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Abstract: 
 

The paper explores the potential for inter-sectoral technology flows in industrial clusters in Germany. 
With the help of a product-embodied R&D flow matrix, calculated using data on input–output tables 
and sectoral R&D employment, we construct industrial cluster based networks of technology provider 
and user relationships and examine the regional embeddedness of different sectors in the technological 
diffusion network of industrial clusters. As a result, the paper shows that simple graphical 
representations of relevant product-embodied R&D flows illustrate substantial differences in potentials 
for technological relations within industrial clusters. 
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1  Introduction 
 

‘Localized clusters of similar and related firms form the basis of a local milieu that may facilitate 
knowledge spillovers and stimulate various forms of adaption, learning, and innovation.’ 
(Malmberg and Maskell 2002: 433)    

This paper explores the potential for inter-sectoral technology flows in industrial clusters in Germany. 
With the help of a product-embodied R&D flow matrix, calculated using data on input–output tables 
and sectoral R&D employment, we construct industrial-cluster-based networks of technology provider 
and user relationships, and examine the regional embeddedness of different sectors in the 
technological diffusion network of industrial clusters. In line with Drejer (2000: 378) the paper shows 
that simple graphical representations of relevant product-embodied R&D flows illustrate substantial 
differences in potential for technological spillovers within industrial clusters. 

The focus on product-embodied R&D flows is important, as R&D efforts made in one sector do not 
only affect that sector itself, but can also have repercussions on other sectors through ‘imported’ 
innovations via intermediary products or investment goods (Düring and Schnabl 2000: 363). This 
effect holds especially for industrial clusters. As firms within industrial clusters do not only differ in 
their R&D efforts but also with respect to their use of technology embodied in goods produced by 
other firms, upstream suppliers and downstream customers within industrial clusters can become 
essential sources of productivity gains (Porter 2000: 256). In addition, inter-sectoral linkages can act 
as important sources of technological learning. In the 1960s, Schmookler (1966) observed that one 
potential way for industries to innovate is through the improvement of the inputs it buys from other 
industries. In this way, the success of interactive learning is supported by close localised input–output 
relations (Lundvall 1988; Lundvall and Johnson 1994; Edquist 1997). To sum up, if the transfer of 
technological knowledge works best with spatial proximity, ‘then any spillover that might be gained 
from a strong core of manufacturing and R&D will be easiest to exploit if the receiver of such 
spillovers locates near this core’ (Baptista and Swann 1998: 526). 

Based on this assumption, we offer a systematic illustration of German industrial cluster structures 
with a special focus on the potential for inter-sectoral technology flows. The analysis allows specific 
insights into these important functional linkages, which have a high impact on regional technological 
progress and growth. The paper is structured as follows. After a short review of cluster theory and 
empirical approaches in industrial cluster research, we present a multiple-step approach for mapping 
potentials for inter-sectoral technology flows within industrial clusters. We apply this framework to 
the Federal Republic of Germany, describe the spatial allocation of industrial cluster structures, and 
compare differences in the internal structure of sectoral technological interdependencies of industrial 
clusters as expressed by (1) simple input–output flows; and (2) embodied technological knowledge 
flows. The paper also presents a case study of Nuremberg with its first order neighbouring regions and 
concludes with a discussion of the advantages of this new methodological framework and the classical 
tools of cluster identification. 
 
2 Industrial clusters 
 
Research on industrial agglomerations and clusters has become a central topic in economic geography. 
Dating from 1920, Marshall’s Principles of Economics theory highlights the role of agglomeration 
economies arising from a specialising supplier and service industry, local labour market pooling, and 
knowledge spillovers as mechanisms supporting the competitiveness and growth of regional industry. 
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The term ‘cluster’ was first used by Czamanski and Ablas (1979), and contributions to this topic 
increased with the introduction of Porter’s diamond model (Cruz and Teixeira 2009). Porter (1998: 
199) defines industrial clusters as ‘a geographically proximate group of interconnected companies and 
associated institutions in a particular field, linked by commonalities and complementarities’. With the 
help of the diamond model he stresses advantages such as related and supporting industries, factor and 
demand conditions, and the context for firm strategy and rivalry (1998).  

Another approach explaining the advantages of the geographic concentration of economic activity was 
presented by the knowledge-based theory of spatial clustering (Malmberg and Maskell 2002). Based 
on a multidimensional approach, Malmberg and Maskell (2002) highlight localised learning 
capabilities as sources of cluster-specific advantages (see also Gordon and McCann 2000; Bathelt 
2004; Benneworth and Henry 2004; Maskell and Malmberg 2007; and Blum 2008 for 
multidimensional approaches). Regionally concentrated specialised firms linked by value chains 
benefit from complementary competencies and a greater level of trust between partners (Bathelt et al., 
2004). Within the same step of the value chain firms show similar or substitutive competencies, 
leading to cognitive proximities that enable mutual learning and motivation. Even if they do not have 
any direct exchange with their competitors they can benefit from the parallel performance of similar 
tasks (Malmberg and Maskell 2002).  

However, to avoid a predominantly local focus on industrial clusters and an over-embeddedness in 
local structures, Bathelt et al. (2004) further extended the multidimensional approach and underlined 
the role of global pipelines to reduce the risks of negative lock-in effects within regional cycles of 
competencies. 
 
3 The Focus: The potential for Inter-Sectoral Technology Flows in Industrial Clusters 
 
Thus cluster theory highlights the role of sectoral interdependencies along the value-adding production 
chain as the key carrier of embodied and disembodied technological knowledge. However, direct 
observation of inter-sectoral technology flows is not possible (Düring and Schnabl 2000: 363). 
Bearing in mind that technological knowledge becomes diffused through different channels and can be 
identified with different indicators such as patents (Scherer 1982; Jaffe et al. 1993), innovation flow 
matrices (DeBresson 1996), formal co-operation projects (Jorde and Teece 1990; Katz and Ordover 
1990), bibliometric analysis (Abramo et al. 2008) and other, informal ways, we use embodied R&D 
flows as a first approximation of the potentials for intersectoral technology flows within industrial 
cluster structures.  

Input–output-based measures of sectoral interdependence have a long-standing tradition in the analysis 
of industrial cluster structures. An elementary cluster analysis was introduced by Bijnen (1973), but 
this focused only on the strongest inter-industry linkages to indicate sectoral interdependence and thus 
excluded potentially important secondary linkages. Oosterhaven et al. (2001) applied intra-regional 
intermediate sales matrices. To identify relevant inter-industry linkages they used above-average 
absolute intermediate transaction size, relative importance of intermediate transactions and absolute 
size of flows as threshold values. Sonis et al. (2008) proposed structural Q analysis to identify sectoral 
forward and backward linkage clusters in input–output systems. Hill and Brennan (2000) used 
discriminant analysis to group industries according to common variances in input–output tables. In 
combination with additional indicators such as regional specialisation and export characteristics, they 
identified cluster-specific driver industries. However, because of the restriction that one industry can 
belong only to one cluster, this approach is of limited use when an industry serves different sectors at 
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the same time (vom Hofe and Chen 2006). The most common method applied in the input–output field 
has been principal component factor analysis (Roepke et al. 1974; Czamanski 1974, 1976; Ó 
hUallacháin 1984; Feser and Bergman 2000; Feser et al. 2005). Feser and Bergman (2000), for 
example, used principal components factor analysis to measure the relative strength of a given 
industry and a derived factor. As this approach is not based on the absolute or even the relative size of 
transactions between the sectors, they used the similarity of intermediate purchases and sales structure 
to group different industries into one cluster (Oosterhaven et al. 2001). Thus the highest-loading 
industries were treated as being members of an industrial cluster (see also vom Hofe and Dev Bhatta 
2007; Kelton et al. 2008 for recent applications), and the identified industrial clusters were seen as 
templates and used as indicators of regional transactions.  

However, all these approaches used basic input–output-based linkages to measure sectoral 
interdependence. As one key element of industrial cluster success is an increase in factor productivity 
and innovativeness, the importance of interdependence between cluster agents has to be viewed in 
relation to R&D efforts and technological knowledge (Drejer 2003: 9). This highlights the importance 
of the re-evaluation of input–output coefficients and the introduction of knowledge within the input–
output concept to avoid an over-estimation of the role of some industries compared to others in the 
transfer of technological knowledge (see, for example, Schnabl 1995; Leoncini et al. 1996; Verspagen 
1997; Düring and Schnabl 2000; Los and Verspagen 2000).  

We now present a multiple-step approach for the systematic identification of industrial clusters’ 
potential for inter-sectoral technology flows, based on a graph-theoretical model. By applying input–
output matrices supplemented with information about the R&D activities of the sectors we answer the 
question of whether sectors within industrial clusters in Germany can expect to receive localised 
spillover through technological knowledge flows from other sectors or not.  
 
 
4 Methodological Framework 
 
The graph theoretical model is based on the approach of Titze et al. (2009a) who identified industrial 
clusters with the help of a combination of a measure of spatial concentration (for the identification of 
basic cluster structures within a region) and Qualitative Input–Output Analysis (QIOA) (for the 
identification of the vertical sectoral interdependence of identified industrial cluster structures). In the 
following three subsections we first explain the identification of basic cluster structures within a 
region. Next, we present the QIOA. And finally, we describe the incorporation of information on 
intersectoral technology flows to identify technology provider and user relationships in this 
framework. 
 
4.1 The identification of basic cluster structures using the Sternberg and Litzenberger (2004) 
cluster index  
 
The empirical literature on the identification of industrial clusters provides a wide range of analytical 
tools to calculate concentration measures (for a short overview see, for example, Aiginger et al. 1999). 
Among these, the Sternberg and Litzenberger (2004) cluster index offers a suitable measure for cluster 
identification. This index involves three components: the relative industrial density, the relative 
industrial stock, and the relative size of establishments. Equation (1) describes the calculation of the 
cluster index (CI) of a branch i for a region r: 
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The variable e represents the number of employees, b denotes the number establishments, z is the 
number of inhabitants and a shows the area size of the respective region. The advantage of the use of 
this index in comparison to other simple measures of concentration (the Gini index, Herfindahl index 
etc.) arises out of the control for the firm size distribution within the clusters. Sternberg and 
Litzenberger (2004) argue that the spatial concentration of firms should not be dominated by just one 
or two establishments; therefore this measure needs to be included alongside a high industrial density 
and a high relative industrial stock to identify industrial clusters. The integration of the firm size 
distribution in the cluster index eliminates the problem of the misinterpretation of concentration. 
 
4.2  The Identification of vertical sectoral interdependence using the QIOA 
 
The principle of QIOA relies on the need for a reduction in the complexity of the input–output table to 
apply graph theoretical methods. This method differentiates between important and unimportant 
buyer–supplier relations using national input–output tables. In other words, this procedure transforms 
a quantitative input–output table into qualitative information. Mathematically, this transformation can 
be realised by a binarisation of the input–output table. An intermediate input flow s between sector i 
and sector j becomes 1 if it exceeds a filter rate F. Otherwise the flow becomes 0. The resulting matrix 
is denoted as adjacency matrix W: 
 



 >

=
otherwise 0

 if 1 Fs
w ij

ij  (2) 

 
Equation (2) makes clear that the value of the filter rate F influences the number of important 
intermediate input flows. Schnabl (1994, 2000) developed a multi-stage iterative procedure to 
determine this filter value endogenously. The algorithm aims to minimise the loss of information 
through the binarisation – or, in other words, the procedure aims to maximise the information content 
of the binary input–output table (for recent applications see, for example, Titze et al. 2009a; 2009b). 
To determine the optimal filter rate, Titze et al. (2009a) applied two different measures: an entropy 
measure and the average value of an element of the resulting connectivity matrix. The optimal filter 
rate can be derived from the average of these two measures. 

The input–output flows in the national input–output tables provided by the Federal Statistical Office of 
Germany represent individual buyer–supplier relations valued in currency units. This gives us 
information about the value of traded intermediates between two sectors. However, these flows do not 
contain information about the degree of technological knowledge being transferred by the products. 
This problem can be solved if we re-evaluate the input–output flows. Mathematically, we have to 
solve an assignment problem. The next subsection describes an approach that transforms input–output 
flows into product-embodied R&D flows. 
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4.3 Identification of product-embodied R&D flows within an input–output framework 
 
The classical input–output model relies on Equation (3), where x is the vector of production values, C 
denotes the Leontief inverse and y represents the vector of total demand: 
 

yCx ⋅=  (3) 
 
The Leontief inverse can be written as Eulerian series, in which I denotes the unit matrix and A reflects 
the matrix of input coefficients: 
 

( ) ...321 ++++=−= − AAAIAIC  (4) 
 
In the next step we can apply the basic assignment model, in which Z is the re-evaluated core matrix of 
the input–output model; BD is the assignment matrix and <y> is the diagonal matrix of the total 
demand vector (for details see, for example, Meyer-Krahmer and Wessels 1989; Schnabl 1995, 2000; 
Straßberger and Stäglin 1995): 
 

( ) yAIBZ D ⋅−⋅= −1  (5) 
 
Equation (6) shows the replacement of the total demand vector by a synthetic vector I. This step 
allows the identification of the ‘technological’ structure of the core matrix. For our purposes, we use 
the standard vector. After the diagonalisation, this corresponds with the unit matrix I: 
 

( ) ( ) 11 −− −⋅=⋅−⋅= AIBIAIBZ DD  (6) 
 
The assignment matrix BD equals the diagonal matrix of the vector bR&D including the number of R&D 
employees multiplied by the diagonal matrix of the production value vector x. In addition there are 
other different approaches to integrate innovation or knowledge into interdependence studies (Drejer 
2003: 9). The application of R&D employees is in line with Leoncini et al. (1996). In contrast, 
Verspagen (1997) and Los and Verspagen (2000) use patent data; Schnabl (1995) and Düring and 
Schnabl (2000) apply sectoral R&D expenditures; and Drejer (1999) relies on multiple indicator R&D 
expenditures supplemented by patent grants and the formal qualifications of employees.  
 

1& −⋅= xbB DRD  (7) 

 
Re-evaluating the original input–output flows, we get information about the R&D intensity of these 
flows – the product-embodied R&D flows. Thus it is assumed that the product-embodied technology 
flows between sectors are proportional to the R&D employees of the industries. According to 
Equation (4), one can separate Equation (6) into the following layers: 
 

3
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1
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Thus layer zero is excluded from the analysis because it contains only the diagonal matrix BD of the 
vector bR&D divided by the vector x according to Equations (4) and (7). In the following step, we 
transform each layer matrix into a binary adjacency matrix Wk, where: 
 





 >

=
otherwise 0

 if 1 Fz
w

k
ijk

ij  (9) 

 
We continue the layer-wise calculation of adjacency matrices Wk until no element zij

k of the Zk 
matrices exceeds the filter rate F. In addition, we calculate the product matrix Wk as follows: 
 

0kfor  1 >⋅= −k
k

k WWW  (10) 
 
The Wk matrix involves the sectoral interdependencies between the sectors via the varying layers. In 
the next step we calculate the dependence matrix D by adding the product matrices Wk layer-wise. We 
apply a Boolean addition (marked by ‘#’) as it is important to know whether a connection exists 
between two sectors. Information on how many layers are needed to fulfil the filter criterion is not 
necessary here. 
 

( )...# 321 +++= WWWD  (11) 
 
Equation (11) determines the connectivity matrix H: 
 

DDDH ++= '  (12) 
 
The element hij of the connectivity matrix H gives us information about the type of intersectoral 
product-embodied R&D flows. A zero indicates that no sectoral interdependencies exist between i and 
j; a value of one can be interpreted as a technology user; and a value of two reflects a technology 
supplier relationship. When H shows values of 3, a sector both provides and uses knowledge from 
other sectors. The procedure for the calculation of the optimal filter rate equals the indicators used in 
the basic approach. We apply the entropy measure and the average value of an element of the resulting 
connectivity matrix. 
 
5 Empirical results 
 
We now apply the proposed framework and compare the differences in the industrial cluster structures 
in Germany when applying solely input–output flows and product embodied R&D flows. The analysis 
is carried out for the year 2003 at the NUTS 3 level (districts and district-free cities). For the 
calculation of the cluster index we use data on the number of inhabitants for 2003 and the area size for 
2004 as provided by the Federal Statistical Office of Germany (Regionaldatenbank Deutschland, 
codes 173-01-4 and 171-01-4). Data on the number of employees and the number of establishments 
stem from the Federal Employment Office of Germany. The QIOA is based on the input–output table 
from 2003 provided by the Federal Statistical Office of Germany (Fachserie 18, row 2, published on 
20 April 2007, revised 7 May 2008). This table contains 71 industrial sectors. Information about the 
sector’s number of R&D employees is calculated from the data of the German Mikrozensus survey 
(2004), provided by the Federal Statistical Office of Germany. 
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The first part of this section identifies industrial clusters in Germany. In the second subsection we 
compare the results of intersectoral interdependencies based on the application of input–output flows 
alone and on product-embodied R&D flows. In the third subsection we analyse the effect of 
differences on the internal structure of industrial clusters in Germany. Finally, we carry out a case 
study of Nuremberg and its first-order neighbours to illustrate a graphical model of the industrial 
cluster structures in this region. 
 
5.1  The identification of industrial clusters in Germany 
 
To identify industrial clusters in German regions (NUTS 3 level) we apply the Sternberg and 
Litzenberger (2004) cluster index for the year 2003. The critical element in this analysis is the 
definition of a threshold value. Sternberg and Litzenberger (2004) propose that a cluster index of 4 can 
be interpreted as the first sign of clustering. In line with other studies on cluster identification in 
Germany (for example, Brenner 2006) we chose a cluster index of 64, so the component values of the 
index are four times higher than average. By applying this threshold value we identify 347 industrial 
clusters in Germany allocated in 177 out of 439 regions (40.3 per cent). With respect to the sectoral 
structure 194 out of 347 industrial clusters (53.3 per cent) are related to the manufacturing sector. In 
total, 50 sectors out of 71 were involved in our analysis. A high number of industrial clusters are 
located in the West German agglomerations of Munich, Frankfurt am Main, Nuremberg, Stuttgart, 
Hamburg and Düsseldorf. Other important horizontal clusters can be identified in the regions of 
Würzburg, Kassel, Mainz and Darmstadt. With respect to East Germany, important locations of 
horizontal clusters can be found in the regions of Jena, Dresden, Zwickau, Stralsund and Rostock. 
 
5.2  Identifying sectoral interdependence based on input–output flows alone and product-
embodied R&D flows 
 
To characterise the sectoral interdependencies of the identified industrial clusters, we first apply QIAO 
to input–output flows alone. The optimum filter rate is 0.0097 in terms of input coefficients. Applying 
this filter rate to the input–output table, 521 out of 4,790 (71 x 71 – 71 main diagonal) elements 
remain as important sectoral interdependencies. Figure 1 shows the structural characteristics of the 
relevant input–output linkages. The figures are differentiated by the indegree (the number of important 
vertical linkages where a sector receives inputs from others) and outdegree (the number of important 
vertical linkages where a sector provides inputs to others) of the 71 sectors of the national input–
output table. Thus the indegree of relevant input–output linkages is more evenly distributed between 
the sectors, with a maximum number of 14 ingoing relations in sectors 10 (Mining of coal) and 40.2 
(Distribution of gas). Three sectors remain isolated in this framework (sectors 12 - Mining of uranium 
and thorium ores, 13 - Mining of metal ores and 95 - Private households’ services). In contrast, the 
outdegree of the sectors is distributed more unevenly and dominated by the service sectors 74 
(Business activities), 71 (Renting), 70 (Real estate activities) and 65 (Financial intermediation). These 
sectors serve a wide set of other sectors. Regarding the manufacturing sector, sectors 24 (Chemicals), 
28 (Fabricated metal products) and 29(Machinery) in particular provide substantial relevant input–
output linkages for the economy.  
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Figure 1: Structural characteristics of important input–output linkages 
Structure of relevant input–output linkages  

- Circle size reflects indegree of the sector - 
Structure of relevant input–output linkages  

- Circle size reflects outdegree of the sector - 

  
01 – Agriculture; 02 – Forestry; 05 – Fishing; 10 – Mining of coal; 11 – Extraction of crude petroleum; 12 – Mining of 
uranium; 13 – Mining of metal ores; 14 – Other mining and quarrying; 15.1–15.8 – Food products; 15.9 – Beverages; 16 – 
Tobacco products; 17 – Textiles; 18 – Wearing apparel; 19 – Tanning; 20 – Products of wood and cork; 21.1 – Pulp, paper; 
21.2 – Articles of paper and paperboard; 22.1 – Publishing; 22.2–22.3 – Printing; 23 – Coke, refined petroleum products; 
24.4 – Pharmaceuticals; 24 (excluding 24.4) – Chemicals (excluding pharmaceuticals); 25.1 – Rubber; 25.2 – Plastic; 26.1 – 
Glass; 26.2–26.8 – Ceramic; 27.1–27.3 – Basic iron; 27.4 – Basic precious and non-ferrous metals; 27.5 – Casting of metals; 
28 – Fabricated metal products; 29 – Machinery; 30 – Manufacture of computers; 31 – Electrical machinery; 32 – 
Communication equipment; 33 – Precision instruments; 34 – Motor vehicles; 35 – Other transport equipment; 36 – Furniture; 
37 – Recycling; 40.1, 40.3 – Electricity; 40.2 – Gas; 41 – Water; 45.1–45.2 – Civil engineering; 45.3–45.5 – Building 
installation; 50 – Sale; 51 – Wholesale trade; 52 – Retail trade; 55 – Hotels and restaurants; 60.1 – Transport via railways; 
60.2–60.3 – Other land transport; 61 – Water transport; 62 – Air transport; 63 – Supporting transport activities; 64 – Post and 
telecommunications; 65 – Financial intermediation; 66 – Insurance and pension funding; 67 – Financial intermediation; 70 – 
Real estate activities; 71 – Renting of machinery; 72 – Computer and related activities; 73 – Research and development; 74 – 
Other business activities; 75.1–75.2 – Administration of the state; 75.3 – Compulsory social security activities; 80 – 
Education; 85 – Health and social work; 90 – Sewage and refuse; 91 – Membership organisations; 92 – Culture and sport; 93 
– Other service activities; 95 – Private households. 
 

Rank Sector In-Degree Sector Out-Degree Sector Betweenness 
Centrality 

1. 40.2 
 

14 
 

74 64 74 1008.3 
2. 10 

 
14 
 

70 50 51 550.6 
 3. 45.3–45.5 13 51 47 70 471.3 

4. 15.9 12 71 35 71 287.9 
5. 11 12 40.1, 40.3 30 40.1, 40.3 252.5 
6. 90 11 64 27 65 103.8 
7. 30 11 24 (excl. 24.4) 20 24 (excl. 24.4) 92.3 
8. 52 11 28 16 60.2–60.3 66.4 
9. 45.1–45.2 11 29 16 28 62.6 
10. 22.1 10 64 15 29 54.3 
11. 33 10 60.2–60.3 14 63 52.4 
12. 25.1 10 63 12 64 49.4 
13. 21.1 10 25.2 10 45.3–45.5 38.7 
14. 01 10 23 10 90 35.9 
15. 36 10 75.1–75.2 9 52 30.0 

       
Source: Authors’ own illustration. 

 
The introduction of innovation and knowledge in the input–output framework leads to substantial 
changes in the internal structure of sectoral interdependencies. Here, the optimal filter rate is 0.00172. 
Based on this filter rate, 616 inter-industry linkages can be identified as important product-embodied 
R&D flows between the 71 sectors of the input–output table. Figure 2 presents the structural 
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characteristics of these. While the indegree of the sectors is more evenly distributed than the 
outdegree, we can identify the increasing importance of the manufacturing sector as the provider of 
technological spillover via product-embodied technology flows. In particular, sectors 29 (Machinery), 
28 (Fabricated metal products), 22.2–22.3 (Printing), 24 - excl. 24.4 (Chemicals), 73 (Research and 
development) and 31 (Electrical machinery) experienced sharp increases in important sectoral 
interdependencies and played a more pronounced role as technology providers in the analytical 
framework. 
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Figure 2: Structural characteristics of important product embodied R&D flows 
Structure of relevant technology flows  
- Circle size reflects indegree of the sector - 

Structure of relevant technology flows  
- Circle size reflects outdegree of the sector - 

  
01 – Agriculture; 02 – Forestry; 05 – Fishing; 10 – Mining of coal; 11 – Extraction of crude petroleum; 12 – Mining of 
uranium; 13 – Mining of metal ores; 14 – Other mining and quarrying; 15.1–15.8 – Food products; 15.9 – Beverages; 16 – 
Tobacco products; 17 – Textiles; 18 – Wearing apparel; 19 – Tanning; 20 – Products of wood and cork; 21.1 – Pulp, paper; 
21.2 – Articles of paper and paperboard; 22.1 – Publishing; 22.2–22.3 – Printing; 23 – Coke, refined petroleum products; 
24.4 – Pharmaceuticals; 24 (excluding 24.4) – Chemicals (excluding pharmaceuticals); 25.1 – Rubber; 25.2 – Plastic; 26.1 – 
Glass; 26.2–26.8 – Ceramic; 27.1–27.3 – Basic iron; 27.4 – Basic precious and non-ferrous metals; 27.5 – Casting of metals; 
28 – Fabricated metal products; 29 – Machinery; 30 – Manufacture of computers; 31 – Electrical machinery; 32 – 
Communication equipment; 33 – Precision instruments; 34 – Motor vehicles; 35 – Other transport equipment; 36 – Furniture; 
37 – Recycling; 40.1, 40.3 – Electricity; 40.2 – Gas; 41 – Water; 45.1–45.2 – Civil engineering; 45.3–45.5 – Building 
installation; 50 – Sale; 51 – Wholesale trade; 52 – Retail trade; 55 – Hotels and restaurants; 60.1 – Transport via railways; 
60.2–60.3 – Other land transport; 61 – Water transport; 62 – Air transport; 63 – Supporting transport activities; 64 – Post and 
telecommunications; 65 – Financial intermediation; 66 – Insurance and pension funding; 67 – Financial intermediation; 70 – 
Real estate activities; 71 – Renting of machinery; 72 – Computer and related activities; 73 – Research and development; 74 – 
Other business activities; 75.1–75.2 – Administration of the state; 75.3 – Compulsory social security activities; 80 – 
Education; 85 – Health and social work; 90 – Sewage and refuse; 91 – Membership organisations; 92 – Culture and sport; 93 
– Other service activities; 95 – Private households.  
 

Rank Sector In-Degree Sector Out-Degree Sector Betweenness 
Centrality 

1. 10 19 74 66 74 848.4 
2. 33 15 72 54 72 502.3 
3. 40.2 14 51 42 40.1, 40.3 317.0 
4. 90 14 40.1, 40.3 40 51 284.0 
5. 35 13 29 38 29 261.0 
6. 34 13 28 34 28 157.5 
7. 36 13 24 (excl. 24.4) 31 22.2–22.3 130.4 
8. 15.9 13 22.2–22.3 28 64 106.7 
9. 75.1–75.2 12 64 27 24 (excl. 24.4) 104.5 
10. 63 12 65 23 45.1 82.9 
11. 73 12 45.1–45.2 20 65 79.6 
12. 45.3–45.5 11 31 17 75.1–75.2 70.8 
13. 32 11 75.1–75.2 16 63 49.7 
14. 30 11 73 15 73 38.4 
15. 11 11 21.2 12 31 34.1 

       
Source: Authors own illustration. 

 
Another important question is: do important intermediate goods flows alone match important product-
embodied R&D flows? Table 1 answers this question. In total, 4,198 relations are neither important 
intermediate goods flows nor important product-embodied R&D flows. With respect to important 
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product-embodied R&D flows, 365 (59.3 per cent) out of 616 match important intermediate goods 
flows, while 251 (40.7 per cent) do not. If we focus on important intermediate goods flows alone, 365 
out of 521 (70.1 per cent) match important product-embodied R&D flows, while 156 (29.9 per cent) 
do not. These differences in the structure of inter-industry relations have led to changes in the 
structural characteristics of the industrial cluster structures under analysis.  
 
Table 1: Matching of different kinds of intermediate input flows 
 

Number of elements in 
the binary input–
output table 

Original intermediate input 
flows 

 

0 1 Total 

Intermediate 
input flows 
valued at 
employment in 
R&D 

0 4198 156 4354 

1 251 365 616 

Total  4449 521 4970a 

a The input–output table provided by the Federal Statistical Office of Germany shows the intermediate goods flows of 
71 sectors. Because we disregard intra-sectoral relations, we have 71 x 71 – 71 (main diagonal elements) = 4,970 
elements of the binary input–output table. 
Source: Authors’ own calculations and illustration. 
 

5.3 Sectoral interdependencies of industrial clusters in Germany – an application at the 
regional level 

 
To specify the industrial cluster structures in the German regions we rely on a classification scheme 
that allows the assignment of each region to a specified class of industrial clusters (see Titze et al. 
2009: 9). The classification scheme is based on two elements: first, the number of industrial clusters in 
the region; and second, the number of important sectoral interdependencies between those industrial 
clusters. The specifications of the two elements result in five classes (see Table 2). In class 1, no 
concentrated economic activity can be identified. Regions with only one industrial cluster form class 
2. A minimum condition for the existence of vertical sectoral interdependencies is the localisation of 
more than one industrial cluster in the region. Regions which possess more than one horizontal cluster 
can be divided into three further classes. Regions with no potential for sectoral interdependencies are 
grouped in class 3, class 4 hosts regions showing the potential for one vertical relation, while regions 
with the potential for more than one vertical relation are allocated to class 5. 

Table 2: A classification scheme for industrial cluster structures 

 
 Number of horizontal clusters 
Number of linkages Zero One More than one 
No linkages   Class 3 
One linkage Class 1 Class 2 Class 4 
More than one linkage   Class 5 

Source: Titze et al. 2009a: 9. 
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Applying the classification scheme, we identified 262 regions with no concentrated economic activity 
(class 1; see Table 3), and 103 regions possess only one industrial cluster (class 2). If regions host 
more than one horizontal cluster they show potential for vertical sectoral interdependencies. Thus we 
can distinguish three different kinds of buyer–supplier relations. With regard to important intermediate 
goods flows, 17 regions can be grouped into class 4. Only 14 (3.2 per cent) of the 439 regions fulfil 
the criteria of class 5. 
 
Table 3 allows us to distinguish the effects of different measures of sectoral interdependencies on 
industrial cluster structures. If we compare the results for the application of important intermediate 
goods flows with those for product-embodied R&D flows we can show that more regions were able to 
attract potential vertical relations, but this increase is very small (17 versus 18 in class 4, and 14 versus 
18 in class 5). 
 
Table 3: Description of the structural characteristics of industrial clusters 
  Number of regions 

  Intra-regional flows Intra- and inter-regionala flows 

Class Description 
Important intermediate 

goods flows 
Product embodied R&D 

flows 
Important intermediate 

goods flows 
Product embodied R&D 

flows 

1 
Regions with no 
concentrated 
economic activity 

262 

2 Regions with one 
industrial cluster 103 25 

3 
Regions with more 
than one industrial 
cluster 

43 38 78 79 

4 

Regions with one 
sectoral 
interdependency of 
industrial clusters 

17 18 29 27 

5 

Regions with more 
than one sectoral 
interdependency of 
industrial clusters 

14 18 45 46 

Total number of regions 439 

a Including the region’s flows with its first order neighbours under the condition that the region under analysis possesses at 
least one cluster. 
Source: Authors’ own calculations based on Titze et al. 2009a:10. 
 
We extend the regional focus of our analysis from the local to the regional level, and we may expect 
that the intensity of sectoral interdependencies will increase. We analyse the regional dimension of 
industrial clusters by integrating first-order neighbouring regions in the analysis. If the region under 
analysis possesses at least one industrial cluster, we search in a second step for any relations this local 
cluster may have with industrial clusters in neighbouring regions. We interpret these additional 
relations as the extended range of local industrial clusters. With respect to Table 3, we can determine 
that 25 out of 103 regions (class 1) are not able to widen their industrial base if we consider the 
neighbouring regions too. On the other hand, 78 out of 103 regions with one industrial cluster have 
neighbouring regions that possess at least one cluster. Here, the minimum condition exists for the 
formation of vertical linkages between clusters located in neighbouring regions. Against this 
background there is the not unexpected result that the number of regions showing cluster 
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characteristics increases. Furthermore, there appear to be no strong differences between important 
intermediate goods flow linkages and product-embodied R&D flows with respect to the number of 
regions having cluster structures. Figure 3 illustrates the spatial allocation of the industrial cluster 
structures in Germany. 

With our approach, strong local vertical industrial clusters can be seen in the large urban areas of 
Hamburg, Berlin, Munich, Frankfurt am Main and Cologne. The south-west of Germany (Baden-
Württemberg) and the Ruhr area in particular show spatially concentrated economic sectors which are 
rather linked intermediate goods flows alone and product-embodied R&D flows. East Germany as a 
whole lacks concentrated economic activity. Only a couple of regions hosted important production 
sites: Rostock, Stralsund and Wismar as maritime clusters; Dresden and Jena as high-tech clusters; 
Zwickau as an automotive cluster; and Magdeburg as a recycling cluster. 
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Figure 3: The spatial allocation of German cluster structuresa 

Intra-regional relations Intra- and inter-regionalb relations 

Intermediate goods flows alone Product-embodied R&D flows Intermediate goods flows alone Product-embodied R&D flows 

    

a According to the classification scheme cluster classes are denoted as follows: 1 Regions with no concentrated economic activity, 2 Regions with one industrial cluster, 3 Regions with more than 
one industrial cluster, 4 Regions with one sectoral interdependency of industrial clusters, 5 Regions with more than one sectoral interdependency of industrial clusters.  
b Including the region’s flows with its first-order neighbours, with the condition that the region under analysis possesses at least one cluster. 
 
Source: Authors’ own calculations and illustrations. 
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If we widen the geographical scope from local to regional clusters we expect an increasing degree of 
clustering. Indeed, if we examine important production sites (horizontal clusters) in (first-order) 
neighbouring regions we can identify a higher number of regions possessing sectoral 
interdependencies according to the input–output framework. Furthermore, we can determine 
differences between intermediate goods flows alone and product-embodied R&D flows. Cluster 
literature highlights this phenomenon as being important for the development of sustainable regional 
growth. In line with this idea we shall deal in detail with the differences mentioned. 

At this point we must pay attention to the fact that changes in cluster structures can only occur in 
regions possessing one or two important production site(s) at least. If a region lacks concentrated 
economic activities it becomes irrelevant for analyses of differentiated kinds of intermediate flows. So 
we describe in detail those regions that are capable of attracting important connected production 
locations according to the presented approach. In Figure 4 we distinguish first between intra- and 
inter-regional flows, and second between intermediate input alone and product-embodied R&D flows 
in the 30 most important regional clusters.  

The left-hand side of Figure 4 displays regions possessing important production sites which show a 
higher degree of interaction in terms of product-embodied R&D flows than in intermediate input flows 
alone. Munich is a remarkable example of this phenomenon, as it hosts 13 horizontal clusters. With 
the sole focus on intermediate input flows alone one can detect 33 inter-industry relations. The number 
of connections increases to 46 if we consider product-embodied R&D flows rather than intermediate 
input flows alone. Obviously, these regions possess important production sites that are related 
predominantly in terms R&D linkages. Jena and Dresden are examples of that phenomenon in East 
Germany. On the other hand, there are regions showing an equal or higher degree of connectivity in 
terms of pure intermediate goods flows (Düsseldorf, Kassel, Hamburg, etc.). Obviously, these regions 
are dominated by important production locations that are linked in particular by original intermediate 
input flows. 

The right-hand side of Figure 4 illustrates the changes if we take the first-order neighbouring regions 
into account. Here, we can also distinguish between the patterns discussed above. The district of 
Munich hosts only 3 important production locations (sector 72: Computer and related activities; and 
sector 73: Research and development). The degree of interaction between these two sectors and others 
situated in neighbouring regions is extremely high in terms of product-embodied R&D flows. In total, 
we can detect 35 direct linkages to production sites in neighbouring regions. In contrast to that, a 
couple of regions show strong direct linkages in terms of intermediate input flows alone (Duisburg, 
Mannheim, Mettmann, etc.). To sum up, the outlined approach gives us insights into the nature of 
different industrial clusters: pure value chains versus R&D intensive inter-industry relations, and local 
versus regional connections. 
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Figure 4: Changes in the structural characteristics of selected industrial clusters: the 30 most important 
cluster regions 

Intra-regional relations Inter-regionala relations 
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a Including the region’s direct flows with its first-order neighbours under the condition that the region under analysis 
possesses at least one cluster.  
Source: Authors’ own calculations and illustration. 

 

5.4  Case study: Nuremberg 
 
Using the example of Nuremberg and its neighbouring regions we illustrate the potential of the applied 
methodology. The greater Nuremberg region shows strong concentrations specifically in the 
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manufacturing sectors (19, 22.2–22.3, 24.4, 26.1, 27.4, 27.5, 31 and 32; see Figure 5). With respect to 
Nuremberg city, one can identify that only a small number of industrial clusters show vertical sectoral 
interdependencies in terms of important intermediate goods flows, indicating only a weak intra-
regional potential to benefit from interaction. By increasing the spatial focus, the number of potential 
sectoral interdependencies rises. One can detect clusters in the neighbouring regions that are linked 
with industrial clusters in the city of Nuremberg. Here, the cluster Electricity and Steam supply (40.1, 
40.3) plays a dominant role because it is strongly linked to other energy-intensive sectors, such as 
Glass production (26.1) and Casting of metals (27.5), in Nuremberg and surrounding regions. The 
region of Schwabach hosts another strongly interdependent cluster: the sector Basic precious and non-
ferrous metals (27.4). To sum up, if we take Nuremberg’s neighbouring regions into account, the 
structural graph becomes more complex and industrial cluster structures are described more 
comprehensively. 
If we examine R&D intensive buyer–supplier relations, however, we get a different picture. First, we 
can see that the intra-regional interactions are more complex. Here, the sectors Printing (22.2–22.3), 
Electrical machinery (31) and Communication equipment (32) act as key players. Second, clusters in 
Nuremberg’s neighbouring regions complete the structural graph. If we compare the two structural 
graphs we can determine that a number of linkages become apparent if the framework is extended 
from intermediate goods flows and product-embodied R&D flows. So, the sole focus on intermediate 
goods flows would identify only incompletely the potential for technological knowledge spillover in 
these industrial cluster structures, and the same applies to the regional focus of industrial cluster 
structures. 
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Figure 5: The Nuremberg region’s cluster structures regarding different kinds of intermediate inputs 
Original intermediate input flows Intermediate input flows valued at  
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Sector    
19 Tanning and dressing of leather 31 Electrical machinery  
22.2–22.3 Printing 32 Communication equipment 
24.4 Pharmaceuticals 40.1, 40.3 Electricity and Steam supply 
26.1 Glass and glass products 62 Air transport 
27.4 Basic precious  63 Supporting transport activities 
27.5 Casting of metals 66 Insurance and pension funding 
Source: Authors’ own calculations and illustration.
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6 Conclusions 
 
This paper has dealt with the extent to which differences in the structure of potential inter-sectoral 
technology flows can be analysed with the help of a product-embodied R&D flow matrix. The claim was that 
a relatively simple graphical representation of relevant product-embodied R&D flows could illustrate 
substantial differences in potential for technological spillovers within industrial clusters. The potential for 
inter-sectoral technology flows studied was only local and regional. This, of course, does not imply that 
external linkages (for example, global pipelines in the sense of Bathelt et al. 2004) are not crucial in 
understanding and explaining technological knowledge spillovers within industrial clusters. Furthermore, the 
identified sectoral interdependencies do not show real linkages but only the potential for them. These 
linkages occur from the production-engineering point of view. Even though we have not detected real 
linkages, this analysis may help regional policy-makers to understand the structure and nature of potential 
inter-industry linkages at the local and regional level.  
 
The approach used is based on four assumptions. First, we assume that the classification scheme of input–
output statistics (CPA: classification of products by activity) is nearly equivalent to the NACE code. The 
second assumption applies to the technical production structure in the regions under analysis. We suppose 
that the industry templates derived from the input–output table at the national level are also applicable to the 
regional level, assuming that important industrial relations are (nearly) identical between different sectors at 
the national level to those of the regional level. Third, it is assumed that the sector’s productivity is equal in 
all the regions under analysis. Fourth, it is assumed that the product-embodied knowledge flows are 
proportional to the number of R&D employees in the sector, as well as the quantitative extent of the flows of 
intermediate goods between the user and producer industries (Drejer 2000: 381). We need this assumption to 
apportion intermediate inputs to the regional level according to the regional share of employment in the 
relevant sector. With these rigid assumptions in mind, the approach is able to illustrate systematically the 
potential for local and regional technological knowledge spillover within industrial clusters in Germany. 
 
The approach shows that these potentials occur predominantly in the West German agglomerations like 
Munich, Frankfurt am Main, Nuremberg, Stuttgart, Düsseldorf und their first-order neighboring regions. East 
Germany is showing structural weaknesses regarding these potentials. Only a few regions like Dresden, Jena, 
Rostock and Stralsund possess industrial cluster structures offering potentials for inter-industry linkages. 
Even more apparent is the strong localized nature of these potentials in Eastern Germany. While West 
German regions often show related industrial cluster structure in their first order neighboring regions East 
German regions fall short of this phenomenon.  
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