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Abstract

We develop an empirical approach to examine static and dynamic knowledge externalities
in the context of a regional total factor productivity relationship. Static externalties refer to
current period scale or industry-size effects which have been labeled localization externalities
or region-size effects known as agglomeration externalities. Dynamic externalities refer to the
relationship between accumulated or prior period knowledge and current levels of innovation,
where past learning-by-doing makes innovation positively related to cumulative production over
time. Our empirical specification allows for the presence of both static and dynamic externalities,
and provides a way to assess the relative magnitude of spillovers associated with spillovers from
these two types of knowledge externalities. The magnitude of own-region impacts and other-
region (spillovers) can be assessed using scalar summary measures of the own- and cross-partial
derivatives from the model. We find evidence supporting the presence of dynamic externalities as
well as static, and our estimates suggest that dynamic externalities may have a larger magnitude
of impact than static externalities.
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1 Introduction

The literature on knowledge externalities distinguishes between static and dynamic externalities

as sources of knowledge generation and innovation (Glaeser et al. 1992, Henderson el al. 1995,

Krugman and Obstfeld 1997). Static externalities refer to current period scale or industry-size effects

which have been labeled localization externalities or region-size effects known as agglomeration

externalities. Static externalities associated with localization effects have been labeled Marshall-

Arrow-Romer externalities while static externalities associated with agglomeration effects are often

called Jacob’s externalities. The focus of static externalities is on the relationship between current

period regional output and firm-level innovation, which is a positive relationship if we assume that

1) scale effects lead to a greater exchange of knowledge between engineers and scientists and 2)

geographical concentration of knowledge workers leads to an increased ability to receive knowledge

spillovers. Regions such as Silicon Valley would reflect this idea.

In contrast, dynamic externalities refer to the relationship between accumulated or prior period

knowledge and current levels of innovation. Krugman and Obstfeld (1997) make the argument that

accumulation of knowledge or the sum of industry outputs over past periods increase current period

firm-level innovation activity. The notion is that past learning-by-doing plays an important role (say

in semiconductor production), so that innovation is positively related to cumulative production (of

innovative products) over time rather than just current period production.

We focus attention on dynamic externalities which are thought to depend less on geographical

connectivity. For example, Echeverri-Carroll and Brennan (1999) rank Texas regions into a hierarchy

using knowledge accumulated over time, and show that ‘lower ranked’ regions (those with less

accumulated knowledge) depend on innovation exchanges with ‘higher ranked’ regions (those with

more accumulated knowledge). This implies a smaller role played by geography in generation of

dynamic externalities than in the case of static externalities. Echeverri-Carroll and Brennan (1999)

argue that firms clustered in lower technology regions such as Route 128 (Boston), Research Triangle

(Raleigh-Durham) and Austin (Texas) depend on knowledge networks established with firms (and

universities, research labs) in Silicon Valley by scientists and engineers working for the firm in

order to develop and commercialize new products and processes. In support of this idea, Echeverri-

Carroll and Hunnicutt (1998) examined a sample of high technology firms in Texas and conclude

that while (static) agglomeration economies seem important to attract high technology firms to a

region, (dynamic) externalities were of primary importance, since knowledge used for innovation

came mainly from outside regions.

The notion that knowledge capital (accumulated past knowledge) in conjunction with knowledge

spillovers represents a source of increased productivity levels (or growth of productivity) has a long
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history in economics (see, for example, Grossman and Helpman 1994, and Romer 1990). We draw

upon this link between productivity and knowledge capital to further explore dynamic externalities

in a regional context. Specifically, we quantify the contribution of knowledge capital to total factor

productivity (TFP) differences among regions. In doing so the paper lies in the research tradition

that finds it congenial and useful to investigate the impact through the lens of the knowledge capital

model suggested by Griliches (1979), which augments the production function with the stock of

knowledge. This knowledge capital model has remained a cornerstone of the productivity literature

for more than 25 years and has been applied in dozens of empirical studies on firm-level productivity

and extended to the more aggregated industry- and country-levels (see Griliches 1995 for a survey;

and Griffith et al 2004, 2005; Doraszelski and Jammendreu 2008 for recent examples).

We argue that the presence of (static) externalities in conjunction with unobservable/unmeasurable

regional knowledge stocks leads to a theoretical implication of spatial dependence in the relation-

ship between regional observations on TFP and knowledge capital (accumulated past knowledge).

Similarly, (dynamic) externalities in the presence of common shocks to observed and unobserved

knowledge stocks imply a theoretical structure of technological dependence/connectivity between

regional observations on TFP and knowledge capital. These theoretical model specifications allow

us to formally test for the presence of static and dynamic externalities as well as the relative im-

portance of these two influences on regional TFP. In addition, the structured dependence regression

model we employ allows us to quantify spillover/externalities from static and dynamic externalities.

Our empirical results suggest that own-region impacts of knowledge capital on regional TFP

are less important than spillover impacts. Further, we find evidence consistent with the findings of

Echeverri-Carroll and Hunnicutt (1998) regarding dynamic externalities. These were found to be

more important (larger in magnitude) than static externalities.

The remainder of the paper is organized as follows. Section 2 outlines a theoretical framework

for assessing the contribution of knowledge capital to regional total factor productivity, when faced

with unmeasured/unobservable regional knowledge. We show how unobservable forms of regional

knowledge capital in conjunction with observed proxies for regional knowledge capital, lead to a the-

oretical spatial dependence structure consistent with static externalities. Extending this reasoning

using technological connectivity between regions as a proxy for dynamic externalities produces a

theoretical model that incorporates spatial as well as technological connectivity structures between

regions. Another important methodological contribution discussed in Section 2 is correct assessment

of spillover effects, based on an extension of the approach suggested by LeSage and Pace (2009).

Section 3 describes a sample of 198 NUTS-2 regions, representing the 15 pre-2004 EU member

states used to empirically implement the model, and provides details on the construction of the total
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factor productivity and the knowledge (patent) stock measures. Bayesian Markov Chain Monte Carlo

estimates and model comparison procedures are used to test for the presence of static and dynamic

knowledge externalities. We also present estimates for the relative magnitude of own-region and

spillover impacts on regional TFP associated with static and dynamic knowledge externalities.

2 The basic relationship between regional tfp and knowledge

capital

Static externalities

The case considered here relates to static externalities with dynamic externalities taken up later in

this section. Beginning with a log linear relationship between regional total factor productivity TFP

and knowledge stocks K in (1), we explore whether regional differences in the stock of knowledge

allows more efficient utilization of capital C and labor L in a constant returns regional production

process, lnQ = slnC + (1 − s)lnL, where s is the share of capital and 1 − s that of labor. For a

detailed derivation of this relationship from a multi-country Schumpeterian growth model, see Ertur

and Koch (2007).

lnTFP = lnQ− slnC − (1− s)lnL = βlnK +K⋆ (1)

TFP is sometimes referred to as the “Solow residual”, since (1) implies that TFP is the difference

between (logged) actual/observed outputQ and expected or predicted output from a constant returns

production process slnC + (1− s)lnL. In (1), we relate this residual linearly to (logged) knowledge

stocks lnK. Since it is unlikely that empirical measures of knowledge such as K capture the true

stock of knowledge available to regions, we posit the existence of unmeasurable knowledge K⋆ that

is included in the (log) linear relationship in (1).

If the unmeasurable/unobservable factors are random, independent, identically distributed (iid),

these can be viewed as a stochastic disturbance term making the model relationship in (1), amenable

to ordinary least-squares regression methods.

It has become a stylized fact that empirical measures of regional knowledge K such as patent

applications, educational attainment, expenditures or employment in research and development

etc., exhibit spatial dependence (Autant-Bernard 2001, Autant-Bernard and LeSage 2010, Parent

and LeSage 2008). That is, a choropleth map of these variables used to proxy regional knowledge

would show systematic clustering of high and low values of regional knowledge measures in space.

Spatial dependence in observed measures of regional knowledge K is consistent with static exter-
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nalities that arise from geographical concentration of knowledge workers that leads to scale effects

in firm-level innovation due to greater exchange of knowledge between engineers and scientists clus-

tered in nearby locations. We can formally express spatial clustering by regions of (logged) levels of

knowledge stocks k = lnK, using a spatial autoregressive process as shown in (2).

k = ϕWk + u (2)

u ∼ N(0, σ2
uIn) (3)

The n by 1 vector k reflects (logged) cross-sectional observations on regional knowledge stocks

in a sample of n regions, and we have introduced a zero mean, constant variance disturbance term

u, along with an n by n spatial weight matrix W reflecting the connectivity structure of the regions.

The scalar parameter ϕ reflects the strength of spatial dependence in k. The spatial autoregressive

process models observed regional knowledge stocks as being related to those of neighboring regions

represented by the spatial lag term Wk. If the spatial weight matrix W is row-normalized and

consists of equally weighted neighboring observations, then the spatial lag vector Wk represents an

average of neighboring regions knowledge stocks. If the scalar dependence parameter ϕ is positive,

then knowledge stocks in region i will be positively associated with those of neighboring regions.

We note that without loss of generality, we could apply the same reasoning to a sample of firms, so

that firm-level knowledge stocks are positively dependent on those of firms located nearby in space.

Substituting the spatial autoregressive specification for observed knowledge stocks in (2) into a

logged transformation of our TFP relationship from (1), produced the model in (4), where we use

lower-case tfp to denote lnTFP .

tfp = βk + k⋆

tfp = β(ϕWk + u) + k⋆

tfp = βϕWk + (k⋆ + u) (4)

Expression (4) makes it clear that our specification for the tfp relationship depends on what we

assume about the unmeasured/unobservable regional knowledge stocks, denoted by k⋆. For example,

if we assume k⋆ is iid random, then this vector would combine with the iid vector u to form an

iid stochastic disturbance term, making the relationship in (4) amenable to regression methods that

assume independence between observations. We don’t wish to emphasize (4), since we argue that a
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random independent specification for k⋆ is implausible.

The notion of static externalities suggests that unobservable factors such as k⋆ would exhibit

spatial dependence. For example, unobservable/unmeasured factors that benefit innovation might

be interfirm worker mobility of engineers between nearby regions. The belief that high tech regions

have linkages between factors is expressed by Echeverri-Carroll and Brennan (1999), and they note

an emerging consensus that knowledge networks play an essentially local role in the innovation

process. The belief that geography acts as a boundary on tacit knowledge spillovers among firms in

an industry goes back to Marshall (see Henderson 2003). Krugman (1991) (and others) argue that

the cost of transmitting knowledge rises with distance, making proximity and location important.

This line of argument motivates use of a spatial autoregressive process specification for k⋆, as

shown in (5). If we think of k∗ as representing say, unobservable contacts between people, then

spatial proximity facilitates these.

k⋆ = ψWk⋆ + v (5)

v = uγ + ε (6)

v ∼ N(0, σ2
vIn)

ε ∼ N(0, σ2
εIn)

An important aspect of our specification in (5) is the assumption that shocks or stochastic

disturbances v influencing k∗ are possibly related to u, shocks to the spatial autoregressive process

assigned to govern observed knowledge stocks k. If the scalar parameter γ = 0, there is no correlation

between the shocks u and v, but when γ ̸= 0, we have simple (Pearson) correlation between shocks

(u, v) to observed knowledge stocks k and unobserved k⋆. Non-zero correlation between (u, v) implies

non-zero correlation between k and k∗, so that factors influencing observable knowledge stocks also

influence unobservable knowledge stocks. As a concrete example of factors that would lead to

correlation between observed and unobserved regional knowledge stocks, consider collaborations

between universities and private sector firms located in a region. There would likely be correlation

between (unobserved/unmeasured) university research/knowledge that is not patented and observed

patents held by firms, if these were a result of collaborative work/arrangements.

Non-zero correlation between k and k∗ leads to a very different specification from that shown in

(4), where k and k∗ were uncorrelated, leading to k∗ becoming part of the iid disturbance term. If

we being with the relationship in (7) and use definitions (2), (5) and (6), we arrive at (8).1

1See LeSage and Pace (2009) for a more general and detailed exposition of this type of result.
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tfp = βk + k⋆ (7)

tfp = ψWtfp+ k(β + γ) +Wk(−ψβ − ϕγ) + ε

tfp = ψWtfp+ kδ1 +Wkδ2 + ε (8)

The expression in (8) represents what has been labeled a spatial Durbin model (SDM) by Anselin

(1988). The SDM model in (8) simplifies to the spatial error model (SEM) shown in (9) when two

things hold true, 1) the parameter γ = 0 indicating no correlation in shocks to measured and

unmeasured knowledge, and 2) the restriction δ2 = −ψβ holds true.

tfp = kβ + u

u = ψWu+ ε (9)

We emphasize that the resulting SDM and SEM specifications reflect static knowledge exter-

nalities, since these were based on arguments pertaining to geographical proximity. We will derive

specifications related to dynamic externalities, but these require a different type of connectivity

between regions, that arising from technological networking. This is a subject we take up later.

For the static externalities specifications, a simple likelihood-ratio test of the SEM versus SDM

model can be carried out using the log-likelihoods from these two models for any cross-sectional

sample of regional data.2 There are econometric as well as theoretical implications associated with

which specification (SDM or SEM) proves most consistent with the sample data.

In terms of econometric implications, the condition γ = 0 requires that measured knowledge

stocks k included in the tfp specification are uncorrelated with unmeasured/unobservation knowledge

stocks k⋆. This is an implicit assumption being made by past empirical studies that rely on say

patent stocks as a measure/proxy for regional knowledge stocks, and assume any omitted variables

are uncorrelated with this included variable, allowing use of independent regression models. In this

case, an omitted variable k⋆ will not produce bias in the model estimate for β, which can be seen

from δ1 = β + γ = β.

A theoretical implication is that the SEM model that arises when γ = 0 and the additional

condition δ2 = −ψβ holds true, rules out spatial spillovers. In the case of the SEM model, changes

in region i capital stock will not exert an impact on region j’s tfp, that is, ∂tfpj/∂ki = 0, as can be

2Without loss of generality we could include an intercept term in the model, but ignore this term in our discussion
for simplicity.
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seen from (9). A related point is that γ ̸= 0 will lead to a rejection of the common factor restriction

since the coefficient on k, (β+ γ) will not be equal to that on Wk, (−ψβ − ϕγ), which rules out the

SEM model and spatial spillovers. This suggests that empirical specifications should accommodate

situations involving correlated shocks u, v, since these would represent sources of spatial spillovers

that have been frequently found by empirical studies. Our specification allows for zero or non-zero

correlation between the shocks u, v, with zero correlation arising when the parameter γ = 0.

Summarizing developments thus far, we have argued that 1) static knowledge externalities should

produce spatial dependence in both observed and unobserved measures of regional knowledge stocks,

and 2) when observed and unobserved measures of knowledge stocks exhibit correlation (or more

generally non-zero covariance), a spatial regression specification (SDM) arises. This specification

is consistent with geographically localized interdependent networks of knowledge workers, flows of

ideas between nearby regions, and numerous other motivations and phenomena used in the literature

to explain the presence of observed spatial/geographically localized knowledge spillovers.

Pursuing the spatial spillovers issue, consider that in the case of the SDM model, ∂tfp/∂k takes a

form that allows changes in region i knowledge stocks, ki, to impact other-region factor productivity,

tfpj , j ̸= i. The partial derivatives associated with changes in each region i reflect possible impacts

on all other n − 1 regions. Since we consider changes in each i = 1, . . . , n region, this results in an

n by n matrix expression shown in (10) .

∂tfp/∂k = (In − ψW )−1(Inδ1 +Wkδ2) (10)

δ1 = (β + γ)

δ2 = (−ψβ − ϕγ)

This important aspect of assessing the impact of spatial spillovers appears to have been over-

looked in much of the spatial econometrics literature. Past empirical studies often draw inferences

concerning the sign and significance of spatial spillovers based on the parameters ψ, δ1 and/or δ2.

It should be clear from the partial derivative in (10) that the coefficients δ1 (and/or δ2) used in past

studies is an incorrect representation of the impact of changes in the variable k on tfp. In fact, the

parameter δ2 can be negative or statistically insignificant when positive and statistically significant

spatial spillovers exist based on the correct measure.

LeSage and Pace (2009) have proposed scalar summary measures for the n by n matrix of direct

and indirect (spatial spillover) impacts arising from changes in the explanatory variable k on the

dependent variable vector representing regional tfp. They point out that the main diagonal of
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the matrix: (In − ψW )−1(Inδ1 +Wkδ2) represents own partial derivatives, which they label direct

effects and summarize using an average of these elements of the matrix. The off-diagonal elements

correspond to cross-partial derivatives, which can be summarized into scalar measures using the

average of the row-sums of the matrix elements excluding the diagonal. In addition to these scalar

measures of the direct and indirect effects, LeSage and Pace (2009) provide an approach to calculating

measures of dispersion that can be used to draw inferences regarding the statistical significance of

the direct and indirect effects, which we rely on here.

Dynamic externalities

In contrast to static knowledge externalities, dynamic externalities result from accumulation of

knowledge, and the ability of firms and their workers to establish knowledge networks that link

development and commercialization of new products and processes to sources of the accumulated

knowledge. As indicated earlier, the ability of firms in lower rank high tech clusters to draw upon

cumulated knowledge that frequently resides in the location where it was first developed character-

izes dynamic externalities. Links between Silicon Valley, a source of cumulated knowledge and more

distant regions such as Austin or Boston are more likely to involve technological rather than geo-

graphical proximity. As a concrete example of the difference between static and dynamic knowledge

externalities, consider movement of engineering/scientific workers. These workers embody knowledge

gained/accumulated from learning-by-doing, and movement of such workers across regions represents

one way to change knowledge stocks. Movement of knowledge workers is less likely to depend on

geographic proximity than on technological proximity between regions. Workers with highly spe-

cialized engineering skills are more likely to move to a firm that can use these specialized skills

(irrespective of location), making proximity between regions/firms less important than technological

proximity/similarity between regions/firms.

There have been a number of challenges to the notion that knowledge externalities are bounded

be geographical proximity. Suarez-Villa and Walrod (1997) argue using evidence from a study of

electronics firms in the Los Angeles region that firms can safeguard privacy and leap ahead of com-

petitors when they are not located in a cluster of firms engaged in similar activities. Zucker et al.

(1998) studying California biotechnology firms argue that exchanges between firms and universities

involving star scientists are what leads to positive innovation, not mere spatial proximity or cluster-

ing of the firms. As already noted, Echeverri-Carroll and Hunnicutt (1998) argue that for a sample

of high technology firms in Texas, knowledge used to produce innovations came mainly from cities

outside the region where the firms were located. We use the notion of dynamic externalities here to

mean that regions accumulate different levels of knowledge over time, and interregional knowledge
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spillovers between regions may be more dependent on technological similarity than geographical

proximity. Since geographical proximity cannot explain findings of the type mentioned above, tech-

nological connectivity between regions seem a likely alternative. Fischer et. al (2006), Parent and

LeSage (2008) provide evidence that this type of connectivity is important in studies of patenting

activity involving European regions.

We can extend our model to reflect technological networks of connectivity between regions based

on an n by n matrix T shown in (11) that measures technological similarity between the n regions

in our sample. We will have more to say about how this matrix is constructed when we describe

empirical implementation of the model.

The dependence process governing measurable knowledge stocks k now indicates that these de-

pend on “neighboring” regions in technological space rather than conventional “neighbors” in a

geographical sense reflected by the spatial weight/connectivity matrix W . Unmeasurable knowledge

stocks k⋆ available to the regions still exhibit conventional spatial dependence.

k = θTk + u (11)

k⋆ = ψWk⋆ + v (12)

v = uγ + ε (13)

u ∼ N(0, σ2
uIn)

v ∼ N(0, σ2
vIn)

ε ∼ N(0, σ2
εIn)

Following the same substitutions as before, applied to (14) we arrive at the model in (16).

tfp = βk + k⋆ (14)

tfp = ψWtfp+ k(β + γ) +Wk(−ψβ) + Tk(−θγ) + ε (15)

tfp = ψWtfp+ kδ1 +Wkδ2 + Tkδ3 + ε (16)

δ1 = (β + γ)

δ2 = (−ψβ)

δ3 = (−θγ)

There are a number of things to note regarding the extended model in (16). First, if the parameter
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θ = 0, so that no technological dependence exists, or γ = 0 so that no correlation exists between the

shocks u, v to the processes governing observed and unobserved knowledge stocks, then δ3 = 0 and

this model collapses to the simpler model from (7). 3 This suggests a simple strategy for testing the

presence of technological as well as spatial dependence, based on the t−statistic associated with the

parameter α3. As already noted, the case where γ = 0 is somewhat trivial, so assuming γ ̸= 0, leads

to the intuitively appealing result that this represents a test for a lack of technological dependence,

(θ = 0) which would result in δ3 = 0.

Recall that we could consider movement of engineering/scientific workers that embody knowledge

gained/accumulated from learning-by-doing as a concrete example of why technological connectivity

of regions is a way to distinguish between the typical emphasis on spatial/geographical proximity

of regions. Movement of knowledge workers is less likely to depend on geographic proximity than

on technological proximity between regions. Workers with highly specialized engineering skills are

more likely to move to a firm that can use these specialized skills (irrespective of location), mak-

ing proximity between regions/firms less important than technological proximity/similarity between

regions/firms. Autant-Bernard and LeSage (2010) make the point that specialized knowledge may

travel better (transcend longer distances) because of scientific/engineering networks created by pro-

fessional organizations, commonalities in university training, etc. The same argument could be made

of specialized workers.

In this extended model, the impact of changing k on tfp takes the form:

∂tfp/∂k = (In − ψW )−1(Inδ1 +Wkδ2 + Tkδ3) (17)

Since the parameter δ3 is significantly different from zero in our empirical application, we can

compare the relative magnitude of impacts from knowledge stocks on total factor productivity that

arise from spatial versus technological proximity. Calculation of the scalar summary measures for

the own- and cross-partial derivatives proposed by LeSage and Pace (2009) for the model where

we restrict δ3 = 0, versus those from the unrestricted model will allow us to assess the relative

importance of the two types of connectivity between regions.

Summarizing these developments, we have argued that 1) static knowledge externalities in the

presence of unobservable/unmeasured regional knowledge stocks should produce a spatial regression

relationship involving a spatial lag of the dependent and independent variables (and SDM model) in

the relation between tfp and regional knowledge stocks, and 2) dynamic externalities are less consis-

3Strictly speaking, the collapsed model is not equal to (7) in that the parameters of the two models differ. However,
we find no statistical evidence to support the parameter restrictions implied by γ = 0 for our empirical implementation
of the model. Further, the simple theoretical development used here is likely to depart from reality, so it seems more
plausible to simply treat the model as consisting of parameters δ1, δ2, δ3.
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tent with spatial dependence than with technological connectivity/similarity between regions. Our

empirical specification allows for the presence of both static and dynamic externalities, and provides

a way to assess the relative magnitude of spillovers associated with spillovers from these two types of

knowledge externalities. The magnitude of own-region (i) and other-region (j) (spillovers) between

regions can be assessed using scalar summary measures of the own- and cross-partial derivatives,

∂tfpi/∂ki and ∂tfpj/∂ki.

3 An empirical implementation of the model

3.1 The sample data

Our sample is a cross-section of 198 regions representing the 15 pre-2004 EU member states over the

1997-2002 period. The units of observation are the NUTS-2 regions4 (NUTS revision, 1999, except

for Finland revision 2003). These regions, though varying in size, are generally considered to be

appropriate spatial units for modeling and analysis purposes. In most cases, they are sufficiently

small to capture sub-national variation. But we are aware that NUTS-2 regions are formal rather

than functional regions, and their delineation does not represent the boundaries of regional growth

processes very well.

The sample regions include regions located in Western Europe covering Austria (nine regions),

Belgium (11 regions), Denmark (one region), Finland (four regions), France (20 regions), Germany

(40 regions), Greece (11 regions), Ireland (three regions) Italy (20 regions), Luxembourg (one region),

the Netherlands (12 regions), Portugal (five regions), Spain (16 regions), Sweden (eight regions) and

United Kingdom (37 regions).

Empirical implementation of the two models described in the previous section uses data on total

factor productivity and knowledge stocks for each of the n regional economies at six points in time.

Total factor productivity calculations at the regional level require interregionally comparable data on

regional outputs and inputs. In this study we calculate TFP applying the standard Solowian growth

accounting methodology: lnY − α ⊙ lnL − (1 − α) ⊙ lnC, and use gross value added data in euro

(constant prices of 1995, deflated) as measure of output Y . α denotes the n × 1 vector of regional

shares in production costs. Following the approach suggested by Hall (1990), α is not calculated as

the ratio of total labour compensation to value added (the revenue-based regional factor shares), but

4We exclude the Spanish North African territories of Ceuta and Melilla, the Portuguese non-continental territories
Azores and Madeira, Corse, the French Départements d’Outre-Mer Guadaloupe, Martinique, French Guayana and
Réunion. Two Greek NUTS-2 regions (Ionia Nisia and Voreio Aigaio) that had zero patent stocks were combined
with neighbouring NUTS-2 regions to avoid outliers in the spatial and technological lag variables. Since the matrix
product Wk, for example, reflects an average of knowledge stocks from geographical neighbors, the introduction of
zero values in the vector k will produce aberrant observations in the spatial lag vector Wk.
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as cost-based factor shares that are robust in the presence of imperfect factor shares. The symbol ⊙

denotes the Haddamard (element-by-element) product of the n× 1 vector of shares, and L regional

labor and C physical capital.

The data for regional labor come from Cambridge Econometrics. They include only employees,

not the self-employed for each region. We adjusted these data on labor inputs to account for

differences in average annual hours worked across countries. This is important because average

annual hours worked in Swedish manufacturing in the year 1997, for example, were almost 14 percent

lower than in Greek manufacturing. Without adjusting for differences in input usage, productivity

in Greek and Portuguese regions would be overestimated throughout, while in Swedish and Dutch

regions underestimated (Fischer et al. 2009).

Physical capital stock data is not available in the Cambridge Econometrics database, but gross

fixed capital formation in current prices is. Thus, the stocks of physical capital were derived for

each region i from investment flows, using the perpetual inventory method: C(t + 1) = C(t)(1 −

rC) + I(t+ 1), where C(t) is the stock of physical capital at the end of period t and I(t+ 1) gross

investment during t + 1. We applied a constant rate rC of ten percent depreciation (obsolescence)

across space and time. The annual flows of fixed investments were deflated by national gross-fixed

capital formation deflators. The mean annual rate of growth, which precedes the benchmark year

1997, covers the period 1990-1997 to estimate initial regional physical capital stocks.

Besides the TFP measure, the models also contain a measure of the knowledge capital stock for

each of the n regions and the six time periods. We use corporate patent applications5 to proxy

knowledge capital. Corporate patents cover inventions of new and useful processes, machines, man-

ufactures, and compositions of matter. To the extent that patents document inventions, an aggre-

gation of patents is arguably more closely related to a stock of knowledge than is an aggregation of

R&D expenditures (Robbins 2006). But use of pattent data has its own caveats, the most glaring

being the fact that not all inventions are patented. First, not all inventions meet the patentability

criteria set by the EPO, the European Patent Office [the invention has to be novel and non-trivial,

and has to have commercial application]. Second, the inventor has to make a strategic decision to

patent, as opposed to relying on secrecy or other means of appropriability. See Griliches (1990) and

Pavitt (1985) for a general discussion about the limits and the opportunities of patents as economic

indicators. All of these issues provide a motivation for our approach that posits latent unobservable

knowledge stocks.

Patent stocks were derived from European Patent Office (EPO) documents. Each EPO document

5Common practice is to use R&D expenditures as a measure of knowledge capital. One problem with this measure
is some double counting that occurs because R&D labor and capital are counted twice, once in the available measures
of physical capital and labor, and again in the measure of R&D capital stocks (see Griliches and Mairesse 1984). By
using patents we avoid this problem. But patents have their own well-known weaknesses.
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provides information on the inventor(s), his or her name and address, the company or institution

to which property rights have been assigned, citations to previous patents, and a description of the

device or process. To create the patent stocks for 1997-2002, the EPO patents with an application

date 1990-2002 were transformed from individual patents into stocks by first sorting based on the

year that a patent was applied for, and second the region where the inventor resides. In the case

of cross-region inventor teams we used the procedure of fractional rather than full counting. Then

for each region i, patent stocks were derived from the patent data, using the perpetual inventory

method: K(t+ 1) = K(t)(1− rK) + S(t+ 1), where K(t) is the patent stock at the end of period t,

S(t+ 1) are knowledge production activities during (t+ 1), measured in terms of corporate patent

applications, and rK is a constant depreciation rate. Because of evident complications in tracking

obsolescence over time, we used a constant depreciation rate rK = 12 that corresponds to the rate of

knowledge obsolescence in the US as found in Caballero and Jaffe (1993) for the year 1990. Patent

stocks were initialized the same way as physical capital.

3.2 Estimates and tests of the model assumptions

For presentation purposes we will label two models as shown in (18) and (19), where we have added

an intercept term α0 and associated n by 1 vector of ones, ιn to the model to reflect the non-zero

mean of the dependent variable tfp.

Static externalities model: tfp = α0ιn + ψWtfp+ δ1k + δ2Wk + ε (18)

Dynamic externalities model: tfp = α0ιn + ψWtfp+ δ1k + δ2Wk + δ3Tk + ε (19)

We note that our labeling for the model in (19) might be perceived as a bit of a misnomer,

since this model includes both conventional static knowledge externalities due to the presence of

the geographical connectivity matrix W , as well as allowing for dynamic knowledge externalities

arising from technological connectivity of regions represented by the matrix T . However, we treat

technological connectivity as a nested concept. Given the preponderance of empirical evidence in

favor of the presence of spatial dependence (geographical/static spillovers/externalities) an omitted

variables objection could be raised against a specification that excluded the matrix W in favor of a

matrix T alone. Our treatment tests for evidence in favor of dynamic externalities while conditioning

on static externalities. More detailed sample data information would likely be necessary to separately

identify and quantify the impact of these two types of externalities, perhaps establishment-level

information on a sample of individual firms located at various points in space. Our statistical tests
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for the presence of dynamic knowledge spillovers focuses on whether the augmented model containing

technological connectivity produces significantly different spillovers from the simpler model based

only on spatial connectivity.

Pooled versions of the models were used because estimates based on a cross-sectional sample

for each of the six years produced estimates that were within one standard deviation of each other.

These estimates along with an average standard deviation are reported in Table 1. Pooling over

the M time periods involves forming a vector t̃fp = vec(tfp1, ..., tfpM ), where the vec operator

stacks the n×1 column vectors tfpm, (m = 1, . . . ,M) to create an Mn×1 vector for the dependent

variable. Similarly, we can form: k̃ = vec(k1, . . . , kM ). The spatial weight matrixW does not change

over time, so we can form W̃ = IM ⊗W to implement the pooled models.

Table 1 about here

The n × n technological weight matrix T in the model labeled Dynamic externalities model

from (19) measures the closeness of regional economies in a technological space spanned by 120

distinct technology fields, described by 120 patent classes of the International Patent Code (IPC)

classification6. We utilized EPO corporate patents with an application date in the period 1990 to

1995 to define the technological position of a region, based on a 120-by-1 vector containing the share

of patents filed in each of the six years in the IPC categories. This definition reflects the region’s

diversity of inventive activities of its firms. Following Jaffe (1986), a Pearson correlation coefficient

was used to measure the technological proximity between any two regions of the sample. A high

correlation indicates similarity and a low correlation dissimilarity. The matrices Tm(m = 1, . . . ,M)

were formed for each of theM = 6 years by finding the r regions that exhibited the highest correlation

coefficients with each region. A single value of r was used, but separate matrices form the pooled

weight matrix T̃ = diag(T1, . . . , TM ) based on the IPC category patenting activities in each of the

M = 6 years. This allows us to express the pooled models in an identical format as in the Dynamic

externalities model from (19) by replacing the n× 1 vectors, tfp, k, Wk, Tk with stacked vectors

t̃fp, k̃, W̃ k and T̃ k.

Table 2 about here

Bayesian model comparison methods were used to calculate posterior model probabilities based

on the log-marginal likelihood for pooled models with varying numbers r of technological neighbors

6These patent classes refer to the second level of the IPC classification system that is used to classify inventions
claimed in the EPO patent documents.
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and spatial neighbors s, based on nearest neighboring regions in technological and geographical space

respectively. The log-marginal likelihoods and posterior model probabilities reported in Table 2 are

based on LeSage and Parent (2007). Since these models all contain the same number of parameters,

non-informative priors were used7. The posterior model probabilities in Table 2 used models based

on spatial weight matrices containing s = 5 to s = 9 nearest neighbors, and technological weight

matrices constructed using r = 2 to r = 10 nearest technological neighbors. Estimates of spillover

impacts arising from changes in regional knowledge stocks are dependent on the specification of the

spatial and technological weight matricesW and T , as can be seen from the partial derivative in (17).

This motivated Bayesian model comparison of alternative matrices W and T . The posterior model

probabilities point to eight nearest technological neighbors and indicate seven spatial neighbors.

Empirical results reported in the remainder of the paper were based on s = 7 and r = 8.

Table 3 about here

Pooled estimates for the Static and Dynamic models in (18) and (19) are presented in Table 3.

These are Bayesian MCMC estimates based on non-informative priors, which were nearly identical

to maximum likelihood estimates. We relied on MCMC estimation to produce a sequence of 5,000

retained draws that could be used to construct the measures of dispersion for the effects estimates

discussed in the next section. It is important to keep in mind that the parameter estimates for δ2

and δ3 do not represent the impact of spatial spillovers arising from regional knowledge stocks. To

accurately assess the magnitude of spatial spillovers we will rely on the scalar summary measures

that represent ∂tfp/∂k discussed in Section 2. This topic will be taken up in Section 3.3.

One point of interest is whether excluded variables reflecting unobserved or unobservable knowl-

edge capital are correlated with the included knowledge stock measure k. This can be formally tested

by examining the restriction −ψδ1 = δ2 from (18). If this restriction holds, then the SEM model is

appropriate and the shocks to observed and unobserved knowledge stocks are uncorrelated. From the

posterior mean estimates for the Static externalities model in Table 3, we see that −ψδ1 = −0.0689

with a lower 99% interval of −0.0460 and δ2 = −0.0137, so we can conclude this restriction is not

consistent with the estimates. This suggests the presence of unobserved regional knowledge stocks.

A likelihood ratio test statistic can be constructed using twice the difference in log-likelihood

function values from the SDM and SEM models, which is chi-squared distributed with one degree

of freedom reflecting the single restriction. These two log-likelihood values were -159.4, and -181.0,

respectively, producing a chi-squared statistic equal to 43.2. Since the 99% critical value for a chi-

7See LeSage (1997) regarding Bayesian MCMC estimation of these models.
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squared deviate with one degree of freedom is 6.315, we can reject the restriction as being consistent

with the sample data. Of note, the log-likelihood function value for the Dynamic externalities model

equalled -143.3, which is significantly different from that for the Static externalities model, when

subjected to a likelihood ratio test based on the restriction implied by these nested models. This of

course suggests evidence in favor of the presence of dynamic knowledge externalities in our sample

data.

A second issue is whether the (pooled) knowledge stock variable k̃ exhibits spatial dependence, an

assumption we made in deriving the Static externalities model. Using the spatial regression model:

k̃ = α0 + θ(IM ⊗W )k̃ + ε, we find a maximum likelihood estimate θ̂ = 0.7249 and an asymptotic

t-statistic equal to 33.4, allowing us to conclude that observed (log) knowledge stocks at the regional

level exhibit strong spatial dependence. This result is consistent with numerous other findings from

the literature.

For the extended Dynamic externalities model, we tested whether (pooled) knowledge stocks k̃

exhibit technological dependence, using k̃ = α0 + φT̃k + ε. The parameter estimate for φ is 0.6869

with a t−statistic of 17.9, so we conclude that the assumptions made in constructing the Dynamic

externalities model appear consistent with the sample data used here.

3.3 Spillover impacts from knowledge capital on total factor productivity

As indicated in Section 2, it is necessary to properly calculate the direct, indirect and total effects

associated with changes in knowledge stocks on total factor productivity in our spatial regression

framework. For the Static externalities model the direct and spillover effects reflect an average of

diagonal and off-diagonal elements of: ∂tfp/∂k = [IM⊗In−ψ̂(IM⊗W )]−1[(IM⊗In)δ̂1+(IM⊗W )δ̂2]

which correspond to scalar summary measures of the own and cross-partial derivatives. The set of

5,000 retained MCMC draws from estimation were used to construct upper and lower 99% credible

intervals for these effects estimates, allowing us to test for their statistical significance.

Table 4 about here

Table 4 shows the posterior mean effects estimates along with 99% credible intervals, which

indicate that the direct, indirect and total effects for the two models are positive and different from

zero based on the credible intervals. The indirect effects reported in the table are formal measures for

the magnitude of knowledge externalities from the Static externalities model. We emphasize that it

would be a mistake to interpret the coefficient estimate δ̂2 as representing spatial spillover magnitudes

in spatial regression models that involve spatial lags of the dependent variable. To see how inaccurate
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this is, consider the difference between the coefficient estimates for δ2 in Table 3 and the true indirect

effects correctly calculated from the partial derivatives of the spatial regression model. Using the

Static externalities model as an example we see that δ̂2 is not statistically significantly different from

zero, whereas the true indirect effect estimate is 0.1631 in Table 4, with a lower 0.01 bound of 0.0729

making it clearly a positive and significant effect.

The Dynamic externalities model. allows for both spatial/static as well as dynamic/technological

knowledge spillover, and produces the largest indirect/spillover effects, based on ∂tfp/∂k = [IM ⊗

In − ψ̂(IM ⊗W )]−1[(IM ⊗ In)δ̂1 + (IM ⊗W )δ̂2 + diag(T1, . . . , TM )δ̂3].

The interpretation of these partial derivative effects estimates is that changes in knowledge stocks

would lead to a move from one steady-state equilibrium to a new steady-state (see LeSage and Pace

2009). The effects estimates in Table 4 reflect the cumulative impact of knowledge stock changes

that would arise in the movement between equilibrium steady-states. Since we have a cross-sectional

model, there is no information regarding the time required for the move between steady-states. Given

the log-transformation of both the dependent and independent variables in our models, the effects

estimates have an elasticity interpretation. For the Static externalities model, a 10% increase in

regional patent stocks is associated with a 2.7% increase in factor productivity, composed of a 1.1%

direct effect and 1.6% spillover effect. For the Dynamic externalities model, a 10% increase in

regional patent stocks would lead to a 3.7% increase in factor productivity in the new steady-state

equilibrium. Of this, 2.7% represents spillover effects and less than one percent a direct effect.

Table 5 about here

To better understand the scalar summary measures of cumulative direct, indirect and total

effects over space reported in Table 4, we can carry out a spatial decomposition of the effects

estimates following LeSage and Pace (2009). This is based on the profile of marginal indirect effects

associated with each order of the matrix W . Note that we can rely on the asymptotic expansion:

[IM ⊗ In − ψ̂(IM ⊗W )]−1 = IM ⊗ In + ψ̂W̃ + ψ̂2W̃ 2 + ψ̂3W̃ 3 . . . to produce effects estimates for

first-order neighbors (W̃ ), second-order neighbors, (W̃ 2), third-order neighbors (W̃ 3), etc., which

is how the marginal indirect effects associated with each order of the matrix W̃ q (q = 1, . . . , 10)

were produced. Table 5 shows the marginal indirect effects, which were cumulated (to order q=100)

to produce the numbers reported in Table 4. The table also reports lower and upper 99% credible

intervals constructed from the 5,000 retained MCMC draws, allowing us to pass judgement on the

statistical significance of the marginal effects estimates.
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From the table, we see that the indirect (spillover) effects from the Static externalities model

are significantly different from zero beginning with the first-order neighbors where W̃ q = W̃ . They

decay to less than one-half of the q = 2 magnitude by q = 4. There are seven first-order neighbors,

and the average number of second-order neighbors in W̃ 2 equals 18, whereas the average number of

third-order neighbors in W̃ 3 is 30. The spillover impacts decline rapidly as we move to regions that

are ‘neighbors to the first-order neighbors’ (W̃ 2), and ‘neighbors to the neighbors of the first-order

neighbors’ (W̃ 3), etc., which seems to indicate geographic localization of the productivity effects

arising from static knowledge externalities. From the table we see that indirect effects from the Static

externalities model are still positive and significantly different from zero for W̃ 10, which encompasses

around 130 regions on average for our sample. However, given our elasticity interpretation of the

impacts, the effects for tenth-order neighbors equal to 0.0029 are not likely to be of economic

significance in terms of their impact on total factor productivity.

The Dynamic externalities model indirect effects or knowledge externalities/spillovers show a

large and significant impact when q = 2, and as in the case of externalities from the Static external-

ities model, there is a rapid decay as we move to higher-order neighbors. For q = 4, the effects are

less than one-half of those for q = 2.

The direct effect magnitudes are not presented in Table 5 because they die down very quickly to

zero. Since these reflect the main diagonal elements of the matrix measuring ∂tfp/∂k, we note that

although the spatial weight matrixW contains zeros on the main diagonal, the matricesW 2,W 3, . . .

do not have zero diagonals. This is because a region is a second-order neighbor to itself, which has

the implication that even the ‘direct effect’ estimates reflect some spatial feedback in any model that

contains spatial lags of the dependent variable. Despite this, the amount of feedback is small for

our sample data, as can be seen by the closeness of the direct effect estimates for the two models

reported in Table 4 and the parameter estimates for δ1 in Table 3. For example, in the case of

the Static externalities model, the coefficient estimate for δ1 is equal to 0.1029 and the direct effect

estimate in Table 4 equals 0.1106, with the small difference between these two magnitudes reflecting

feedback effects from neighbors. Similarly, we see small magnitudes separating the estimates for δ1

from the Dynamic externalities model in Table 3 and the direct effects estimates reported in Table 4,

suggesting very little feedback effect.

Having explained issues related to interpreting the direct, indirect and total effects estimates,

we can consider the magnitudes of these estimates from the two models shown in Table 4. The

indirect effects or cross-region knowledge spillovers from the Static externalities model are around

1.5 times the direct effects. In contrast, spillovers from the Dynamic externalities model that in-

cludes technological connectivity between regions increases the spillover (indirect effects) estimates
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to nearly triple that of the direct effects. Comparing static to dynamic knowledge spillovers based

on models from (18) and (19), we see almost a doubling in the size of dynamic versus static spillovers

(0.27 versus 0.16). The dynamic externalities appear significantly larger than the static, since the

mean for the indirect effects from the Dynamic externalities model fall outside the 95% interval for

the Static externalities model indirect effects. From this, we conclude that both static as well as

dynamic externalities are at work to produce knowledge spillovers in the case of regional total factor

productivity.

Our empirical results suggest that both static and dynamic externalities play a role, with a larger

role for dynamic than static, consistent with results found by Echeverri-Carroll and Brennan (1999).

Specifically, we find static spillovers (on average, cumulated over all regions) having a magnitude

of 1.5 times the direct/own-region impact for a total impact of 2.5, whereas static plus dynamic

spillovers (on average, cumulated over all regions) have three times the spillover impact leading to

a total impact of four.

A policy implication is that setting spatial spillovers to zero (as is done in ordinary regression

models) would lead to a four-fold underestimate (25 percent of the true value) of positive knowledge

spillovers that accrue when cumulating over all other regions. This would of course severely bias

any cost/benefit study of programs that target or promote regional knowledge capital accumulation.

Further, ignoring/excluding technological dependence (through the use of a spatial/static external-

ities model alone) would also lead to a less severe (62.5 percent of the true value) underestimate of

positive spillover benefits by ignoring dynamic externalities.

Programs that target specific regions will benefit neighboring regions by creating static knowledge

externalities and the (cumulative) magnitude of these benefits can be estimated. In addition, we

show how a profile of decay in knowledge externalities across neighboring regions (which we label

‘marginal effects’) can be estimated. We note that if interest is on knowledge spillovers for a specific

region, the methods described here can be used to produce measurements/estimates for specific

regions rather than the scalar summary average over the entire sample. This would involve use

of a single row from the matrix of partial derivatives shown in (17). The main diagonal (row)

element from this row measures the direct effect whereas the sum of off-diagonal (row) elements

reflects spillovers to other regions (see LeSage and Pace 2009 for additional details). Here again,

the spatial profile of benefits falling on individual neighboring regions could be calculated using the

same approach as illustrated in Table 5.
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4 Conclusions

Despite the possible measurement difficulties and reservations with our simple reduced-form regres-

sion model framework for assessing the contribution of static and dynamic knowledge externalities

to total factor productivity, our study has produced a number of interesting empirical results. First,

evidence suggests that regional total factor productivity depends on its own knowledge capital (di-

rect impact), as well as that of other nearby regions (static externalities). Second, direct impacts

are important, but externalities or knowledge spillover effects are more important. In fact, external

effects are three times the magnitude of the direct effects. Third, while the beneficial productivity

effects from geographically neighboring knowledge stocks (static externalities) have been established

in earlier empirical literature (see Smith 1999, Robbins 2006, Fischer et al. 2009), evidence for the

importance of the technological dimension which we attribute to the notion of dynamic external-

ities that has been introduced in the literature is new. Finally, empirical evidence that dynamic

externalities may have a larger magnitude of impact than static externalities is also new.

Diffusion of knowledge takes time, sometimes a considerable period of time. The price paid for

the simplicity of our framework is abstraction from any explicit time lag structure for the effects

of knowledge capital on regional total factor productivity. Further explorations with disaggregated

data and an explicit treatment of the dynamics involved using a space-time panel data methodology

to explore the knowledge-productivity nexus would undoubtedly provide additional insights.

Acknowledgements

The authors gratefully acknowledges the grant no. P19025-G11 provided by the Austrian Science

Fund (FWF).

References

Anselin, L. (1988): Spatial Econometrics: Methods and Models, Dordrecht: Kluwer Academic

Publishers.

Autant-Bernard C. (2001): The geography of knowledge spillovers and technological proximity,

Economics of Innovation and New Technology 10(4): 237-254

Autant-Bernard C. and LeSage, J.P. (2010): Quantifying Knowledge Spillovers using Spatial

Econometric Models, (forthcoming in) Journal of Regional Science.

21



Caballero J.R. and Jaffe J.B. (1993): How high are the giants shoulders: An empirical as-

sessment of knowledge spillovers and creative destruction in a model of economic growth. In

Blanchard U. and Fischer S. (eds.) NBER Macroeconomics Annual 1993, Vol. 8, Cambridge

[MA]: The MIT Press, pp. 15-74

Doraszelski U. and Jammandreu J. (2008): R&D and productivity: Estimating production

functions when productivity is endogenous. Discussion paper no. 6636, Centre for Economic

Policy Research, London

Echeverri-Carroll E.L. and Brennan W. (1999): Are innovation networks bounded by prox-

imity? in Innovation, networks and localities Manfred M. Fischer, Luis Suarez-Villa, Michael

Steiner (eds.), Berlin: Springer, pp. 28-48.

Echeverri-Carroll E.L., Hunnicutt L. and Hansen N. (1998): Do assymmetric networks help or

hinder small firm’s ability to export? Regional Studies (13): 721-733

Ertur, C. and Koch W. (2007): Growth, technological interdependence and spatial externali-

ties: theory and evidence. Journal of Applied Econometrics 22(6): 1033-1062

Fischer M.M., Scherngell, T. and Jansenberger, E. (2006): The geography of knowledge

spillovers between high-technology firms in Europe: Evidence from a spatial interaction mod-

elling perspective. Geographical Analysis 38 (3): 288-309

Fischer M.M., Scherngell T. and Reismann M. (2009): Knowledge spillovers and total factor

productivity. Evidence using a spatial panel data model. Geographical Analysis 41(2): 204-220

Glaeser, E., Kallal, H., Scheinkman, J. and Shleifer A. (1992): Growth in cities, Journal of

Political Economy, 100, 11261152.

Griffith R., Harrison R. and van Reenen J. (2005): How special is the special relationship?

Using the impact of U.S. R&D spillovers on U.K. firms as a test of technological sourcing.

American Economic Review 96(5): 1859-1875

Griffith R., Redding S. and van Reenen J. (2004): Mapping the two faces of R&D: Productivity

growth in a panel of OECD countries. The Review of Economics and Statistics 86(4): 883-895

Griliches Z. (1979): Issues in assessing the contribution of research and development to pro-

ductivity growth. The Bell Journal of Economics 10(1): 92-116

Griliches Z. (1990): Patent statistics as economic indicators: A survey. Journal of Economic

Literature 28(4): 1661-1707.

22



Griliches Z. (1995): R&D and productivity: Econometric results and measurement issues. In

Stoneman P. (ed) Handbook of the economics of innovation and technological change. Oxford

[UK] and Cambridge [MA], Basil Blackwell, pp. 52-89

Griliches Z. and Mairesse J. (1984): Productivity and R&D at the firm level. In Griliches Z.

(ed) R&D, patents and productivity. The University of Chicago Press, Chicago and London,

pp. 339-374

Grossman G. and Helpman E. (1994): Endogenous innovation in the theory of growth. Journal

of Economic Perspectives 8(1): 23-44

Hall R.E.C. (1990): Invariance properties of Solow’s productivity residual. In Diamond P (ed)

Growth/productivity/employment. The MIT Press, Cambridge [MA], pp. 71-112

Henderson, V., A. Kuncoro and M. Turner (1995). Industrial development in cities, Journal

of Political Economy 103(5): 1067-1090.

Henderson, V. (2003): Marshall’s scale economies, Journal of Urban Economics 53(1): 1-28.

Jaffe A.B. (1986): Technological opportunity and spillovers of R&D: Evidence from firms’

patents, profits and market value. American Economic Review 76: 984-1001

Krugman, P. (1991): Increasing returns and economic geography. Journal of Political Economy

99: 483-99

Krugman, P. and Obstfeld M. (1997): International Economics: Theory and practice. New

York, Addison-Wesley.

LeSage J.P. (1997): Bayesian estimation of spatial autoregressive models. International Re-

gional Science Review 20(1/2): 113-129

LeSage J.P. and Pace R.K. (2009): Introduction to spatial econometrics. Boca Raton, London

and New York, CRC Press (Taylor & Francis Group)

LeSage J.P. and Parent O. (2007): Bayesian model averaging for spatial econometric models,

Geographical Analysis 39(3): 241-267

Parent O. and LeSage J.P. (2008): Using the variance structure of the conditional autore-

gressive spatial specification to model knowledge spillovers. Journal of Applied Econometrics

23(2): 235-256

23



Pavitt K. (1985): Patent statistics as indicators of innovative activities: Possibilities and

problems. Scientometrics 7: 77-99.

Robbins C.A. (2006): The impact of gravity-weighted knowledge spillovers on productivity in

manufacturing. Journal of Technology Transfer 31(1): 45-60

Romer P. (1990): Endogenous technological change. Journal of Political Economy 98(5) Part

2: The problem of development: A Conference of the Institute for the Study of Free Enterprise

Systems: S71-S102

Smith P.J. (1999): Do knowledge spillovers contribute to U.S. state output and growth? Jour-

nal of Urban Economics 45(2): 331-353

Suarez-Villa, L. and Walrod, W. (1997): Operational Strategy, R&D, and Intra-metropolitan

Clustering in a Polycentric Structure: The Advanced Electronics Industries of the Los Angeles

Basin. Urban Studies 34(9): 1343-1380

Zucker, L.G., Darby, M.R. and Brewer, M.B. (1998): Intellectual human capital and the birth

of US biotechnology enterprises. American Economic Review 88: 290-306

24



Table 1: Annual Model Estimates†

Variable 1997 1998 1999 2000 2001 2002 Pooled Standard deviation
k 0.0658 0.0745 0.0799 0.0925 0.1010 0.0981 0.0853 0.0252
Wk -0.0200 -0.0161 -0.0152 -0.0105 -0.0157 -0.0114 -0.0148 0.0306
Tk 0.1087 0.0860 0.0721 0.0580 0.0539 0.0455 0.0707 0.0376
Wtfp 0.7229 0.7022 0.6783 0.0642 0.6395 0.6293 0.6691 0.0712

† These estimates are based on seven nearest spatial neighbors and eight technological neigh-
bors. Determination of the number of neighbors is described in the running text.
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Table 2: Posterior model probabilities for numbers of spatial and technological neighbors

# spatial neighbors
# technological neighbors s=5 s=6 s=7 s=8 s=9

r=2 0.0000 0.0000 0.0000 0.0000 0.0000
r=3 0.0000 0.0000 0.0001 0.0000 0.0000
r=4 0.0000 0.0000 0.0006 0.0000 0.0000
r=5 0.0000 0.0000 0.0162 0.0000 0.0000
r=6 0.0000 0.0000 0.0128 0.0000 0.0000
r=7 0.0000 0.0000 0.2102 0.0000 0.0000
r=8 0.0000 0.0000 0.4775 0.0001 0.0000
r=9 0.0000 0.0000 0.1808 0.0001 0.0000
r=10 0.0000 0.0000 0.1013 0.0001 0.0000

Table 3: Estimates for static and dynamic externalities models pooled over 1997 to 2002

Static: tfp = α0 + ψWtfp+ δ1k + δ2Wk + ε
Posterior estimates Lower 0.01 Mean Upper 0.01
α0 0.3328 0.5086 0.6799
ψ 0.6020 0.6698 0.7340
δ1 0.0818 0.1029 0.1241
δ2 -0.0460 -0.0137 0.0183
σ2
ε 0.1266 0.1411 0.1572

Dynamic: tfp = α0 + ψWtfp+ δ1k + δ2Wk + δ3Tk + ε
Posterior estimates Lower 0.01 Mean Upper 0.01
α0 -0.0419 0.1886 0.4025
ψ 0.5990 0.6627 0.7230
δ1 0.0621 0.0843 0.1070
δ2 -0.0461 -0.0131 0.0180
δ3 0.0377 0.0704 0.1029
σ2
ε 0.1234 0.1376 0.1536

Table 4: Cumulative direct, indirect and total impact estimates

0.01 level Mean 0.99 level
Static knowledge spillovers model
Direct effect of knowledge capital 0.0898 0.1106 0.1318
Static spillover effects from knowledge capital 0.0730 0.1631 0.2681
Total effects of knowledge capital 0.1787 0.2738 0.3803
Dynamic knowledge spillovers model
Direct effect of knowledge capital 0.0643 0.0930 0.1204
Dynamic spillover effects from knowledge capital 0.1856 0.2777 0.3928
Total effects of knowledge capital 0.2540 0.3708 0.5107
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Table 5: Marginal knowledge spillover and total impact estimates: (a) Static and (b) Dynamic

Static knowledge externalities
W q Spillover effects Total effects

Lower 0.01 Mean Upper 0.99 Lower 0.01 Mean Upper 0.99
q=1 0.0000 0.0000 0.0000 0.0806 0.1024 0.1240
q=2 0.0434 0.0598 0.0769 0.0434 0.0598 0.0769
q=3 0.0231 0.0354 0.0493 0.0269 0.0402 0.0551
q=4 0.0166 0.0259 0.0375 0.0177 0.0276 0.0399
q=5 0.0106 0.0179 0.0279 0.0113 0.0190 0.0296
q=6 0.0068 0.0125 0.0207 0.0072 0.0131 0.0219
q=7 0.0044 0.0087 0.0157 0.0046 0.0091 0.0164
q=8 0.0027 0.0060 0.0116 0.0029 0.0063 0.0121
q=9 0.0017 0.0042 0.0087 0.0018 0.0043 0.0091
q=10 0.0011 0.0029 0.0065 0.0011 0.0030 0.0067

Dynamic knowledge externalities
W q Spillover effects Total effects

Lower 0.01 Mean Upper 0.99 Lower 0.01 Mean Upper 0.99
q=1 0.0000 0.0000 0.0000 0.0621 0.0847 0.1067
q=2 0.0714 0.0944 0.1183 0.0714 0.0944 0.1183
q=3 0.0421 0.0597 0.0796 0.0458 0.0638 0.0846
q=4 0.0281 0.0419 0.0591 0.0292 0.0435 0.0612
q=5 0.0177 0.0286 0.0429 0.0184 0.0297 0.0444
q=6 0.0110 0.0197 0.0313 0.0113 0.0203 0.0323
q=7 0.0069 0.0135 0.0230 0.0071 0.0139 0.0236
q=8 0.0042 0.0092 0.0169 0.0043 0.0095 0.0174
q=9 0.0026 0.0063 0.0125 0.0027 0.0065 0.0128
q=10 0.0016 0.0044 0.0092 0.0017 0.0045 0.0094
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