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SUMMARY 

 

This paper establishes a general framework for metric scaling of any distance measure 

between individuals based on a rectangular individuals-by-variables data matrix.  The method 

allows visualization of both individuals and variables as well as preserving all the good 

properties of principal axis methods such as principal components and correspondence 

analysis, based on the singular-value decomposition, including the decomposition of variance 

into components along principal axes which provide the numerical diagnostics known as 

contributions.  The idea is inspired from the chi-square distance in correspondence analysis 

which weights each coordinate by an amount calculated from the margins of the data table.  In 

weighted metric multidimensional scaling (WMDS) we allow these weights to be unknown 

parameters which are estimated from the data to maximize the fit to the original distances.  

Once this extra weight-estimation step is accomplished, the procedure follows the classical 

path in decomposing a matrix and displaying its rows and columns in biplots. 
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1.  Introduction 

 

We are concerned here with methods that transform a rectangular data matrix into a graphical 

representation of the rows (usually individuals, or subjects) and columns (usually variables, or 

objects).   A typical example of a visualization is the  biplot (Gabriel, 1971; Gower & Hand, 1996) 

in which a distance approximation is achieved with respect to the individuals, while the variables 

are depicted by arrows defining biplot axes allowing estimation of the original data values.  

An example is shown in Figure 1, where data on 12 countries and five variables on different scales 

are mapped to a biplot where (squared) distances between countries are standardized Euclidean 

distances of the form: 
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where xi and xj are the i-th and j-th rows of the matrix and Ds is the diagonal matrix of standard 

deviations  sk .  The factors 1/sk  are standardizing factors which can alternatively be regarded as 

weights assigned to each variable in the calculation of the distance between countries.  In 

correspondence analysis (CA) of a table of frequencies we have a similar distance function, where 

the weights for the rows and the columns in the chi-square distance function are proportional to the 

inverses of the corresponding row and column margins of the table. 

In general  we can define the weighted Euclidean (squared) distance: 
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where Dw contains weights  wk, to be determined by a process still to be described.    

In several contexts, the practitioner is more interested in distance measures which are non-

Euclidean.  A good example of this is in ecological studies where the data are species-abundances at 

different sites where equal area- or volume-sampling has been conducted.  In this case, ecologists 

almost always prefer the Bray-Curtis dissimilarity measure, since it has an immediate and simple 

interpretation, with values from 0 (exactly the same species composition) to 100 (no species in 

common at all).  The Bray-Curtis index  dij  between samples i and j with species abundances 

denoted by {nik} and {njk} is defined as follows: 
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Figure 1:  Data matrix on 12 European community countries in 1990, showing five economic 

indicators: Unemployment Rate (%), Gross Domestic Product per Head (index), Private 

Consumption per Head (index), Change in Private Consumption (%) and Real Unit Labour Cost 

(index).  The principal component biplot on standardized data is shown on the right, with 

vectors indicating biplot axes for each variable. 

 

Such a dissimilarity measure is simple to understand, but non-Euclidean (see Gower & Legendre, 

1986).  Often nonmetric MDS is used to analyse these indices (see, for example, Field, Warwick & 

Clarke, 1982),  but our interest here is in metric MDS since there are many relevant spin-offs in the 

classical metric approach, most importantly the natural biplot framework thanks to the singular 

value decomposition, as well as the convenient breakdown of variance across principal axes of both 

the rows and columns which provide useful numerical diagnostics in the interpretation and 

evaluation of the results.  The idea will be to approximate the distances of choice, however they are 

defined, by a weighted Euclidean distance.  The weights estimated in this process will be those that 

are inherently assigned to the variables by the chosen distance function. 

In Section 2 we shall summarize the classical MDS framework with weights.  Then in Section 3 we 

describe how any distance measure between individuals can be approximated by a weighted 

Euclidean metric.  In Section 4 we give some examples of this approach and conclude with a 

discussion in Section 5. 
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 8.8  102.0  104.9  3.3   89.7 
 7.6  134.4  117.1  1.0   92.4 
 5.4  128.1  126.0  3.0   90.0 
 8.5   37.7   40.5  2.0  105.6 
16.5   67.1   68.7  4.0   86.2 
 9.1  112.4  110.1  2.8   89.7 
16.2   64.0   60.1  4.5   81.9 
10.6  105.8  106.0  3.8   97.4 
 1.7  119.5  110.7  2.8   95.9 
 9.6   99.6   96.7  3.3   86.6 
 5.2   32.6   34.8  3.5   78.3 
 6.5   95.3   99.7  2.1   98.9 

Belgium
Denmark
Germany

Greece
Spain

France
Ireland

Italy
Lux’burg
Holland
Portugal

U.K..

Unem.   GDP/H     PC/H      PC%      RULC 

    Mean      8.81  91.54  89.61 3.01  91.05 
      S.D.     4.26  33.73  30.63 0.96   7.59  

PC/H 



 

2.  Weighted Multidimensional Scaling 

 

Our main interest is in weighting the variables in the definition of distances between the individuals, 

but exactly the same technology allows weighting of the individuals as well to differentiate their 

effect on determining the eventual solution space.  Since the weighting of the individuals serves a 

different purpose from the weighting of the variables, we shall use the terms mass for an individual 

and weight for a variable (in correspondence analysis the term mass is used exactly in the sense 

used here).  Both individual masses and variable weights will be included in our description that 

follows.  This description is essentially that of the geometric definition of correspondence analysis 

(see Greenacre, 1984, chapter 2), the only difference being that the weights on the variables are 

unknown, to be determined, and not prescribed. 

Suppose that we have a data matrix Y (n×m), usually pre-centred with respect to rows or columns or 

both.  Let Dr (n×n) and Dw (m×m) be diagonal matrices of row (individual) masses and column 

(variable) weights respectively.  With no loss of generality the row masses are presumed to have a 

sum of 1.  The rows of Y are presumed to be points in an m-dimensional Euclidean space, 

structured by the inner product and metric defined by the weight matrix Dw .   The solution, a low-

dimensional subspace which fits the points as closely as possible, is established by weighted least-

squares, where each point is weighted by its mass.  The following function is thus minimized: 
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where iŷ , the i-th row of  Ŷ , is the closest low-dimensional approximation of yi .   The function 

In(*,*) stands for the inertia, in this case the inertia of the difference between the original and 

approximated matrices.   The total inertia, which is being decomposed or “explained” by the 

solution, is equal to I(Y).    

As is well-known (see, for example, Greenacre, 1984, Appendix), the solution can be obtained 

neatly using the generalized singular value decomposition (GSVD) of the matrix Y.  

Computationally, using an ordinary SVD algorithm, the steps in finding the solution are to first pre-

process the matrix Y by pre- and post-multiplying by the square roots of the weighting matrices, 

then calculate the SVD and then post-process the solution using the inverse transformation to obtain 

principal and standard coordinates.  The steps are summarized as follows: 

   1.  
2/12/1

wr YDDS =                      (5) 



   2.  
TVUDS α=           (6) 

3. Principal coordinates of rows:       αUDDF 2/1−= r      (7) 

4. Standard coordinates of columns: VDG 2/1−= w      (8) 

 

The columns (variables) are conventionally depicted by arrows and the rows (individuals) by points.  

A two-dimensional solution, say, would use the first two columns of F and G. The total inertia is 

the sum of squares of the singular values α1
2+α2

2+… ,  the inertia accounted for in two-dimensional 

solution is the sum of the first two terms α1
2+α2

2 while the inertia not accounted for (formula (4)) is 

the remainder of the sum: α3
2+α4

2+… .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1:  Decomposition of inertia of  n  row points along all  p  principal axes of the matrix.  Each row 

adds up to the inertia of a point, the mass (ri) times squared distance (di
2) of the point to the centre, 

while each column adds up the principal inertia  λk  = αk
2 of the corresponding axis.  Rows and 

columns expressed relative to their respective totals constitute the contributions, or numerical 

diagnostics used to support the interpretation of the solution space. 

 

Apart from this simple decomposition of the variance in the data matrix, there is another benefit of 

the least-squares approach via the SVD, namely a further breakdown of inertia for each point along 

each principal axis.  Since this decomposition applies to points in princ ipal coordinates, we show it 

for the row points in Table 1 (a similar decomposition can be shown for column points in principal 

coordinates by merely scaling the standard coordinates by their respective singular values).  
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3.  Computing the Variable Weights 

 

We now consider the case when a general distance function is used to measure distance or 

dissimilarity between individuals, not necessarily a Euclidean- imbeddable distance.  Using 

conventional MDS notation let us suppose that δ ij
2 is the observed dissimilarity between individuals 

i and j based on their description vectors xi and xj.   We use dij
2 = dij

2(w) to indicate the weighted 

Euclidean distance based on (unknown) weights in the vector w.  The problem is then to find the 

weights which give the best fit to the observed dissimilarities, either minimizing fit to distances 

(least-squares scaling, or LSS) or to squared distances (least-squares squared scaling, or LSSS).  As 

always it is easier to fit to squared distances, which is the approach we take here.  Thus the 

objective function is: 

   minimize   
222

))(( wijiji j d−∑ ∑ δ    over all  w ≥ 0         

that is,   

   minimize 2)( 22 )(∑ −−δ∑ ∑ k jkikkiji j xxw over all w ≥ 0. 

Ignoring for the moment the non-negativity restriction on w, the problem can be solved by least-

squares regression without a constant as follows: 

 

• Define δ  = vec(δ ij
2) as the ½n(n-1) vector of given 

squared distances, that is the half-triangle of 

distances strung out as a vector. 

• Define  X = [(xik-xjk)2] as the ½n(n-1)×m matrix of 

squared differences between the values of a variable, 

for each pair of individuals. 

• Fit the multiple regression model  δ  = Xw + e  which 

has least-squares solution  w = (XTX)-1δ . 

 

In our experience it frequently occurs that the weights calculated without constraints turn out to be 

positive.  However, when this is not the case, minimisation has to be performed with constraints: 

 

   minimize  (δ  – Xw)T(δ  – Xw)   subject to  w ≥ 0                            (9) 

 



This is a quadratic programming problem (see, for example, Bartels, Golub & Saunders, 1970) 

which can be solved with standard software, for example function  nlregb  in S-PLUS (1999) – 

see also  www.numerical.rl.ac.uk/qp/qp.html. 

In the regression described above the masses assigned to the individuals can be taken into account 

by performing weighted least-squares regression, with the weights assigned to each (i,j)-th element 

equal to the product rirj of the corresponding masses.  That is, define the ½n(n-1)×½n(n-1) diagonal 

matrix Drr  with these products down the diagonal and then minimize the quadratic form                 

(δ  – Xw)TDrr (δ  – Xw), which in the unconstrained case gives solution w = (XTDrrX)-1Drr δ . 

The goodness of fit of the weighted Euclidean distances to the original distances can be measured by 

the usual coefficient of determination R2.  Our visualization of the original data matrix passes 

through two stages of approximation, first the fitting of the distances by estimating the variable 

weights, and second the matrix approximation of the GSVD to give the graphical display of the 

weighted Euclidean distances and the associated biplot vectors for the variables. 

 

 

4.  Application: Bhattacharyya (arc cos) distance 

 

This research was originally inspired by an article in the Catalan statistical journal Qüestiio by 

Vives & Villaroya (1996), who apply Intrinsic Data Analysis (Rios, Villaroya & Oller, 1994) to 

visualize in the form of a biplot a compositional data matrix, specifically the composition in each of 

the 41 Catalan counties (comarques) of eight different professional groups (the full table is given in 

the appendix).  This analysis is based on the Bhattacharyya distance between counties: 

) ( cos arc),(  2 ∑= k jkik
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where the function arc cos is the inverse cosine.  The same authors report that their results are 

almost identical to those of correspondence analysis.  Applying weighted MDS to the same data the 

weights are estimated to be the following for the eight professional groups: 



 

Weights estimated by fitting to Bhattacharyya distances 

Pro&Tec  PersDir  ServAdm  Com&Ven  Hot&Alt  Agr&Pes  Indust   ForArm 

1.9            4.6            5.7          1.9              2.0          1.6           0.9        41.1 

 

Weights implied by correspondence analysis  ( 1/ck ) 

Pro&Tec  PersDir  ServAdm  Com&Ven  Hot&Alt  Agr&Pes  Indust   ForArm 

9.6           49.4          8.8             8.5           10.0          8.1           2.4      263.0 

 

 

Figure 2: Comparison of estimated weights to fit optimally to arc  cos distances and 

correspondence analysis weights.  

 

It is interesting to see that the variable “ForArm” (forces armades in Catalan, i.e. armed forces) 

receives much higher weight than the others, very similar to the situation in CA where it is weighted 

highly because of very low relative frequency and thus low variance.  The arc cos distance 

inherently weights this variable highly as well even though  this is not at all obvious from its 

definition in (10). 

The fit of the weighted Euclidean distances to the arc cos distances is excellent: sum-of-squared 

distances, SSD = 9.570, with sum-of-squares due to regression, SSR = 9.327 (97.5%) and sum-of-

squares due to error, SSE = 0.243 (2.5%). 

In Figure 3 we see the form biplot of the results.  The form biplot scales the rows (counties) in 

principal coordinates so that we can interpret the inter-row distances, and the columns (professional 

categories) in standard coordinates.  Projecting the rows onto the biplot axes defined by the column 

vectors will give an approximation to the original percentages in the data matrix.  The alternative is 
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to plot the results as a covariance biplot where the rows are in standard coordinates and the columns 

are in principal coordinates, in which case the covariance structure amongst the columns is 

displayed.   

Finally, in Table 2 we have the contributions to inertia that are the spin-off of our approach – we 

show the contributions for the column points.  The columns of Table 1 relative to their sums (the 

principal inertias, or squared singular values) are given in the columns headed CTR, for each of the 

two dimensions, often called the absolute contributions in correspondence analysis.  The rows of 

Table 1 relative to their sums (the inertias of the column points) are given in the columns headed 

COR. 
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Figure 3:  Form biplot of 41 Catalan counties (in principal coordinates) and 8 professional 

categories (in standard coordinates). 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2:  Decomposition of inertia of  8 column points along first two principal axes.  The principal 

inertias (eigenvalues, or squared singular values) are decomposed amongst the points as given in the 

columns CTR, given in “permills”, for example the first axis is determined mostly by points Agric&Pesc 

(63.6%) and ServAdm (24.3%).  These are the columns of Table 1 relative to their totals.  The inertia of 

a point is decomposed along the principal axes according to the values in the columns COR.  These are 

the rows of Table 1 relative to their totals, and are also squared correlations (angle cosines) of the 

points with the principal axes.  Thus the point Indust is mostly explained  by the second axis, while 

ForArm is not well explained by either axis and also plays hardly any role in determining the two-

dimensional solution, even with the large weight assigned to it.  The column QLT refers to quality of 

display in the plane, and is the sum of the COR columns. 

 

 

QLT    CTR  COR   CTR  COR 
 
622     24  304    46  318 
385      5  308     2   77 
832    243  754    46   78 
772     47  604    24  168 
608     41  280    89  328 
989    636  907   105   82 
998      0    1   676  997 
148      0    0     8  148 

Prof&Tec
PersDir

Serveis&Admin
Com&Ven

Hotel&Altres
Agric&Pesc

Indust
ForArm

Quality             Principal axes 
                      1                   2 

Principal inertias                         0.0203     0.0111 
 (% of total)              (57.1%)    (31.1%) 
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Appendix 

Percentages of different professional groups in the 41 Catalan counties 

 

COUNTY Prof./ Pers. Serveis Comerc. Hotel. Agric. Indust. Forces total
Tµec. Dir. admin. Vened. altres Pesc. arm.

(AC) Alt Camp 9.6 1.9 11.3 11.1 6.8 9.9 49.1 0.2 100
(AE) Alt Empordµa 8.4 2.3 14.4 15.7 13.8 10.0 34.5 0.9 100
(AP) Alt Pened¶es 9.1 1.9 13.8 11.5 7.5 6.9 49.2 0.1 100
(AU) Alt Urgell 10.4 1.8 11.1 13.6 10.7 14.3 37.1 1.1 100
(AR) Alta Ribagor»ca 13.9 1.8 7.8 10.4 15.8 12.9 37.3 0.1 100
(An) Anoia 8.8 2.0 11.0 11.3 7.7 3.6 55.6 0.1 100
(Ba) Bages 11.3 1.8 11.7 12.8 8.2 3.2 50.8 0.3 100
(BC) Baix Camp 12.1 2.1 13.1 15.0 11.1 7.0 39.3 0.2 100
(Be) Baix Ebre 10.9 1.7 10.3 12.5 8.8 16.3 39.3 0.3 100
(BE) Baix Empordµa 8.2 2.2 10.9 14.3 13.6 8.0 42.5 0.4 100
(BL) Baix Llobregat 5.8 1.9 14.7 12.6 11.7 1.2 52.0 0.1 100
(BP) Baix Pened¶es 7.9 2.3 12.1 14.2 12.6 5.6 44.9 0.3 100
(Bn) Barcelona 17.1 2.9 21.4 14.8 11.2 0.4 32.1 0.1 100
(Be) Berguerµa 10.1 1.2 8.9 11.5 8.3 8.3 51.0 0.6 100
(Ce) Cerdanya 10.0 2.3 9.4 13.8 15.9 13.6 34.3 0.8 100
(Co) Conca de Barberµa 8.6 1.9 9.7 9.7 7.5 16.3 46.2 0.1 100
(Gf ) Garraf 12.8 2.0 12.6 14.2 13.1 3.1 42.1 0.2 100
(Ga) Garrigues 7.9 1.2 7.7 9.1 6.2 34.3 33.5 0.2 100
(Gx) Garrotxa 10.1 2.1 11.0 10.8 7.5 6.7 51.6 0.2 100
(Gi) Gironµes 14.2 2.3 17.2 13.9 9.9 3.3 38.6 0.5 100
(Ma) Maresma 11.9 3.2 13.9 14.4 10.0 4.2 42.3 0.2 100
(Mo) Montsiµa 7.0 1.5 8.4 10.8 7.3 24.1 40.5 0.4 100
(No) Noguera 7.3 1.2 6.0 7.9 5.3 20.8 51.2 0.2 100
(Os) Osona 9.9 1.8 10.7 11.0 6.6 6.2 53.6 0.1 100
(PJ) Pallars Jussµa 12.4 1.7 10.4 10.1 8.9 20.8 33.4 2.2 100
(PS) Pallars Sobirµa 13.4 1.3 9.6 7.1 14.7 23.8 29.7 0.3 100
(PU) Pla d'Urgell 8.2 1.6 9.7 9.7 5.7 24.6 40.1 0.2 100
(PE) Pla de l'Estany 10.9 2.2 12.3 10.5 7.0 9.5 47.5 0.1 100
(Pr) Priorat 8.7 1.0 7.4 7.7 7.0 32.2 35.7 0.3 100
(RE) Ribera d'Ebre 12.4 1.0 9.1 8.7 7.8 17.5 43.2 0.4 100
(Ri) Ripollµes 9.2 1.8 8.3 10.1 9.2 7.3 53.9 0.2 100
(Sa) Segarra 9.9 1.9 9.9 8.5 6.3 17.5 45.9 0.1 100
(Se) Segriµa 13.0 2.1 13.8 13.8 10.4 14.4 31.5 1.0 100
(Sl) Selva 7.3 2.0 10.8 12.5 15.2 5.7 46.4 0.2 100
(So) Solsonµes 10.2 1.4 7.8 7.4 8.2 21.2 43.7 0.1 100
(Ta) Tarragonµes 14.2 2.1 16.6 12.9 12.9 2.9 37.7 0.6 100
(TA) Terra Alta 4.8 0.9 4.9 7.2 4.7 39.1 38.1 0.4 100
(Ur) Urgell 9.1 2.1 9.8 12.7 6.7 17.7 41.7 0.3 100
(VA) Val d'Aran 11.2 6.9 10.8 13.6 21.3 5.4 29.5 1.2 100
(Vc) Vallµes Occidental 12.1 2.3 14.6 13.2 9.0 0.7 48.1 0.1 100
(Vr) Vallµes Orinetal 9.3 2.2 13.2 11.3 8.2 2.4 53.2 0.1 100
average 12.8 2.4 16.3 13.5 10.4 3.7 40.7 0.2 100

 
 

 

 

 


