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Abstract

For spatial data with a sufficiently long time dimension, the concept of ‘global’ cointegration

has been recently included in the econometrics research agenda. Global cointegration arises when

non-stationary time series are cointegrated both within and between spatial units. In this paper, we

analyze the role of globally cointegrated variable relationships using German regional data (NUTS 1

level) for GDP, trade, and FDI activity during the period 1976–2005. Applying various homogeneous

and heterogeneous panel data estimators to a Spatial Panel Error Correction Model (SpECM) for

regional output growth allows us to analyze the short- and long-run impacts of internationalization

activities. For the long-run cointegration equation, the empirical results support the hypothesis of

export- and FDI-led growth. We also show that for export and outward FDI activity positive cross-

regional effects are at work. Likewise, in the short-run SpECM specification, direct and indirect

spatial externalities are found to be present. As a sensitivity analysis, we use a spatial weighting

matrix based on interregional goods transport flows rather than geographical distances. This scheme

thus allows us to address more soundly the role of positive and negative effects of trade/FDI on

output activity for a system of interconnected regions.
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1 Introduction

The relationship between economic growth and internationalization activity is an active

field of economic research at the firm, regional and national levels. Two of the central

transmission channels through which trade and international investment activity (the

latter typically in the form of Foreign Direct Investment, henceforth FDI) may affect

economic growth and development are the existence of technological diffusion via spillovers

and the exploitation of market-size effects. While the latter mechanism is closely related

to the classical work on ‘export-led-growth’ in the field of trade theory and regional

economics (see, e.g., Hirschman, 1958), the importance of technological diffusion and

spillover effects has been particularly emphasized in the new growth theory (see, e.g.,

Barro & Sala-i-Martin, 2004, for an overview).

In seminal papers, Romer & Rivera-Batiz (1991) as well as Rivera-Batiz & Xie (1993)

already hinted at the importance of knowledge spillovers in generating permanent growth

effects from trade opening, while Feenstra (1990) demonstrated that, without technolog-

ical diffusion, an economy will experience a decline of its growth rate after liberalizing

trade. Summarizing the findings of the theoretical literature dealing with the spatial dis-

tribution of growth related to trade openness, Tondl (2001) argues that perfect integration

with trade liberalization and technology diffusion may spur growth and eventually lead to

income convergence among the group of participating regions/countries in an endogenous

growth world. However, for the medium run, imperfect integration may lead to growth

divergence or convergence among different ‘clubs’. In this sense, it may be important to

account for potentially different short- and long-run effects of trade on growth in a more

complex empirical modelling framework.

The likely uneven evolution of economic growth due to internationalization activity

across time and space is also prominently discussed within the field of new economic

geography (NEG). Here, long-run spatial divergence may be the result of a concentration

of economic activity in certain agglomerations. In almost all NEG models, free trade and

capital movement play a key role. Whether agglomeration or dispersion forces dominate

depends crucially on the underlying core–periphery pattern as well as the impact of trade

liberalization on the reduction of the transaction costs and the size of agglomeration

effects such as market size and economies of scale. Especially for FDI, the latter size

factors are identified as key determinants across space rather than differences in saving

rates as typically specified in the standard Solow model of growth. The latter neoclassical

transmission channel is assumed to solely operate via capital accumulation, which takes

place across space, when the capital-to-labour ratio is low and marginal products from

capital investment are high. While the Solow model predicts (conditional) convergence, for
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models driven by market potential and increasing economies of scale, Martin & Ottaviano

(1996) as well as Baldwin et al. (1998) show that along the lines of the new economic

geography and growth models there might be a long-term equilibrium, which exhibits an

asymmetric (divergent) location pattern.

As the discussion above shows, the interplay between economic growth and interna-

tionalization activity is a complex issue both across time and space. It is rather difficult

to derive clear-cut results, given the plurality of different approaches. In this paper, we

thus tackle this issue at the empirical level by analyzing the growth–trade–FDI nexus

for West German federal states (NUTS1 Level) for the period 1976–2005. Our method-

ological approach rests on the analysis of merging the long- and short-run perspective

by means of cointegration analysis, which aims to identify co-movements of the variables

within and between cross-sections. The notion of a global panel co-integration approach

has been recently introduced by Beenstock & Felsenstein (2010). This framework allows

us to specify spatial panel error correction models (SpECM) which are able to identify

short- and long-run co-movements of the variables in focus and avoid any bias stemming

from spurious regressions.

From a statistical point of view, a proper handling of variables that may contain unit

roots in the time dimension is of vital importance.1 The merit of the global cointegration

approach is that it aims at analyzing the consequences of spatial effects for the time series

behavior of variables. That is, consider the case of two regions of which one region is

heavily engaged in international trade or FDI and directly benefits from this activity in

terms of output growth, e.g. through the exploitation of market potentials and techno-

logical diffusion. The second region instead is not actively engaged in trade activity but

benefits from the first region’s openness via forward and backward linkages, which in turn

raise output for the second region, too. Thus, rather than having a stable long-run co-

movement between its own level of internationalization activity and output evolution, the

inclusion of a spatially lagged trade variable is needed to ensure cointegration of the second

region’s output level with trade and FDI activity. Moreover, apart from the importance

of spatial lags in finding stable cointegration relationships for output, trade, and FDI

in a time-series perspective, the method may also help to control for any cross-sectional

dependence in the long- and short-run specification of the SpECM.

The remainder of the paper is organized as follows. In the next section, we give a

brief overview of recent empirical contributions regarding the relationship of economic

growth, trade, and international capital movement. So far, the empirical literature has

1Note that this paper does not address the handling of variables containing spatial unit roots in the definition of Fingleton
(1999).
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focused on the time-series perspective, aiming at identifying cointegration relationships

and analyzing the direction of causality among the variables involved. Opening up the

field of research to an explicit account of space may add further insights. Section 3 then

briefly discusses the database used and presents some stylized facts at the German regional

level. Section 4 presents the econometric specification used and, in section 5, we report the

main estimation results for our chosen SpECM modelling framework. Section 6 performs

a robustness check with an alternative spatial weighting matrix, section 7 concludes.

2 Theory and Empirics of Output–Trade–FDI Linkages

A common approach to model the likely transmission channels from trade and FDI activity

to economic growth is to start from an aggregate production function framework (see, e.g.,

Edwards, 1998) as

Yt = f(At, Kt, Lt) with At = f(FDIt, TRt, FDI
∗
t , TR

∗
t ,Z), (1)

where Yt denotes the aggregate production of the economy at time t as a function of

capital K and labour L input, as well as the economy’s stock of knowledge, or total factor

productivity (A). Growth of the latter in turn is directly influenced by international

sources such as FDI and Trade (TR), where “*” indicates values for spatial neighbors.

Details on how to construct such spatial lag variables are given in section 4. Z is a vector of

further domestic determinants of the economy’s technological level. We use the augmented

production function framework as a starting point for empirical model specification with

theoretically motivated variable selection. For this particular modelling framework there

is a growing number of contributions to test for its empirical validity. However, as Won &

Hsiao (2008) point out, most of the recent works focus on partial, bivariate relationships

rather than using a more general approach.2 The majority of scholars finds uni- and

bi-directional causality among exports and FDI on the one hand, as well as GDP on the

other hand (with most applications being conducted for developing countries, see e.g.

Hansen & Rand, 2006, Wang et al., 2004, as well as Makki & Somwaru, 2004).

In a recent survey dealing with the FDI-growth relationship, the OECD(2002) finds

for 11 out of 14 studies that FDI contributes positively to income growth and factor

productivity. A further meta-analysis of the latter literature is also presented by Ozturk

(2007). The author likewise concludes that most studies find a positive effect of FDI on

2A similar point is made by Blomstroem et al. (2000), arguing that the beneficial impact of FDI on growth is only
enhanced in an environment characterized by an open-trade regime. Thus, rather than looking for bivariate causality, a
general framework including all relevant variables should be used.
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growth. Among the few papers that deal with the simultaneous influence of trade and

FDI on growth, Dritsaki et al. (2004) use cointegration analysis to identify the long- and

short-run effects for Greece between 1960 and 2002. The authors find a stable long-run

relationship among the variables and, using Granger causality tests, get evidence for a

bi-directional causal relationship between exports and economic growth as well as a uni-

directional effect from FDI on growth. Similar results were obtained by Ekanayake et al.

(2003) for a sample of five North and South American countries between 1960 and 2001

(including Brazil, Canada, Chile, Mexico, and USA). The authors apply a Vector Error

Correction Model (VECM) approach, which gives strong empirical support for trade-led

growth, while the empirical evidence for (inward) FDI-led growth is mixed.

The explicit inclusion of spatially lagged variables in the analysis of the trade–FDI–

growth nexus is uncommon in the current state of the art of empirical modelling. The

only example is Ozyurt (2008), who estimates a long-run model for labour productivity of

Chinese provinces driven by trade and FDI as well as their respective spatial lags.3 The

author finds that FDI and trade volumes have a positive direct effect on labour productiv-

ity. The results for the sample period 1979–2006 show that the geographical environment

has a subsequent influence on labour productivity of a given region. Besides the spatial

lag of the endogenous variable as a ‘catch-all’ proxy for spatial effects, FDI spillovers

turn out to be of specific interregional nature. These findings give a first indication that

spillovers from internationalization activity are not restricted to a direct effect, but may

also influence the economic development of neighboring regions.

To sum up, based on the theoretical and empirical benchmark specifications, we aim

to test the following hypothesis:

• Hypothesis 1: Trade and FDI activities are directly related through market size and

intraregional technological spillover effects to the economy’s output performance both

in the long- and short-run (’Trade-led’ and ’FDI-led’ growth).

• Hypothesis 2: Trade and FDI activities are indirectly related to the economy’s out-

put performance through forward and backward linkages as a source of interregional

spillover effects both in the long- and short-run.

• Hypothesis 3: Besides trade and FDI spillovers, there are also direct short-run

linkages between the economic growth performance of neighboring regions, which

may stem from domestic rather than international sources.

3Additionally, there is a growing literature with respect to third-country effects of FDI activity. See, e.g., Baltagi et al.
(2007).
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The different direct and indirect transmission channels from internationalization ac-

tivity for the stylized case of two regions are illustrated in figure 1. Solid arrows in the

figure indicate a direct relationship between regional output and the region’s internation-

alization activity, while dashed arrows mark indirect spatial spillover effects. Note that

the reduction of the system to a single equation approach with causality being assumed

to run from trade and FDI to growth abstracts from the likely role of feedback effects and

bidirectional causality.

Figure 1: Sources of internationalization effects on regional output

3 Data and Stylized Facts

For the empirical analysis, we use regional panel data for the 10 West German federal

states between 1976 and 2005. Our data comprise GDP levels, export and import volumes,

as well as inward and outward stocks of FDI. All data are used in real terms. For the

analysis, all variables are transformed into logarithms.4 As a benchmark we use a spatial

4It would be desirable to have a higher degree of regional disaggregation rather than N = 10 with T = 30. However,
no such data on trade and FDI activity is available. The panel structure of the data is nevertheless still comparable to
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weighting scheme that contains binary information on whether two states share a common

border or not. The spatial weighting matrix is used in its row-normalized form. To check

for the sensitivity of the results, we also use a weighting matrix based on interregional

transport flows rather than geographical information. The sources and summary statistics

of the data are given in table 1. Additionally, figure 2 plots the time evolution of the

variables for each West German federal state. As the figure shows, all variables increase

over time. The evolution of real GDP shows the smoothest time trend, while the values

for trade and FDI activities show a more volatile pattern. The figure also displays that

both inward as outward FDI stocks start from a rather low level in the 1970s but increase

rapidly over time. Except for the small states Bremen and Saarland, which show to have

a strong trade performance, the gap between trade and FDI activity gradually decreases

over time. In the following, we will more carefully account for the co-evolution of GDP

and internationalization activity by means of cointegration analysis.

Table 1: Data sources and summary statistics of the variables

Variable Description Source Obs. in logarithms
Mean Std. Dev. Min Max

y Real GDP (in
Euro)

VGR der
Länder
(VGRdL, 2009)

300 10.95 1.17 8.19 13.12

ex Real Exports
(in Euro)

Destatis (2009) 300 9.66 1.12 7.19 11.9

im Real Imports
(in Euro)

Destatis (2009) 300 9.76 1.01 7.37 11.93

fdi in Real Stock of
inward FDI (in
Euro)

Deutsche
Bundesbank
(2009)

300 8.16 1.57 5.3 11.57

fdi out Real Stock of
outward FDI
(in Euro)

Deutsche
Bundesbank
(2009)

300 8.32 2.03 3 12.36

Beenstock & Felsenstein (2010) with N = 9 and T = 18, so that it should be feasible to apply their proposed method to
our regional data.
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Figure 2: GDP, trade and FDI by German states (in logs)
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Source: See table 1.
Note: BW = Baden Württemberg, BAY = Bavaria, BRE = Bremen, HH = Hamburg, HES = Hessen, NIE = Lower
Saxony, NRW = North Rhine-Westphalia, RHP = Rhineland-Palatine, SAAR = Saarland, SH = Schleswig-Holstein.

As we have seen from figure 2, all variables grow over time, indicating that the variables

are likely to be non-stationary. To analyze this more in depth, we therefore compute

standard panel unit root tests proposed by Im et al. (2003) as well as Pesaran (2007).

The latter test has the advantage that it is more robust to cross-sectional correlation

brought in by spatial dependence (see, e.g., Baltagi et al., 2007), while the Im et al.

(2003) test is found to be oversized, when the spatial autocorrelation coefficient of the

residual is large (around 0.8). The results of both panel unit root tests are reported

in table 2. As the results show, both test statistics give evidence that all variables are

integrated of order I(1) and are stationary after taking first differences.

4 Econometric Specification

The estimation of I(1)-variables has a long tradition in time-series modelling and has

recently been adapted to panel data econometrics (see, e.g., Hamilton, 1994, Baltagi,
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Table 2: Panel unit root tests

IPS test for N=10, T=30 CADF test for N=10, T=30
Variable W[t-bar] (P-Value) Av. Lags Z[t-bar] (P-Value) Av. Lags

y 0.07 (0.53) 1.50 0.53 (0.70) 2
ex -1.37∗ (0.09) 1.10 -1.16 (0.12) 1
im 2.69 (0.99) 0.50 -0.59 (0.28) 1
fdi in 0.56 (0.71) 1.20 -2.21∗∗ (0.02) 1
fdi out -0.91 (0.18) 0.70 1.45 (0.93) 1
∆y -9.27∗∗∗ (0.00) 1.10 -4.51∗∗∗ (0.00) 1
∆ex -13.52∗∗∗ (0.00) 0.70 -7.08∗∗∗ (0.00) 1
∆im -9.85∗∗∗ (0.00) 0.70 -6.83∗∗∗ (0.00) 1
∆fdi in -13.58∗∗∗ (0.00) 0.70 -5.34∗∗∗ (0.00) 1
∆fdi out -9.81∗∗∗ (0.00) 0.90 -3.88∗∗∗ (0.00) 1

Note: ***, **, * denote significance at the 1, 5 and 10 % level. For IPS, the optimal lag length is chosen according to the
AIC. H0 for both panel unit root test states that all series contain a unit root.

2008). In this section, we expand the scope of the analysis from a within-panel perspective

to a simultaneous account of between-panel linkages, leading to a more global concept of

cointegration (see Beenstock & Felsenstein, 2010). To show this, we start from a spatial

panel data model with the following general long-run form:

Yit = αi + βXit + θY ∗it + δX∗it + uit, (2)

where Yit is the dependent variable of the model for i = 1, 2, . . . , N spatial cross-

sections, t = 1, 2, . . . , T is the time dimension of the model. Xit is a vector of exogenous

control variables; αi is a vector of cross-sectional fixed effects, and uit is the model’s

residual term. Both Y and X are assumed to be time-integrated of order Y ∼ I(d) and

X ∼ I(d) with d ≤ 1. If X and Y are co-integrated, the error term u should be stationary

as u ∼ I(0). Asterisked variables refer to spatial lags defined as

Y ∗it =
N∑
j 6=i

wijYjt, (3)

X∗it =
N∑
j 6=i

wijXjt,

where wij are typically row-standardized spatial weights with
∑

iwij = 1. As Beenstock

& Felsenstein (2010) point out, in an aspatial specification uit may be potentially affected

by cross-sectional dependence. However, the presence of spatial lags should capture these

effects and account for any bias stemming from omitted variables. Further, since the

spatial lags Y ∗it and X∗it are linear combinations of the underlying data, they have the

11



same order of integration as Yit and Xit, respectively. For the non-stationary case, the

presence of spatial lags thus enlarges the cointegration space to find long-run specifications

with a stationary residual term uit.

As pointed out in the seminal work of Engle & Granger (1987), cointegration and error

correction are mirror images of each other. We may thus move from the specification of

the long-run equation in eq.(2) to a dynamic specification in first differences, which nev-

ertheless preserves the information of the long-run equation. The resulting (Vector) error

correction model ((V)ECM) describes the dynamic process through which cointegrated

variables are driven in the adjustment process to their long-run equilibrium. In the fol-

lowing we build on the concept proposed by Beenstock & Felsenstein (2010) and specify a

spatial ECM (SpECM) as dynamic process, in which spatially cointegrated variables co-

move over time. We allow for deviations from a stable long-run equilibrium relationship

in the short-run. However, the ‘error correction’ mechanisms ensures the stability of the

system in the long-run.

Therefore, the SpECM concept encompasses three important types of cointegration:

(i) If cointegration only applies within spatial units but not between them, we refer to

‘local’ cointegration. The latter is the standard concept of cointegration with respect

to (panel) time series analysis. (ii) ‘spatial’ cointegration refers to the case in which

non-stationary variables are cointegrated between spatial units but not within them. As

Beenstock & Felsenstein (2010) point out, in this case, the long-term trends in spatial

units are mutually determined and do not depend upon developments within spatial units.

(iii) Finally, if nonstationary spatial panel data are both cointegrated within and between

cross-sections, we refer to ‘global’ cointegration.

The resulting SpECM associated with eq.(2) in its first-order form can be written:

∆Yit = γ0i + γ1∆Yit−1 + γ2∆Xit−1 + γ3∆Y ∗it−1 + γ4∆X∗it−1 (4)

+γ5uit−1 + γ6u
∗
it−1 + eit,

where eit is the short-run residual which is assumed to be temporally uncorrelated,

but might be spatially correlated such that Cov(eitejt) = σij is nonzero. The terms uit−1

and u∗it−1 are the (spatially weighted) residuals from the long-term relationships of the

system. The latter are stationary for the case of a cointegration system. The coefficients

for u and u∗ can be interpreted as error correction coefficients, which drive the system

to its long-run equilibrium state. Global error correction arises if γ5 and γ6 are non-zero.

For the nested case of local co-integration, we typically assume that γ5 < 0 in order to

restore the long-run equilibrium.
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It is straightforward to see that if the coefficients for u and u∗ are zero, the long-

run information used for estimation drops out and the system in eq.(4) reduces to a

single equation in a spatial VAR (SpVAR) formulation. Note, that in the short run,

X may affect Y differently from how it affects Y in the long run. Hence, γ2 in eq.(4)

may be different from δ in eq.(2). It is also important to note that the coefficient for

the time lag of the dependent variable (γ1) is typically expected to have the same sign

as the coefficient for u∗ (γ6), since the dynamics of Y will be affected by u∗ among

neighbors. For the case of γ5, γ6 6= 0 the resulting SpECM specification exhibits ’global

error correction’. As Beenstock & Felsenstein (2010) point out, the SpECM in eq.(4)

should only contain contemporaneous terms for ∆X and ∆X∗ if credible instrument

variables could be specified for them or if these variables are assumed to be exogenous.

The latter implies for our empirical case, that error correction runs from X to Y but not

the other way around.

5 Empirical Results

5.1 Within Panel Cointegration and ECM

As shown in table 2, all five variables are integrated time series. In order to use both the

information in levels as well in first differences, the variables should be co-integrated to

avoid the risk of getting spurious estimation results. Several methods have been derived to

test for panel cointegration (see, e.g., Wagner & Hlouskova, 2007, for a recent survey and

performance test of alternative approaches). These can be classified as single-equation

and system tests, with the most prominent operationalizations in time-series analysis

being the Engle-Granger (1987) and Johansen (1991) VECM approaches, respectively. In

this paper, we apply the Kao (1999) and Pedroni (1999) panel ρ tests as single-equation

approaches in the spirit of the Engle-Granger and additionally a Fisher (1932) type test,

where the latter combines the probability values for single cross-section estimates of the

Johansen (1991) system approach. The Fisher-type test can be defined as

−2
N∑
i=1

log(φi)→ χ22N, (5)

where φi is the p-value from an individual Johansen cointegration test for cross-section

i. Here, we apply the Fisher test to the maximum eigenvalue (χ−max) of the johansen

(1991) approach, which tests the null hypothesis of r cointegration relationships against

the alternative of (r + 1) relationships. This allows us to study more carefully the likely

number of cointegrated variables in the system compared to residual based single equation

13



approaches such as in Kao (1999). Depending on the results, we are then able to move

on and specify different regression models which are capable of estimating non-stationary

panel data models including information in levels and first differences.

Since we have rather limited time-series observations, which makes it hard to estimate

individual models for each German region, a natural starting point would be to pool the

time-series and cross-section data for purposes of estimation. However, this is only feasible

if the data is actually ‘poolable’ (see, e.g., Baltagi, 2008). Among the common estimation

alternatives in this setting with small N and increasing T are the pooled mean group

(PMG) and the dynamic fixed effects (DFE) model. While the PMG estimator allows

for cross-section specific heterogeneity in the coefficients of the short run parameters of

the model (see Pesaran et al., 1999), the DFE model assumes homogeneity of short and

long-run parameters in the estimation approach. Given a consistent benchmark (such as

the standard mean group estimator, see Pesaran & Smith, 1995), we are also able to test

for the appropriateness of the pooling approach by means of standard Hausman (1978)

tests. Table 3 reports the estimation results for the PMG and DFE estimator for the

panel of German Federal states between 1976 and 2005.

If we first look at the panel cointegration tests in table 3 for the five variables employed,

we see that the Kao (1999) test clearly rejects the null hypothesis of no cointegration.

However, using the Pedroni panel ρ test, which performed better in the large-scale simula-

tion study of Wagner & Hlouskova (2007) compared to the Kao residual test, the evidence

of a stable cointegration relationship for the variables becomes less evident. Here, we only

get empirical support at the 10% significance level. Finally, looking at the p-value-based

Fisher statistic for the Johansen maximum eigenvalue test also gives rather ambiguous

results. While the test in first place indicates statistical support for the existence of

only one cointegration relationship between two of the five variables, there is also further

evidence of a stable cointegration vector including all variables (at the 5% significance

level).

Regarding the estimated coefficients, the results in table 3 show that we find a positive

long-run effect of export activity on growth, both for the PMG and the DFE models.

This is consistent with the export-led growth theory of regional economics. However,

for imports, we find a negative impact on GDP, which is, however, only statistically

significant at the 10 % level. The models do not find any long-run causation from FDI

activity (both inward and outward) to GDP. Looking at the short-run coefficients, we see

that the coefficient of the error correction term is statistically significant and of expected

sign, although the speed of adjustment to the long-run equilibrium is rather slow (around

5-6 % per year). Though we do not find a statistical long-run impact of import and FDI
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Table 3: Aspatial model estimates for the growth-trade-FDI Nexus

Dep. Var.: ∆y PMG DFE

Long run estimates
exit 1.02∗∗∗ 0.78∗∗∗

(0.337) (0.299)
imit -0.42∗ -0.47

(0.224) (0.323)
fdi outit -0.21 -0.15

(0.157) (0.235)
fdi init 0.16 0.16

(0.118) (0.169)
Short run estimates

ut−1 -0.06∗∗∗ -0.05∗∗∗

(0.009) (0.014)
∆yt−1 0.29∗∗∗ 0.33∗∗∗

(0.048) (0.048)
∆ext -0.08∗∗ -0.01

(0.038) (0.033)
∆imt 0.10∗∗∗ 0.07∗∗∗

(0.016) (0.022)
∆fdi outt 0.07∗∗∗ 0.06∗∗∗

(0.019) (0.013)
∆fdi int 0.06∗∗∗ 0.06∗∗∗

(0.012) (0.013)
Kao (1999) ADF (p-value) -4.23∗∗∗ (0.00)
Pedroni (1999) ρ (p-value) 2.01∗ (0.06)
χ−max of Johansen (1991) based Fisher test (p-value)
rank ≤ 0 115.2∗∗∗ (0.00)
rank ≤ 1 50.93∗∗∗ (0.00)
rank ≤ 2 24.93 (0.20)
rank ≤ 3 27.78 (0.11)
rank ≤ 4 31.64∗∗ (0.05)
Hausman Test χ2(4) (p-value) 15.29∗∗∗ (0.00) 0.01 (0.99)
STMI 5.96∗∗∗ 7.45∗∗∗

p-value (0.00) (0.00)
pb-value (0.00) (0.00)

Note: ***, **, * denote significance at the 1, 5 and 10 % level. Standard errors in brackets. The Hausman test checks for
the validity of the PMG and DFE specifications against the MG estimation results. H0 for panel cointegration tests is the
no-cointegration case. For Johansen VECM-based Fisher-type test, MacKinnon-Haug-Michelis (1999) p-values are
reported. STMI is the spatio-temporal extension of the Moran’s I statistic, which tests for H0 of spatial independence
among observations. Since we are dealing with a small number of cross-sections, we use standard as well as bootstrapped
p-values of the test. The latter are marked by a “b”.
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activity on economic growth, there is a multidimensional positive short-run correlation

from import and both FDI variables to output growth. The sole exception is export flows,

for which we do not find any short-run effect in the DFE model and a reversed coefficient

sign in the PMG model.

If we finally check for the appropriateness of the respective estimators, we see from

the results of the Hausman m-statistic that only for the DFE model we cannot reject the

null hypothesis of consistency and efficiency of the DFE relative to the benchmark mean

group (MG) estimator.5 On the contrary, the PMG is found to be inconsistent. Thus,

we conclude that the DFE is the preferred (aspatial) model specification in the context

of the German growth–trade–FDI nexus.

So far we did not account for the spatial dimension of the data. As Beenstock &

Felsenstein (2010) point out, this may lead to a severe bias of the estimation results

both in terms of the cointegration space of the variables as well as incomplete handling

of spatial dependence in the model. To check for the appropriateness of our a-spatial

co-integration relationship from table 3, we calculate a spatio-temporal extension to the

Moran’s I statistic (thereafter labeled STMI) for the estimated models’ residuals, which

has recently been proposed by Lopez et al. (2009).

Since we are dealing with a small number of cross-sections, we compute both asymptotic

as well as bootstrapped test statistics to get an indication of the degree of misspecification

in the model. Lin et al. (2009) have shown that bootstrap based Moran’s I values are

an effective alternative to the asymptotic test in small-sample settings. Details about the

computation of the STMI and bootstrapped inference are given in the appendix. As

the results show, the STMI strongly rejects the null hypothesis of spatial independence

among the observed regions for both the asymptotic as well bootstrapped-based test

statistic using a distance matrix based on common borders among German states. In

sum, these results may be seen as a first strong indication that the absence of explicit

spatial terms in the regression may induce the problem of spurious regression.

5.2 Global Cointegration and SpECM

We now move on to an explicit account of the spatial dimension both in the long- and

short-run specification of the model. First, we estimate the long-run equation for the

relationship of GDP, trade, and FDI. The results for different estimation strategies are

shown in table 4. We start from a simple fixed effects specification. However, due to

5We do not report regression results of the MG estimator here. They can be obtained from the author upon request.
The MG estimator assumes individual regression coefficients in the short- and long-run and simply averages the coefficients
over the individuals. Pesaran & Smith (1995) have shown that this results in a consistent benchmark estimator.
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the inclusion of spatial lags, OLS estimation may lead to inconsistent estimates of the

regression parameters (see, e.g., Fischer et al., 2009). Since eq.(2) takes the form of a

general spatial Durbin model, it may be appropriately estimated by maximum likelihood

(ML), which has recently been proposed for panel data settings in Beer & Riedl (2009).

The estimator of Beer & Riedl (2009) makes use of a fixed-effects (generalized Helmert)

transformation proposed by Lee & Yu (2010) and maximizes the log-likelihood function

with imposed functional form for the individual variances to keep the number of param-

eters to be estimated small (for details, see Beer & Riedl, 2009). The authors show by

means of a Monte Carlo simulation experiment that the SDM-ML estimator has satisfac-

tory small-sample properties. Besides the SDM-ML model, which includes spatial lags of

the endogenous and exogenous variables, we also estimate a spatial Durbin error model

(SDEM), which includes spatial lags of the exogenous variables and a spatially lagged

error term as well as estimate the SDM by GMM.

Again, we first look at the obtained test results from the panel cointegration tests

including spatial lags of the exogenous variables. The results in table 4 give strong em-

pirical evidence that the estimated system is cointegrated. Compared to the aspatial

specification the result of the Pedroni (1999) test is improved (statistically significant at

the 1% level); the same applies to the results of the Fisher-type Johansen test. The latter

statistics cannot reject the hypothesis of stable cointegration relationships between all

variables. Our results can thus be interpreted along the lines of Beenstock & Felsenstein

(2010), who find that the inclusion of spatial lags of exogenous variables is necessary to

ensure a stable cointegration relationship for a regional economic model.

As before, we also observe a positive effect from exports on GPD in the spatially

augmented long-run relationship. The estimated elasticity is somewhat smaller compared

to the aspatial estimators from above. Next to the direct export effect for the DFE, we

also observe an indirect effect from the spatial lag of the export variable (ex∗). That is, an

increased export activity in neighboring regions also spills over and leads to an increased

GDP level in the home region. The effect, however, becomes insignificant if we move

from a simple FEM regression to a ML based estimator for the general spatial Durbin

model (SDM) and spatial Durbin error model (SDEM) as well as the GMM approach in

table 4.6 All specifications show a significant direct effect of outward FDI on regional

output. The latter can be associated with the FDI-led growth hypothesis. Additionally,

the SDM-ML model also finds a significant positive coefficient for interregional spillovers

from outward FDI stocks on the output level. The direct impact of import flows turns

6We specify the GMM approach in extension to the ML estimators, since the model may be a good candidate for
estimation of the time and spatial dynamic processes in the second step short-run specification.
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Table 4: Spatially augmented long-run estimates of GDP, trade and FDI

Dep. Var.: y Spatial FEM SDM-ML SDEM-ML SDM-GMM

exit 0.27∗∗∗ 0.49∗∗∗ 0.41∗∗∗ 0.55∗∗

(0.098) (0.089) (0.076) (0.232)
imit 0.08 -0.03 0.06 0.40

(0.086) (0.106) (0.072) (0.247)
fdi outit 0.28∗∗∗ 0.28∗∗∗ 0.19∗∗∗ 0.36∗∗

(0.040) (0.057) (0.029) (0.158)
fdi init 0.04 -0.01 0.06∗∗ -0.41

(0.037) (0.049) (0.028) (0.258)
ex∗it 0.19∗ 0.07 0.05 -0.02

(0.101) (0.049) (0.078) (0.320)
im∗

it -0.20∗∗ -0.10∗∗ 0.03 0.33
(0.103) (0.042) (0.082) (0.285)

fdi out∗it 0.04 0.18∗∗∗ 0.04 -0.04
(0.049) (0.032) (0.036) (0.084)

fdi in∗it -0.01 -0.05∗ -0.02 -0.01
(0.048) (0.029) (0.034) (0.147)

y∗ -0.23∗∗∗ -0.06
(0.021) (0.582)

error∗ 0.19∗∗∗

(0.012)
Kao (1999) ADF (p-value) -3.70∗∗∗ (0.00)
Pedroni (1999) ρ (p-value) 2.74∗∗∗ (0.00)
χ−max of Johansen (1991) based Fisher Test (p-value)
rank ≤ 0 741.0∗∗∗ (0.00)
rank ≤ 1 449.1∗∗∗ (0.00)
rank ≤ 2 230.4∗∗∗ (0.00)
rank ≤ 3 132.3∗∗∗ (0.00)
rank ≤ 4 108.2∗∗∗ (0.00)
rank ≤ 5 52.1∗∗∗ (0.00)
rank ≤ 6 55.1∗∗∗ (0.00)
rank ≤ 7 41.6∗∗∗ (0.00)
rank ≤ 8 46.4∗∗∗ (0.00)

Note: ***, **, * denote significance at the 1, 5 and 10 % level. Standard errors in brackets. H0 for panel cointegration
tests is the no-cointegration case. For Johansen VECM-based Fisher-type test, MacKinnon-Haug-Michelis (1999) p-values
are reported. The SDM -GMM uses up to two lags for the exogenous variables and their spatial lags, as well as the twice
lagged value of the spatial lag of the endogenous variable.
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out to be insignificant. However, we get a significant negative coefficient for the indirect

spillover effect (both for the FEM and SDM-ML), indicating that higher importing activity

in neighboring regions are correlated with GDP levels in the own region. For inward FDI,

we hardly find any direct or indirect spatial effect on GDP.

While the partial derivatives of direct and indirect effects for each exogenous variable

can be immediately assessed for the FEM and SDEM-ML results in table 4,7 LeSage

& Pace (2009) have recently shown that for model specifications including a spatial lag

of the endogenous variable, impact interpretation is more complex. Table 5 therefore

additionally computes summary measures for the SDM-ML based on a decomposition of

the average total effect from an observation into the direct and indirect effect. The table

shows that there is a significant total effect of export flows on the regional GDP level,

which can be almost entirely attributed to its direct effect. Imports and inward FDI are

not found to have either a significant direct or indirect effect, while for the case of outward

FDI, we find both a positive direct as well as indirect effect. The latter results contrast

findings from the SDEM-ML, indicating a significant effect running from inward FDI to

growth. As LeSage & Pace (2009) point out, we cannot directly judge about the validity of

one of the two models, since the SDEM does not nest the SDM and vice versa. However,

one potential disadvantage of the SDEM compared to the SDM is that it could result

in severe underestimation of higher-order (global) indirect impacts (see LeSage & Pace,

2009, for details). We may thus argue that SDM-ML is the most reliable specification for

the long-run estimation of the output–Trade–FDI system.

Table 5: Direct, indirect and total effect of variables in SDM-ML

direct indirect total

exit 0.52∗∗∗ -0.07 0.46∗∗∗

imit 0.03 -0.14 -0.11
fdi outit 0.21∗∗∗ 0.17∗∗∗ 0.37∗∗∗

fdi init 0.03 -0.08 -0.05

Note: ***, **, * denote significance at the 1, 5 and 10 %-level
using simulated parameters as described in LeSage & Pace (2009).

We then move on and use the obtained long-run cointegration relationship in a SpECM

framework for regional GDP growth. The estimation results of the SpECM are shown in

table 6. For estimation of the SpECM, we apply the standard DFE model, the SDM-ML

from Beer & Riedl (2009), as well as the spatial dynamic GMM specification. The latter

estimator explicitly accounts for the endogeneity of the time lag of the dependent variable

7This also holds for the SDM-GMM since the spatial lag coefficient of the dependent variable is insignificant.
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by valid instrumental variables. Although the time dimension of our data is reasonably

long, the bias of the fixed effects estimator may still be in order.8 The spatial dynamic

GMM estimator using an augmented instrument set in addition to the aspatial version

proposed by Arellano & Bond (1991) as well as Blundell & Bond (1998) has recently

performed well in Monte Carlo simulations (see Kukenova & Monteiro, 2009) as well as in

empirical applications (e.g., Bouayad-Agha & Vedrine, 2010). Valid moment conditions

for instrumenting the spatial lag of the endogenous variable besides the time lag are

given in the appendix. The inclusion of time and spatial lags in the SpECM results in a

‘time-space-simultaneous’ specification (see, e.g., Anselin et al., 2007).

With respect to the included variables, all model specifications report qualitatively

similar results. For the standard EC-term we get a highly significant regression parameter

in the DFE- and GMM-based specification, which is of expected sign. Besides the results

from the panel cointegration tests from table 4, this is a further indication that GDP and

the variables for internationalization activity co-move over time in a long-run cointegration

relationship, where short-term deviations balance out in the long-run. For the size of the

EC-term, the spatial dynamic GMM model comes closest to values typically found in the

empirical literature, with about one-fifth of short-run deviations being corrected after one

year (see, e.g., Ekanayake et al., 2003). Also, the coefficient for the spatialized EC-term

(u∗) is significantly different from zero in the DFE and GMM specification.

Looking at the short-run correlation between growth, trade, and FDI in table 6, we

see that both direct and indirect (spatial) forces are present. As for the direct effects, the

results do not differ substantially from the aspatial SpECM specification in table 3. We do

not find any significant short-run effect from export activity on growth. However, all other

variables are positively correlated with the latter. Looking more carefully at the spatial

counterparts of these variables, we see that a higher export activity has a positive spillover

effect on the output growth of neighboring regions while imports have a negative indirect

effect (in line with the long-run findings). We also check for the significance of spatial

lags in the endogenous variable and the error term. Here we find that there are indeed

spatial spillovers from an increased growth performance in neighboring regions, a result

which mirrors related findings for German regional growth analysis (see, e.g., Niebuhr,

2000, as well as Eckey et al., 2007). This result is also supported by the significant and

positive coefficient for the spatial lag of the error correction variable (u∗). We do not find

any sign for significant spatial autocorrelation left in the residuals of the SDM-ML and

SDM-GMM using the (bootstrapped) STMI test.

8Using Monte Carlo simulations, Judson & Owen (1999), for instance, report a bias of about 20 % of the true parameter
value for the FEM, even when the time dimension is T = 30.
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Table 6: Spatially augmented short-run estimates of GDP, trade and FDI

Dep. Var.: ∆y DFE SDM-ML SDM-GMM

uit−1 -0.16∗∗∗ -0.05∗ -0.21∗∗∗

(0.025) (0.033) (0.034)
u∗it−1 0.14∗∗∗ -0.01 0.20∗∗∗

(0.025) (0.012) (0.036)
∆yit−1 0.49∗∗∗ 0.36∗∗∗ 0.47∗∗∗

(0.040) (0.099) (0.049)
∆exit 0.04 0.06 0.03

(0.032) (0.051) (0.044)
∆imit 0.10∗∗∗ 0.06 0.14∗∗∗

(0.024) (0.047) (0.011)
∆fdi outit 0.09∗∗∗ 0.07∗∗∗ 0.08∗∗∗

(0.016) (0.025) (0.019)
∆fdi init 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.012) (0.020) (0.011)
∆ex∗it 0.05∗∗ 0.01 0.02∗

(0.021) (0.026) (0.010)
∆im∗

it -0.04∗ -0.01 -0.04∗∗

(0.019) (0.183) (0.013)
∆fdi out∗it 0.01 0.02 -0.02

(0.009) (0.014) (0.018)
∆fdi in∗it 0.01 0.06∗∗∗ 0.01

(0.011) (0.011) (0.010)
∆y∗ 0.22∗∗∗ 0.11∗∗

(0.036) (0.044)
STMI -2.85∗∗∗ -1.08 -1.41
p–value (0.00) (0.14) (0.08)
pb–value (0.00) (0.84) (0.12)

Note: ***, **, * denote significance at the 1, 5 and 10 % level. Standard errors in brackets.
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6 Robustness Check: Transport Flows as Spatial Weights

The use of an appropriate spatial weighting matrix is a delicate issue in spatial economet-

rics (Elhorst, 2010). In order to check the stability of the short- and long-run results, we

thus use an alternative weighting matrix, which employs interregional economic linkages

based on transport flows for goods rather than geographical information. Since a total

measure of interregional trade flows among German regions is not available, railway trans-

portation statistics may serve as a proxy for the former. We use data from 1970 to ensure

that the observed interregional linkages are exogenous to our estimation system (see table

7). A further motivation for using the transport-based weighting scheme is that we are

able give a more straightforward economic interpretation regarding the estimation results.

That is, for instance, consider a negative correlation of the neighboring regions’ import

performance with regional GDP evolution. Opening up for international trade in terms

of increased import activity may lead to a substitution effect of interregional forward and

backward linkages in Germany. Thus, regional supply from the region is substituted by

its neighbors through international import flows. This, in turn, may slow down economic

development in the region under study and can motivate a negative spatial spillover effect

from import activity in neighboring regions of Germany.

Table 8 reports the result for the SpECM estimation for the DFE with spatial lags

of the exogenous variables, the ML- and GMM-based spatial Durbin model. The results

show that the parameters are rather stable with respect to the chosen estimator and the

alternative specification of the spatial weighting matrix.9 The error correction mechanism

and its spatial lag are almost of equal magnitude compared to the border-based weighting

scheme. Likewise, both the time and the spatial lag of regional GDP growth are important

factors driving the dynamics of the model. Again, we find positive direct correlations

between imports, inward FDI, outward FDI and GDP growth. Regarding the correlation

of the indirect spatial coefficients, import flows exhibit a negative indirect effect, which

turns out to be significant in the DFE and ML specifications. We find negative indirect

effects for export and outward FDI in the ML-GMM model (at the 10% significance level).

The inspection of the residuals using the STMI shows both for the ML and GMM based

SDM specification on average no remaining spatial dependence in the residuals (with only

weak significance at the 10 % level for the bootstrap version in the SDM-GMM model).

These results closely match findings for the common-border-based weighting scheme. In

contrast, the DFE model still exhibits spatial autocorrelation in the residuals.

9This also holds for the long-run estimates, which can be obtained from the author upon request
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Table 8: Spatially augmented short-run estimates

Dep. Var.: ∆y DFE SDM-ML SDM-GMM

uit−1 -0.13∗∗∗ -0.12∗∗∗ -0.21∗∗∗

(0.023) (0.022) (0.033)
u∗it−1 0.12∗∗∗ 0.11∗∗∗ 0.20∗∗∗

(0.026) (0.024) (0.039)
∆yit−1 0.52∗∗∗ 0.48∗∗∗ 0.46∗∗∗

(0.041) (0.041) (0.052)
∆exit 0.06∗ 0.05 0.03

(0.033) (0.031) (0.048)
∆imit 0.08∗∗∗ 0.09∗∗∗ 0.14∗∗∗

(0.025) (0.023) (0.016)
∆fdi outit 0.08∗∗∗ 0.08∗∗∗ 0.08∗∗∗

(0.016) (0.015) (0.017)
∆fdi init 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.013) (0.012) (0.007)
∆ex∗it 0.01 0.01 -0.08∗

(0.035) (0.033) (0.037)
∆im∗

it -0.07∗ -0.07∗∗ -0.02
(0.042) (0.039) (0.040)

∆fdi out∗it 0.02 0.02 -0.06∗

(0.023) (0.021) (0.028)
∆fdi in∗it 0.03 0.01 0.01

(0.023) (0.012) (0.030)
∆y∗ 0.19∗∗∗ 0.25∗∗∗

(0.061) (0.066)
Moran’s I residuals -2.325∗∗∗ -0.377 -0.494
p–value (0.01) (0.35) (0.31)
pb–value (0.00) (0.80) (0.06)

Note: ***, **, * denote significance at the 1, 5 and 10 %-level. Standard errors in brackets.

7 Conclusion

The aim of this paper was to analyze the role of within and between panel cointegration for

the German regional output–trade–FDI nexus. While the analysis of co-movements among

non-stationary variables is by now common standard, less attention has been paid to the

importance of spatial lags in the long-run formulation of a regression model. Applying the

concept of global cointegration, as recently proposed by Beenstock & Felsenstein (2010),

enables us to estimate spatially-augmented error correction models (SpECM) for West

German data between 1976 and 2005. Our results show that both direct as well as indirect

spatial links between the variables matter when tracking their long-run co-movement.

Our long-run regression results give empirical support for a direct cointegration rela-

24



tionship among economic output and internationalization activity. In particular, export

flows show a significant and positive long-run impact on GPD, supporting the export-led

growth hypothesis from regional and international economics. Next to the direct effect

for export flows, we also find evidence for long-run foreign investment driven growth

through outward FDI. The latter variable is also found to exhibit significant positive

spatial spillovers. To identify the long-run correlations we use both an ML- as well as

GMM-based general spatial Durbin model specification. Importantly, the inclusion of

spatial lags gives strong empirical evidence that the estimated regression system is coin-

tegrated. Compared to the aspatial specification, the results of the Pedroni (1999) and the

Johansen (1991) based Fisher test strongly supports cointegration relationsships among

all variables. Our results can thus be interpreted in similar veins as Beenstock & Felsen-

stein (2010), who find that the inclusion of spatial lags of exogenous variables may have

important implications for the stability of a cointegration relationship among variables

for a regional economic system.

Regarding the short-run determinants of economic growth, we observe, for most vari-

ables in the specified spatial error correction model (SpECM), that positive direct effects

are present for the German growth–trade–FDI relationship. With respect to the spatial

lags, we find that a rise in the export flows in neighboring regions significantly increases

the region’s own growth rate, while imports show negative feedback effects. Finally, we

also find positive growth relationship among German regions if we augment the model by

the spatial lag of the endogenous variables. This result mirrors earlier evidence for Ger-

many, reporting positive autocorrelation in regional growth rates. Our specified SpECM

(both using ML as well as GMM with appropriate instruments for the time and spatial lag

of the endogenous variable) passes residual based spatial dependence tests. For the latter,

we use a spatio-temporal extension of the Moran’s I statistic, for which we calculate both

asymptotic as well as bootstrapped standard errors. We finally also test the stability

of the results by using a different spatial weighting matrix based on interregional goods

transport flows rather than geographical information. Our results hold for both spatial

weighting schemes, giving strong evidence for the existence of direct and indirect effects

in the German regional output–trade–FDI relationship, both in the long-run as well as

dynamic short-run perspective.
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Appendix

A.1 Bootstrapping the spatio-temporal extension of Moran’s I

Recently, different attempts have been made to improve statistical inference based on the

Moran’s I statistic to detect spatial dependence in the data. First, Lin et al. (2009 & 2010)

have shown that the power of Moran’s I statistic can be enhanced in small sample settings

if bootstrapped test statistics are calculated instead of their asymptotic counterparts.

Second, Lopez et al. (2009) have extended Moran’s I to the case of spatio-temporal data.

The authors label the extended version as the ‘STMI test’. In the following, we will

combine both proposals for the application in spatial panel data settings with a small

number of cross-sections. We thus first sketch the STMI test and then build a ‘wild’

bootstrap version of the test in the spirit of Lin et al. (2009).

The STMI test proposed by Lopez et al. (2009) is a straightforward extension of the

cross-section test. In the latter setting, Moran’s I can be defined as

I =
N

S

∑
r 6=s (yr − ȳ)wrs (ys − ȳ)∑R

r=1 (yr − ȳ)
, (6)

where ȳ is the sample mean for a variable y, wrs is the (r,s) element of a spatial

weighting matrix W , N is the total number of cross-sections and S is a measure of overall

connectivity for the geographical system. The null hypothesis of Moran’s I is the absence

of correlation between the spatial series yr with r = 1, . . . , N and its spatial lag
∑N

s=1 wrsys.

Building upon I and a measure for its standard deviation, Moran’s I statistic is shown

to be asymptotically normal with (see Lopez et al. (2009) as well as Kelejian & Prucha,

2001, for details)

I√
V ar (I)

∼ N(0, 1). (7)

As Lopez et al. (2009) point out, it is not strictly necessary to restrict the application

of Moran’s I to just one time period. Starting from a model with T consecutive cross-

sections with N observations in each of them, stacked in an NT × 1 vector, the authors

show that the spatio-temporal version of Moran’s I can be computed as

STMI =
NT

S

∑
(t,s)6=(r,k) (yts − ȳ)w∗(t−1)T+s,(r−1)T+k (yrk − ȳ)∑

ts (yts − ȳ)2 , (8)
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where yts is a spatio-temporal process with t ∈ Z and s ∈ S, where Z and S are sets

of time and spatial coordinates with cardinality |Z| = T and |S| = R, respectively. Each

element w∗ is taken from the following weighting matrix:

W ∗
NT =



WN 0 0 . . . 0 0

IN WN 0 . . . 0 0

0 IN WN . . . 0 0
...

...
...

...
...

0 0 0 . . . WN 0

0 0 0 . . . IN WN


, (9)

where the cross-section based spatial weighting matrix of order N×N appears along the

main diagonal and the diagonal below the main diagonal contains the temporal weighting

matrix IN . The latter is defined as the identity matrix of order N (for further details,

see Lopez et al., 2009). In a Monte Carlo simulation, Lopez et al. (2009) show that the

STMI test is robust to different types of distribution functions and has satisfactory finite

sample properties.

Building upon the findings in Lin et al. (2009), we additionally develop a ‘wild’ boot-

strap based test version for the STMI, which is implemented through the following steps:

Step 1: Estimate the residuals êit as êit = y−V δ̂ for the spatial or aspatial estimator

with regressors V and coefficients δ̂ (either short- or long-run specification) in focus and

obtain a value for the STMI. Save the obtained STMI.

Step 2: Re-scale and re-center the regression residuals ẽit according to

ẽit =
êit

(1− hit)1/2
, (10)

where hit is the model’s projection matrix so that a division by (1−hit)1/2 ensures that

the the transformed residuals have the same variance (for details, see MacKinnon, 2002).

Step 3: Choose the number of bootstrap samples B and proceed as follows for any j

sample with j = 1, . . . , B:

– Step 3.1: According to the wild bootstrap procedure, multiply ẽit with υ̃it,

where the latter is defined as a two-point distribution (the so-called Rademacher

distribution) with

32



υ̃it =

 −1 with probability 1/2

−1 with probability 1/2.
(11)

– Step 3.2: For each of the i = 1, . . . , N cross-sections, draw randomly (with

replacement) T observations with probability 1/T from ẽit × υ̃it to obtain ẽ∗it.

– Step 3.3: Generate a bootstrap sample for variable y (and its spatial lag) as

y∗it = V ∗δ̂ + ẽ∗it, (12)

where V ∗ = (Wy∗it, y
∗
it−1, X) and, for a time-dynamic specification, initialization

as y∗i0 = yi0. Thus, for a regression equation with a lagged endogenous variable,

we condition on the initial values of yi0, the exogenous variables X, and the

spatial weighting matrix W .10

– Step 3.4: Obtain the residuals from the regression including y∗ and V ∗, cal-

culate the bootstrap based STMI∗.

The full set of resulting bootstrap test statistics are STMI∗1 , STMI∗2 , . . . , STMI∗B.

From the empirical distribution, we can then calculate p-values out of the nonparametric

bootstrap exercise in order to perform hypothesis testing. There are various ways to do

so. Lin et al. (2009), for instance, express equal-tail p-values for STMI∗ as

P ∗(STMI∗) = 2min

 1

B

B∑
j=1

C(STMI∗j ≤ STMI),
1

B

B∑
j=1

C(STMI∗j > STMI)

 , (13)

where C(.) denotes the indicator function, which is equal to 1 if its argument is true and

zero otherwise. Then, given a nominal level of significance α, we compare P ∗(STMI∗j )

with α. Following Lin et al. (2009), one can reject the null hypothesis of no spatial

dependence if P ∗(STMI∗j ) < α.

10See, e.g., Everaert & Pozzi (2007) for the treatment of initial values to bootstrap dynamic panel data processes. In the
following, by default, we generate y∗ based on the long-run cointegration specification, where we do not face the problem
of time dynamics in the bootstrapping exercise. However, we additionally need to account for the generated error term and
its spatial lag as explanatory regressors in the short-run equation.
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A.2 Moment Conditions for the Spatial Dynamic GMM Model

The use of GMM-based inference in dynamic panel data models is a common practice in

applied research. Most specifications rest on instruments sets as proposed by Blundell

& Bond (1998). Their so-called system GMM (SYS-GMM) approach combines moment

conditions for the joint estimation of a regression equation in first differences and levels.

The latter part helps to increase the efficiency of the GMM methods compared to earlier

specifications solely in first differences (e.g., Arellano & Bond, 1991). Subsequently, ex-

tensions of the SYS-GMM approach have been proposed, which make use of valid moment

conditions for the instrumentation of the spatial lag coefficient of the endogenous variable

(see, e.g., Kukenova & Monteiro, 2009, Bouayad-Agha & Vedrine, 2010). Kukenova &

Monteiro (2009) have also shown, by means of Monte Carlo simulations, that the spatial

dynamic SYS-GMM model exhibits satisfactory finite sample properties.

In this paper, we focus on appropriate moment conditions for the time-space simul-

taneous model including a time and spatial lag of the endogenous variable. Instruments

can be built based on transformations of the endogenous variable as well as the set of

exogenous regressors. Assuming strict exogeneity of current and lagged values for any

exogenous variable xi,t, then the full set of potential moment conditions for the spatial

lag of yi,t−1 is given by

– First differenced equation:

E

∑
i 6=j

wij × yi,t−s ∆ui,t

 = 0 t = 3, . . . , T s = 2, . . . , t− 1, (14)

E

∑
i 6=j

wij × xi,t+/−s ∆ui,t

 = 0 t = 3, . . . , T ∀s. (15)

– Level equation:

E

∑
i 6=j

wij ×∆xi,t ui,t

 = 0 for all s = 2, . . . , T and t = 3, . . . , T, (16)

E

∑
i 6=j

wij ×∆yi,t ui,t

 = 0 t = 3, . . . , T. (17)

One has to note that the consistency of the SYS-GMM estimator relies on the validity

of these moment conditions. Moreover, in empirical application we have to carefully
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account for the ‘many’ and/or ‘weak instrument’ problem typically associated with GMM

estimation, since the instrument count grows as the sample size T rises. We thus put

special attention to this problem and use restriction rules specifying the maximum number

of instruments employed as proposed by Bowsher (2002) and Roodman (2009).
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