
1 

 

 

Is there a limit to agglomeration? Evidence from productivity of Dutch firms 

 

Marian Rizov
1,2

, Arie Oskam
2
 and Paul Walsh

3 
* 

1 
Middlesex University Business School 

2 
Wageningen University 

3 
University College Dublin 

 

 

 

Abstract 

We compute aggregate productivity of three categories of regions, classified by level of 

urbanization in the Netherlands, from firm-specific total factor productivity (TFP) measures. 

TFP measures are estimated by a semi-parametric algorithm, within 2-digit industries, 

covering agriculture, manufacturing, construction, trade and services, using AMADEUS data 

over the period 1997-2006. We analyse the productivity differentials across urbanization 

categories by decomposing them into industry productivity effect and industry composition 

effect. Our analysis indicates that there is non-linear, inverted U-shape effect of 

agglomeration on productivity growth but in levels agglomeration is associated with higher 

productivity.  
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Is there a limit to agglomeration? Evidence from productivity of Dutch firms 

 

1 Introduction 

Agglomeration and thus, the geographic concentration of economic activity in urbanized 

regions can result in a snowball effect, where new entrants tend to agglomerate to benefit 

from higher diversity and specialization in production processes. There are also benefits to 

firms from co-locating in close proximity to other firms in the same industry (Marshall, 1920; 

Henderson, 1974; 2003). Both urbanization and localization economies can be considered 

centripetal (agglomeration) forces leading to concentration of economic activity. Theoretical 

models (e.g., Glaeser et al., 1992; Ciccone and Hall, 1996) and empirical studies (e.g., 

Carlino and Voith, 1992; Ciccone, 2002; Combes et al., 2009; Graham, 2009; Combes et al., 

2010) show that agglomeration associated with high density of economic activity positively 

affects productivity.  

Agglomeration, characterized by high density of economic activity, can affect 

productivity in several ways. If technologies have constant returns themselves, but the 

transportation of products from one stage of production to the next involves costs that rise 

with distance, then the technology for the production of all goods within a particular 

geographical area will have increasing returns - the ratio of output to input will rise with 

density. If there are positive externalities associated with the physical proximity of 

production, then density will contribute to productivity for this reason as well. A third source 

of density effects is the higher degree of beneficial specialization possible in areas of dense 

economic activity. 

A second branch of the literature on agglomeration hypothesises economies of scale 

internal to firms (e.g., Fujita, 1988; Hanson, 1996; Davis and Weinstein, 2008). Models with 

internal increasing returns build on theories of the firm and its market and commonly employ 

the well known formalisation of monopolistic competition of Spence (1976) and Dixit and 

Stiglitz (1977) to demonstrate that non-transportable intermediate inputs produced with 

increasing returns imply agglomeration. In a related model, Krugman (1991) demonstrates 

that agglomeration will result even when transportation costs are small, if most workers are 

mobile. The essence of all these models is that when local markets are more active, a larger 

number of producers of the differentiated intermediate inputs break even and the production 

of final goods is more efficient when a greater variety of intermediate inputs is available. 
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However, Henderson (1974) building on work by Mills (1967) demonstrates that, in 

an equilibrium, disamenities from agglomeration may offset the productivity advantages thus 

acting as centrifugal forces.
1
 For example, these include increased costs resulting from higher 

wages driven by competition among firms for skilled labour, higher rents due to increased 

demand for housing and commercial land, and negative externalities such as congestion. 

Recent studies (e.g., Rappaport, 2008; Broersma and Oosterhaven, 2009) confirm that there 

are limits to agglomeration and point to a negative effect of congestion (crowdedness) on 

productivity growth.
2
 Furthermore, evidence suggests that increases in estimated productivity 

are insufficient to sustain the high levels of crowdedness in heavily urbanized areas 

(Rappaport, 2008).  

In this paper we study the impact of agglomeration (and congestion) on total factor 

productivity (TFP) using Dutch firm level data for the 1997-2006 period. The Netherlands is 

particularly suitable for studying agglomeration-congestion effects given the fact that the 

country is one of the most urbanized and densely populated in the world but it still exhibits 

sufficient diversity in the degree of urbanization. Three main categories of regions can be 

distinguished according to their level of urbanization and population density. Our approach 

extends the analysis of labour productivity and productivity growth in Dutch regions by 

Broersma and Oosterhaven (2009) by applying an advanced TFP estimation technique 

following modelling ideas in Ackerberg et al. (2007) and an application by Rizov and Walsh 

(2009). We explicitly model unobservable productivity using unique land price data at 

postcode level and incorporate directly effects of this and other location characteristics into 

the structural estimation algorithm. The computed measure of TFP is more comprehensive 

than a labour productivity measure. Our results add robust empirical evidence to the small but 

growing literature on the limits of agglomeration. In line with Broersma and Oosterhaven 

(2009) results we find a non-linear effect of agglomeration (density of economic activity) on 

productivity growth.  

The paper is organised as follows. In Section 2 we characterize the three urbanization 

categories used in the analysis and introduce a simple economic geography model to motivate 

the link between agglomeration, land prices and productivity. Next, in Section 3, we describe 

our econometric framework and implement the model of unobservable productivity. In 

Section 4 we describe the AMADEUS data used in our empirical analysis and report results 

from estimating production functions. In Section 5 we analyse aggregate productivity in 

levels and growth rates by the means of decompositions. Section 6 concludes.  
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2 Agglomeration effects in the Dutch regions and theoretical considerations 

The territory of the Netherlands is subdivided into 40 COROP (Coördinatie Commissie 

Regionaal Onderzoeks Programma) regions, based on functional regionalization principles, 

which form the NUTS3 (Nomenclature of Units for Territorial Statistics) level EU 

classification. For the analysis of regional differentiation, a typology based on degree of 

urbanization is used by the CBS (Het Centraal Bureau voor de Statistiek) and other 

government departments. According to the typology the 40 COROP regions are divided, on 

the basis of population density, into three categories: less urbanized, urbanized and highly 

urbanized. Given that the meaning of the concept of rural economy is largely a misnomer in 

the Netherlands, the typology based on degree of urbanization is quite appropriate for the 

analysis of the socio-economic developments in the Dutch regions. There is also a separate 

geographical classification of the Randstad urban zone (Amsterdam, Rotterdam, The Hague 

and Utrecht) which has resulted in fourty subregions: large and medium-sized cities and 

designated growth towns are treated as separate units, whereas for each of the functional 

urban regions in the Randstad all other municipalities are aggregated into one subregion. 

A comparative analysis of main characteristics of the three urbanization categories, 

for the 2002-2003 period, summarised in Table 1 reveals that employment growth in all three 

categories was positive as the growth rates were the highest in the less urbanized regions. 

Population growth in less urbanized regions also exceeded that of the highly urbanized 

regions. However, economic growth in the less urbanized regions was of about 1 percent 

annually which was lower compared to the growth in the other two urbanization categories. 

Age distribution was quite similar in all categories. Unemployment rates in the less urbanized 

regions were slightly higher compared to other urbanization categories while disposable 

income per capita was below that in the urbanized and highly urbanized regions.  

- Table 1 about here - 

The comparative analysis based on summary statistics shows that socio-economic 

differences across the three urbanization categories were relatively small and employment 

growth, population density, and land prices seem to be the main characteristics of difference.
3
 

Therefore, next, we focus on the relashinship between population density reflecting the 

strength of agglomeration and land prices and find a nonlinear relationship which is depicted 

graphycally in Figure 1. This is an important first evidence for presence of congestion and 

other negative externalities from agglomeration in the Netherlands. The finding is consistent 
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with results of Broersma and Oosterhaven (2009) who find negative impact of agglomeration 

on labour productivity growth in the Dutch regions. We need to acknowledge that the 

analysis at aggregate urbanization categories may mask differences at more disaggregated 

level such as municipalities (gemeenten). It is important to point out, however, that Terluin et 

al. (2005) who focussed on a number of selected municipalities did not find any substantial 

differences in socio-economic indicators from the national average, employment growth 

being the exception.  

- Figure 1 about here - 

Next, to understand better agglomeration-congestion effects in the Netherland we 

employ a simple economic geography model that casts light on above facts. The model is 

based on trade theory and assumes equality of output prices for each industry across all 

regions. Individual firms in each industry have constant returns to scale and make zero profits, 

so the equality of output price to unit cost holds for all regions. Furthermore, the weak form 

of factor price invariance with respect to endowments implies that the number of industries 

operating in each region should be at least as great as the number of inputs with region-

specific prices (Leamer, 1984). The solution to the system of equations for price equality to 

unit cost within industries leads to the result that relative factor productivities are exactly 

equal to relative factor prices across regions (e.g., Rice et al., 2006). This result places the 

non-linear relationship between land prices and population density presented in Figure 1 in 

the context of productivity differences across the Dutch regions.  

Another important implication of the model result is that although the spatial variation 

in factor prices is determined entirely from the production side of the economy the model is 

quite consistent with perfect mobility of some factors such as labour across regions - an 

important feature of the Dutch labour market. If there is perfect labour mobility, then any 

spatial differences in wages and in other considerations (such as amenity or disamenity) of 

agglomeration will be fully shifted into the prices of immobile factors in each area - land and 

housing (Voith, 1991; Adsera, 2000).
4
 Variation in the degree to which factor mobility is 

possible is entirely consistent with the model as well. If labour is immobile then we would 

still observe the same wage differences, although land prices would not necessarily have 

adjusted to give real wage equalisation across regions. In the case of the Netherlands it is 

justified to assume a high degree of labour mobility and thus that land prices almost fully 

internalise spatial differences in agglomeration and productivity. 
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Even though, in general, the model offers no predictions about the structure of 

production in each region it is consistent with the different degrees of factor mobility and 

hence different factor stocks in each region.
2
 Furthermore, the assumptions of the model that 

productivity levels are region specific, but not specific either to industries or factors, give the 

benchmark case. Relaxing them could add more detail but would not change the main 

conclusion. For example, spatial productivity differences may be greater for some factors or 

for some industries than others, in which case the model would also provide an insight into 

the regional specialisation. We do not pursue this further theoretically but instead in our 

empirical analysis estimate aggregate productivity across urbanization categories and then 

decompose it into productivity and industry composition effects. 

 

3 Estimation framework: Location characteristics and firm productivity 

To estimate productivity we employ a semi-parametric estimation algorithm in the spirit of 

Olley and Pakes (1996) following extensions in Ackerberg et al. (2007) and application by 

Rizov and Walsh (2009). As in Olley and Pakes (1996) we specify a log-linear production 

function,  

jtjtjtljtajtkjt laky   0 ,      (1) 

where the log of value added of firm, j at time, t, yjt is modelled as a function of the logs of 

the firm’s state variables at t, namely age, ajt, capital, kjt, and labour, ljt. Investment demand, 

ijt determines the capital stock at the beginning of each period. The law of capital 

accumulation is given by jtjtjt ikk  )1(1  , while age evolves as ajt+1 = ajt,+1. The error 

structure comprises a stochastic component, ηjt, with zero expected mean, and a component 

that represents unobserved productivity, ωjt. Both ωjt and ηjt are unobserved, but ωjt is a state 

variable, and thus affects firm’s choice variables – decision to exit and investment demand, 

while ηjt has zero expected mean given current information, and hence does not affect 

decisions. 

Because productivity ωjt
 is not observed directly in our data estimating Equation (1) is 

affected by simultaneity and selection biases. Simultaneity means that estimates for variable 

(non-dynamic) inputs such as labour will be upward biased if an OLS estimator is used, 

assuming a positive correlation with unobservable productivity. Selection (exit) depends on 

productivity type as well as on the capital stock representing fixed cost. Thus, the coefficient 

on capital is likely to be underestimated by OLS as higher capital stocks induce firms to 
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survive at low productivity levels (Olley and Pakes, 1996). Besides these two biases, a 

potential problem afflicting productivity measure is associated with the spatial dependency of 

observations within a geo-space. Spatial dependency leads to the spatial autocorrelation 

problem in statistics since - like temporal autocorrelation - this violates the standard statistical 

assumption of independence among observations (Anselin and Kelejian, 1997).  

To deal with the biases, we explicitly build the productivity and location relationship 

into a (structural) model of the unobservable productivity. We specify productivity of a firm, 

j, at a point in time, t as a function ),,,,( tjtjtjtjtjt rlakih  of the firm’s capital, kjt, labour, 

ljt, age, ajt, investment, ijt, and the economic environment characteristics that the firm faces at 

a particular point in time, rt, and treat the function non-parametrically in our estimation 

algorithm. Olley and Pakes (1996) derive the function for productivity by inverting the 

investment demand function of the firm which itself is a solution to the firm’s maximization 

problem.
6
 The economic environment control vector, rt, could capture characteristics of the 

input markets, characteristics of the output market, or industry characteristics like the current 

distribution of the states of firms operating in the industry. Note that Olley-Pakes formulation 

allows all these factors to change over time, although they are assumed constant across firms 

in a given period.  

As in Rizov and Walsh (2009) we extend the Olley-Pakes model of (unobservable) 

productivity in two ways. First, we extend the information content of the economic 

environment control vector to vary at narrowly defined firm location and denote this by, rjt, 

where a subscript index j is added. Following ideas in Roback (1982) and Ottaviano and Peri 

(2006) we combine data on wages and rents. This helps disentangle the consumption 

amenities from the productive advantages in areas with high density of economic activity. For 

workers, higher wages make them better off whereas higher rents make them worse off. Thus, 

greater consumption amenities will make workers willing to accept both lower wages and 

higher rents. For firms, both higher wages and higher rents mean increased costs. Thus, 

localized productive advantages will make firms willing to accept higher wages and higher 

rents. Consequently, both consumption amenities and productive advantages should be 

associated with higher rents. However, consumption amenities should be associated with 

lower wages whereas productive advantages should be associated with higher wages. Note, 

however, that this raises an additional concern if looking for agglomeration effects only 

http://en.wikipedia.org/wiki/Autocorrelation
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through wages. If big cities are associated with both better amenities and higher productivity, 

the net effect on wages may be ambiguous.  

Given that our strategy is to control for unobservable productivity while estimating 

production functions, rather than explicitly identifying effects, we use in rjt as proxies of 

agglomeration effects - the land price at 4-digit postcode level and annual wage at 

municipality level - in the function of productivity.
7
 As argued by Voith (1991), Graham 

(2009) and others agglomeration effects are capitalised in immobile factor prices, and 

analysis based on very small spatial units increases the probability of homogeneity of rents 

within each area.
8
 In addition, we include time trend and population density at regional level 

to control for common effects with respect to time periods and COROP regions. By including 

a regional control we also address to some extent the problem of spatial autocorrelation. 

In line with our purpose to better estimate productivity, introducing location-specific 

factor price variation in the state space does minimise the deviation from the original Olley-

Pakes scalar unobservable assumption, necessary to invert the investment function, and helps 

the precision of estimates. Second, we relax the scalar unobservable assumption alltogether. 

We model productivity as an exogenous second-order Markov process, ),|( 21  jtjtjtp  , 

where firms operate through time forming expectations of future jt s on the basis of 

information from two preceding periods.
9
 The function of productivity can be written as  

),,,,( jtjtjtjtjtjt rlakih .        (2) 

Next we briefly summarise our estimation algorithm which is outlined in detail in 

Rizov and Walsh (2009). Substituting Equation (2) into the production function, Equation (1) 

and combining the constant, kjt, ajt, and ljt terms into function ),,,,,( jtjtjtjtjtjt rlakei  gives  

jtjtjtjtjtjtjtjt rlakeiy   ),,,,,( .       (3) 

Equation (3) is the first step of our estimation algorithm and can be estimated as in Olley and 

Pakes (1996) with OLS and applying semi-parametric methods that treat the function (.)  

non-parametrically, using a polynomial.
10

 The capital, age, and labour coefficients are 

identified in the second step of our estimation algorithm. We substitute into Equation (1) the 

non-parametric function g’(.) for the unobservable productivity jt  which gives  

,(.)' jtjtljtajtkjt glaky         (4) 
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where ),ˆ,ˆ('(.)' 22221111 jtjtljtajtkjtjtljtajtkjt Plaklakgg


    

encompasses the constant, 0  and jt  is a composite error term containing jt . The lagged ̂  

variables in g’(.) are obtained from the first step estimates at t-2 and t-1 periods. Because the 

conditional expectation of jt , given information in t-2 and t-1 periods, depends on 2jt  and 

1jt , we need to use estimates of ̂  from two prior periods. jtP̂  is propensity score which 

controls for the impact of selection on the expectation of jt , i.e., firms with lower survival 

probabilities which do survive to time, t likely have higher jt s than those with higher 

survival probabilities. We estimate jtP̂  non-parametrically using Probit model with a 

polynomial approximation. Note that we extend the state variable set with land price 

information which is an important determinants of firm (entry and) exit decision. Equation (4) 

is estimated with non-linear least squares (NLLS) estimator, approximating g’(.) with a 

polynomial.
11 

Having estimated unbiased and consistent production function coefficients we are 

then able to back out a unbiased and consistent measure (residual) of total factor productivity 

(TFP) as jtljtkjtjt lkyTFP  ˆˆ  .
12

 In the model of unobservable productivity we have 

explicitly incorporated spatial and time dependencies by merging spatial interactions with 

disaggregated modeling of productivity at firm level. In terms of verifying whether variations 

in location make firms more productive, we have controlled in our model of productivity for 

market-structure specific shocks (such as demand conditions, factor markets, exit barriers) 

that are different across locations (municipalities). We note that these factors remain constant 

across firms in the same location within a given industry and a time period.  

 

4 Data and estimation results 

We apply the methodology of estimating production functions developed in Section 3 to the 

AMADEUS sample of Dutch firms. AMADEUS of the Bureau van Dijk is a comprehensive, 

pan-European database containing information organised in two modules according to firm 

size. We use the TOP-1.5-million Module which contains more than 250,000 small, medium 

and large firms for the Netherlands over the period 1997-2006.
13

 For each firm there is 

detailed information on unconsolidated financial statements, ownership structure, location 

(by post code) and activity description. The coverage of the data compared to the aggregate 
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statistics reported by the CBS is very good as for sales it is 73 per cent and for employment – 

70 per cent. The industry sectors are identified on the bases of the current NACE Rev.1 

classification at the 2-digit level and cover agriculture, manufacturing, construction, trade and 

services (codes range from 01 to 74) - 28 industries in total. All nominal monetary variables 

are converted into real values by deflating them with the appropriate 2-digit NACE industry 

deflators provided by CBS. We use PPI to deflate sales and cost of materials, and asset price 

deflators for capital and fixed investment variables.
14

  

In this paper, our goal is to estimate unbiased and consistent TFP measures at firm 

level, within industries, and to document the aggregate productivity gaps between less 

urbanized, urbanized, and highly urbanized regions. The strategy of our empirical analysis is 

to run regressions within industries and we apply our estimation algorithm to the 28 largest 2-

digit industries, with sufficient number of observations. The estimated sample accounts for 

about 51 per cent of the sales and 47 per cent of the employment in our data. After lags are 

applied and observations with missing values deleted, there are 13,897 remaining 

observations for 4,220 firms. The correlations between the CBS aggregate statistics series and 

the estimated sample series are as follows: value added (used in the regressions as dependent 

variable) - 0.91 and employment - 0.94.  

The descriptive statistics calculated from the estimated AMADEUS sample of firms 

are reported in Table 2. We compare average firm characteristics across less urbanized, 

urbanized, and highly urbanized regions. Firms in highly urbanized regions, compared to 

their counterparts in urbanized and less urbanized regions are larger in terms of value added, 

employment, and capital, and invest more. These characteristics are in accord with the socio-

economic measures, proxying density of economic activity, reported in Table 1. The land 

prices differ in a similar manner, however, the difference between highly urbanized and 

urbanized regions is relatively small suggesting that much higher density of population do not 

correspond to proportionate increase in land price. Interestingly, industry concentration 

characterised by market share of the top four 2-digit industries (C4) does not show substantial 

differences across categories of urbanization although higher degree of urbanization seems to 

be associated with slightly higher concentration. There are differences in the composition of 

the top four industries dominating each urbanization category. In all categories the most 

dominant are wholesale trade (51) and construction (45). Less urbanized regions are the only 

part of the country where manufacturing of machinery and equipment (29) has an important 

presence while food industry (15) is also important in urbanized regions. Sales and 
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maintenance of automobiles and automotive fuel sales (50) are important in urbanized and 

highly urbanized regions. Only in highly urbanized regions retail sales (52) make part of the 

C4 industries. Overall, there are differences across urbanization categories regarding industry 

composition while differences in concentration are rather modest.  

- Table 2 about here - 

Summary of the aggregated coefficients, over the estimated 28 industry production 

functions, by urbanization category is reported in Table 3. Coefficient estimates from all 28 

industry regressions, number of observations and test statistics are available from the authors. 

The aggregated coefficients on labour, capital and age reported in Table 3 are weighted 

averages using value added as weight. They confirm the differences across urbanization 

categories with respect to the shares of labour and capital in output. Both coefficients, on 

labour and capital, decline systematically across urbanization categories as the value of 

labour coefficient is 0.647 for less urbanized regions while it is 0.623 for highly urbanized 

ones. The pattern of the capital coefficient is similar – 0.178 for less urbanized regions and 

0.162 for highly urbanized regions.   

- Table 3 about here - 

Aggregate productivity measures by urbanization category clearly show that highly 

urbanized regions are the most productive; the TFP of firms in these regions is 4.382, while it 

is 3.509 and 3.452 - for firms in urbanized and less urbanised regions, respectively. 

Furthermore, not only the mean but the whole distribution of firm TFPs in highly urbanized 

regions dominates the corresponding distributions of firm TFPs in urbanized and less 

urbanized regions. Figure 2 illustrates the distributions of firm TFPs across the three 

urbanization categories by the means of kernel density estimates. The Kolmogorov-Smirnov 

two-sample tests for stochastic dominance are statistically significant at the 1 percent level 

for all distributions and confirm the fact that firms in highly urbanized regions are the most 

productive. When we consider distributions of TFP annual growth rates in Figure 3, however, 

we see that the highest growth rate is exhibited by firms in urbanized regions rather than in 

the highly urbanized ones. The Kolmogorov-Smirnov two-sample tests are again significant 

at the 1 percent level for all distributions and confirm the fact that productivity of firms in 

urbanized regions grows the fastest. Our tests also show that growth rates in highly urbanised 

regions are the second highest followed by the growth rates in less urbanized regions. The 

finding that highly urbanized regions lag behind urbanised regions in terms of TFP growth 

we interpret as evidence of congestion due to too a high density and degree of agglomeration.  
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- Figure 2 about here - 

- Figure 3 about here - 

 

5 Spatial variation in aggregate productivity: Is there a limit to agglomeration? 

The discussion in previous sections and information reported in Tables 1 to 3 and Figures 1 to 

3 suggest that there is a systematic relationship between productivity and the degree of 

agglomeration as measured by the level of urbanization and density of economic activity. In 

this section we analyse differences in aggregate productivity across urbanization categories 

by applying a decomposition of productivity levels and growth rates following Rice et al. 

(2006) and Oosterhaven and Broersma (2007). Given our analytical strategy to build into the 

estimated model of (unobservable) productivity all relevant factors affecting it, to 

demonstrate the link between agglomeration and productivity it is sufficient to use 

unconditional shift-share type decomposition. Spatial variation in aggregate productivity 

(productivity growth rates) derives from two main sources – differences in the individual firm 

productivities (growth rates) within each industry, resulting in different average 

productivities (growth rates) across industries, and differences in the industry composition 

within each urbanization category.  

We calculate the weighted average of individual firm productivities (TFPs), qr
k
 , using 

firm value added as weight, by urbanization category, r and industry, k.
15

 The total value 

added in urbanization category, r is denoted by Sr = Σksr
k
 and the share of industry, k in the 

total value added in category, r is λr
k
 = sr

k
/Sr. The average productivity of industry, k for the 

economy as a whole (i.e., aggregating across all categories, r) is given by 

 r
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k Ss /  is the share of industry, k in total value 

added for the economy as a whole. Aggregate productivity, qr is weighted average of industry 
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aggregate productivity (a) may be decomposed as follows: 
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The first term on the right-hand side of Equation (5) is the average level of productivity in 

urbanization category, r conditional on industry composition being the same as for the 

economy as a whole; we refer to this as productivity index (b). The second term is the average 

level of productivity of urbanization category, r given its industry composition but assuming 
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that the productivity of each industry equals the economy-wide average for that industry. It is 

referred to as the industry composition index (c). Remaining terms (d) and (e) measure the 

residual covariance between industry productivities and industry shares in urbanization 

category, r. It is important to point out that comparison between productivity and industry 

composition indexes, while taking into account the residual covariance terms, in Equation (5) 

can provide useful information about the determinants of aggregate productivity in various 

urbanization categories. The decomposition of productivity growth rates is analogous to the 

decomposition of productivity levels described above.  

We compute the productivity index and the industry composition index as specified 

above for the highly urbanized, urbanized and less urbanized regions in the Netherlands and 

report the results by urbanization category, in Table 4, Panel A. Note that values reported are 

normalised by the term k

k

kq   from Equation (5). While variation in aggregate 

productivity by urbanization category reflects differences in both productivity and industry 

composition, the spatial variation observed in the productivity index derives entirely from 

spatial variation in industry (firm) productivity and is independent of differences in industry 

composition. A higher value of the productivity index in a given urbanization category would 

suggest that industries in this category are more productive. The spatial variation in the 

industry composition index derives entirely from differences in the industry composition 

across urbanization categories and is independent of variation in productivity. A higher value 

of the industry composition index in a given category implies that the more productive 

industries are represented by larger industry shares in that category. The last covariance term 

in Equation (5) provides information about the link between industry shares and productivity; 

a positive sign of the term in a given urbanization category means that the more productive 

industries are also relatively larger. 

- Table 4 about here - 

The results in Panel A are computed as averages for the 2000-2006 period and 

confirm that highly urbanized regions, with the highest density of economic activity, have the 

highest aggregate productivity. The urbanized regions lag behind in aggregate productivity by 

21.7 percent, while less urbanized regions are the least productive, with aggregate 

productivity lower by 23.2 percent compared to the highly urbanized regions. Productivity 

index and industry composition index also are lower for urbanized and less urbanized regions 

compared to the highly urbanized regions as the differentials for the productivity index are 

10.3 percent and 10.4 percent, while the differentials for the industry composition index are 
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14.4 percent and 13.8 percent respectively. The magnitudes of the differentials suggest that 

urbanized and less urbanized regions are characterised by similarly low productivity index 

but the industry composition index for less urbanized regions is higher than the one for the 

urbanized regions. The covariance term is positive for all urbanization categories but its 

magnitude is the largest for the urbanized regions suggesting a substantial unexplained 

reallocation of industry shares towards more productive industries or alternatively increases 

in productivity of larger industries. From policy view point, efforts to increase firm and 

industry productivity, through technological innovation and competition, rather than modify 

industry composition might be more fruitful in less urbanized regions given the larger scope 

for improvement in the productivity index compared to the industry composition index.
16

  

To explore further the factors affecting aggregate productivity, by urbanization 

category, we analyse productivity growth rates over the 2000-2006 period by the means of 

the decomposition indexes defined in Equation (5) and report results in Table 4, Panel B. The 

period of analysis is generally characterised by stable economic and trade conditions after the 

implementation of the single currency, the Euro in the beginning of 1999. We are able to 

establish the magnitudes of contributions by both industry productivity and industry 

composition changes in productivity to the aggregate productivity of highly urbanized, 

urbanized and less urbanized regions. The results in Panel B show substantial heterogeneity 

in productivity growth by urbanization category. Aggregate productivity in urbanized regions 

increases with the highest annual rate of 1.3 percent followed by the rates in highly urbanized 

and less urbanized regions - 1.1 and 1.0 percent respectively. This finding is significant and 

demonstrates that the congestion forces dominate positive agglomeration forces in the highly 

urbanised regions. Importantly, our result is similar to findings of Broersma and Oosterhaven 

(2009). This is also an evidence of urbanized regions catching up with highly urbanized 

regions in terms of aggregate productivity over the period of analysis.  

The sources of aggregate productivity growth vary by urbanization category. For the 

highly urbanized and less urbanized regions improvements in both productivity and industry 

composition indexes are evident. For urbanized regions the growth in productivity index is 

the most important while contributions by the industry composition index are insignificant. 

The contribution of the industry composition index is the most significant in less urbanized 

regions suggesting that reallocation of industry shares towards more productive industries is 

taking place in those regions. There is also evidence of relative improvement in the industry 

composition in highly urbanized regions over time. The negative growth in the residual 
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covariance terms, however, supports the view that some reallocation of industry shares may 

lead to deteriorating industry composition which is possibly due to expansion of less 

productive industries or deterioration in productivity of important industries, especially, in 

both less urbanized and highly urbanized regions.  

 

6 Conclusion 

The focus of the paper is on evaluating the impact of agglomeration on productivity in the 

Dutch regions classified by level of urbanization. We build a structural model of the 

unobservable productivity incorporating land prices as a proxy for the effects of 

agglomeration and adapt the semi-parametric estimation approach proposed in Olley and 

Pakes (1996) to estimate the parameters of production functions at firm level, within 2-digit 

industries in the Netherlands, for the period 2000 - 2006. We use information on land prices 

available for 4-digit post codes and allow market structure to differ at very disaggregate 

municipality (gemeente) level. We model the unobservable productivity as an exogenous 

second-order Markov process which enhances our ability to obtain unbiased and consistent 

estimates of the production function parameters and thus, back out unbiased and consistent 

TFP measures at firm level.  

We aggregate the firm TFPs by urbanization category and find that aggregate 

productivity systematically differs across highly urbanized, urbanized and less urbanized 

regions as the magnitudes of the differentials are 21.7 percent and 23.2 percent, respectively. 

Our results confirm findings of a number of studies that productivity and agglomeration are 

positively correlated. Further, aggregating productivity growth rates reveals important 

differences across urbanization categories. The main finding is that there is a tendency of 

urbanized regions – exhibiting annual growth rate of 1.3 percent - catching up with highly 

urbanized regions – with annual growth rate of 1.1 percent - in terms of aggregate 

productivity over the period of analysis. This is an evidence of negative congestion 

dominating positive agglomeration effects.  

We also decompose aggregate productivity into productivity index and industry 

composition index. The productivity index is the highest in highly urbanized regions 

suggesting that (firm and industry) productivity is strongly influenced by agglomeration. The 

industry composition index captures the extend to which production in different urbanization 

categories is allocated to industries that are more or less productive compared to the average 

for the Dutch economy. Most importantly, we find evidence that productivity growth index is 
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the highest in urbanized rather than in highly urbanized regions pointing to the fact that 

agglomeration has led to congestion and negatively affected productivity growth at high 

levels of density of economic activity. Improvements in industry composition index are more 

important in highly urbanized and less urbanized regions. Thus, in less urbanized regions, in 

the light of our decomposition results, efforts to increase firm and industry productivity, 

through technological innovation and within-industry competition, rather than relying on 

induced changes in industry composition might be more fruitful, given the larger scope for 

improvement in the productivity index compared to the industry composition index. In highly 

urbanized regions preventing further agglomeration is likely to lead to suatainable 

productivity growth.  
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Notes 

1
 Alonso-Villar (2008) using features of Forslid and Ottaviano’s (2003) framework 

analytically shows that when considering the effects of congestion costs, the dispersion of 

economic activity is possible not only at high, but also at low transport costs which suggests 

limits to agglomeration. 

2
 In somewhat different but related context Saito and Gopinath (2009) and Combes et al. 

(2009) study the impact of firm self-selection and agglomeration on regional or city 

productivity. The first paper finds that firm’s self-selection outweighs the contribution of 

agglomeration economies in increasing a region's productivity level in Chile while the second 

paper finds the opposite for the case of French cities.
 

3
 The data source for land prices was the Cadastral Land Sales Database that contains 

information on land transactions, transaction prices, and the location of each parcel sold in 

the Netherlands. From the Cadastral Land Sales Database we obtained the transaction prices 

per hectare in 2003. 

4
 In competitive markets labor is paid the value of its marginal product. However, even if 

labor markets are not perfectly competitive, higher wages in dense urban areas can be seen as 

evidence of higher productivity. For workers, higher wages may be offset by larger 

commuting and housing costs. However, higher wages and land rents in areas with high 

density of economic activity would lead firms to relocate elsewhere unless there were some 

significant productive advantages (Roback, 1982; Combes et al., 2010; Puga, 2010). 

5
 The model is consistent with the predictions of alternative theories with regard to regional 

and urban production structures. Models of regional specialisation include the hierarchical 

view of central place theory, and models of urban specialisation (e.g., Henderson, 1974). 

6
 The invertability of the investment function requires the presence of only one unobservable 

which Olley and Pakes (1996) refer to as scalar unobservable assumption. This assumption 

means that there can be no measurement error in the investment function, no unobserved 

differences in investment prices across firms, and no unobserved separate factors that affect 

investment but not production. However, the monotonicity needed in Olley and Pakes (1996) 

does not depend on the degree of competition in the output market; it just needs the marginal 

product of capital to be increasing in productivity. 

7
 In terms of Ackerberg et al (2007) land price and wage can be seen as additional observed 

controls of firm investment choices. Alternatively, land price and wage can be treated as state 

variables. 
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8
 While the distinction between urbanisation and localisation is conceptually valid, it can, as 

theory indicates, be very difficult to identify empirically and in particular for industries that 

are prominent in dense urban environments. Thus, the problem of identification is potentially 

most severe for highly urbanised countries such as the Netherlands. However, Graham (2009) 

shows that estimations for various industries using generic agglomeration variables present 

evidence of agglomeration economies with no substantial loss in model fit compared to an 

estimation, where urbanisation and localisation effects are separated. 

9
 The fixed effect estimator can be seen as a special case of the Markov process p(.) where 

productivity, jt  is set to j  and does not change over time. 

10
 Olley and Pakes (1996) show that kernel and polynomial approximations of the 

unobservable produce very similar results. In our estimations everywhere we use a 

computationally easier 4
th

-order polynomial. Also note that even though the first step in our 

algorithm does not directly identify any of the parameters of the production function, it 

generates estimates of (.) , jt̂ , needed in the second stage.  

11
 Woodridge (2009) presents a concise, one-step formulation of the original Olley and Pakes 

(1996) approach using GMM estimator which is more efficient than the standard Olley-Pakes 

methodology. 

12
 Estimating the age coefficient is only used to separate out cohort from selection effects in 

determining the impact of firm age on productivity and therefore we do not net out the 

contribution of age from TFP. 

13
 The TOP-1.5-million Module contains firms which must satisfy one of the following 

criteria: i) operating revenue > €1 million; ii) total assets > €2 million; iii) number of 

employees > 15. There is also a TOP-250,000 Module which contains only large firms which 

must satisfy one of the following criteria: i) operating revenue > €10 million; ii) total assets > 

€20 million; iii) number of employees > 150. 

14
 A number studies (e.g., Katayama et al., 2003; Del Gatto et al., 2008) point that production 

functions should be a mapping of data on inputs and outputs. However, most studies tend to 

use revenue and expenditure data and apply industry level deflators for output, raw materials 

and capital to get back the quantity data needed. However, inputs and outputs can be priced 

differently for different firms within narrowly defined industries. This results in inconsistency 

discussed by Klette and Griliche (1996) in the case of common scale estimators. To deal with 

the problem some studies (e.g., Del Gatto et al., 2008) introduce average industry sales as an 
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additional regressor in the production function. We note, however, that introducing detailed 

location information in the state space will control for persistent pricing gap across firms in 

their use of inputs and their outputs within each industry. Furthermore, Foster et al. (2008) 

find that productivity estimates from quantity and deflated revenue data are highly correlated, 

and that the bias vanishes on average such that estimated average productivity is unaffected 

when aggregate deflators are used. 

15
 Note that industry productivity is determined by individual firm productivities and firm 

market shares, within the industry, as discussed by Olley and Pakes (1996) and Rizov and 

Walsh (2009), among others. Thus, there could be two sources of industry productivity – 

within-firm productivity increases and reallocation of market shares towards more productive 

firms. 

16
 The literature on international (and regional) specialization predicts that general technology 

(Ricardian) and factor supply (Heckscher-Ohlin) differences jointly determine comparative 

advantage and thus, specialization, measured as industry composition. Recent papers, starting 

with Harrigan (1997), show that the estimated impact of non-neutral technology differences 

is large and in accord with the theory, suggesting that Ricardian effects are an important 

source of comparative advantage, and thus, a determinant of industry composition. 
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Table 1: Socio-economic Indicators by Urbanization Category 

Indicator Highly 

urbanized 

Urbanized Less 

urbanized  

Employment growth 1996-2002, % pa 2.4 2.3 2.7 

Population growth 1996-2002, % pa 0.6 0.6 0.8 

Economic growth 1996-2002, % pa 2.9 3.0 2.2 

Participation rate 2002, % 66 66 64 

Unemployment rate 2002, % 2.4 2.1 2.6 

Share of elderly population 2002, % 14 13 14 

Income per capita 2002, € 12,000 11,000 10,000 

Land price 2003, €/ha * 220,684 139,330 63,876 

Population density 2003, number/sq. km 1577 570 231 

Source: Terluin et al. (2005) and CBS.  

Note: * Average land price and annual wage are calculated from data for 463 municipalities 

(gemeenten).  
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Table 2: Descriptive Statistics of Firm Specific Variables by Urbanization Category, 

2000-2006 

Variable Highly 

Urbanized, 

Mean (S.D.) 

Urbanized, 

Mean (S.D.) 

Less 

Urbanised, 

Mean (S.D.) 

 (1) (2) (3) 

Firm alue added (thousands €) 98,869.2 

(272,741.4) 

33,345.3 

(73,471.6) 

23,380.6 

(45,145.4) 

Firm total fixed assets (thousands €) 149,226.7 

(359,107.0) 

37,822.1 

(85,797.9) 

27,072.8 

(71,405.4) 

Firm real investment (thousands €) 41,774.1 

(121,794.7) 

8,977.9 

(37,686.0) 

5,446.2 

(14,418.2) 

Firm employment (number of full-time-

equivalent (FTE) employees) 

1,439.9 

(4,470.3) 

553.9 

(1,636.1) 

520.2 

(1,358.9) 

Firm age (years) 33.0 

(39.9) 

34.4 

(32.2) 

37.8 

(35.0) 

Regional wage per FTE employee (€ per 

year) 

18,471.6 

(7,614.4) 

17,618.4 

(8,053.0) 

16.654.1 

(4,354.9) 

Regional land price per hectare (€) 218,017.0 

(188,687.7) 

141,016.8 

(147,012.2) 

63,571.3 

(50,077.0) 

Population density (number per sq. km) 1,544.6 

(493.8) 

580.3 

(204.0) 

232.4 

(37.8) 

Market share of top four industries, C4 (%) 56.1 54.7 51.8 

Number of observations (Total 13897) 3555 7988 2354 

Source: AMADEUS, BvD 

Note: Composition of 2-digit NACE C4 industries is as follow: in column (1) 51, 45, 50, 52; 

in column (2) 51, 45, 50, 15; in column (3) 51, 45, 29, 15. The order of industries is by 

market share. 
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Table 3: Production Function Coefficients and Productivity Estimates Aggregated by 

Urbanization Category, 2000-2006 

Coefficient Highly urbanized  Urbanized Less urbanized 

Labour 0.623 (0.038) 0.634 (0.038) 0.647 (0.038) 

Capital 0.162 (0.018) 0.167 (0.018) 0.178 (0.019) 

Age 0.148 (0.054) 0.133 (0.053) 0.114 (0.050) 

Adjusted Rsq 0.995 0.996 0.995 

Aggregate 

productivity 

4.382 (0.992) 3.509 (0.966) 3.452 (0.979) 

Note: The reported coefficients and aggregate productivity are weighted averages, using 

value added as weight, from 28 industry regressions on firm level data. Standard errors 

(standard deviations for productivity) are reported in parentheses. 
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Table 4: Aggregate Productivity Decompositions by Urbanization Category, 2000-2006 

 (a) (b) (c) (d) (e) 

Panel A: Average levels, 2000-2006 

Highly urbanized 1.092 1.019 1.059 1.000 0.014 

Urbanized 0.875 0.916 0.915 1.000 0.044 

Less urbanized 0.860 0.915 0.921 1.000 0.024 

Panel B: Annual changes, 2000-2006 

Highly urbanized 0.011 0.015 0.022 0.013 -0.013 

Urbanized 0.013 0.024 0.004 0.013 -0.002 

Less urbanized 0.010 0.014 0.037 0.013 -0.028 

Note: For definitions of decomposition components refer to equation (5) in the text. 

Component (d) has a negative sign in the decomposition.  
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Figure 1: Non-linear Agglomeration Effects, 2003 
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Figure 2: TFP Distributions by Urbanization Category, 2000-2006 
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Figure 3: TFP Growth Distributions by Urbanization Category, 2000-2006 
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