explicitely describe only a symmetric economy, where assets only differ with respect to the
endowment risk nature (diversifiable versus systematic), the assumptions that we make are
purely for notational convenience and brevity, and do not affect the fundamental conclusions
we draw from the model.

We denote finite-agent economy as EN (β) where vector β = (βa, βb) specifies the endowment
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risk properties of the economy. In what follows we focus on two particular models: β = (1, 0.5),
which we refer to as a mixed risk model;19 and β = (1, 1), which we refer to as a systematic
risk model and which serves as our benchmark. In both of these models asset a has systematic
endowment risk. The difference between the models stems from the asset b: in the mixed
risk model that asset has diversifiable risk whereas in the systematic risk model that asset is
another systematic risk asset.20

We now turn to characterize the equilibrium properties of an economy EN (β) when the
number of agents N grows without bound. As in previous sections, we let mNt(β) and PN (β)
denote the endogenously determined number of traders of type t, and the equilibrium price
vector of the risky assets respectively. Let us define

λa(β) = lim
N→∞

N−βamNa(β); (14)

λb(β) = lim
N→∞

N−βbmNb(β); (15)

λd(β) = lim
N→∞

N−βbmNd(β). (16)

The next proposition generalizes our previous results to this multi-asset setting.

Proposition 2. Consider a sequence of economies EN (β). The equilibrium price vector satis-
fies:

Pβ ≡ lim
N↑∞

PN (β) = AβX−DβZβ; (17)

for some matrices Aβ ,Dβ ∈ R2×2.

If the parameter values of the model are such that D−1
β Aβ has full rank, and if λd(β) > 0,

then the following results hold a.s.:21

(i) In the systematic risk model, β = (1, 1), equilibrium number of informed traders satisfies
λa(β) = λb(β) = 0. Moreover,

λd(β) = τσzσ
2
ε

√
(1 +

√
1 + ω)

σ2
εCd

− 1
1− ρ2

; (18)

where ω = Cd

(
1 + (ρσ2

ε )
2Cd/(1− ρ2)2

)
.

19As before, this mixed model is equivalent to any of the form β = (1, β) for any β ∈ (0, 1).
20Our benchmark model β = (1, 1) model is a special case of Admati (1985). In contrast to that work, agents

here are allowed to endogenously make information acquisition decisions. To the best of our knowledge no paper
has attempted to analyze information acquisition activities in this type of multi-asset model before. Admati and
Pfleiderer (1987) study the viability of allocations of information. As shown in their paper, the i.i.d. structure
on the signals makes the viability question trivial: one can always find costs ci such that any allocation of
information, within the class of economies we study, is viable. Our analysis contributes to the literature on
multi-asset markets by studying a particular class of information acquisition technologies explicitely.

21That is, with the exception of a subset of the parameter values with zero measure.
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(ii) In the mixed risk model, β = (1, 0.5), λa(β) > 0, and λb(β) = 0. Moreover, letting φ
denote the solution to

φ2(Cd − Ca)−
(1 + Ca)

σ2
ε

φ− ρ2

Ca(1− ρ2)2
= 0;

we have that

λa(β) = τσzσ
2
ε

√
ρ2

φ(1− ρ2)2
+

1
Caσ2

ε

− 1
1− ρ2

(19)

λd(β) = τσzσ
2
ε

√
φ− 1

1− ρ2
; (20)

The proposition first establishes an analogous convergence result to that in the single asset
case of Theorem 1: prices converge to a limiting random variable that is independent of
individual agents’ signals, and solely depends on the asset payoff vector X and the noise term
Zβ. Moreover, when prices satisfy a natural rank condition, namely that agents learn from
both prices, the proposition gives precise formulae for the amount of informed trading when
the signals are complements, i.e. when there is a strict subset of the population that becomes
informed.22

In the systematic risk model the proposition establishes that a fraction of agents becomes
generalist, there would be no agents who would become specialists in either of the assets. This
is rather intuitive given the symmetry of the model. In particular, it is straightforward to
see that under our symmetry assumptions either all agents become specialists, or all agents
become generalist.

In the mixed risk model, the asset with systematic risk has a full-measure of informed agents
trading on the basis of private information, whereas for the asset with diversifiable risk only
a small group of agents (in per capita terms) gather information. Moreover, it is immediate
that the presence of the second asset, even though it is “small,” affects the equilibrium price,
and the amount of information gathered, in the first asset. Rather intuitively, since the small
asset’s price reveals information, the large asset market clearing condition is affected, as so
will be both the properties of the large asset price (trading volume, volatility), as well as the
incentives to gather information on this asset. Finally, note that the existence of generalists
does not rule out the presence of specialists, in contrast to the systematic risk model.

To illustrate the perverse effect that the introduction of the diversifiable risk asset b has on
asset a, consider the following parameter values: ca = cb = 0.3, δ = 0.2, and σ2

ε = τ = 1. The
top panel of Figure 1 plots the equilibrium fraction of asset a specialists in the mixed model

22This is precisely the case where the mixed and systematic risk models differ most clearly. See the proof of
the proposition for details on how to compute the equilibria in other cases.
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(solid line), as well as in the one-asset economy (dashed line), as a function of the correlation
between the two assets. The bottom panel plots the equilibrium values for the measure of
generalists in the mixed model (solid line).23 Rather intuitively, as the correlation between
the assets goes up informed trading goes down. Moreover, the fraction of asset a specialists
in the mixed model tends to zero, i.e. the only equilibria that survive as the correlation goes
up is one in which a small subset of the population is a generalist, and no agent becomes a
specialist on asset a.24 This highlights the fact that information revelation across asset markets
can make assets with diversifiable risk play a bigger role than one would expect. The lower
panel of Figure 1 also plots the equilibrium fraction of informed agents in the systematic risk
model (dotted line). In contrast to the mixed risk model, for high values of correlation there
is always an interior fraction of generalists in the equilibrium in information acquisition (and
no specialists).

The proposition also establishes that there will always be a fraction of agents who buy
information on asset a, which in the systematic risk model never occurs. In general, under
the rank condition of the proposition, the mixed risk model has two separate markets: one for
agents trading on the basis of signals on asset a, and one in which agents possess information
on asset b (and maybe also asset a). The key distinction is that in the diversifiable risk model
the measure of generalists λd(β), has no effect on the information revealed by the price of asset
a. The intuition for this is that the noise of asset a screens out the informed trades of the
generalists, since the equilibrium fraction of generalists tends to zero. On the other hand, in
the systematic risk model the information acquisition decisions of agents who purchase both
signals affects directly the information revealed by prices on both assets. Clearly, the incentives
to gather extra information in the diversifiable risk model are different.

4.3 Derivatives trading

In this section we extend the work by Brennan and Cao (1996) and Cao (1999) to the di-
versifiable risk model. In particular, consider the setup introduced in section 2, but let us
introduce a security, which is in zero-net supply, whose payoff is (X −PN )2. This security will
trade alongside the stock, and we let QN denote its price in the N agent economy. Agents
now choose their trading strategies in the stock market, which we denote by θi, and in the
derivatives market, where γi denotes the number of units of the quadratic security agent i
purchases. Final wealth is therefore given by Wi = θi(X − PN ) + γi((X − PN )2 − QN ). The
rational expectations equilibrium is defined as in section 2, with the additional requirement
that the market for the quadratic derivative clears. Intuitively, this quadratic security will
be traded in equilibrium as long as agents have different beliefs in terms of the conditional

23Note that λd(β) can be greater than 1 in the mixed model, since it is not a fraction.
24We should remark that the model is symmetric in the correlation variable ρ.

16



variances of the underlying asset.25 Informed agents will sell these securities short, whereas
uninformed agents will buy them. The rest of the notation and assumptions is as in section 2.

The next proposition studies the limiting rational expectations equilibrium when this
quadratic derivative is available for trade.

Proposition 3. Consider a sequence of economies EN (β), where β ∈ (0, 1], and agents can
trade on quadratic derivatives. Limiting prices satisfy (6), where the price coefficients are as
given in Theorem 1. Moreover, the limiting equilibrium satisfies (8) for some λβ > 0. In
particular, the introduction of the derivative security will increase the amount of information
acquisition.

(i) In the systematic risk model, β = 1, the derivative price satisfies

lim
N→∞

1
QN

= λ1var(X|P1, Yi)−1 + (1− λ1)var(X|P1)−1. (21)

(ii) In the diversifiable risk model, β ∈ (0, 1), limiting prices satisfy

lim
N→∞

1
QN

= var(X|Pβ)−1. (22)

Brennan and Cao (1996) and Cao (1999) developed this model in the standard systematic
risk model. Absent information acquisition activities, the asset price coefficients are unaltered
with respect to the model without a derivative asset. Moreover, the price of this derivative is
given by a weighted average of the conditional precisions of informed and uninformed, as (21)
shows. Cao (1999) further established that the derivative asset will induce more information
acquisition activities.

In the diversifiable risk model the informed agents are not marginal buyers/sellers in the
derivatives market: even though they do take non-trivial positions (they are short the quadratic
asset), the price of the derivative is determined solely by the uninformed, since their risk-
bearing capacity is an order of magnitude larger. This implies the conditional variance of
X given PN characterizes the limiting option prices. Further note that the option price is
lower in the systematic risk case, since there the conditional precision of the informed also
plays a non-trivial role in the quadratic derivative market: when there is systematic risk
the informed agents will be marginal on the derivatives markets. These differences generate
different implications in terms of trading volume on the options market, as well as in the stock

25These quadratic terms achieve Pareto optimal risk-sharing when CARA agents share risk with normally
distributed payoffs with different beliefs on the mean and variance. They were already discussed by Wilson
(1968), who labeled them “side bets.”
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market (for the same reasons as in section 3.2).26 On the other hand, note that one of the
main predictions of the model, that information acquisition activities are increased with the
introduction of the derivative asset, is robust across the two models.

5 Extensions

We first study whether our results are dependent on the price taking assumption. In particular,
we study a sequence of economies as in Kyle (1989), and show that their limits coincide with
those present in Theorem 1. Next, we extend the results in section 3 to allow for heterogeneous
risk-aversion. Finally, we analyze a model in which the aggregate supply of the risky asset stems
from random observable shocks to individual agents, and show the equilibrium exhibits similar
properties to those discussed in section 3.

5.1 Imperfect competition and competitive limits

In this section we closely follow the analysis of rational expectations equilibria with imperfect
competition in Kyle (1989). The finite agent economy has prices which are conjectured to be of
the form (3).27 In contrast to our previous analysis, agents take into account that their trades
affect prices. In particular, each agent i conjectures that she faces a residual supply curve of
the form PN (θi) = PNi + dNiθi, for some intercept PNi and slope dNi > 0.28 The rest of the
elements of the model are as described in section 2. An economy is described by a total number
N of CARA traders with the risk-aversion parameter τ , who can obtain information for a cost
c with signal error variance σ2

ε , and by aggregate noise summarized by the parameters β and
σ2

z .

Fixing the number of informed agents m and the total number of traders N , a rational
expectations equilibrium is defined by a set of trading strategies θi that solve

θi ∈ arg max
θ

E [u(θi(X − PN (θi)))|Fi] ; i = 1, . . . , N ;

and a price function of the form (3) such that the market clearing condition (2) holds.

At the information acquisition stage we proceed as in the previous analysis, by equating the
ex-ante expected utilities of informed and uninformed. As before, this yields an endogenously

26One can also verify, using the expressions in the proof, that the coefficients λβ are different in the two
models.

27In contrast to indivisible unit auctions, in this type of auctions the bidders are allowed to bid fractional
amounts of good. See, for example, Wilson (1979), Back and Zender (1993) and Viswanathan, Wang, and
Witelski (2001).

28Note that this conjecture will be verified in equilibrium. See Kyle (1989) for details on the rational expec-
tations equilibrium definition under imperfect competition.
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determined number of informed tradersmN (β), whose behavior for largeN , as a function of the
type of economy (diversifiable or systematic), is the main object of study. We should remark
that this is the main departure point from the discussion of large markets in Kyle (1989):
as noise grows we endogenize the information acquisition decisions, and in consequence the
allocation of private signals in the economy.

The next proposition shows that the limiting equilibria coincide with those in Theorem 1.

Proposition 4. The economy with imperfect competition with endogenous information ac-
quisition exhibits the same limiting prices, limiting optimal trading strategies, and limiting
measures of informed trading as the competitive model in Theorem 1, both in the systematic
and the diversifiable risk models.

The intuition for the proposition is fairly straightforward given the limiting results in Kyle
(1989).29 In essence, in large economies with growing noise, either systematic or diversifiable,
agents’ strategic decisions become irrelevant. Since trading behavior is non-strategic, the
limiting equilibria converges to the perfectly competitive one. It is well know that the Kyle
(1989) model can be viewed as a share auction.30 Albeit in a very stylized type of auction
setting, the proposition shows that the intuition from Swinkels (1999) and Swinkels (2001)
extends well beyond the private values case: large noise eliminates strategic behavior. This
result thus gives the limiting competitive economies described in section 3 a wider applicability:
for a large class of strategic models the limiting equilibrium is indeed competitive, and given
by the expressions in Theorem 1.

The auction literature, when studying information aggregation, has typically focused on
perfect revelation of information in markets with large numbers of risk-neutral bidders.31 As
discussed in Jackson (2003), this yields a Grossman and Stiglitz (1980) type of impossibility
result if information is costly to acquire. The introduction of noise, typical in rational ex-
pectations models, is a mechanism that can prevent auction prices from perfectly revealing
information. Proposition 4 shows one particular auction setting in which prices aggregate in-
formation in a natural way, and information acquisition activities are derived endogenously.
Moreover, it provides a set of necessary and sufficient conditions on noise for which such
limiting equilibria exist. There are some interesting analogies between the size of aggregate
supply we discuss in this paper, and the literature in multi-unit auctions with large number
of agents.32 In particular, the diversifiable risk model has a similar flavor to auction models
where the fraction of agents who receive a good goes to zero as the number of agents increases;

29But note that, although the flavor is similar, the result is not a special case of the limits considered in Kyle
(1989), neither for the systematic or diversifiable risk models.

30See for example Brunnermeier (2001).
31See Wilson (1977), Milgrom (1979), Milgrom (1981), Pesendorfer and Swinkels (1997), Pesendorfer and

Swinkels (2000), and Kremer (2002).
32See, for example, Swinkels (2001), Jackson (2003), Jackson and Kremer (2004), Hong and Shum (2004).
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whereas the systematic risk model can be compared to an auction model where a fraction of
the agents receive the good in the limiting economies. Whether the types of noise introduced in
this paper may have similar effects in other auction settings seems like an interesting research
route.

5.2 Heterogeneous risk-aversion

We consider next the effects of heterogeneity in the risk aversion of individual agents, fixing
the information acquisition technology. The definition of a rational expectations equilibrium
is identical as in section 2. Now we allow the N agents to have K different risk-aversion
parameters, which we denote by τk, for k = 1, . . . ,K. Let τmin = mink{τk}. Each agent takes
an action from the set {A,N}, where A denotes the action of purchasing, and N denotes the
action of not purchasing the signal.

A Nash equilibrium (in pure strategies) at the information acquisition stage is defined by
two sets of agents, a set I (which denotes those agents that purchase signals), and a set U
(which denotes those traders that remain uninformed), such that: (i) none of the agents in U
desires to purchase a signal, and (ii) none of the agents in I desires not to purchase a signal,
all taking as given that the other players follow their equilibrium strategies.33

For a finite N , multiple equilibria naturally arise.34 The next proposition characterizes the
competitive limit in this economy.

Proposition 5. In the model with heterogeneous risk-aversion the only Nash equilibria that
survives as N grows large is the one where only agents with risk-aversion parameter τmin become
informed. The number of such informed traders satisfies (8), where λβ is given by

λβ = τminσzσε

√
1

C(τmin)
− σ2

ε ; (23)

where C(τmin) = e2τminc − 1.

The effects of heterogeneity go in the same direction as in Verrecchia (1982), namely the
more risk-tolerant agents are more likely to become informed. But the situation in the diversi-
fiable risk model is more extreme. In that case, only those agents with the lowest possible risk

33This is the standard equilibria in information acquisition discussed in most of the literature. Morrison and
Vulkan (2003) studies the standard Kyle (1985) model with endogenous information acquisition, when traders
face uncertainty with respect to the number of informed agents in the market at the time of trading. Due
to the competitive nature of our model the issues that arise in Morrison and Vulkan (2003) with respect to
off-equilibrium beliefs of informed traders do not arise here.

34It is easy to construct an example with two agents with different risk-aversion parameters, in which only
one agent becomes informed in equilibrium, but it could be either of the two agents.
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aversion become informed, instead of a strictly positive subset of the type space. It is rather
intuitive that more risk-tolerant agents will become informed: they trade more aggressively,
thereby capturing more rents from their information acquisition activities. This standard in-
tuition, together with the fact that the agents who become informed are negligible in size as
N →∞, yields the conclusion of the proposition.

5.3 Endowment risk

Consider next a version of the model where noise stems from some random endowment shocks
to each agent. In particular, prior to trading each agent observes his endowment of the risky
asset, which we denote by Zi. The Zi’s are assumed to be i.i.d. Gaussian random variables
with zero mean and variance σ2

z . Aggregate supply of the risky asset is then ZN =
∑N

i=1 Zi,
and has a variance proportional to N : this is effectively a model with diversifiable risk.35 Using
the notation of the previous sections, the final wealth for agent i is given by Wi = θi(X−PN )+
PNZi. All agents are assumed to have CARA preferences with risk-aversion parameter τ . The
model described thus far is a simple generalization of Diamond and Verrecchia (1981), who
only study the case mN = N , i.e. the case where all agents are informed.

We will conjecture, as usual, that price is linear in the random variables Yi and Zi. Now
there is heterogeneity in the random supply: a portion will stem from informed agents, and a
portion from the uninformed. Therefore, we will search for price functions of the form

PN =
mN∑
i=1

biYi −
mN∑
i=1

diZi −
N∑

i=mN+1

diZi. (24)

At the ex-ante stage we proceed as before: we determine the equilibrium number of informed
agents by equating the expected utilities of the informed and the uninformed. The next
proposition shows that the limiting behavior of this economy is asymptotically identical to
that in Theorem 1.

Proposition 6. The number of informed agents satisfies limN→∞mNN
−1/2 = λ0.5, where

λ0.5 is given in Theorem 1. The price function (24) converges to (6).

It should be noted that the models do differ in the finite-agent case: in the above model
with endowment shocks even the uninformed agents have some private information, namely
the realization of Zi. Therefore their trading strategy is slightly more complicated than in
the model with noise traders, although in the limit they converge. The above proposition

35Similar statements can be made about the equivalence that we will establish below for the systematic risk
model.
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thereby links models with endowment risk and noise traders, by showing that limiting prices
are identical under either interpretation of noise.

6 Conclusion

We have studied the role of noise in large competitive economies. The paper has uncovered
a new limiting rational expectations equilibrium that possesses many of the nice properties
of the standard model (e.g. partially revealing prices, closed-form solutions). We have shown
that the new model, which is characterized by noise that is diversifiable, has a life of its own,
since risk-sharing and price revelation play different roles than in the standard model. In
general, these two models have different comparative statics implications with respect to price
informativeness, price volatility, and other important economic characteristics. We have also
shown that the limiting equilibria in such economies are perfectly competitive even when a
strategic solution concept is used, thereby providing one more illustration of a model where
perfect competition is the outcome of strategic trading among large number of agents. The new
equilibria emphasizes the importance of information revelation in asset markets, and highlights
the fact that small amounts of noise can support partially revealing equilibrium prices.

We demonstrated that differences in predictions between the systematic risk and diver-
sifiable risk can be significant in applications. We established that a monopolist seller of
information will optimally sell as imprecise a signal as possible when facing diversifiable risk,
in sharp contrast to the systematic risk model. It has also been shown that incentives to invest
in information acquisition in assets with systematic risk can be altered if a diversifiable as-
set becomes available for trade, due to information revelation across markets. Moreover, when
there are complementarities in information acquisition activities, the model with a diversifiable
asset differs with respect to a multi-asset model with only systematic risk assets. Lastly, our
analysis of derivative markets highlights the main property of the new equilibria, that informed
agents have negligible risk sharing capacity vis a vis the uninformed, and therefore cannot be
marginal price setters in option markets. Nonetheless, they will impact the equilibria through
the information revealed by price. To what extent the diversifiable versus systematic risk mod-
els have different implications in other areas of applied research does seem an interesting route
for future work, given our results on these three problems.
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Appendix

We commence by stating a lemma which we will use throughout the proofs. The next lemma
solves for the equilibrium price in the finite economy EN (β) in closed-form, and characterizes
the endogenously determined number of informed traders. We let nN denote the number of
uninformed agents, where nN = N −mN . Moreover, let V 2

z = var(ZN ) denote the variance
of aggregate supply. Finally, in a slight abuse of notation, we use FI and FU to denote
the information sets of typical informed and uninformed agents, respectively. We drop the
subscript N in the statement of the proposition for notational clarity (all price coefficients, as
well as m and Vz, depend on N). The proof of the lemma is omitted, and follows from the
expressions in Hellwig (1980) and Admati and Pfleiderer (1987).

Lemma 0 (Finite-agent economy equilibrium). Let m ≥ 2. Then, there exists a sym-
metric equilibrium of the form (3), in which36

d =
du

dl
;

b

d
= r (25)

where r is the solution to

r3 + r
V 2

z

(m− 1)σ2
ε

− V 2
z

τ(m− 1)σ4
ε

= 0. (26)

and
du = 1 +

nmr

τ(mr2σ2
ε + V 2

z )
+

m(m− 1)r
τ(V 2

z + r2σ2
ε (m− 1))

dl =
n(r2m(m+ σ2

ε ) + V 2
z )

τ(mr2σ2
ε + V 2

z )
+
m(V 2

z (σ2
ε + σ2

x) + σ2
ε r

2(m− 1)(m+ σ2
ε ))

τσ2
ε (V 2

z + r2σ2
ε (m− 1))

The equilibrium number of informed traders, ignoring integer constraints, is given by the
condition

var(X|FU )
var(X|FI)

= e2τc; (27)

where

var(X|FU ) =
(

1 +
r2m2

mr2σ2
ε + V 2

z

)−1

; (28)

var(X|FI) =
(

1 +
1
σ2

ε

+
r2(m− 1)2

r2(m− 1)σ2
ε + V 2

z

)−1

. (29)

36Note that the condition m = 2 is innocuous, since we will mostly be interested in interior solutions, i.e.
markets where as N ↑ ∞ the number of informed traders will be some positive amount, and ignore for the most
part corner solutions.
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Proof of Lemma 1.

The price function can be expressed as

PN = dNN
β

[
mNN

−βrN (X + ēN )− ZβN

]
; (30)

where ZβN ≡ N−βZN , ēN = (mN )−1
∑mN

i=1 εi, and rN = bN/dN . Note that ẐβN has a non-
degenerate limiting distribution by assumption.

First we show sufficiency. If α = β, then from (26), and using our conjecture (5), we see
that limN→∞ rN = 1

τσ2
ε
> 0. From this equation it is immediate that the limiting prices are

partially revealing as long as β > 0. Also note that (6) follows from the strong law of large
numbers.

We show necessity by contradiction. First suppose that α < β. Then (26) yields limN→∞ rN =
1

τσ2
ε
> 0. From (30) it is immediate that the limiting prices are completely uninformative about

X. Now suppose that α > β. If β ≥ α/2 we again have that limN→∞ rN > 0, and by inspec-
tion of (30) we see that prices become fully revealing as N → ∞. If β < α/2, first note that,

letting γ = 2β − α < 0, from (26) we have rN =
(

Nγσ2
z

τλασ4
ε

)1/3
ξ(N), where limN→∞ ξ(N) = 1,

or rN ≈ Nγ/3c, for some constant c > 0. The coefficient that multiplies X in (30) is therefore
approximately of the order N (2α−β)/3, so that prices become fully revealing. This shows that
α = β is a necessary condition for prices to be asymptotically partially revealing. �

Proof of Theorem 1.

We start by conjecturing that the number of informed agents satisfies (5). If α < β, taking
limits in (27) we have

lim
N→∞

var(X|FU )
var(X|FI)

= 1 +
1
σ2

ε

;

and this limiting value is larger than e2τc by assumption. Therefore α < β cannot characterize
a limiting equilibrium with endogenous information gathering. On the other hand, if α > β

then
lim

N→∞

var(X|FU )
var(X|FI)

= 1;

which obviously cannot be compatible with a limiting equilibrium with information acquisition.
This argument implies that in any limiting equilibrium with endogenous information acquisition
decisions (8) must hold.

In order to compute the equilibrium measures of informed agents we note that for α = β
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we have

lim
N→∞

var(X|FU )
var(X|FI)

=
1 + 1

σ2
ε

+ 1
σ2

z

(
λβbβ

dβ

)2

1 + 1
σ2

z

(
λβbβ

dβ

)2 .

Using (27) we immediately arrive at the expressions for λβ given in the proposition. Finally,
taking formal limits in the expressions from Lemma 0 yields the expressions for the price
coefficients given in the Proposition. This concludes the proof. �

Proof of Proposition 1.

By arguments similar to those in Theorem 1 we see that the monopolist seller of information
optimal number of sales must satisfy (8), for some constant λβ . One can easily verify that

lim
N↑∞

var(X|FI)−1 = 1 + sβ +
(
λβsβ

τ

)2 1
σ2

z

;

lim
N↑∞

var(X|FU )−1 = 1 +
(
λβsβ

τ

)2 1
σ2

z

.

From these and (12) it is immediate that the monopolist problem reduces to

max
λ,s

λ log
(

1 + s+ λ2s2/(τσz)2

1 + λ2s2/(τσ2
z)

)
;

with the added constraints s ≥ ` (for both the systematic and diversifiable risk models), and
λ ≤ 1 (for the systematic risk model).

For a fixed λ, the optimal noise added is characterized by s = τσZ/λ. Some simple
calculations show that s ≥ ` must bind at the optimal solution in the diversifiable risk model,
whereas in the systematic risk model λ1 ≤ 1 will be the binding constraint. The statements in
the proposition follow from these observations. �

Proof of Proposition 2.

Prices, in the finite agent economy, are conjectured to be linear in the signals received by
the agents:

PN =
mN∑
i=1

BiYi −DZN; (31)

where m∗ = mNa + mNb + mNd denotes the total number of informed, ZN = (ZNa, ZNb)
is the vector of aggregate supplies, and Bi ∈ R2×2 and D ∈ R2×2 are the equilibrium price
coefficients. The ex-ante utility (gross of information costs) of an agent whose information
at the time of trading is given by the filtration Fi is −|var(X|Fi)|−1/2. The (endogenously)
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number of informed traders of each of the types is given by the natural indifference conditions
(and corresponding inequalities), as in (27).

By similar arguments to those in the proof of Theorem 1 we have that (14)-(16) must have
finite limits (possibly zero), otherwise prices will perfectly reveal information. Formally taking
limits in (31), we arrive at an expression of the form (17), where in the mixed risk model

D−1
β Aβ =

 (
λa(β)
τσ2

εa

)
0

0
(

λb(β)+λd(β)
τσ2

εb

)  ; (32)

and in the systematic risk model

D−1
β Aβ =

 (
λa(β)+λd(β)

τσ2
εa

)
0

0
(

λb(β)+λd(β)
τσ2

εb

)  . (33)

The following three conditions are the candidates for characterizing the equilibrium mea-
sures of informed trading λa, λb and λd in both models:

κa|var(X|Fa)−1| = |var(X|FU )−1|; (34)

κb|var(X|Fb)−1| = |var(X|FU )−1|; (35)

κd|var(X|Fd)−1| = |var(X|FU )−1|; (36)

where Ft denotes the information possessed by an agent of type t, and κt ≡ 1/(1 + Ct), for
t = a, b, d. Equations (34)-(36) represent the set of indifference conditions for agents who
purchase one signal on asset a, one signal on asset b, or signals on both assets.

Let sε ≡ 1/σ2
ε denote the precision of the signal error. Define H = V−1

x , and let Hij denote
the ijth component of the matrix H, which we subscript using the asset indexes a and b. Some
simple manipulations yield that in the mixed risk model

var(X|Pβ)−1 =

[
xa −Hab

−Hab xb

]
; (37)

where

xa ≡ Haa +
(
λasε

τ

)2 1
σ2

z

; (38)

xb ≡ Hbb +
(

(λb + λd)sε

τ

)2 1
σ2

z

. (39)
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With this notation, the system (34)-(36) reduces to

κa((xa + sε)xb − κ0) = xaxb − κ0; (40)

κb(xa(xb + sε)− κ0) = xaxb − κ0; (41)

κd((xa + sε)(xb + sε)− κ0) = xaxb − κ0; (42)

where κ0 = H2
ab.

By inspection, it is immediate that (40)-(42) cannot all be satisfied (with the exception of
subsets of the parameter space of measure zero), and therefore at most two of those equations
will bind at the optimal solution. Moreover, when D̂−1

β Âβ has full rank, it is immediate from
(32) that in the diversifiable risk model (40) must bind. If λd > 0, then (42) must also bind.
The expressions in part (ii) of the proposition are the solutions to (40) and (42) expressed in
terms of the λt’s using (38) and (39).

In the systematic risk model, information acquisition decisions are characterized by the
same system (40)-(42), where xb is also given by (39), but instead of (38) we have

xa ≡ Haa +
(

(λa + λd)sε

τ

)2 1
σ2

z

. (43)

The systematic risk model differs from the diversifiable risk model in this mapping from
the λt’s to the variables xa and xb, and also on the set of constraints that bind. In particular,
on top of the system (40)-(42), we need to restrict, for the obvious economic reasons, λt ≥ 0,
for t = 0, a, b, d, and λa + λb + λd ≤ 1. It is straightforward to check that if λd > 0, so that
(42) binds, then (40) or (41) cannot bind in the symmetric model. Note that in this case only
one of the indifference conditions (40)-(42) binds. Some straightforward calculations yield the
expression in part (i) of the proposition. �

Proof of Proposition 3.

We consider a finite-agent version of the Brennan and Cao (1996), and explicitely take
limits, as in previous proofs. First consider the finite N model. It is straightforward to show
that the optimal trade in the derivative security for agent i are given by

γ∗i =
1
2τ

(
1
QN

− 1
var(X|Fi)

)
.

One can easily check that in the finite-agent model, as in Brennan and Cao (1996), trades
in the derivative security do not change the equilibrium price of the stock, which is given by
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the expressions in Lemma 0. Market clearing in the derivative asset immediately implies that

1
QN

=
1
N

N∑
i=1

var(X|Fi)−1. (44)

Calculating the ex-ante expected utilities in the presence of the derivative securities, and
using the indifference condition which equates the expected utilities of informed and uninformed
one arrives at the analog of (27) in this variation of the model:

var(X|FI)−1 − var(X|FU )−1

N−1
∑N

i=1 var(X|Fi)−1
= 2τc. (45)

It is again straightforward to check that limiting information acquisition equilibria must
satisfy (8) for some λβ . Moreover, in the diversifiable risk case we can solve (45) to obtain

λβ = τσzσε

√
1

2τc
− σ2

ε . (46)

A simple comparison with the expressions from Theorem 1 yields the statement in the propo-
sition on the increase in information acquisition. The results on information acquisition in the
systematic risk model follow similarly from (45), see Cao (1999). Finally, taking limits in (44)
one obtains the limiting option prices (21) and (22). �

Proof of Proposition 4.

Following Kyle (1989), let us conjecture that the optimal trading strategies of the agents
are linear, namely let θi ≡ rYi − qPN ; for i = 1, . . . ,m, and θi ≡ −wPN , for i = m+ 1, . . . , N .
It is straightforward to verify that, using our notation, the characterization in Theorem 5.2 of
Kyle (1989) reduces to the following system of equations for (d, r, q, w):37

(mq + nw)d = 1; (47)

(1− φ(r)) (1− qd) = 1− η(r); (48)

r =
(

1
τσ2

ε

)
(1− φ(r))(1− 2η(r)d)

(1− η(r)d)
; (49)

η(r)d− γ(r) = wdη(r)
(

d

1− wd
+ τvar(X|FU )

)
; (50)

where

η(r) = rσ2
ε var(X|FI)−1;

37The coefficient b is given as before by b/d = r. Also note that for clarity we drop the subscript N from the
expressions.

28



φ(r) =
r2(m− 1)σ2

ε

(m− 1)r2σ2
ε + V 2

z

;

γ(r) =
(

var(X|FU )
var(X|FI)

)
σ2

ε r
2m

(mr2σ2
ε + V 2

z )
;

with var(X|FI) and var(X|FU ) given by the expressions (28) and (29).

As before, for notational convenience we have dropped the subscript N from the pricing
variables. Now let’s assume that (4) holds, and conjecture (8). If α = β > 0, we immediately
have from (47) that limN↑∞wNdN = 0. From (50) we then get that limN↑∞ η(rN ) = 0, which
in turns implies that limN↑∞ qNdN = 0 from (48), since limN↑∞ φ(rN ) = 0. Finally, we have
that limN↑∞ rN = 1/(τσ2

ε ). Some straightforward calculations show that limN↑∞ dNN
β = dβ,

as given in Theorem 1. Furthermore, one can verify that the limiting trading strategies for both
informed and uninformed coincide in the perfect competition and the imperfect competition
models, and thereby the expected utilities are given by our previous limiting expressions, and
the endogeneously determined λβ is again the same as the one provided in Theorem 1.

This verifies that the equilibrium in the imperfectly competitive market with large noise and
(8) does indeed converge to its perfectly competitive counterpart. We are left to check whether
there are other limiting equilibria. One can verify, as in the proof of Lemma 1, that prices
would become perfectly revealing or completely uninformative if α 6= β, from which we can
conclude, by comparing the expected utilities of informed and uninformed agents, that α = β

is also a necessary condition for existence of a limiting economy with endogenous information
acquisition in the imperfectly competitive model. �

Proof of Proposition 5.

Take an economy EN (β) with an arbitrary number of agents N . Consider information
acquisition decision of two agents, one who chooses to become informed with risk-aversion
parameter τI , and a second who stays uninformed with risk-aversion parameter τU . We will
argue that in the limit τU ≥ τI by contradiction. Consider an equilibrium in which agents
with τI become informed, but agents of risk-aversion τU do not, and τI > τU . We next show
that this set of strategies cannot be an equilibrium for N large enough. Note that in any
equilibrium it must be the case that

−
√

var(X|FI)eτIc ≥ −
√

var(X|FU ); (51)

−
√

var(X|FU ) ≥ −
√

var(X|FI)eτU c. (52)

Equation (51) simply states that the informed agent is better off by buying the signal than
by not purchasing it, and (52) requires that the uninformed agent will not desire to buy a signal.
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Taking limits, from Theorem 1 we have that the above inequalities reduce to eτIc ≤ eτU c, i.e.
τI ≤ τU , which is a contradiction. The above argument shows that any set of strategy profiles
in which an agent τmin does not acquire information, but an agent with risk-aversion τi > τmin

does, cannot be an equilibrium for N large enough. The rest of the proof follows the same
lines as Theorem 1. �

Proof of Proposition 6.

The proof is very similar to that of Theorem 1, so we simply sketch the necessary steps.
First, we write out the equilibrium conditions fixing m and N . Then, using the asymptotic
approximation to m∗

N we explicitly compute the limiting equilibria for α = 1 and α 6= 1. The
same arguments as before yield that the only limiting equilibria with information acquisition
is that with α = 1. For simplicity in the exposition we assume τ = 1 in what follows (the
extension to general τ is immediate).

The market clearing condition is given by

m∑
i=1

E[X|Yi, Zi, PN ]− PN

var(X|Yi, Zi, PN )
+

N∑
i=m+1

E[X|Zi, PN ]− PN

var(X|Zi, PN )
=

N∑
i=1

Zi.

Define the projection coefficients E[X|Yi, Zi, PN ] = ψY Yi+ψZZi+ψPPN , and E[X|Zi, PN ] =
αZZi +αPPN . Letting Λ ≡ n(1−αP )var(X|Zi, PN )−1 +m(1−ψP )var(X|Yi, Zi, PN ), the equi-
librium conditions reduce to

bi
di

=
ψY

1− ψZ
; i = 1, . . . ,m;

diΛ = (1− ψZ); i = 1, . . . ,m;

diΛ = (1− αZ); i = m+ 1, . . . , N.

It is straightforward to check, by explicitely taking limits in the above system of equations,
that if mN satisfies (8) then the price coefficients converge to those in Theorem 1. In particular
we have that

lim
N→∞

b

di
=

1
σ2

ε

lim
N→∞

diN
1/2 = d0.5.

Moreover, by equating the expected utilities of the uninformed and informed we again arrive
at the same expressions as in Theorem 1. �
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Figure 1: Equilibrium values λa(β) (top graph) and λd(β) (bottom graph) for the mixed model
(solid lines), systematic risk model (dotted line), and in the one-asset economy (dashed line).
Parameter values: ca = cb = 0.3, δ = 0.2, τ = σ2

ε = σ2
z = 1.
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