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Abstract
Rank association is a fundamental tool for expressing dependence in cases in
which data are arranged in order. Measures of rank correlation have been ac-
cumulated in several contexts for more than a century and we were able to cite
more than thirty of these coefficients, from simple ones to relatively complicated
definitions invoking one or more systems of weights. However, only a few of these
can actually be considered to be admissible substitutes for Pearson’s correlation.
The main drawback with the vast majority of coefficients is their “resistance-to-
change” which appears to be of limited value for the purposes of rank comparisons
that are intrinsically robust. In this article, a new nonparametric correlation co-
efficient is defined that is based on the principle of maximization of a ratio of
two ranks. In comparing it with existing rank correlations, it was found to have
extremely high sensitivity to permutation patterns. We have illustrated the poten-
tial improvement that our index can provide in economic contexts by comparing
published results with those obtained through the use of this new index. The suc-
cess that we have had suggests that our index may have important applications
wherever the discriminatory power of the rank correlation coefficient should be
particularly strong.
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1. Introduction
Measuring agreement between two sets of rankings is a frequently encountered is-
sue in economic researches because, among other things, methods based on ranks
of data are a common approach when the values themselves are of less interest
than their relative ordering. For example, this would be the case when the fea-
tures represent counts, ratings, rankings, or otherwise dimensionless quantities.
Ranking methods are often recommended when variables used for analysis are
scaled over a different range or the absolute distance between their values is non-
linear, unknown or cannot be measured for practical or theoretical reasons. A rank
transformation may also be employed in order to avoid distortion because the ac-
tual data are contaminated with errors, inconsistencies or outliers. On different
occasions (e.g. Croux & Dehon, (2010)), there is a possibility for any reported
income to deviate from the true one, which may yield a large error, meanwhile,
the ranks may still be reliable even after some volatility. Rank association is a less
restrictive measure of gauging relationships between variables because it does not
impose any assumptions of linearity. Nevertheless, it should be born in mind
that ranks are not as powerful as original values when linear associations between
variables are dominant.

The present article begins with an excursus on the concept of rank correla-
tion: from the axioms that underlie the association between ordinal data, to the
relationships between nonparametric measures of concordance and distances be-
tween permutations. After isolating a few “admissible” rank correlations which
could be considered plausible alternatives to Pearson’s correlation, we conclude
that they all share the same drawback: a “resistance-to-change” that appears to
be of limited value for the purposes of rank comparisons. We are convinced that
ranks are intrinsically robust and do not need any additional robustification; on the
contrary, it is necessary to have a rank correlation coefficient which can assume a
wide range of values over the interval [−1, 1].

We admit that, for ordinal data, it is perhaps paradoxical to postulate that there
is a different value of the coefficient for each different pair of patterns, but it is
at least equally paradoxical to suppose that permutation comparisons should be
restricted to just a handful of different basic types. In this article, a new nonpara-
metric correlation coefficient is defined which is based on the principle of maxi-
mization of a ratio of two ranks. In comparing it with existing indices it was found
to have great discriminatory power in the identification of groups of permutations.
The sensitivity of our coefficient is investigated with a complete enumeration of all
permutations for a number of ranks less than or equal to 13; for a larger number of

2



ranks, the distribution is determined by evaluating the statistic for a wide random
sample of permutations. In order to clarify the significance and the usefulness of
the new measure of correlation between ranks, we have re-analyzed the data from
a number of earlier reports which are to be found in the literature, and concluded
that these results are generally improved by using the new index. The last section
summarizes the main results of the paper and suggests several extensions.

2. Rank correlations
Throughout this paper we will examine situations of the following type. Consider
a fixed set of n distinct items ordered by J judges according to the different degree
to which they possess K attributes X1, X2, . . . , XK consisting of a host of intan-
gibles that can be ranked but not necessarily measured. Judges assign numerical,
admittedly arbitrary values (at least within a certain range), to items which are es-
sentially qualitative, but do not assign any other numerical values, such as scores
or points. This scenario can also be invoked when one considers ranks as manifes-
tations of an underlying absolutely continuous random variable whose observed
values are transformed into a ranking by discretizing the variable according to a
set of thresholds. Essentially, we assume that the two sets of ranked data have
something directly in common. This is less obvious than it may appear since both
rankings could be based on a set of measurements of overlapping but not directly
correlated items.

Let us suppose that the evaluations for each attribute are expressed in terms
of an ordinal scale of n ranks: σ = {σ1, σ2, . . . , σn} where σ is an element of
Sn, the set of all n! permutations of integers {1, 2, . . . , n} without omissions or
repetitions (each of the integers appears exactly once in each ranking). Hereafter
we restrict our discussion to the simplest case J = 1 and K = 2. The judge ranks
the items in X1 in the order σ = {σ1, σ2, . . . , σn} while the items in X2 will be
ordered as π = {π1, π2, . . . , πn}.

A rank correlation r (σ,π) is a coefficient summarizing the degree of agree-
ment/ disagreement between the two rankings σ and π. Obviously, there are as
many possible measures of association as there are different aspects of the struc-
ture of dependence between variables and not all of these can be picked up by a
single coefficient. Therefore, rank correlations are only partially comparable (see
Zayed & Quade, (1997)). This is why no rank correlation can be selected as the
“best” choice.
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Gideon & Hollister, (1987) pointed out that reasonable coefficients need to
possess certain properties and gave a list of postulates for nonparametric measures
of dependence based on Rényi, (1959) and Schweizer & Wolff, (1981). On this
specific issue, see also Scarsini, (1984), King & Chinchilli, (2001) and Genest &
Plante, (2003). In short, the properties that any index of rank correlation should
satisfy are the following
a) r (σ,π) is defined for any pair of permutations (σ,π)
b) Comparability. −1 ≤ r (σ,π) ≤ 1 with r (σ,σ) = 1 and

r (σ,σ∗) = −1 where σ∗ = n+ 1− σ.
c) Symmetry. r (σ,π) = r (π,σ)
d) Zero expected value under independence. Eσ,π∈Sn [r (σ,π)] = 0
e) Right-invariance. r (σ·θ,π·θ) = r (σ,π) for all σ,π,θ ∈ Sn
f) Antisymmetry under reversal. r (σ,π∗) = r (σ∗,π) = −r (σ,π)

where π∗ = n+ 1− π and σ∗ = n+ 1− σ.

Comparability

Rank correlation coefficients are usually constructed to vary between −1 and
1. Their directionality indicates a positive or negative link, while their absolute
value indicates the strength of the association. In particular, the value of +1 should
be obtained if the two rankings coincide and the value of −1 should be obtained
if one ranking is the absolute reverse of its respective other. The magnitude of
r (σ,π) generally increases as the association increases; generally, but not always
because the maximum value of +1 is found in the case of perfect agreement,
whereas the minimum value may be lower than the threshold -1. Furthermore, the
minimum value does not necessarily imply complete reverse order. The value of
zero is indicative of no association, but does not necessarily imply independence.

Many indices that have appeared in literature do not achieve their extremes
in correspondence with perfect agreement or perfect disagreement between the
two rankings. One example is the coefficient derived from the Hamming dis-
tance (Hamming, (1950)), i.e, the number of unmatched ranks. Other examples
can be drawn from the Cayley distance based on the minimum number of trans-
positions required to transform σ into π (Diaconis & Graham, (1977)[p. 117]);
from the Lee distance (Cameron & Wu, (2010)) and from the Chebyshev distance
(Stoimenova, (1996)).
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Symmetry

This is an essential condition of any rational discussion regarding depen-
dence and association. Nonetheless, measures that do not verify the contraint
r (σ,π) = r (π,σ) are found in literature. For example, the index proposed by
Mango, (1997) which places emphasis on the relative importance of low ranks
and a very similar index proposed by Blest, (2000), which favors high ranks, are
not symmetric.

Zero expected value under independence

In the theory of ranking, a situation in which all possible permutations of the
first n positive integers are equally likely, is often the basis for testing the hypoth-
esis of independence of two rankings. In setting up a test of significance in such
circumstances, one should consider statistics that have an expected value of zero
given independent rankings. If unaccounted for, latent correlation would make
statistical tests less stringent; i.e, one could incorrectly reject the null hypothesis
H0 : r (σ,π) = 0 with a probability greater than the nominal significance level.

It should be recognized that several rank correlations do not satisfy this re-
quirement. One case is Spearman’s footrule (Spearman, (1906)). Other measures
that fail this criterion have been derived from a metric for permutations: Okazaki
et al., (2004) which was constructed to assess the degree of sentence continuity in
reading; the coefficient used by Gordon, (1979) which is based on the length of the
longest monotone sub-sequence and the coefficient developed by Bhat & Nayar,
(1997) which was devised for establishing visual correspondence in images. The
index presented by Pinto da Costa & Soares, (2005) (see also, Genest & Plante,
(2003)) is a little skewed under the null hypothesis of independence, although the
authors argue that there is no compelling reason for a coefficient of correlation to
be necessarily symmetric.

Right-invariance

Let (σ·π) be the composition (σ· π)i = π [σi] , i = 1, 2, . . . , n so that π1

is mapped to σ1, π2 is mapped to σ2 and so on. The identity permutation e =
(e1, e2, . . . , en) is the permutation that leaves the permutation σ (ei) = σi, i =
1, 2, . . . , n unchanged. Every permutation σ ∈ Sn has a symmetrical element
σ−1 ∈ Sn such that (σ−1·σ) = (σ·σ)−1 = e. In other words, σ−1 is the
permutation obtained by sorting the elements of e with respect to the elements
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of σ. Essentially, if σ mixes up e, then σ−1 will unmix it. A measure of rank
correlation is right-invariant, if

r (σ·θ,π·θ) = r (σ,π) ∀ σ,π,θ ∈ Sn. (1)

This is in line with the intuitive principle that the rank correlation between σ and π
does not change when the sequence of the n pairs of ranks (σi, πi) , i = 1, 2, . . . , n
is modified. With no essential loss of generality one ranking can be held constant,
and the position of the same item in a second ranking relative to the constant rank
can be determined. For instance, we may assume that σ contains the ranks of
X1 after that the items of X2 have been arranged in natural order i.e. π = e.
In practice, π acts as a reference permutation. Alternatively, we may assume
that π contains the ranks of X2 after σ has been transformed into the identity
permutation e (now σ acts as the reference permutation). Right-invariance implies
that the rank correlation between σ and π remains the same in both cases:

r (σ,π) = r
(
σ·σ−1,π·σ−1

)
= r

(
e,π−1·σ

)
= r

(
π·σ−1, e

)
. (2)

It should be pointed out that various coefficients still in current use fail to
satisfy (2). For instance, the index discussed in Knuth, (1973)[p. 12] which is
based on the square of the major index of a permutation and coincides with the
gamma rank correlation measure advocated by Goodman & Kruskal, (1954); the
monotone cover correlation introduced by Dallal & Hartigan, (1980) as an index
of association insensitive to outliers. The index derived from the median of the
slopes between all combinations of two ranks (see Theil, (1950)) suffers from the
same drawback. The index described by Salvemini, (1951) should be added to
this list together with Fechner’s index (see Salvemini, (1951)) which is equivalent
to the test of randomness devised by Moore & Wallis, (1943) and to the rank
correlation statistics based on rises discussed by Salama & Quade, (1997).

Antisymmetry under reversal

Rankings can be organised as a classification with 1 assigned to the most
preferred item, 2 to the next-to-most preferred and so forth. If an opposite orien-
tation of one of the two arrangements is applied, then a rank correlation coefficient
that changes its sign, but not its absolute value, is said to be antisymmetric under
reversal.

r (σ,π∗) = r (σ∗,π) = −r (σ,π) . (3)
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The values of r (π,σ) are symmetrical about the value of zero because, to each
value of r (π,σ), there corresponds another value of equal magnitude but oppo-
site in sign. Consequently, rank correlation coefficients which are antisymmetric
under reversal have a mean (and median) value of zero over the set of all permu-
tations Sn. In addition, the odd moments are zero.

Property (3) is incompatible with the left-invariance i.e. the requirement, often
made in the literature (see, for example, Critchlow, (1992) and Deza & Huang,
(1998)), that distances between permutations do not depend on how the items are
labelled. More explicitly, a distance function δ (.) on Sn is defined as left-invariant
if

δ (θ·σ,θ·π) = δ (σ,π) ∀ σ,π,θ ∈ Sn. (4)

If such a constraint is acceptable for distances, it is not applicable to rank cor-
relations for which (3) may be viewed as a pre-requisite for a meaningful inter-
pretation. Two of the coefficients proposed in literature which do not completely
fulfill the requirement of antisymmetry are the index discussed in Borroni & Caz-
zaro, (2006), based on Gini’s mean difference being computed on the total ranks
σi + πi, i = 1.2., . . . , n and the index recommended in Mango, (2006), based
on the average determinant of the second order minors with a constant sum of
elements from a data matrix of two ordinal variables. An analogous problem
arises with rank correlation coefficients for which the extreme value -1 can only
be achieved for large values of n. This is the case, for example, with the index
proposed by Salama & Quade, (1982) as a measure for comparing the rankings
of the regressors in two populations. The weighted version of the Kendall rank
correlation coefficient introduced by Shieh, (1998) and the average precision cor-
relation advanced by Yilmaz et al., (2008) are not antisymmetric under reversal
either. The same is true for the coefficients proposed by Iman & Conover, (1987)
and by Maturi & Abdelfattah, (2008). The weighted rank correlation given by
Genest & Plante, (2003) is no better in this sense.

3. Admissible rank correlations
In Table (1) we have collected a selection of admissible rank correlations (in
the sense that they have the desirable properties described in the previous sec-
tion). The expressions are given in terms of the distance between the composition
θ = π·σ−1 and the identity permutation e (exploiting the right-invariance prop-
erties). The indices r1 and r3 are well-known. The cograduation coefficient r2
was proposed by Gini, (1914) as an improvement upon the Spearman’s footrule.

7



Table 1: Admissible rank correlations.

Name Formula

Spearman r1 = 1− 6

∑n
i=1 (i− θi)2

n3 − n
.

Gini r2 = 2

∑n
i=1|i− θ∗i |−

∑n
i=1|i− θi|

(n2 − kn)
, kn = n mod 2

Kendall r3 = 2

∑
i<j sgn (θj − θi)
n (n− 1)

The main drawback of the coefficients included in Table (1) is their “resistance-
to-change” which appears to be of limited value for the purposes of rank compar-
isons. For coherence, we have excluded from this review two other admissible
and accepted indices: 1) the rank correlation given by Gideon & Hollister, (1987)
which originates from the principle of greatest deviation between the observed
θ and the identity permutation e; 2) the quadrant correlation (Mosteller, (1946);
Blomqvist, (1950)) which is computed by dividing the plane into four quadrants
and making use of concordance/discordance in the pairs belonging to the vari-
ous quadrants. Both indices can take on an extremely small number of different
values.

It is plain that a given value of a rank correlation coefficient does not, in gen-
eral, define a specific pair of permutations, except perhaps for the extreme values
of coefficients. Nevertheless, a rank correlation that concentrates the permutation
comparisons into too few values would underestimate the number of differentiated
elements that belong to a category or class. When the value of any categorizing
method for r (σ,π) is assessed, the two main characteristics that need to be con-
sidered are robustness and sensitivity. The former determines the degree of rank
order inconsistency that can be withstood by the coefficient before mismatches
begin to occur. Robustness is a valuable characteristic if rank correlation does
not change greatly when data are changed slightly. In so doing, robust correlation
coefficients ensure stability of the estimates of association characteristics in the
case of deviations from the Gaussian model, outliers and disturbances in the tails
of the distributions. However, since robustness is achieved at the cost of a loss in
precision, it can become a problem if the same value is applied to describe very
different patterns. The sensitivity of r (σ,π) refers to its ability to differentiate be-
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tween rankings. Such quality is laudable, but it probably reduces the accuracy of
the classification where substantially similar permutations are mapped onto very
distant values in the coefficient.

Robustness and sensitivity are antithetical requirements because more robust
indices give greater stability against random changes in rankings, whereas more
sensitive coefficients offer a richer source of information regarding the association
structure. Therefore, in choosing a good index of association, some balancing
of conflicting objectives is required. A reasonable solution may be obtained by
considering that ranking is an intrinsically robust procedure and rank correlation
measures have been well regarded as robust measures in many performance eval-
uation schemes. Since these methods rely on the relative ordering of elements,
they are very tolerant of noise and interference that do not affect the actual order.
Thus, in choosing a coefficient, particular consideration should be given to its dis-
criminatory power rather than its robustness. From this point of view, the rank
correlation coefficients of Table 1 are largely insufficient for use in screening for
permutation comparisons when the range of possible relationships between the
underlying variables is wide.

3.1. An exhaustive coefficient of rank correlation
In this section we propose a new measure of rank correlation which has high
resolution over the set of all permutations. The formula of the new index is

r4 (σ,π) =
aθ,edθ,e − bθ,ecθ,e

maxθ∈Sn {aθ,edθ,e − bθ,ecθ,e}
(5)

where θ = π·σ−1, e is the identity permutation and e∗ and θ∗ are the reverse
permutations of e and θ respectively. Furthermore

aθ,e =
1
n

n∑
i=1

[
θi
e∗i

]
, bθ,e =

1
n

n∑
i=1

[
θ∗i
e∗i

]
, cθ,e =

1
n

n∑
i=1

[
θi
ei

]
, dθ,e =

1
n

n∑
i=1

[
θ∗i
ei

]
. (6)

The symbol appearing in (6) denotes the majorization ratio of two numbers[
x

y

]
= max

{[
x

y

]
,

[
y

x

]}
, for x, y > 0. (7)

Of course

1)

[
x

y

]
=

[
y

x

]
; 2)

[
x

y

]
≥ 1; 3)

[
x

y

]
= exp {|log (x)− log (y)|} . (8)
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Other properties of the majorization operator are discussed in Brizzi, (1992). To
illustrate the behavior of the index, consider that aθ,e, bθ,e, cθ,e, dθ,e are positive
and each of them is an average of n majorization ratios. Together they express the
four possible comparisons between the ranks and the reverse ranks of e and θ. Let
Aθ,e be the matrix formed with the elements in (6).

Aθ,e =

(
aθ,e bθ,e
cθ,e dθ,e

)
. (9)

The denominator of r4 (σ,π) is fixed with respect to θ. The numerator is the de-
terminant of the matrix Aθ,e and it can be interpreted as the orientated area of the
parallelogram spanned by the vectors of Aθ,e. The area of the parallelogram in-
creases (in absolute value) as its acute angle increases towards 90 ◦ and hence, the
determinant increases with the vectors increasing orthogonality. In other words,
the more the vectors point in different directions, the larger the area is. When
the angle is 90 ◦, the parallelogram becomes a rectangle, i.e. the parallelogram of
maximum area. Here, |r4 (σ,π)| = 1. As the acute angle between the spanning
vectors in (9) tends toward 0 ◦, the parallelogram becomes a straight line and the
area shrinks to zero. It follows that, the determinant |Aθ,e| and, consequently,
r4 (σ,π), is zero if and only if the two vectors of Aθ,e are linear dependent. This
is the case when comparing, for example, the identity permutation e with a per-
mutation θ consisting of an alternate sequence of high and low ranks determining
an equal-value sum in all the four elements: aθ,e, bθ,e, cθ,e, dθ,e.

The orientation of the area or (it is the same) the sign of the determinant, is
positive if low (high) ranks of one permutation tend to be matched by low (high)
ranks in the other because, in this case, bθ,e and cθ,e move toward 1 (their mini-
mum value). Simultaneously, aθ,e and dθ,e tend to their maximum value which,
as it is easily verified, in the case of untied ranks, is given by

1

n
(kn + 2hn) with hn =

bn/2c∑
i=1

e∗i
ei

(10)

where kn is zero if n is even, or one if n is odd and bn/2c is the integer part of
n/2. Conversely, the orientation of the area (and the determinant) are negative if
low (high) ranks of one permutation tend to be matched by high (low) ranks in the
other, because now the terms aθ,e and dθ,e converge towards the minimum value
(which is always 1) whereas the other two terms, converge to the maximum (10).
The index r4 (σ,π) meets all the conditions given in section 3. Firstly, it is clear
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that r4 (e, e) = 1, r4 (e∗, e) = −1. Secondly, thanks to the properties of (7), we
have: r4 (θ, e) = r4 (e,θ) and r4 (θ, e) = −r4 (θ∗, e). Thirdly, when θ = e, aθ,e
and dθ,e become equal, achieve their maximum value and are greater than bθ,e and
cθ,e. At the same time, bθ,e and cθ,e become equal and reach their minimum value.
The opposite is true when θ = e∗. Consequently −1 ≤ r4 (θ, e) ≤ 1. Lastly,
under the hypothesis that each pairing of ranks contained in σ with any ranks of
π is equally likely, then the property of antisymmetry under reversal ensures that
Eσ,π∈Sn [r4 (θ, e)] = 0. In general, the proofs are rather long and tedious and,
hence, the details are not given here.

Table 2 reports the Pearson’s correlation between the four rank correlation co-
efficients considered in the present section. For n ≤ 13 the values are obtained by
systematically enumerating all of the possible permutations. For n > 13 we gen-
erated a random sample of five million of all the possible permutations by using
the “shuffle” algorithm proposed in Durstenfeld [1964].

Table 2: Correlation between rank correlations coefficients.

n Cor(r1, r4) Cor(r2, r4) Cor(r3, r4)

8 0.9875 0.9558 0.9677
9 0.9840 0.9485 0.9685

10 0.9804 0.9413 0.9630
11 0.9767 0.9347 0.9603
12 0.9729 0.9282 0.9575
13 0.9692 0.9221 0.9546

14 0.9655 0.9163 0.9517
15 0.9618 0.9108 0.9487
20 0.9441 0.8859 0.9337
25 0.9279 0.8648 0.9193
30 0.9131 0.8466 0.9058
50 0.8638 0.7903 0.8594

100 0.7822 0.7049 0.7801

The indices move in the same direction and are, therefore, concordant. The
greatest similarity occurs between r4 and Spearman’s coefficient r1 which is gen-
erally considered to be one of the most sensitive indices of rank correlation. How-
ever, the degree of linear dependence between r4 and r1, r2, r3, decreases as n
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increases. We interprete this as an indication that r4 describes a distinct although
not necessarily distant aspect of the association between two permutations.

Table 3 gives a selected set of critical values of r4 for n = 6, . . . , 13. For
n > 13, we used a random sample of five million permutations to estimate the
“true” distribution.

Table 3: Critical values for r4.

Level of significance for two-tailed test
n 0.0005 0.0010 0.0025 0.0050 0.0100 0.0250 0.0500 0.1000 0.2500

6 0.9999 0.9999 0.9999 0.9542 0.9051 0.8358 0.8049 0.7013 0.5340
7 0.9768 0.9768 0.9416 0.9243 0.8900 0.8190 0.7545 0.6654 0.5019
8 0.9451 0.9296 0.9021 0.8673 0.8271 0.7638 0.7033 0.6154 0.4593
9 0.9281 0.9088 0.8729 0.8410 0.8001 0.7347 0.6684 0.5849 0.4333

10 0.8992 0.8763 0.8397 0.8053 0.7650 0.6981 0.6328 0.5517 0.4063
11 0.8776 0.8549 0.8166 0.7821 0.7408 0.6733 0.6088 0.5288 0.3873
12 0.8540 0.8294 0.7905 0.7555 0.7141 0.6466 0.5832 0.5052 0.3686
13 0.8364 0.8110 0.7715 0.7359 0.6942 0.6269 0.5642 0.4875 0.3545

14 0.8174 0.7909 0.7505 0.7145 0.6729 0.6066 0.5451 0.4697 0.3406
15 0.7555 0.7295 0.6914 0.6579 0.6186 0.5560 0.4985 0.4291 0.3104
20 0.7293 0.7025 0.6618 0.6265 0.5861 0.5230 0.4667 0.3992 0.2864
25 0.6788 0.6509 0.6109 0.5766 0.5376 0.4773 0.4243 0.3618 0.2583
30 0.6373 0.6118 0.5723 0.5388 0.5011 0.4443 0.3937 0.3350 0.2383
50 0.5336 0.5103 0.4762 0.4467 0.4136 0.3645 0.3217 0.2727 0.1930

100 0.4267 0.4064 0.3764 0.3521 0.3253 0.2855 0.2511 0.2121 0.1495

The entries in the table are the smallest values of r4 (to four decimal places) which
correspond to two-tail probabilities. The observed value is meaningful if it is equal
to, or greater than, the value in Table 3. For example, if n = 12 and a value of
r4 = 0.6 is observed, then there would be a probability of between 5% and 10%
that it had occurred by chance. In other words, the observed value r4 = 0.6
cannot be considered a highly significant rank correlation between n = 12 pairs
of rankings.

3.2. Sensitivity analysis
Let us suppose that the values of ri (σ,π) are rounded off after the m-th decimal
place

bri (σ,π) 10m + 0.5c
10m

i = 1, 2, . . . , 4. (11)
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The discriminatory power of ri (σ,π) for rankings of a given size can be quanti-
fied by the values assumed by (11) as a fraction of the maximum number.

ψ =
ν

min {nPn, 2(10m) + 1}
(12)

where ν is the number of distinct values that ψ takes on over Sn. Thus ψ = 1
would indicate that ri (σ,π) has the minimum number of repeated values at the
given level of approximation. Put differently, given a value between −1 and 1,
there is at least one pair of permutations whose ri (σ,π), rounded off after the
m-th decimal place, assumes that value. Conversely, ψ u 0 would indicate that,
from the point of view of ri (σ,π), virtually all members of Sn are considered to
be of an identical type. A ψ value of around 0.50 would mean that if one ranking
is chosen at random then there would be a 50% probability that the next randomly
chosen ranking would be indistinguishable from the first.

A summary of (12) for ri (σ,π) , i = 1, 2, 3, 4 is given in Table 1 for n =
9, . . . , 13, 20, 50, 100. In particular, columns 2 and 3 show the standard deviation
and the standardized coefficient of kurtosis γ2. The 3-rd column reports the ratio
[12] where the values have been rounded off to the 4-th decimal place to keep
computations to a feasible level. Columns 5-7 show the proportion of the total
frequencies which fall outside the indicated ranges. The expected values under
the hypothesis of a normal distribution are 0.3173, 0.0455, 0.0027.

The null distribution of the four coefficients was determined for n ≤ 13 by
combinatorial enumeration, i.e., explicitly computing the statistics for every per-
mutation in Sn and counting the number of rankings giving rise to specific values
of ri (σ,π) , i = 1, 2, 3, 4. For a larger number of ranks (20, 50, 100), rather than
treating all permutations exhaustively, we looked at a random sample of five mil-
lion permutations. In this case, we have omitted the value of (12) because it loses
its ability to capture the resolution of the coefficients efficiently.
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Table 4: Summary statistics for four admissible rank correlations.

n Coefficient σ γ2 ψ ±σ ±2σ ±3σ

9 r1 0.3536 2.48 6.05 0.3363 0.0369 0.0000
r2 0.2958 2.62 2.05 0.3706 0.0478 0.0002
r3 0.2664 2.76 1.85 0.3585 0.0446 0.0009
r4 0.3570 2.37 94.36 0.3545 0.0313 0.0000

10 r1 0.3333 2.54 8.30 0.3487 0.0390 0.0004
r2 0.2749 2.66 2.55 0.3607 0.0459 0.0005
r3 0.2485 2.78 2.30 0.2912 0.0466 0.0025
r4 0.3363 2.41 97.16 0.3505 0.0334 0.0000

11 r1 0.3162 2.59 11.05 0.3414 0.0402 0.0100
r2 0.2625 2.69 3.05 0.3551 0.0456 0.0005
r3 0.2335 2.80 2.80 0.3587 0.0405 0.0016
r4 0.3220 2.46 98.86 0.3472 0.0349 0.0000

12 r1 0.3015 2.61 14.35 0.3210 0.0399 0.0001
r2 0.2479 2.71 3.65 0.3542 0.0468 0.0008
r3 0.2210 2.82 3.35 0.3108 0.0447 0.0018
r4 0.3073 2.49 99.36 0.3447 0.0361 0.0000

13 r1 0.0000 0.00 00.00 0.3177 0.0403 0.0001
r2 0.2479 2.71 3.65 0.3471 0.0456 0.0007
r3 0.2210 2.82 3.35 0.3269 0.0432 0.0014
r4 0.3073 2.49 99.36 0.3415 0.0345 0.0000

20 r1 0.2295 2.77 − 0.3278 0.0428 0.0011
r2 0.1878 2.83 − 0.3322 0.0441 0.0014
r3 0.1623 2.89 − 0.3190 0.0468 0.0019
r4 0.2423 2.66 − 0.3341 0.0405 0.0053

50 r1 0.1601 2.89 − 0.3220 0.0444 0.0019
r2 0.1308 2.91 − 0.3193 0.0450 0.0022
r3 0.1100 2.95 − 0.3241 0.0458 0.0024
r4 0.1807 2.79 − 0.3267 0.0430 0.0013

100 r1 0.1005 2.95 − 0.3192 0.0451 0.0024
r2 0.0821 2.97 − 0.3180 0.0451 0.0025
r3 0.0678 2.98 − 0.3193 0.0455 0.0026
r4 0.1288 2.88 − 0.3263 0.0442 0.0019
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The sensitivity of all the indices increases as the number of ranks increases, but
r4 has a considerably greater power to discriminate between pairs of permutations
than the other coefficients. In other words, r4 is more efficient because it seems to
take more account of the item diversification than do the other coefficients. It may
also be observed that, as n becomes large, the standard deviations decrease and the
coefficients of kurtosis increase for all the rank correlations included in Table 4.
The new coefficient r4 has a slightly larger standard deviation than r1, r2, r3 and a
moderately platikurtic distribution (thin tail and broad peak). The approach of r4
to normality is appreciably slower than that of r2 (Gini) or r3 (Kendall). However,
for large n, all the distributions are nearly normal with zero mean.

4. Rank correlation in economic contexts
A number of important problems in economic research logically require an ac-
curate measurement of the agreement between ranks rather than the correlation
between two or more variables, particularly when behavior is being modelled in
contexts where, in practice, measurements are subjective or difficult. The pur-
pose of this section is to discuss the application of rank correlation techniques
by focusing on issues relevant to economists and to indicate the importance of a
responsive measure of ordinal association, such as r4 (σ,π), studied as a method-
ological concept in its own right. An emblematic example is the assumption of a
Gaussian error distribution, even though such an hypothesis is dubious for many
experimental data. To attenuate the negative impact of a refutation, it is often as-
sumed that some order preserving transformation exists: h (X) so that h (X) is
Gaussian. Distribution-free procedures have been proposed where h () is left un-
specified, provided that it is order preserving (Friedman, (1937)). Most of these
procedures are based directly on the ranks of observations (see Pettitt, (1982)).
Since rank values are scale free, i.e. they do not change when data are monoton-
ically transformed, rank correlations are robust to non-Gaussianity of micro- and
macro-economic indicators which are usually heavily skewed, have heavy tails
and/or are affected by outliers.

The use of rank transformed variables may be desirable if association be-
tween original variables does not follow a mathematically predictable pattern or
is thought to be non-linear. Relationships suggested in economic theory are, in
many cases, of a nonlinear type, for example production functions or the Phillips
curve. However, when theory cannot provide a precise specification of the func-
tional form, it is advisable to have alternative tools for estimation and inference
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which avoid imposing linear assumptions on nonlinear and often contradictory
relationships. For example, Gapen et al., (2008) used rank association instead
of the conventional Pearson’s coefficient of correlation because this implicitly as-
sumes linear relationships between variables, an assumption that contradicts the
nonlinear links between variables found in their paper. Various examples can be
reported to highlight the usefulness of rank correlation in economics. Inequal-
ity indices are statistical estimators which measure distinct aspects of an income
distribution between individuals, countries, regions, factors, etc. They are often
presented in the form of ranks to measure their relative magnitudes. However, a
rank ordering may produce misleading inference, because ranks necessarily ex-
clude ties between lower and higher values of the indices, which is in contrast
to the deterministic outcome that countries at the extreme ends of the ordering
are best and worst (Horrace et al. [2008]). Rankings are also helpful to test the
equality of opportunity (Peragine [2004]). Axiomatic approaches to rank correla-
tion are applied for ranking opportunity sets more generally (Davidson & Duclos
[2000]).

Studies of the intergenerational association in the occupation of fathers and
sons often construct an ordered ranking of occupational status prestige and then
regress the rank of the son on the rank of the father (see, for example, Checchi
[1997], Majumder [2010]). A set of countries might be rank ordered according
to their distance from the efficiency frontier. This ranking might be useful for de-
tecting the existence of trends in efficiency performance over time (Brockett et al.
[1998]). Rather than continuing the list of economic issues to which rank corre-
lation is usefully applicable, we prefer to test the measure proposed in this paper.
To this end, we have selected published reports that are intended to be represen-
tative of the available economic literature concerning the use of rank correlation
in a multivariate scenario which might require a highly-sensitive coefficient and,
above all, render data freely and easily available for evaluation purposes.

4.1. Comparing price levels
In cases where data are affected by uncertainty and imprecision, it is common

practice (see e.g. Conover & Iman [1982]) to transform the observed values into
ranks, so long as their ranking is possible. In this transformation the smallest
sample value is transformed into 1, the second smallest into 2 and so on until the
largest value, which is transformed into n. Of course, such a choice is not without
cost. The use of the first n positive integers presupposes equal interval spacing
between items: two values separated by several orders of magnitude may have
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contiguous ranks, which are the same as two other very close values. This results
in a loss of the information offered from ratio or interval variables and jeopardizes
the validity of subsequent analyses. For instance, the measure of association be-
tween rank-transformed variables will give us a correlation coefficient, but it will
be the correlation of the ranks of the variables, not the correlation of the variables
themselves.

Hill [1999] on bilateral comparison of price level across a group of countries,
illustrates a case in which there is a need to resort to an appropriate and effec-
tive use of rank correlation. The author shows how a comparison of price levels
across a group of countries can be made by chaining bilateral price indices across
a spanning tree. The article presents a table on ICP (international comparison pro-
gram) per capita income rankings for n = 30 countries. The entries refer to three
different methods of computing multilateral transitive price indices. The data are
sorted according to per capita income values for each method.

To assess the type and strength of the relationship between the methods, the
author adds a table of the rank correlation coefficients between the three methods,
but omits to specify which particular rank correlation coefficient has been used.
In Table 5 we report the values computed by the author together with the val-
ues obtained using r1, . . . , r4. Furthermore, in the last row, we show the value of
Pearson’s product moment correlation between the observed values of per capita
income. The matrix reported in the article is very dissimilar from the others. In
particular, Hill [1999] obtains a relatively low rank correlation (0.532) between
“Penn” and “ExR” methods in 1980 which has not been found in the other matri-
ces. The correlation is highest between the “MST” and “Penn” rankings both in
1980 and 1985: 0.762 and 0.901. The author explains this through the volatility
of exchange rates. The same pattern is seen for the other matrices in the table.
In general, the methods of computing multilateral transitive price indices appear
significantly more concordant according to any of r1, . . . , r4 than reported in the
article.

The author states that the rank correlation between methods was greater in 1985
than in 1980. Our findings confirm this assertion, though the links between 1980
and 1985 methods are stronger than shown by the author. The column labelled
“F norm” presents the values of the Frobenius distance between the correlation
matrices of 1980 and 1985.

PF =
√

Trace (R1980,Rt
1985). (13)

It can be noted that the Frobenius norm between R1980 and R1985 reported by the
author is the lowest in the column.
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Table 5: Rank correlations coefficients.

Ranr correlation 1980 MST ExR 1985 MST ExR F norm

Hill (1999) Penn 0.762 0.532 Penn 0.901 0.881 2.528
MST 0.621 MST 0.870

Spearman Penn 0.997 0.961 Penn 0.988 0.972 2.950
MST 0.959 MST 0.973

Gini Penn 0.968 0.829 Penn 0.931 0.877 2.776
MST 0.824 MST 0.878

Kendall Penn 0.971 0.847 Penn 0.988 0.972 2.792
MST 0.835 MST 0.973

r4 Penn 0.989 0.904 Penn 0.989 0.954 2.902
MST 0.906 MST 0.959

Pearson Penn 0.997 0.965 Penn 0.996 0.973 2.959
MST 0.969 MST 0.976

4.2. Securities market line
A criterion that is widely employed in the financial sector for assessing portfolio
performance is the securities market line: the linear relation between mean returns
on assets and the betas of these assets or portfolios calculated against a market
index. To illustrate the ambiguity of this criterion, Roll, (1978) considered an
idealized contest with n = 15 contestants. Each contestant selected a portfolio
from a four-asset universe. After the portfolios were selected, a sample period
was observed. Because of its wide acceptance, the securities market line criterion
is used by two hypothetical judges of the contest in order to distinguish winners
from losers. Judge 1 ranks the contestants from best (largest positive deviation
from his securities market line) to worst as follows

σ = (2, 15, 14, 5, 10, 6, 13, 9, 8, 7, 12, 4, 11, 3, 1) .

The second judge has a different set of assessments

π = (4, 15, 11, 9, 14, 10, 8, 13, 1, 12, 7, 5, 2, 6, 3) .

Although some contestants were similarly rated by both judges (e.g. contestant
15 was ranked second by both and contestant 3 was ranked 14-th by judge no.1
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and 15-th by judge no. 2), other contestants were rated quite differently (e.g., the
number one winner according to judge no.1 was a loser and ranked 13-th out of 15
by judge no. 2). The plot in Figure 1 shows clear evidence for a bilinear ascending
structure.

Figure 1: Positions as perceived by the two contest judges.

Increasing ranks of judge no.1 are combined with increasing ranks of judge no.2,
but the mean of the ranks to the left for judge no.1 is significantly higher than
the mean of the ranks on the opposite side. This situation may occur, for in-
stance, when evaluators tend to separate items under consideration into two dis-
tinct groups with all the items in one group being considered superior, in some
sense, to all the items in the other group and each group being ordered within
itself independently of the other group. The rank correlations assume values

r1 (σ,π) = 0.471; r2 (σ,π) = 0.339; r3 (σ,π) = 0.429; r4 (σ,π) = 0.519.

Coefficients of rank correlation usually provide a value for overall association
without giving explicit information about the pattern of the relationship between
the permutations under comparison. The event described in this example is one

19



Table 6: Rank correlation matrices for r3 and r4

r3 r4
X1 X2 X3 X4 X1 X2 X3 X4

1.0000 0.5205 0.5556 0.4620 1.0000 0.5886 0.7971 0.7279
0.5205 1.0000 0.4737 0.4269 0.5886 1.0000 0.6011 0.3956
0.5556 0.4737 1.0000 0.5322 0.5886 1.0000 0.6011 0.3956
0.4620 0.4269 0.5322 1.0000 0.5886 1.0000 0.6011 0.3956

in which a coefficient should take into account the contextual factors that affect
judgment. Our index r4 achieves a value superior to 0.5 which, if nothing else,
might serve to alert us to the probability that some degree of association might be
present.

4.3. Ordinal principal components
Korhonen & Siljamäki, (1998) reports ranks of n = 19 hypermarkets ordered ac-
cording to 4 performance indicators: profit before taxes (X1), sales profit (X2),
netprofit/staff hours (X3), net profit/sales space (X4). The authors define the first
principal component (PC) as the ranking of the n items for which the sum of the
squared rank correlation coefficient between the ordinal PCs and each of the origi-
nal variables is maximized. In this analysis, the correlation matrix using Kendall’s
rank correlation coefficient is computed first. Assuming that management consid-
ers all the variables to be of equal importance, the first ordinal PC provides a quite
acceptable rank order for the items. Table 6 shows the rank correlation matrices
for both Kendall and r4.

The two matrices are positive so that the Perron-Frobenius theorem (see, for
example, Lin, (1977)) ensures that there is a single eigenvalue for both the matri-
ces, which is positive and greater than or equal to all other eigenvalues in modulo,
and that there is a strictly positive eigenvector corresponding to the largest eigen-
value. Furthermore, due to the orthogonality requirement, all the others PCs have
elements of different signs. The results are reported in Table 7.
The first PC can be interpreted as the best one-dimensional “summary” of the
linear relationships between the original variables i.e. as a general measure of
the management evaluation. The other components can be interpreted as bipolar
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Table 7: The results of principal component analysis

r3 r4
Variable PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

X1 0.513 0.271 -0.543 -0.606 0.531 0.074 -0.808 -0.243
X2 0.484 0.644 0.560 0.195 0.425 -0.841 0.264 -0.208
X3 0.519 - 0.240 -0.418 0.706 0.541 0.105 0.116 0.827
X4 0.484 -0.674 0.465 -0.309 0.495 0.526 0.513 -0.463

Variance 2.488 0.596 0.496 0.421 2.962 0.625 0.231 0.181
% 62.20 14.90 12.40 10.53 74.05 15.63 5.78 4.53

components because of high positive weights for some variables as opposed to
high negative weights for other variables.

The findings based on r4 are more intelligible than those based on r3 used in
the paper by Korhonen & Siljamäki, (1998) because the first principal compo-
nent explains a greater portion of the total variance; hence, the use of just the
first principal component is more legitimate. Moreover, each successive principal
component on the right hand side of Table 7 has only one high loading factor and
is almost coincident with one of the original variables.

4.4. Dimensions of structure in effective organizations
The research presented in this section (Reimann, (1974)) was designed to examine
the relationship between underlying dimensions of structure and organizational
performance. The data set of the study consisted of 19 North East Ohio industrial
organizations of a wide range of sizes, manufacturing a variety of products. Orga-
nization structure was conceptualized in a multidimensional framework including
n = 11 variables: functional specialization, functional dispersion, formalization
of roles, lack of autonomy, functional specificity, delegation of authority, verti-
cal span, staff density, administrative density, hierarchical control, centralization
index. The author provides the scores of the 19 firms for the above variables.

A nonmetric cluster analysis was chosen since several of the structural vari-
ables had essentially ordinal scales. The clustering procedure employed by the
author requires Spearman’s rank correlation coefficients to be computed between
all the 11 variables for each firm. Then Johnson’s hierarchical clustering algorithm
is applied to the absolute value of these rank correlation coefficients.
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Figure 2: Dendrograms based on the complete link

In re-analyzing the work of Reimann, (1974), we have to make some prelim-
inary considerations. First, for most of the variables, the scores of some firms
are identical which means they must have the same rank, but the author does not
specify how the ranks are allocated with regards to tied items. We followed the
customary practice of averaging all the ranks covered by these identical items, and
then giving each of them the value of the mean of the ranks (the maximum in (10)
is correspondingly changed). The second minor problem encountered is that the
author used rank correlation as a measure of similarity, but we have transformed
it into a distance function in the interval [0, 1] by using δ (σ,π) = 1− |r (σ,π)|.
The main feature of this distance is that a strong correlation, whatever its sign,
corresponds to a small distance which may be true in almost every case. It also
requires, though, the opposite assumption that a lower correlation between two
other rankings means that they are less closely related, and this may not be true at
all.

In addition to the remarks above, there is another fact that militates against
a complete comparability. This lies in the fact that the author does not specify
which link is used to cluster the structural variables. We have used the complete
link. The results for the clustering of all firms are shown in Figure 2
The author determines a three-cluster solution

1. Decentralization: delegation of authority, centralization index;
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2. Specialization: functional specialization, vertical span, functional speci-
ficity, hierarchical control;

3. Formalization: formalization of roles, lack of autonomy;
The three variables: functional dispersion, staff density and administrative den-
sity were left out because they correlated weakly with the other variables. This
configuration is clearly described by the dendrogram on the left of Figure 2 which
depicts the results obtained with r1. The solution achieved by using r4 confirms
the limited degree to which functional dispersion and staff density are related,
but aggregates administrative density with hierarchical control, something which
appears very reasonable.

5. Conclusion
The basic concept underlying many techniques for estimating the degree of de-
pendence between any two variables is that one should take advantage of all the
available data if it is physically possible to do so. If one uses as much of the
available data as possible, the conclusions drawn from the analysis will be more
informative and more reliable. Although this guiding principle is enormously im-
portant, it is far, far from enough. If the data are of low quality, the results will be
unsatisfactory and the experimental results will not be reliable, regardless of the
qualities of the methods and quantities of data. The more flexible coefficient of
rank correlation seems much more suitable for measuring the association between
variables, if the data quality is known to be poor.

This article proposes a new rank correlation coefficient that has a remarkably
high resolution over the [−1, 1] interval while satisfying the requirements of sym-
metry, antisymmetry under reversal, zero expected values in case of independence,
and right-invariance. The same properties are ascribed to some classical coeffi-
cients of rank correlation: Spearman’s, Kendall’s, Gini’s, and a few other co-
efficients. It appears therefore that the coefficient r4 (σ,π) has a good claim
to serious consideration as a measure of rank correlation which is particularly
useful when a high discriminatory ability is needed to differentiate between per-
mutations. The examples presented in the section on applications in economic
contexts give some experimental evidence to support this point of view, but they
cannot replace a formal investigation of the sampling and asymptotic properties
of r4 (σ,π). We have analysed the convergence behavior of the new coefficient
and have computationally shown its tendency towards the Gaussian distribution.
Nevertheless, formal proof is still the subject of ongoing work. Future research
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in this area should attempt to investigate the possibility of using r4 (σ,π) as a
statistic for a distribution free test of the independence of two random variables,
with a more rigorous discussion of how it works in the presence of ties.

Spearman’s rank correlation is computed as a Pearson’s product moment cor-
relation coefficient on ranks, so it will assess linear association in the rank scale.
This can be the starting point for a fruitful development which helps identify sit-
uations in which r4 (σ,π) may be more appropriate than other coefficients. The
extensions of r4 (σ,π) to multiple and partial rank correlation are lines of inves-
tigation to be pursued.

Concerns regarding relative positions are an important aspect of many eco-
nomic problems. People, for instance, do not only care about their wealth, but
also about their relative position in the wealth distribution. This affects individu-
als’ consumption of ordinary goods (Neumark & Postlewaite, (1998)). Rankings
of countries (or sets of countries) with respect to inequality, for example, are im-
portant social indicators for measuring relative well-being at a point in time and
over time. Additionally, they may serve to improve our understanding of growth
and equality relations, equity-efficiency tradeoffs, etc. (Horrace et al., (2008)).

On the basis of experience matured during the development of the present
paper, we are now convinced that, although appropriate techniques for handling
ranking methods and measuring rank correlation are available, they have mainly
been used in non-economic fields. Phelps Brown, (1972) had already observed
that most of the conspicuous developments in economics have been in the direc-
tion of quantification, at the expense of the understanding of qualitative differ-
ences. This contradiction is resolved by the fact that the ranks allow statistical
science to be applied to constructs which cannot be measured. Hence, a fruitful
research area would be to critically examine the role ranks and measures of asso-
ciation play in econometric applications and explore how and to what extent they
were or might be converted into advantages both from an empirical and method-
ological point of view.
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