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Abstract. Interactions between firms, universities, and research organizations 

are crucial for successful innovation in the modern knowledge-based 

economy. Systems of such interactions constitute R&D networks, which may 

be meaningful segmented using recent methods for identifying communities, 

subnetworks whose members are more tightly linked to one another than to 

other members of the network. In this paper we identify such communities in 

the European R&D network using data on joint research projects funded by 

the fifth European Framework Programme. We characterize the identified 

communities according to their thematic orientation and spatial structure. By 

means of a Poisson spatial interaction model, we estimate the impact of 

various separation factors – such as geographical distance – on the variation 

of cross-region collaboration activities in a given community. The European 

coverage is achieved by using data on 255 NUTS-2 regions of the 25 pre-

2007 EU member-states, Norway, and Switzerland. The results demonstrate 

that European R&D networks are not homogeneous, showing distinct, 

relevant substructures characterized by thematically homogeneous and 

spatially heterogeneous community groups.  

 

 

 

 

 

 

 

JEL Classification: O38, L14, R15 

 

Keywords: R&D networks, network communities, spatial interaction models, 

EU Framework Programmes 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6580403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 1 

1 Introduction 

 

Today it is widely believed that interaction between firms, universities and research 

organizations is crucial for successful innovation in the knowledge-based economy, in 

particular in knowledge-intensive industries. This gives rise to the notion of R&D 

networks, defined as a set of organizations performing joint R&D, for instance in the 

form of collaborative research projects, joint conferences and workshops, or shared 

R&D resources in the form of labor and capital (see, for instance, Powell and Grodal 

2005). From a policy perspective, when acknowledging, first, that R&D networks are 

crucial for innovation and, second, that innovation is crucial for sustained economic 

growth (see Romer 1990), it seems elemental that modern STI policies emphasize 

supporting and fostering linkages between innovating actors. The principal European 

example of such STI policy instruments are the European Framework Programmes 

(FPs), which support pre-competitive R&D projects, creating a pan-European network 

of actors performing joint R&D.  

 

Therefore, the investigation of the structure and dynamics of R&D networks is of great 

current interest, both in a scientific and in a policy context, and currently receives much 

attention in theoretical and empirical research of different scientific disciplines (see 

Ozman 2009). Here, we can distinguish between empirical research focusing on 

knowledge transfer in formalized joint research activities, as given by joint R&D 

projects or joint publications, and empirical studies using networks as measured by 

different indicators, such as co-patenting or patent citations, to trace knowledge flows or 

knowledge spillovers between organizations, regions, or countries (see Ejermo and 

Karlsson 2006).  

 

There are two major approaches taken to analyse R&D networks: a regional science or 

geography of innovation perspective and a social network analysis perspective. In a 

regional science or geography of innovation context, the investigation of the 

geographical dimension of R&D collaborations is the central research objective. This 

follows from the assumption that geographical space is crucial for the localization of 

R&D collaborations and knowledge flows. The pioneering empirical study of Jaffe et al. 

(1993) provides evidence for the localization hypothesis of knowledge diffusion 
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processes, in general confirmed by more recent empirical studies using different 

indicators and new spatial econometric techniques (see, for instance, Maurseth and 

Verspagen 2002, Fischer, Scherngell and Jansenberger 2006, Maggioni 2007, Hoekman 

et al. 2009, Scherngell and Barber 2009 and 2010). In a social network analysis context, 

the focus shifts to the analysis of network structures and dynamics using the 

mathematics of graph theory
1
, under the assumption that structural relations are often 

more important for understanding observed behaviors than are attributes of the actors 

(see, for instance, Zucker and Darby 1998a and 1998b, Singh 2005, Thompson 2006, 

Vicente et al. 2010). Ter Wal and Boschma (2009) provide an overview of the 

increasing importance of social network analysis techniques in the fields of regional 

science and economic geography.  

 

In this study, we combine the two research traditions by taking a social network analysis 

perspective when identifying substructures of European R&D networks constituted 

under the FPs, followed by taking a regional science perspective when analyzing the 

geographical dimension of identified substructures. In this context, previous work of 

Breschi and Cusmano (2004) and empirical studies by Scherngell and Barber (2009 and 

2010) are central starting points for the current study. Breschi and Cusmano (2004) 

employ a social network perspective to analyze R&D collaborations with the objective 

of unveiling the texture of the European Research Area (ERA) using data on joint 

research projects of the fifth EU Framework Programme (FP), while Scherngell and 

Barber (2009 and 2010) focus on the geography of R&D collaborations across 

European regions.  

 

However, results of these previous empirical works may differ across relevant 

substructures or communities of the whole FP network. Stated informally, a community 

is a subnetwork whose members are more tightly linked to one another than to other 

members of the network. A variety of approaches have been taken to explore this 

concept (see Fortunato 2010 for a useful review). Since network edges often indicate 

relationships of interest, detecting community groups can be used to partition the 

network vertices into meaningful sets, enabling quantitative investigation of relevant 

                                                           
1
 Graph theory is the study of mathematical structures consisting of a set of vertices (i.e. nodes) connected 

by a set of edges (i.e. links). This provides a precise, formal representation of networks. 
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subnetworks. Properties of the subnetworks may differ from the aggregate properties of 

the network as a whole, e.g., modules in the World Wide Web are sets of topically 

related web pages. 

 

The objectives of the current study are: first, to detect communities in European R&D 

networks; second, to describe the spatial patterns of the identified communities; and, 

third, to identify determinants of the observed spatial patterns. We use data on joint 

research projects funded by the European Framework Programmes to capture European 

R&D networks. The identification of thematically distinct communities in these 

networks is realized using graph theoretic techniques described by Barber and Clark 

(2009). Further, we employ spatial analysis techniques to identify and describe spatial 

patterns of identified FP communities at a regional level. By means of a Poisson spatial 

interaction model, we estimate the impact of various separation factors on cross-region 

collaboration activities in a given community. In particular, we focus on how 

geographical distance impacts cross-region collaboration intensities across different FP 

communities. The results demonstrate that European R&D networks are not 

homogeneous, instead showing distinct, relevant substructures characterized by 

thematically homogeneous and spatially heterogeneous communities. 

 

The research approach applied in this study is significant, both in a scientific as well as 

in a European policy context. It proposes a new way of looking into R&D network 

structures in Europe, combining a social network analysis with a geography of 

innovation perspective. As noted by Autant-Bernard (2007a), the geographical 

dimension of innovation and knowledge diffusion deserves closer attention by 

analyzing such phenomena as R&D collaborations. Such analyses are also of crucial 

interest for European STI policy, in particular for the integration and cohesion objective 

outlined in the concept of the European Research Area (ERA): improved coherence of 

the European research landscape and the removal of barriers to knowledge diffusion in a 

European system of innovation (see CEC 2007). Of course, insight into the status of 

integration in different thematic areas is a particularly valuable new view on this topic.  

 

Further, the analysis provides important policy implications. By lending crucial insight 

into real-world topical structures of R&D networks constituted under earlier FPs,  the 
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analysis can inform the design of future FPs. Complementarily, a rich picture for 

regional policy actors is provided at the regional level on leading European regions with 

respect to cooperative research activities in specific thematic areas.   

 

The paper is organized as follows. Section 2 presents the theoretical background and 

outlines the main hypotheses for the empirical study. Section 3 describes the data, posed 

in terms of networks and collaboration matrices. Section 4 describes the identified 

communities according to their thematic orientation, while Section 5 unveils the spatial 

distribution of the identified community groups. Section 6 briefly introduces the 

Poisson spatial interaction perspective to identifying determinants of the observed 

spatial community patterns, and presents the estimation results. Section 7 concludes 

with a summary of the main results, some policy implications and a short outlook. 

 

 

2 Background and Main Hypotheses 

 

R&D Networks inducing knowledge transfer between firms, universities and research 

organizations are considered to be crucial for successful innovation in the knowledge-

based economy in general, and in knowledge-intensive industries in particular. In fact, 

we face a considerable increase—and we have done so for decades—in the number of 

inter-organizational R&D collaboration (Hagedoorn and van Kranenburg, 2003). The 

main reasons for this have been alleged to include the increasing need to access external 

knowledge – characterized by complementarity and tacitness – and the high degree of 

strategic flexibility in collaborative agreements (Kogut 1988, Teece 1992). Another 

reason may be the growing complexity of technology and the existence of converging 

technologies (see Pavitt 2005). In particular, firms have expanded their knowledge 

bases into a wider range of technologies (Granstrand 1998), increasing the need for 

distinct types of knowledge, so firms must learn how to integrate new knowledge into 

existing products or production processes (Cowan 2004). It may be difficult to develop 

this knowledge alone or acquire it via the market. The importance of R&D networks for 

innovation is also stressed by the various systems of innovation concepts that focus on 

interactions between different actors in a specific region, country or sector (see 

Lundvall 1992, among others). The main argument is that the sources of innovation are 
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often distributed between firms, universities, suppliers and customers, giving rise to the 

notion of networks being the locus of innovation. Networks create incentives for 

interactive organizational learning, leading to faster knowledge diffusion within the 

innovation system and stimulating the creation of new knowledge or new combinations 

of existing knowledge.  

 

The EU follows this view in its science and technology policy, mainly reflected in the 

concept of the European Research Area (ERA),  whose aim is to improve coherence of 

the European research landscape and remove barriers for knowledge diffusion in a 

European system of innovation (see CEC 2007). The cornerstone of corresponding EU 

policy instruments is formed by the Framework Programmes (FPs) on Research and 

Technological Development. By means of this policy initiative, the EU has co-funded 

thousands of trans-national collaborative R&D projects. The main objectives of the 

instrument from a European technology policy view are to integrate national and 

regional research communities and to coordinate national research policies. Empirical 

studies such as the one of Breschi and Cusmano (2004) provide evidence for the 

establishment of a pan-European network of firms, universities, public research 

organizations, consultants and government institutions performing joint research funded 

by the FPs (see Roediger-Schluga and Barber 2006 for a comprehensive discussion of 

the EU FPs).  

 

Previous empirical studies usually focused on complete FPs to describe networks of 

European R&D cooperation as captured by data on joint FP projects. However, 

empirical results of these studies may differ across relevant, thematically distinct 

community groups of the whole FP networks, and these differences may be of crucial 

interest in a European policy context. Stated informally, a community is a portion of the 

network whose members are more tightly linked to one another than to other members 

of the network. Precise formulation of the problem presents two main challenges. First, 

the notion of communities is somewhat vague, requiring a definition to be provided for 

what formally constitutes a community. Second, community solutions must also be 

practically realizable for networks of real-world scientific or policy interest. The 

interplay between these challenges allows a variety of community definitions and 
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community identification algorithms suited to networks of different sizes (for useful 

overviews, see Fortunato and Castellano 2008, Fortunato 2010, and Porter et al 2009). 

 

Meaningful communities have been identified in many networks of diverse character, 

corresponding to specialized research areas in co-authorship networks, topically related 

pages on the World Wide Web, and functional modules in cellular or genetic networks, 

amongst many others. Following the pioneering work of Girvan and Newman (2002) 

and Newman and Girvan (2004), many researchers, particularly in statistical physics, 

have investigated methods for detecting communities in large networks. Similarly, we 

hypothesize first that the European FP5 network consists of relevant, thematically 

distinct subnetworks that show distinct thematic and spatial characteristics.  

 

Second, we hypothesize that geographic localization effects of knowledge flows are 

significantly smaller within identified communities than for the whole FP5 network, 

since the transfer of tacit knowledge may be easier in thematically relatively 

homogenous community groups. As mentioned above, the geography of innovation 

literature argues that knowledge flows among knowledge producing agents may be 

geographically bounded, since important parts of new knowledge have some degree of 

tacitness. Though the cost of transmitting codified knowledge may be invariant to 

distance, presumably the cost of transmitting non-codified knowledge across geographic 

space rises with geographic distance (see Jaffe et al. 1993, Audretsch and Feldman 

1996). Scherngell and Barber (2009) provide evidence for the geographical localization 

of FP5 networks. In this study, we assume that localization effects decrease for an 

identified, thematically homogenous community. Due to a more homogeneous thematic 

focus of a community, the transfer of non-codified knowledge may not be as costly as 

would be the case for thematically more dispersed actors.  

 

 

3 Empirical setting and Data 

 

Our core data set to capture collaborative activities in Europe is the EUPRO database, 

which presently comprises data on funded research projects of the EU FPs (complete for 

FP1-FP6) and all participating organizations. It contains systematic information on the 
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participating organizations including the full name, the full address, the type of the 

organization, and, where appropriate and possible, the organizational subentity involved 

in the project. For a full description of the EUPRO database and its contents, see 

Roediger-Schluga and Barber (2008)
2
. 

 

Constructing FP5 research networks 

The study at hand draws on information concerning joint R&D projects funded in FP5
3
. 

Using the EUPRO database, we construct a graph or network containing the 

collaborative projects from FP5 and all organizations that are participants in those 

projects. An organization is linked to a project if and only if the organization is a 

member of the project. Since an edge never exists between two organizations or two 

projects, the network is bipartite. The network edges are unweighted; in principle, the 

edges could be assigned weights to reflect the strength of the participation, but the data 

needed to assign such network weights is not available. 

 

Previous investigations of the FPs often have made use of one-mode projection 

networks (Almendral et al. 2007, Barber et al. 2006, Breschi and Cusmano 2004, 

Roediger-Schluga and Barber 2008), especially for the organizations. While the 

projection networks can be useful, the construction of the projections intrinsically loses 

information available in the bipartite networks, which can lead to incorrect community 

structures (Guimerà et al. 2007). In the present work, we thus focus exclusively on 

representation of FP5 as a bipartite network. 

  

Detecting communities in European collaboration networks 

Community identification in networks is the assignment of the network vertices to a 

smaller number of clusters. These clusters are hopefully relevant, and thus, drawing on 

the context of social networks, called communities. Recent community identification 

methods are based on analyzing the network structure, identifying communities as 

groups of vertices that are internally strongly connected but only weakly connected to 

                                                           
2
 The version of the EUPRO database used for this study contains information on 61,169 projects funded 

from FP1 to FP6, yielding 323,638 participations by 60.034 organizations (status: December 2010). 

 
3
  FP5 had a total budget of 13.7 billion EUR and ran from 1998-2002 (CORDIS 1998). See Scherngell 

and Barber (2009) and CORDIS (1998) for further details on FP5. 
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the rest of the network. In empirical networks, vertices within communities are often 

found to be usefully related by content: edges reflect underlying processes relevant to 

the entities corresponding to vertices, so communities consist of entities with similar 

properties.  

 

Community identification methods have been developed that are efficient enough to be 

suitable for large networks containing thousands or millions of vertices and edges. One 

such method is the label propagation algorithm (LPA) of Raghavan et al (2007). Each 

vertex is assigned a label; a community is the set of all vertices with a particular label. 

The vertices are initialized with distinct labels, thus beginning with all vertices in 

distinct communities. Vertices are repeatedly updated, replacing their labels with ones 

that better match the labels of their neighbors. Within tightly interlinked subnetworks, 

common labels reinforce one another, encouraging uniform labels to be adopted. In 

contrast, weak linking between tightly interlinked subnetworks means that relatively 

few neighbors will differ in labels, hindering the propagation of labels between the 

subnetworks. These two properties accord with the above idea of community, so the 

LPA proves to be quite effective in practice (Leung et al 2009). 

 

Two properties of community solutions found by LPA warrant comment. First, since 

each vertex has a single label, the communities are disjoint; no vertex belongs to two 

communities. Second, community solutions are not generally unique; more than one 

label may be satisfactory for a vertex. Both of these properties suggest that some portion 

of the vertices may fit well in more than one community, so some care should be taken 

in interpreting specific community memberships. In this work, we consider statistical 

properties of the communities, which are more robust against reassignment of a few 

labels. 

 

In this work, we make use of modest extensions to the LPA (Barber and Clark 2009). 

The specifics of the algorithms are detailed in Appendix C. Since we investigate 

bipartite networks, the communities will include vertices from the two parts of the 

network, i.e. communities will contain both projects and organizations.  
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Observing spatial collaboration patterns of communities across European Regions 

To analyze the spatial patterns of the identified communities we first geocode each 

organization to a specific European region. We use a concordance scheme provided by 

Eurostat between postal codes and NUTS regions to trace the specific NUTS-2 region 

of an organization. The European coverage is achieved by using 255 NUTS-2 regions  

(NUTS revision 2003) drawn from the 25 pre-2007 EU member-states, Norway and 

Switzerland. The detailed list of regions is given in Appendix A
4
. Next we construct a 

region-by-region collaboration matrix ( )c
P for each community c, aggregating 

collaborative activities at the organizational level to the regional level, giving the 

observed number of R&D collaborations 
( )c

ijp between two regions i and j (i, j, = 1, …, 

n) for each community c.   

 

Following Scherngell and Barber (2009), we use a full counting method. For a project 

with three participating organizations in three different regions – say regions a, b, and c 

– we count three links: from region a to region b, from b to c and from a to c. When all 

three participants are located in one region we count three intraregional links. We 

exclude self loops to eliminate spurious self collaborations. The resulting regional 

collaboration matrix ( )c
P  then contains the collaboration intensities 

( )c

ijp  between all (i, 

j)-region pairs for community c. The n-by-n matrix for each community is symmetric by 

construction (
( )c

ijp =
( )c

jip ). 

 

 

4 Community structure in European R&D networks 

 

This section differentiates the identified communities by developing community-

specific profiles. Using the label propagation approach described in the previous 

section, we identified 3482 network communities. The communities vary greatly in size, 

as measured either by the number of organizations in the community or by the number 

                                                           
4
 We follow previous similar empirical work and rely on a NUTS2 disaggregation of the European 

territory (see Fischer et al. 2006, LeSage et al. 2007, Scherngell and Barber 2009 and 2010). The NUTS2 

level provides the basis for the provision of structural funds by the EU, as well as for the evaluation of  

regional growth processes across Europe (see Fischer et al. 2009)  
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of projects in the community. Most (2878) communities consist of just a single project 

with some or all of the participating organizations. In contrast, twenty or more projects 

are observed in just nine communities, but they contain over a third of the organizations 

and over half of the projects present in FP5. For the rest of this paper, we will consider 

eight of these nine largest communities (Barber, Fischer and Scherngell 2010); the ninth 

is of different character than the others, focusing on international cooperation rather 

than R&D. We do not consider the remaining smaller communities; while we thus 

exclude many communities, we are able to account for the majority of R&D 

cooperations in greater detail.  

 

Figure 1: Community groups in the network of FP5 R&D cooperation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 visualizes the network of key FP5 communities. We manually assign names to 

the communities based on consideration of their constituent projects and organizations 

(see below). We determine the position for the communities using methods from 

spectral graph analysis, so that communities that are strongly interconnected are 

positioned nearer to each other (for a practical overview see Higham and Kibble 2004). 

The node size corresponds to the number of organizations of the respective community, 

with the widths of the connection links corresponding to the number of inter-community 

project participations. In addition, Table 1 provides some summary statistics on the 

identified communities.  

Number of organisations: 2,400 

Number of organisations: 1,200 
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The Life Sciences and the Electronics communities have the greatest number of 

organizations. Due to the strong inter-community links, the Electronics community 

appears to have the highest collaboration intensity with other communities, i.e. 

competences relevant to this field are used intensively in other fields. The Life Sciences 

community shows a strong connection to the third largest community, Environment. 

The three transport-related communities are positioned near one another, i.e. they show 

relatively high inter-community collaboration intensity. The largest of these is 

Aerospace, and shows a stronger interaction with Ground Transport than with Sea 

Transport. The community Aquatic Resources has the strongest connection to 

Environment, while Information Processing shows comparably low collaboration 

intensities to all other communities.  

 

The largest community (2,366 organizations), Life Sciences, shows a broad selection of 

topics in biotechnology and the life sciences, including health, medicine, food, 

molecular biology, genetics, ecology, biochemistry, and epidemiology. The second 

largest (2,307 organizations), Electronics, focuses principally on information 

technology and electronics, with projects in related fields dealing with materials 

science, often related to integrated circuits; projects on algorithms, data mining, and 

mathematics; and a definite subset of projects concerning atomic, molecular, nuclear, 

and solid state physics. The third largest community (1,855 organizations), 

Environment, is focused on environment topics, including environmental impact, 

environmental monitoring, environmental protection, and sustainability. 

 

As communities become smaller, they also become more focused. We see, for example, 

three distinct transportation related communities. The largest of these (1,146 

organizations), Aerospace, is focused on aerospace, aeronautics and related topics, 

including materials science, manufacturing, fluid mechanics, and various energy topics. 

The next (686 organizations), Ground Transport, is focused on land transport, with the 

projects dominated by railroad and, especially, automotive topics; notable subtopics 

include manufacturing, fuel systems, concrete, and pollution. The smallest 

transportation community (218 organizations), Sea Transport, focuses specifically on 

sea transport; virtually all project titles are shipping-related. The remaining 
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communities, Aquatic Resources and Information Processing, are the smallest and most 

uniform thematically. Their thematic contents are fisheries and statistics.  

 

 

Table 1: Summary statistics on FP5 communities 

 Aerospace 
Aquatic 

Resources 
Electronics 

Environ

-ment 

Ground 

Transport 

Information 

Processing 

Life 

Sciences  

Sea 

Transport 

Number of 

organizations 
1,146 81 2,307 1,855 686 40 2,366 218 

Number of 

participation

s 

13,870 451 30,456 23,155 5,251 226 33,178 2,978 

Number of 

projects 
576 69 1447 971 374 20 1468 73 

Average 

number of 

partners 

24.206 11.136 26.403 24.965 15.309 11.300 28.046 27.321 

Skewness of 

number of 

partners 

4.263 1.169 5.132 4.512 6.739 1.097 4.749 1.718 

 

 

 

 

 

5 Spatial Structure of communities in European R&D networks 

 

We next consider the spatial distribution of the eight FP5 communities. In Figure 2, we 

illustrate the spatial networks of the communities by aggregating individual 

observations on the organizations of a community to the regional level. Note that the 

region-by-region networks are undirected graphs from a network analysis perspective. 

The nodes represent regions; their size is relative to the number of organizations in the 

region that belong to the community.  

 

The spatial network maps in Figure 2 reveal considerable differences among the 

collaboration patterns of the eight FP5 communities. One immediate result is that the 

region Île-de-France takes an important position in all communities. Furthermore, the 

visualization clearly reveals the different spatial patterns of the transport-related 

communities, Aerospace, Ground Transport, and Sea Transport. Though the region Île-

de-France appears to be the central hub in the three transport related communities, the 

directions of the highest collaboration flows from Île-de-France differ markedly. For the 
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Sea Transport community we observe intensive collaborations to important sea ports in 

the north (Zuid Holland, Agder og Rogaland, Danmark, Hamburg) and the south 

(Liguria, Lisboa, Attiki), while, for the Ground Transport community, collaborations to 

the east and south are dominant (Lombardia, Oberbayern, Stuttgart). In the Aerospace 

community we can observe a strong localization of collaborations within France and its 

neighboring countries. In the largest community, Life Sciences, the highest number of 

collaborations is observed between the regions of Île-de-France and Piemonte (174), 

while the second largest community, Electronics, is characterized by a very high 

collaboration intensity between the regions of Île-de-France and Oberbayern (474 

collaborations), followed by Île-de-France and Köln (265 collaborations), and 

Oberbayern and Köln (157 collaborations). In the Environment community we find the 

strongest collaboration intensity between Danmark and Etelä-Suomi (131 

collaborations). In the community Aquatic Resources the regions Danmark and Agder 

og Rogaland (Norway) show the highest collaboration intensity, not only between them 

(21 collaborations) but also to other regions, while for the community Information 

Processing we identify Etelä-Suomi as the central region, featuring intensive 

collaboration with Attiki, Lazio and Lombardia.  

 

To complement the maps shown in Figure 2, the numbers of project participations by 

organizations in each region for each community are also of interest; we tabulate the 

most active participants in Appendix B. This provides insight into which regions are 

most active for each community, in contrast to which regions are best connected, as 

described above. Interestingly, well connected regions may markedly differ from the 

most active regions.
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Figure 2: Spatial patterns of eight FP5 communities   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sea Transport Aerospace 

Ground Transport Information Processing 

Life Sciences  

 

Aquatic Resources 



 

 

 

 

 

 

 15 

Fig. 2 ctd.  

 

 

 

 

 

 

 

 

 

 

 

 

6 Identifying determinants of spatial community patterns 

 

Our objective in this paper is not only to detect communities in European FP networks 

and describe their spatial configurations, but also to investigate determinants that 

influence the spatial community patterns. In particular, whether the influence of 

geographical distance differs across communities is of crucial importance in the context 

of an aspired European Research Area. Thus, we measure separation effects on the 

constitution of cross-region R&D collaborations in all detected communities. The 

spatial interaction model of the type used by Scherngell and Barber (2009 and 2010) in 

a similar context serves again as an appropriate basis. Spatial interaction models 

incorporate a function characterizing the origin i of interaction, a function characterizing 

the destination j of interaction and a function characterizing the separation between two 

regions i and j. The model is characterized by a formal distinction implicit in the 

definitions of origin and destination functions on the one hand, and separation functions 

on the other (see, for example, Sen and Smith 1995). Origin and destination functions 

are described using weighted origin and destination variables, respectively, while the 

separation functions are postulated to be explicit functions of numerical separation 

variables. The general model in our case is given by 

 

Electronics Environment 
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( )c

ij i j ijP A B S  i, j = 1,…, n (1) 

 

with 

 

1

1( , )i i iA A a a 
 

i, j = 1,…, n
 

(2) 

2

2( , )j j jB B b b   i, j = 1,…, n (3) 

( )

1

exp
K

k

ij k ij

k

S d


 
  

 
   i, j = 1,…, n (4) 

 

where 
( )c

ijP denotes a stochastic dependent variable that is realized by the number of 

observed collaboration flows 
( )c

ijp between region i and region j for each community c
5
. 

Ai denotes the origin function, Bj denotes the destination function, while Sij represents a 

separation function. The ai and bj are measured in terms of the number of organizations 

participating in EU FP5 projects in the regions i and j, while 1  and 2  are scalar 

parameters to be estimated. Note that due to the symmetry of the origin and destination 

variables, we have a special case with 1=2, i.e. numerical results for 1 and 2 should 

be equal up to numerical precision. The 
( )k

ijd  are K separation measures, the k  are 

corresponding parameters to be estimated that will show the relative strengths of the 

separation measures. We rely on separation measures used in similar studies (see, for 

instance, Fischer, Scherngell, and Jansenberger 2006; Scherngell and Barber 2009). We 

can group these separation variables into three categories:  

(i) Variables accounting for spatial effects: 
(1)

ijd  denotes geographical distance 

between two regions i and j as measured by the great circle distance between the 

economic centers of the regions, while  
(2)

ijd   is a dummy variable that controls for 

neighboring region effects. We set 
(2)

ijd  to one if two organizations are located in 

neighboring regions and zero otherwise, where neighboring regions are defined to 

share a common border.   

(ii) Variables accounting for institutional and cultural effects: 
(3)

ijd is a country border 

dummy variable that takes a value of zero if two regions i and j are located in the 

                                                           
5
 Note that we do not exclude zero-flows or intraregional flows. 
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same country and one otherwise, while 
(4)

ijd is a language area dummy variable that 

takes a value of zero if two regions i and j are located in the same language area and 

one otherwise.  

(iii) Variables accounting for technological effects: 
(5)

ijd  measures technological 

distance by using regional patent data from the European Patent office (EPO). The 

variable is constructed (see Scherngell and Barber 2009) as a vector t(i) that 

measures region i’s share of patenting in each of the technological subclasses of the 

International Patent Classification (IPC). Technological subclasses correspond to the 

third-digit level of the IPC systems. We use the Pearson correlation coefficient 

between the technological vectors of two regions i and j to define how close they are 

to each other in technological space. Though we focus on spatial, cultural and 

institutional effects in this study, we include technological distance, mainly as a 

control variable to allow for the possibility that geographical distance may just be a 

proxy for technological distance.  

 

At this point, we are interested in estimating the parameters 1 2   and k  for each 

community c. OLS estimation procedures are not appropriate for modeling research 

collaborations, due to their true integer nature and due to the assumption of non-normal 

errors. This suggests a Negative Binomial density distribution, i.e. a Poisson 

specification with heterogeneity, allowing for the overdispersion often observed for real 

world count data (see Cameron and Trivedi 1998). The Negative Binomial density 

distribution in our case is given by  

 

( )1

( ) 1 1
( )

( ) 1 1 1

( )
( )

( 1) ( )

c
ijp

c

ij i j ijc

ij c

ij i j ij i j ij

p A B S
f P

p A B S A B S



  

    



 

  

   
            

  (5) 

 

where    denotes the gamma function and   is the dispersion parameter. Model 

estimation is done by Maximum Likelihood procedures (see Long and Freese 2001).  

 

Table 2 presents the sample estimates of the spatial interaction models, with standard 

errors given in brackets. We use the Negative Binomial model specification as given by 
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Equation (5). The dispersion parameter   is significant for all model versions, 

indicating that the Negative Binomial version is the right specification, i.e. the standard 

Poisson specification would be biased due to unobserved heterogeneity between the 

region pairs (see Scherngell and Barber 2009). The existence of unobserved 

heterogeneity that cannot be captured by the covariates leads to overdispersion and, 

thus, to biased model parameters for the standard Poisson model.  

 

Table 2: Estimation Results of the Negative Binomial Spatial Interaction Models  

[65,025 observations, asymptotic standard errors given in brackets] 

 
Negative Binomial spatial interaction models 

Total FP5 
Life 

Sciences 

Aquatic 

Resources 
Electronics Environment 

Sea 

Transport 

Ground 

Transport 
Aerospace 

Information 

Processing 

1 = 2 
0.706*** 

(0.003) 

0.865*** 

(0.005) 

0.777*** 

(0.024) 

0.794*** 

(0.005) 

0.659*** 

(0.005) 

0.771*** 

(0.004) 

1.055*** 

(0.010) 

0.808*** 

(0.006) 

1.202*** 

(0.008) 

Geo 

[ß1] 
-0.278*** 

(0.008) 

-0.110*** 

(0.011) 

-0.072*** 

(0.051) 

-0.038*** 

(0.012) 

-0.036*** 

(0.012) 

-0.020*** 

(0.038) 

-0.224*** 

(0.020) 

-0.103*** 

(0.017) 

-0.017*** 

(0.016) 

Neig 
[ß2] 

-0.184*** 

(0.036) 

- 0.043*** 

(0.051) 

-0.312*** 

(0.248) 

-0.051*** 

(0.052) 

-0.274*** 

(0.057) 

-0.201*** 

(0.019) 

-0.033*** 

(0.048) 

-0.253*** 

(0.013) 

-0.186*** 

(0.283) 

Count 

[ß3] 
-0.008*** 

(0.023) 

0.009*** 

(0.0006) 

     -0.588****** 

(0.168) 

    -0.148****** 

(0.039) 

0.119*** 

(0.099) 

-0.558****** 

(0.143) 

-0.121*** 

(0.081) 

    -0.342****** 

(0.055) 

-0.141*** 

(0.216) 

Lang 
[ß4] 

-0.098*** 

(0.024) 

-0.004*** 

(0.034) 

-1.118*** 

(0.152) 

-0.002*** 

(0.035) 

-0.123*** 

(0.038) 

 0.326*** 

(0.271) 

-0.088*** 

(0.057) 

-0.023*** 

(0.019) 

-0.798*** 

(0.113) 

Tech 

[ß5] 
-1.413*** 

(0.115) 

-1.437*** 

(0.167) 

-6.312*** 

(0.657) 

-1.577*** 

(0.171) 

-2.421*** 

(0.181) 

-3.797*** 

(0.544) 

-0.606*** 

(0.283) 

-2.511*** 

(0.257) 

-1.533*** 

(0.763) 

Cons. 
-2.539*** 

(0.128) 

-7.042*** 

(0.175) 

-8.557*** 

(0.654) 

-6.197*** 

(0.179) 

-4.148*** 

(0.185) 

-6.175*** 

(0.545) 

-10.124*** 

(0.297) 

-5.303*** 

(0.260) 

-16.851*** 

(0.855) 

() 
1.047*** 

(0.009 ) 

0.969*** 

(0.016 ) 

2.835*** 

(0.743 ) 

0.341*** 

(0.018 ) 

0.530*** 

(0.013 ) 

2.943*** 

(0.025 ) 

2.044*** 

(0.044 ) 

0.982*** 

(0.015 ) 

6.115*** 

(0.526 ) 

LL 
-135,234.21 -65,657.63 -8,537.42 -75,200.45 -73,257.76 -18,829.43 -31,445.52 -54,124.21 -3,723.43 

SS 6.523 5.212 4.979 5.001 4.213 5.176 6.712 5.732 5.174 

M-R2 0.173 0.224 0.128 0.196 0.155 0.133 0.251 0.171 0.249 

BIC -35,455.09 -37,935.68 -24,44.31 -36,647.48 -26,853.30 -4,169.42 -21,006.38 -22,283.32 -2,424.85 

 

Notes: The dependent variable is the cross-region collaboration intensity between two regions i and j in a given 

community. The independent variables are defined as given in the text. LL denotes the log-likelihood, SS sum of 

squares, M-R2 McFadden´s R-sqaured, BIC Bayesian Information Criterion. ***significant at the 0.001 significance 

level, **significant at the 0.01 significance level, *significant at the 0.05 significance level  

 

 

The models produce quite interesting results in the context of the literature on European 

R&D networks on the one hand, and in the context of the literature on the geographic 

localization of knowledge flows on the other hand. The second column contains, for the 

purpose of comparison, the sample estimates for total FP5. The main conclusion of this 

model is that geographical distance between two organizations has a significant 
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negative effect on the likelihood that they collaborate. However, technological distance 

between regions shows a larger negative effect on cross-region collaborative activities.  

 

The impact of the different separation effects varies considerably across observed FP5 

communities, both with respect to the magnitude of the estimates and to statistical 

significance. The most important result is that the negative effect of geographical 

distance is significantly weaker in any given FP5 community than for all FP5 

collaborations taken as a whole. This indicates that geographical integration in 

European research is better developed in thematically more homogenous communities 

than between communities. In the Aquatic Resources community, the Sea Transport 

community and the Information Processing community, the effect of geographical 

distance is even insignificant, i.e. within these communities, there is no observable 

effect of geographical distance on the probability of collaboration between two 

organizations in Europe. The highest negative effect of geographical distance within a 

community is identified for the Ground Transport community ( 1  = -0.224).  

 

While geographical distance effects are generally lower for the communities than for all 

FP5 collaborations, the neighboring region effects are even more variable. Neighboring 

regions effects cannot be identified for most communities, with the exception of the 

Environment community and the Aerospace community, which are subject to stronger 

neighboring region effects than the average of all FP5 collaborations, i.e. there is 

considerable significant spatial clustering of research collaborations in these 

communities at the regional level. Also institutional and cultural effects vary 

considerably across communities. The modeling results point to the existence of 

institutional barriers at the national level for collaboration in the Aquatic Resources 

community, the Electronics community, the Sea Transport community, and the 

Aerospace community, even though FP5 as a whole shows no such barriers. Language 

area effects are generally lower or insignificant, but the Aquatic Resources community 

and the Information Processing community are characterized by quite high negative 

language area effects, i.e. collaboration probability significantly decreases between 

organizations located in different language areas.  
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Concerning technological distance, we find that, in each community, the negative effect 

of technological distance is higher than for the whole FP network, except for Ground 

Transport; the collaboration probability with ‘technologically distant’ regions in a 

thematically homogenous community is lower than the average collaboration 

probability in FP5. For the outlier Ground Transport, one may speculate that the 

thematic area uses rather mature and/or widely used technologies prevalent in all 

regions, leading to a lower negative effect of technological distance. Additional 

background information on the composition and configuration of the communities 

would be needed for further interpretations of the sample estimates, which could be 

realized in only a descriptive way in the current study. Most importantly, the results 

demonstrate that separation effects for collaboration depend on the FP communities; 

this may provide a starting point for further research, in particular concerning the 

interpretation of the parameter estimates.     

 

 

7 Concluding remarks 

 

Using data on joint research projects funded by FP5, the objective of this study has been 

to detect and describe spatial patterns of communities in the European network of R&D 

cooperation and to identify determinants of the observed spatial community patterns. 

We have used techniques described by Barber and Clark (2009) to identify network 

communities, subnetworks whose members are more tightly linked to one another than 

to other members of the network. The determinants of the spatial patterns in eight of the 

largest identified communities are examined by means of Negative Binomial spatial 

interaction models, estimating how various separation factors—such as geographical 

distance—affect the variation of cross-region collaboration activities in a given 

community. The current study is to our knowledge the first one that combines 

community detection and spatial interaction modeling, applying this combination to 

study European R&D networks. 

 

The study produced interesting results, both from a scientific point of view and in a 

European policy context. First, we detected relevant, thematically relatively 

homogenous FP5 communities, providing a new view on the R&D collaboration 
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landscape in Europe. The largest communities identified are Life Sciences, Electronics, 

and Environment; these may contain further substructures of equal relevance. As 

communities become smaller, they also become more focused. We identified three 

transport-related communities: Aerospace, Ground Transport, and Sea Transport. The 

remaining communities, Aquatic Resources and Information Processing, are the 

smallest and most uniform thematically of those we have considered. Second, the spatial 

analysis of the large communities clearly reveals that the spatial configuration varies 

across communities. However, the region of Île-de-France plays a central role in each of 

the large communities. Third, the estimation results of the spatial interaction model 

show that the spatial integration of collaboration activities within the analyzed 

communities is more developed than for FP5 collaborations as a whole. The negative 

impact of geographical distance on the probability that two organizations collaborate is 

much lower when these organizations belong to the same community, while the 

negative impact of technological differences is generally more pronounced.  

 

From a policy perspective, the identification and characterization of the spatial patterns 

of these thematically relevant substructures is of crucial interest. First, our analysis may 

serve as a starting point for analyzing the empirical thematic landscape of European 

R&D collaboration, which is of strategic interest for the design of future European 

policy programmes supporting collaborative R&D, in particular concerning the 

orientation of thematic foci. Second, the simple but essential spatial characterization of 

the large communities may serve as an important source of information for regional and 

national policy makers to identity their main peers for benchmarking exercises or 

stimulation of specific collaborations; this is tabulated in Appendix B. Third, in the 

context of the European policy goal of an integrated and coherent research area, the 

results indicate that the degree and evolution of integration may differ across 

technological areas and that specific technological characteristics should be considered 

when assessing progress towards that goal.   

 

The study suggests several directions for future research. First, the interpretation of the 

spatial configuration of the largest identified communities was confined to the 

descriptive level, as in-depth interpretations of the different separation effects would 

require further background information about the actors involved in a specific 



 

 

 

 

 

 

 22 

community. Further work could focus on interpretation of separation effects, building 

on the results presented here. Second, the (spatial) evolution of the detected 

communities over time could be investigated, providing a deeper understanding on the 

dynamics of community formation and their spatial integration in the European R&D 

collaboration landscape. Third, while we have focused on large communities that cover 

the majority of the projects, there are thousands of smaller communities that we have 

not considered. Thus, strategies for analyzing these smaller communities could be 

explored, as could policy implications such as how to encourage integration of the small 

communities into the larger ones. Finally, alternative community identification methods 

could be used, for example to consider overlapping or hierarchical communities, 

accounting for the subthemes recognized in the larger communities.  
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Appendix A 

NUTS is an acronym of the French for the ―nomenclature of territorial units for statistics", which is a 

hierarchical system of regions used by the statistical office of the European Community for the 

production of regional statistics. At the top of the hierarchy are NUTS-0 regions (countries) below which 

are NUTS-1 regions and then NUTS-2 regions. This study disaggregates Europe's territory into 255 

NUTS-2 regions located in the EU-25 member states (except Cyprus and Malta) plus Norway and 

Switzerland. We exclude the Spanish North African territories of Ceuta y Melilla, the Portuguese non-

continental territories Azores and Madeira, and the French Departments d'Outre-Mer Guadeloupe, 

Martinique, French Guayana and Reunion. Thus, we include the following NUTS 2 regions: 

Austria:  Burgenland, Kärnten, Niederösterreich, Oberösterreich, Salzburg, Steiermark, 

Tirol, Vorarlberg, Wien 

Belgium:  Prov. Antwerpen, Prov. Brabant-Wallon, Prov. Hainaut, Prov. Limburg (B), 

Prov. Liège, Prov. Luxembourg (B), Prov. Namur, Prov. Oost-Vlaanderen, Prov. 

Vlaams-Brabant, Prov. West-Vlaanderen, Région de Bruxelles-Capitale / 

Brussels Hoofdstedelijk Gewest 

Czech Republic: Jihovýchod, Jihozápad, Moravskoslezsko, Praha, Severovýchod, Severozápad, 

Střední Morava, Střední Čechy 

Denmark:  Danmark 

Estonia: Eesti 

Finland:  Åland, Etelä-Suomi, Itä-Suomi, Länsi-Suomi, Pohjois-Suomi 

France:  Alsace, Aquitaine, Auvergne, Basse-Normandie, Bourgogne, Bretagne, Centre, 

Champagne-Ardenne, Corse, Franche-Comté, Haute-Normandie, Île de France, 

Languedoc-Roussillon, Limousin, Lorraine, Midi-Pyrénées, Nord - Pas-de-

Calais, Pays de la Loire, Picardie, Poitou-Charentes, Provence-Alpes-Côte 

d'Azur, Rhône-Alpes 

Germany:  Arnsberg, Berlin, Brandenburg, Braunschweig, Bremen, Chemnitz, Darmstadt, 

Dessau, Detmold, Dresden, Düsseldorf, Freiburg, Gießen, Halle, Hamburg, 

Hannover, Karlsruhe, Kassel, Koblenz, Köln, Leipzig, Lüneburg, Magdeburg, 

Mecklenburg-Vorpommern, Mittelfranken, Münster, Niederbayern, Oberbayern, 

Oberfranken, Oberpfalz, Rheinhessen-Pfalz, Saarland, Schleswig-Holstein, 

Schwaben, Stuttgart, Thüringen, Trier, Tübingen, Unterfranken, Weser-Ems 

Greece:  Anatoliki Makedonia, Thraki; Attiki; Ipeiros; Voreio Aigaio; Dytiki Ellada; 

Dytiki Makedonia; Thessalia; Ionia Nisia; Kentriki Makedonia; Kriti; Notio 

Aigaio; Peloponnisos; Sterea Ellada 
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Hungary: Dél-Alföld, Dél-Dunántúl, Észak-Alföld, Észak-Magyarország, Közép-Dunántúl, 

Közép-Magyarország, Nyugat-Dunántúl 

Ireland:  Border, Midland and Western; Southern and Eastern 

Italy:  Abruzzo, Basilicata, Calabria, Campania, Emilia-Romagna, Friuli-Venezia 

Giulia, Lazio, Liguria, Lombardia, Marche, Molise, Piemonte, Puglia, Sardegna, 

Sicilia, Toscana, Trentino-Alto Adige, Umbria, Valle d'Aosta/Vallée d'Aoste, 

Veneto 

Latvia: Latvija 

Lithuania: Lietuva 

Luxembourg:  Luxembourg (Grand-Duché) 

Netherlands:  Drenthe, Flevoland, Friesland, Gelderland, Groningen, Limburg (NL), Noord-

Brabant, Noord-Holland, Overijssel, Utrecht, Zeeland, Zuid-Holland  

Norway: Agder og Rogaland, Hedmark og Oppland, Nord-Norge, Oslo og Akershus, Sør-

Østlandet, Trøndelag, Vestlandet 

Poland: Dolnośląskie, Kujawsko-Pomorskie, Lubelskie, Lubuskie, Łódzkie, 

Mazowieckie, Małopolskie, Opolskie, Podkarpackie, Podlaskie, Pomorskie, 

Śląskie, Świętokrzyskie, Warmińsko-Mazurskie, Wielkopolskie, 

Zachodniopomorskie 

Portugal:  Alentejo, Algarve, Centro (P), Lisboa, Norte 

Slovakia: Bratislavský kraj, Stredné Slovensko, Východné Slovensko, Západné Slovensko 

Slovenia: Slovenija 

Spain:  Andalucía, Aragón, Cantabria, Castilla y León, Castilla-La Mancha, Cataluña, 

Comunidad Foral de Navarra, Comunidad Valenciana, Comunidad de Madrid, 

Extremadura, Galicia, Illes Balears, La Rioja, País Vasco, Principado de 

Asturias, Región de Murcia 

Sweden:  Mellersta Norrland, Norra Mellansverige, Småland med öarna, Stockholm, 

Sydsverige, Västsverige, Östra Mellansverige, Övre Norrland 

Switzerland: Espace Mittelland, Nordwestschweiz, Ostschweiz, Région lémanique, Ticino, 

Zentralschweiz, Zürich 

United Kingdom:  Bedfordshire & Hertfordshire; Berkshire, Buckinghamshire & Oxfordshire; 

Cheshire; Cornwall & Isles of Scilly; Cumbria; Derbyshire & Nottinghamshire; 

Devon; Dorset & Somerset; East Anglia; East Riding & North Lincolnshire; East 

Wales; Eastern Scotland; Essex; Gloucestershire, Wiltshire & North Somerset; 

Greater Manchester; Hampshire & Isle of Wight; Herefordshire, Worcestershire 

& Warkwickshire; Highlands and Islands; Inner London; Kent; Lancashire; 

Leicestershire, Rutland and Northamptonshire; Lincolnshire; Merseyside; North 

Eastern Scotland; North Yorkshire; Northern Ireland; Northumberland and Tyne 

and Wear; Outer London; Shropshire & Staffordshire; South Western Scotland; 
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South Yorkshire; Surrey, East & West Sussex; Tees Valley & Durham; West 

Midlands; West Wales & The Valleys; West Yorkshire 

 

Appendix B 

We list here the most active regions for the eight communities considered in depth in this paper. For each 

community, we give the twenty regions with the highest number of participations in projects from the 

community. The number of participations is shown parenthetically. Regions are given in descending order 

of the number of participations. 

 

Aerospace:  Île de France (1232), Comunidad de Madrid (691), Oberbayern (581), Danmark 

(526), Noord-Holland (440), Köln (365), Attiki (320), Inner London (306), 

Lombardia (285), Greater Manchester (276), Bedfordshire & Hertfordshire 

(271), Etelä-Suomi (269), Campania (266), Midi-Pyrénées (248), Dytiki Ellada 

(247), Outer London (243), Lazio (241), Liguria (239), Hampshire & Isle of 

Wight (225), País Vasco (224) 

Aquatic Resources: Agder og Rogaland (97), North Eastern Scotland (93), Danmark (91), 

Comunidad de Madrid (73), Flevoland (67), Noord-Holland (67), Hamburg (57), 

Algarve (55), Kriti (49), Attiki (47), Northern Ireland (39), Southern and Eastern 

(38), East Anglia (31), Andalucía (26), País Vasco (25), Galicia (24), Prov. 

West-Vlaanderen (22), Etelä-Suomi (21), Eastern Scotland (18), Vestlandet (17) 

Electronics: Île de France (3537), Oberbayern (1390), Attiki (1182), Rhône-Alpes (1012), 

Comunidad de Madrid (863), Köln (831), Lombardia (768), Lazio (728), Zuid-

Holland (578), Danmark (563), Berkshire, Buckinghamshire & Oxfordshire 

(559), Berlin (540), Région lémanique (531), Noord-Brabant (523), Inner 

London (519), Cataluña (509), Prov. Vlaams-Brabant (483), Southern and 

Eastern (471), Stuttgart (433), Outer London (430) 

Environment: Île de France (1020), Danmark (782), Aττική / Attiki (627), Etelä-Suomi (580), 

Lazio (565), Zuid-Holland (526), Noord-Holland (479), Comunidad de Madrid 

(426), East Anglia (414), Lombardia (395), Southern and Eastern (378), Cataluña 

(373), Stockholm (357), Gelderland (355), Wien (350), Andalucía (326), Utrecht 

(306), Karlsruhe (305), Agder og Rogaland (295), Hampshire & Isle of Wight 

(294) 

Ground Transport: Île de France (846), Stuttgart (698), Piemonte (587), Köln (385), Zuid-Holland 

(346), Lombardia (323), Oberbayern (293), Västsverige (290), Etelä-Suomi 

(226), Berkshire, Buckinghamshire & Oxfordshire (218), Kentriki Makedonia 

(200), Lazio (177), Hannover (175), País Vasco (168), Comunidad de Madrid 
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(144), Steiermark (141), Noord-Holland (127), Prov. Vlaams-Brabant (123), 

Rhône-Alpes (119), Darmstadt (118) 

Information Processing: Eastern Scotland (40), Lombardia (21), Etelä-Suomi (20), Lazio (18), Zuid-

Holland (16), Hampshire & Isle of Wight (14), Île de France (12), Attiki (11), 

Outer London (11), Stockholm (10), Sør-Østlandet (10), Danmark (7), Darmstadt 

(7), Southern and Eastern (7), Noord-Holland (5), Comunidad de Madrid (4), 

Essex (4), Limburg (NL) (4), Luxembourg (Grand-Duché) (4), Espace Mittelland 

(3) 

Life Sciences: Île de France (1860), Danmark (1055), Gelderland (843), Outer London (703), 

Lombardia (658), East Anglia (637), Comunidad de Madrid (636), Inner London 

(605), Cataluña (569), Zuid-Holland (547), Utrecht (538), Lazio (529), 

Stockholm (521), Karlsruhe (519), Prov. Vlaams-Brabant (495), Rhône-Alpes 

(494), Southern and Eastern (481), Oberbayern (458), Région de Bruxelles-

Capitale / Brussels Hoofdstedelijk Gewest (442), Eastern Scotland (396) 

Sea Transport: Danmark (190), Liguria (144), Hamburg (137), Île de France (135), Outer 

London (115), South Western Scotland (105), Agder og Rogaland (99), Zuid-

Holland (88), Attiki (76), Pays de la Loire (61), Bremen (58), Surrey, East & 

West Sussex (48), Västsverige (43), Comunidad de Madrid (40), Etelä-Suomi 

(36), Friuli-Venezia Giulia (35), Gelderland (35), Hampshire & Isle of Wight 

(33), Trøndelag (32), Région de Bruxelles-Capitale / Brussels Hoofdstedelijk 

Gewest (30) 

 

 

Appendix C 

 

Raghavan et al (2007) proposed a label propagation algorithm (LPA) for identifying 

communities in networks. Community membership is tracked by labels assigned to the 

graph vertices; a community is a set of all vertices with a particular label. Each vertex is 

assigned a single label, and thus belongs to a single community.  

 

Call a label satisfactory for a vertex when no other label occurs more frequently among 

its neighbors. The core of the LPA is a process of replacing unsatisfactory labels with 

satisfactory ones, continuing until all vertices have satisfactory labels. This idea is 

illustrated in Figure C1 using a toy network with visually apparent community structure. 

In Figure C1a, there are three different labels, shown by the vertex shading. The black 

and white labels are all satisfactory for their vertices. Of the three gray labels, two are 
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unsatisfactory for their vertices, shown by double borders on the vertices: one neighbors 

a single gray vertex and two black vertices, the other neighbors a single gray vertex and 

three white vertices. The third gray label is satisfactory: the vertex neighbors two gray 

vertices and two black vertices. In Figure C1b, all vertices have satisfactory labels.  

 

Figure C1  Community Identification with Label Propagation 

a b 

   

 

The algorithm begins from a state where all vertices have different labels (and thus are 

generally all unsatisfactory). Taken in random order, the vertices are considered to see 

whether their labels are satisfactory and updated to be satisfactory when not; if multiple 

labels would be satisfactory, one is chosen at random. For the example network shown 

in Figure C1a, the two vertices with gray labels must then be updated, one to have a 

black label, the other to have a white label; note that changing these two gray labels will 

cause the third gray label to become unsatisfactory.  Multiple relabeling passes are made 

through the vertices, with the algorithm halting when all vertices have a satisfactory 

label, such as in Figure C1b.  

 

The LPA offers a number of desirable qualities. As described above, it is conceptually 

simple, being readily understood and quickly implemented. The algorithm is efficient in 

practice. Each relabeling iteration through the vertices has a computational complexity 

linear in the number of edges in the graph. The total number of iterations is not a priori 

clear, but relatively few iterations are needed to assign the final label to most of the 

vertices (typically over 95% of vertices in 5 iterations, see Raghavan et al. 2007, Leung 

et al. 2008). 

 

The LPA defines communities procedurally, rather than as optimization of an objective 

function, and thus provides no intrinsic measure for the quality of communities found.  

To assess community quality, we can introduce an auxiliary measure, such as the 
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popular modularity measure (Newman and Girvan 2004); in this work, more suitable is 

a version of modularity specialized to bipartite networks (Barber 2007). Using 

modularity, communities found using LPA are seen to be of high quality (Raghavan et 

al. 2007): label propagation is both fast and effective. Indeed, Leung et al. (2008) have 

proposed extensions to the label propagation algorithm that make it comparable to the 

best algorithms for community detection in quality and efficient enough to analyze very 

large networks. 

 

Barber and Clark (2009) have elucidated the connection between label propagation and 

modularity, showing that modularity can be maximized by propagating labels subject to 

additional constraints and proposing several variations of the LPA. In this paper, we 

make use of a hybrid, two-stage label propagation scheme, consisting of the LPAr 

variant followed by the LPAb variant (see Barber and Clark 2009 for details). LPAr is 

defined similarly to the original LPA presented above, but with additional randomness 

to allow the algorithm to avoid premature termination. In practice, this produces better 

communities as measured by modularity than does LPA. LPAb imposes constraints on 

the label propagation so that the algorithm identifies a local maximum in the bipartite 

modularity. The overall hybrid algorithm thus belongs to the recent class of algorithms 

based on modularity maximization (for a survey, see Fortunato 2010).  

 

 

 


