
Hierarchical IPF: Generating a synthetic population
for Switzerland

Kirill Müller

Kay W. Axhausen

ERSA 2011 June 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6580096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Hierarchical IPF: Generating a synthetic population for Switzerland June 2011

ERSA 2011

Hierarchical IPF: Generating a synthetic population for Switzer-
land

Kirill Müller, Kay W. Axhausen
IVT
ETH Zürich
8093 Zürich
phone: +41-44-633 33 17
fax: +41-44-633 10 57
{mueller,axhausen}@ivt.baug.ethz.ch

June 2011

Abstract

Agent-based microsimulation models for land use or transportation simulate the behavior of
agents over time, although at different time scales and with different goals. For both kinds
of models, the initial step is the definition of agents and their relationships. Synthesizing the
population of agents often is the only solution, due to privacy and cost constraints. In this paper,
we assume that the model simulates persons grouped into households, and a person/household
population needs to be synthesized. However, the methodology presented here can be applied
to other kinds of agent relationships as well, e.g., persons and jobs/workplaces or persons and
activity chains.

Generating a synthetic population requires (a) reweighting of an initial population, taken from
census or other survey data, with respect to current constraints, and (b) choosing the households
that belong to the generated population. We propose an algorithm that estimates household-level
weights that fit the control totals at both person and household levels. This eliminates the need
to account for person-level control during the generation of synthetic households. The algorithm
essentially performs a proportional fitting in the domains of both households and persons, and
introduces an entropy-optimizing fitting step to switch between these two domains. We evaluate
the performance of our algorithm by generating a synthetic population for Switzerland and
checking it against the complete Swiss census. The validation is performed using information-
based and distance-based statistics, and proves that the new algorithm is highly competitive to
the approaches presented by Ye et al. (2009) and Bar-Gera et al. (2009).

Keywords
Population synthesis, Microsimulation, Households, Disaggregation, IPF, Iterative Proportional
Fitting, Hierarchical, Simultaneous Control, Multi-Level, Multi-Domain, Relative Entropy
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1 Introduction

Agent-based microsimulation model systems for land use and transportation planning have come
into widespread use (UrbanSim, 2011; MATSim-T, 2011; Bradley et al., 2010; Beckx et al.,
2009; Roorda et al., 2008; Bhat et al., 2004; Ben-Akiva et al., 2002; Bowman and Ben-Akiva,
2001; de Palma and Marchal, 2002; Mahmassani et al., 1995). They simulate decisions of agents
within an urban area, allowing for more detailed and accurate simulation and prediction of, e.g.,
land pricing and travel demand than traditional aggregate models. Often, the agents represent
the individual people living in the study area, grouped by households. Other kinds of agents and
relationships are of interest as well, such as employees/firms or dwellings/buildings (Ryan et al.,
2009). In this paper we focus on person/household populations.

When implementing such a model system, the initial step is the definition of agents and their
relationships. For many countries, one suitable data source is the national census that is
collected on a regular basis. Census data must be prepared in order to be useful as input for
microsimulation. First, complete census data is rarely available: Often, only a small subsample,
the public-use sample, can be accessed. Information in that sample may be randomly rounded,
aggregated, or removed altogether. Second, the census is collected rather infrequently: As much
as 10 years can pass between two consecutive surveys.

The objective of population synthesis is to compensate for the difficulties above. The main idea
is to combine census microdata with readily available up-to-date aggregate data. Both data
source are used to generate a set of agents for which (a) the distribution and correlation of the
agents’ attributes are similar to those in the census microsample, and (b) the number of agents
within each category matches the current aggregate data. Two fundamentally different kinds of
population synthesis procedures are distinguished:

Synthetic reconstruction methods (SR) generate the synthetic population by combining joint
distributions over different attribute sets using IPF, and then drawing from the reference
sample using this fitted joint distribution. Recent contributions in the literature include
(Auld and Mohammadian, 2010; Pritchard and Miller, 2009; Srinivasan and Ma, 2009; Ye
et al., 2009; Bar-Gera et al., 2009; Guo and Bhat, 2007); see also (Müller and Axhausen,
2011) for a literature review over SR techniques.

Combinatorial optimization techniques (CO) estimate integer weights for the reference sam-
ple that minimize a suitable objective function. Ryan et al. (2009) have evaluated this
approach for synthesizing a population of firms.

In reality, personal decisions are affected not only by personal attributes, but also by the
individual family situation – i.e., whether a partner, children, or other persons live in the same
household (Jones et al., 1983). Therefore, replicating the proper household structure is a major
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requirement for the agent population in order to be able to simulate these interactions. In this
paper, we present a novel algorithm to fit a household sample with person information to given
control totals, and compare two similar algorithms (Ye et al., 2009; Bar-Gera et al., 2009) to
ours. We use all three algorithms to synthesize a population for Switzerland based on a 5 %
sample of the Swiss census.

The remainder of this paper is structured as follows. In the next section we show the evolution
of our algorithm from a variant of IPF and compare its results to those of two similar algorithms
for a toy example. The subsequent section present the analysis of a synthetic population for
Switzerland. We conclude with a summary and an outlook.

2 Algorithm

Generating synthetic populations using the Synthetic Reconstruction (SR) method consists of
two principal stages: fitting and generation. The purpose of the fitting stage is to reweigh a
disaggregate sample of agents (called reference sample), representing the full population of the
study area, so that the reweighted sample matches aggregate constraints (referred to as control

totals or controls). The fractional expansion factor is then used to construct a disaggregate set of
persons and households with attributes required by the microsimulation model in the generation
stage.

A frequently applied pattern is to estimate household-level expansion factors using IPF during
the fitting stage, so that they match the control totals for the households, and then, using these
expansion factors, generate a population of households that best fits the person-level control
totals (Auld and Mohammadian, 2010; Srinivasan and Ma, 2009; Guo and Bhat, 2007). However,
this complicates the generation stage and sometimes requires time-consuming computations not
suitable for frequent repetition.

Recently, Ye et al. (2009) presented a technique called Iterative Proportional Updating (IPU)
that estimates a fractional expansion factor for each household so that both household- and
person-level controls are satisfied. Bar-Gera et al. (2009) use an entropy optimization approach
to achieve the same goal, from hereon referred to as Ent. For all three procedures, construction of
the final population is possible using fast, simple and well-understood probabilistic drawing with
replacement, allowing to generate thousands of instances of similar yet different populations,
e.g., in the context of multiple imputation (Rubin, 1987). This paper presents HIPF, another
algorithm for multi-level fitting serving the same purpose as IPU and Ent. The output of the
three algorithms is compared in Section 3.

HIPF operates on the following input data:
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• a representative reference sample that contains the characteristics of households and all
persons belonging to the sampled households, and
• categorized control totals for selected attributes on both household and person levels.

Just like IPU and Ent, the algorithm is equivalent to IPF if control totals are provided for only
the household or only the person level.

In the following, we describe the HIPF algorithm as an transition from IPF. We briefly summarize
the IPF algorithm in its list-based version presented by Pritchard and Miller (2009) and introduce
the missing pieces in order to finally present the HIPF algorithm.

2.1 Fitting Households

The list-based version of IPF estimates fractional expansion factors f ∗h for all households h of
the reference sample so that the household-level control totals are satisfied. For the disaggregate
reference sample given as a multiset of category tuples

H = {(a1, b1, . . . ), . . . , (ah, bh, . . . ), . . . , (an, bn, . . . )}, (1)

we define the set of households Hab for a given combination of categories (a, b) as follows:

Hab := {h ∈ H : (ah, bh, . . . ) = (a, b, . . . )}. (2)

In addition, we define the sum Fab of all expansion factors for given categories a, b:

Fab :=
∑
h∈Hab

fh. (3)

For any category x, Hx and Fx are defined analogously. The control total for category a is
denoted by Ca; we assume that only Ca and Cb are given. It is a trivial precondition for the
convergence of IPF that the grand totals match for all attributes: n =

∑
aCa =

∑
bCb.

At k = 0, for the first iteration, the expansion factor is initialized to unity: f (0)
h := 1. After that,

the procedure FIT shown in Figure 1 is invoked repeatedly to compute a series f (k)
h of expansion

factors.

We define fh as the limit of f (k)
h , if it exists: f ∗h := limk→∞ f

(k)
h . The convergence of IPF

depends on the data. Two problems exist in the given context:

Missing observations If the control totals are nonzero for a combination of control categories
without a corresponding reference sample, a division by zero occurs during execution
of IPF. This is also referred to as the zero-cell problem – Figure 2(a) illustrates this.
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Figure 1: Procedure FIT(fh, Ca, Cb, . . .) – the Fitting Step in List-Based IPF

Require: Reference sample, expansion factors fh, control totals Ca, Cb and possibly others
Ensure: Expansion factors fh for the next iteration
fh ← Ca ÷

∑
i Fahi for all h ∈ H

fh ← Cb ÷
∑

i Fibh for all h ∈ H
(accordingly for all other control totals)
return fh

Figure 2: Two Possible Reasons for Non-Convergence of IPF

(a) Missing observations (Ca 6= 0)

0

...

. . . 0 . . . ...

...

0

· · · Ca · · · n

(b) Conflicting control totals (Ca 6= Cb)

0
.... . . ... . . .

0

0 · · · 0 1 0 · · · 0 Cb

0
.... . . ... . . .

0

· · · Ca · · · n

Various remedies have been suggested in the literature, such as introducing the missing
observations with arbitrarily small weights, combining rare categories, or borrowing from
other regions; cf. (Müller and Axhausen, 2011) for an overview.

Conflicting controls If an observation is unique within two or more combinations of control
categories, and the control totals for these categories differ, this observation’s expansion
factor will oscillate between the two control values. Figure 2(b) shows an example for
the above case; however, more complicated settings exist where IPF does not converge.
Pukelsheim and Simeone (2009) have proven necessary and sufficient conditions for the
convergence of IPF, derivable directly from the input data.

These problems need to be taken care of when implementing IPF or a variant thereof. In the
following, we assume that the reference sample and the control totals are well-conditioned so
that no convergence problems occur; see also Section 3.1.

The procedure LIPF in Figure 3 implements the algorithm. It can be easily extended to fitting
against more than two control variables, or fitting against cross-classified control variables.
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Figure 3: Procedure LIPF(Ca, Cb, . . .) – the List-Based IPF Algorithm

Require: Reference sample, control totals Ca, Cb and possibly others
Ensure: Expansion factors fh obeying all control totals
k ← 0

f
(0)
h ← 1 for all h ∈ H

repeat
f
(k+1)
h ← FIT(f

(k)
h , Ca, Cb, . . .)

k ← k + 1

until convergence
return f

(k)
h

2.2 Fitting Persons

Recall that our reference sample features not only the households, but also the persons in these
households. We denote this by another multiset of attribute tuples:

P = {(α1, β1, . . . , h1), . . . , (αp, βp, . . . , hp), . . . , (αm, βm, . . . , hm)}. (4)

For each person p, the attribute hp specifies the household she belongs to. This also introduces a
new implicit attribute ph for each household h – the number of constituent members, defined as
ph := |Ph|.

In analogy to Section 2.1, we denote by Pα the set of persons that fall within category α:

Pα := {p ∈ P : (αp, . . . ) = (α, . . . )}. (5)

We also define the control totals Cα and the grand total ν =
∑

αCα.

At first glance, the household attribute hp could be used as a control variable just like any
other person-level attribute, using the household-level expansion factors fh estimated with a
household-level IPF run as control totals: Ch := fh · ph. Two problems occur with this approach:

• The total number of persons implied by the new household-level control totals does
not necessarily match the grand total required by the other controls:

∑
hCh 6= ν. As

mentioned above, IPF does not converge in this case.
• Even in the case of convergence, the expansion factors are not necessarily equal for two

persons within the same household. Consequently, this procedure does not yield the
required household-level expansion factors straight away.

In what follows, we develop solutions for these problems.
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2.3 Adjusting the Persons-per-Household Ratio

For fitting at the household level, specification of the desired number of persons by using the
number of persons in the household as control variable introduces unjustified bias. In what
follows, we present an alternative fitting step that goes well with IPF by adhering to the Principle
of Minimum Discrimination Information (Kullback and Leibler, 1951; Ireland and Kullback,
1968).

For given expansion factors fh, the objective is to estimate new expansion factors f ′h subject to
the following restrictions:∑

h

f ′h = n (6)∑
h

ph · f ′h = ν. (7)

From the infinite set of feasible solutions, we choose the one that minimizes the relative entropy
from fh to f ′h, defined as follows:

D(f ′h||fh) =
∑
h

f ′h ln
f ′h
fh
. (8)

By this, we introduce the least possible amount of new information into our distribution.
Nevertheless, the fit at the household level is potentially distorted.

Appendix A presents a detailed analysis of the underlying optimization problem.

2.4 Switching Between Domains

After adjusting the average number of persons per household, another IPF run can be carried out
at the person level. The person-level expansion factors are copied from those at the household
level: fp := fhp . By explicitly controlling the household attribute hp, the distribution of the
household variables remains unchanged. However, as mentioned above, this procedure yields
person-level expansion factors unsuitable for our purpose: These need to be converted into
household-level factors.

A naïve approach to estimating household-level expansion factors is averaging:

fh :=
1

ph

∑
p∈Ph

fp. (9)
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Figure 4: Procedure HIPF(Ca, Cb, Cα, Cβ, . . .) – the Hierarchical IPF Algorithm

Require: Reference sample, control totals Ca, Cb, Cα, Cβ and possibly others
Ensure: Expansion factors fh obeying all control totals
k ← 0

f
(0)
h ← 1 for all h ∈ H

repeat
f
(k+1)
h ← FIT(f

(k)
h , Ca, Cb, . . .) for all h ∈ H

f
(k+2)
p ← f

(k+1)
hp

for all p ∈ P
f
(k+3)
p ← FIT(f

(k+2)
p , Cα, Cβ, . . .) for all p ∈ P

f
(k+4)
h ← p−1h ·

∑
p∈Ph

f
(k+3)
p for all h ∈ H

estimate f (k+5)
h from f

(k+4)
h by adjusting the persons-per-household ratio (cf. Section 2.3)

k ← k + 5

until convergence
return f

(k)
h

The bad news is that this completely undoes the efforts of person-level IPF, as the sum of the
expansion factors of all household members – and hence also the average – is fixed by using
household as control variable. As it turns out, the idea to explicitly control households during
person-level fit must be completely abandoned to achieve a simultaneous fit at both levels.
Nevertheless, the ingredients presented so far can be combined into an algorithm that solves the
initial problem.

2.5 The Big Picture

In order to simultaneously control both levels of aggregation, we suggest fitting at household and
person levels alternately. For this, it is necessary to convert household-level expansion factors
into person-level ones, and vice versa – these conversions can be carried out as outlined above.
In addition, an adjustment of the persons-per-household ratio has to be performed repeatedly.
Figure 4 shows a pseudocode for the algorithm; its stop criterion can be specified using the
relative change between iterations or the absolute difference to the control totals.

Note that, if fitting only at the household level, the algorithm is equivalent to IPF. While this is
also true for the IPU and Ent, our approach follows the Principle of Minimum Discrimination
Information more closely when fitting at two levels of hierarchy compared to IPU.

We repeat the toy example used for the presentation of IPU in (Müller and Axhausen, 2011)
with our algorithm in Figure 5. In this example, we consider a sample of households and
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Figure 5: Numeric Example for the Hierarchical IPF algorithm

h ah ph p αp k 0 1 2 3 4 5 10 ∞ IPU Ent

1..22 � 3

1  

f (k) 1.00

1.37

1.37 2.19

1.36 1.33 1.28

...

1.18 1.60 1.052 # 1.37 0.94

3 # 1.37 0.94

23..43 � 2
1  

1.37
1.37 2.19

1.57 1.61 1.61 1.50 1.60 1.51
2 # 1.37 0.94

44..64 � 3

1 #

1.37

1.37 0.94

0.94 0.92 0.75 0.54 0.33 0.452 # 1.37 0.94

3 # 1.37 0.94

65..80 � 2
1 #

0.64
0.64 0.44

0.44 0.45 0.38 0.28 0.19 0.36
2 # 0.64 0.44

81..96 � 3

1  

0.64

0.64 1.03

0.64 0.62 0.66 0.68 0.95 0.582 # 0.64 0.44

3 # 0.64 0.44

97..108 � 1 1 # 0.64 0.64 0.44 0.44 0.48 0.38 0.26 0.19 0.52

109..119 � 2
1 #

1.37
1.37 0.94

0.94 0.97 0.75 0.49 0.33 0.65
2 # 1.37 0.94

120..128 � 1 1 # 1.37 1.37 0.94 0.94 1.01 0.75 0.45 0.33 0.94

129..136 � 3

1  

0.64

0.64 1.03

0.83 0.82 1.00 1.30 0.95 1.342  0.64 1.03

3 # 0.64 0.44

137..144 � 3

1  

1.37

1.37 2.19

1.77 1.73 1.95 2.24 1.60 2.442  1.37 2.19

3 # 1.37 0.94

145..151 � 2
1  

0.64
0.64 1.03

0.74 0.75 0.82 0.87 0.95 0.83
2 # 0.64 0.44

152..158 � 3

1 #

0.64

0.64 0.44

0.44 0.43 0.38 0.31 0.19 0.252 # 0.64 0.44

3 # 0.64 0.44

159..164 � 1 1  1.37 1.37 2.19 2.19 2.35 2.76 3.27 3.51 2.17

165..170 � 2
1  

1.37
1.37 2.19

2.19 2.25 2.75 3.58 3.51 3.51
2  1.37 2.19

171..173 � 1 1  0.64 0.64 1.03 1.03 1.11 1.41 1.89 2.80 1.20

174..175 � 3

1  

1.37

1.37 2.19

2.19 2.14 2.74 3.92 3.51 5.662  1.37 2.19

3  1.37 2.19

176 � 2
1  

0.64
0.64 1.03

1.03 1.06 1.40 2.07 2.80 1.93
2  0.64 1.03

n 145 ∆h 39.00 0.00
? ?

-1.25 -2.82 -1.75

...

0.00 0.00 0.00

C� 190 ∆a 14.00 0.00 2.10 0.00 0.00 0.00 0.00 0.00

ν 227 ∆p 100.00 85.18 85.18 0.00 49.46 48.63 28.71 0.00 0.00 0.00

C 434 ∆α 28.00 -8.27 -8.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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their constituent members. The sample contains information whether the household owns a
car (�/�), and whether each member of the household is working ( /#). The control totals
postulate a somewhat larger population, a considerable shift towards occupation, and a slight
preference for car possession. In the left part of the table, the reference sample is listed, with
corresponding control totals below. The right part of the table shows the actual fitting procedure:
For each iteration listed, the estimated expansion factors are shown. Below that, the ∆ values
denote the difference between desired and estimated counts. When fitting at person level, e.g., in
iteration 2, computing fitness values at household level is not meaningful – hence the question
marks in the corresponding cells. The table is shown in condensed form: Households that are
identical within the given attributes are listed only once.

The two rightmost columns list the results obtained with the IPU and the Ent algorithms for
comparison. Note that the expansion factors obtained by the three techniques do not seem to
exhibit a common pattern. Perhaps the most notable differences between HIPF and IPU can
be observed for households 81..96 and 129..136: For both household structures, IPU estimates
the same expansion factor of 0.95, while the households 81..96 occur almost twice as seldom
in the HIPF solution as 129..136. The reason is that IPU treats both household types the same
way when fitting for the person-level attribute: Both have at least one worker and at least one
non-worker. In contrast, HIPF assigns a smaller expansion factor to 81..96, as this household
type contradicts the increase of overall occupation specified by the person-level control totals.
When comparing HIPF and Ent, in general, the expansion factors for one-person households
(e.g., 120..128) tend to be further away from 1, and those for three-person households (e.g.,
174..175) tend to be closer to 1 for HIPF. This is due to the fact that a change in the expansion
factor has the same effect on the entropy regardless of household size, and a very large or
very small expansion factor “pays off” for a large household if it helps the adjustment to the
person-level control totals.

3 Experimental results

As a practical test for our algorithm, we generated a synthetic population for Switzerland. The
Swiss census (Swiss Federal Statistical Office, 2000a) has been used as input for the reference
sample. We computed household-level expansion factors for a random sample of the census
using control totals derived from the census itself, using HIPF, IPU (Ye et al., 2009), and the
entropy optimization approach presented by Bar-Gera et al. (2009). The generated population
has been validated, also against the census. While this is not a particularly realistic scenario,
this setting allows us to test the quality of the algorithms under “perfect” conditions. In the
following, we present the setup and results of the validation.
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Table 1: Household Structure of the Base Sample

p |Hp| p |Hp| p |Hp| p |Hp| p |Hp| p |Hp|

1 1 120 878 2 985 971 3 403 032 4 410 000 5 143 736 6 38 183
7 9 061 8 2 746 9 1 004 10 400 11 175 12 101

13 49 14 41 15 16 16 4 17 2

|H| 3 115 399 |P | 6 992 811 |P | ÷ |H| 2.245

Table 2: Cross Tabulations Available from the Swiss Federal Statistical Office

Level Tabulation Relevant Chosen

H Municipality × Household size X X

Municipality × Household type × Children X X

P Canton × Age × Sex × Foreigner X X

Municipality × Age × Sex X (X)
Municipality × Sex × Foreigner ×Martial status X X

Municipality × Religion
Municipality × Foreigner × Language
Municipality × Sex × Foreigner × Occupation type X

Municipality × Sex × Foreigner × Economic sector X

Municipality × Sex × Foreigner × Education X X

Municipality × Sex × Foreigner × Professional activity X

Municipality × Sex × Foreigner × Place of birth
Municipality × Sex × Foreigner × Former residence X

3.1 Description of the Data

True Population The Swiss census contains person and household attributes in a total of
7 452 000 records. For each person, the household ID and all attributes of that household
are listed. Each place of residence of a person is represented by a distinct record; hence,
we excluded 164 000 person records that correspond to secondary residences. In addition,
we deleted 295 000 records that correspond to persons in collective households or group
quarters. The true population, detailed in Table 1, consists of 6 993 000 persons and
3 115 000 households; the average household size is 2.245.

Control Totals Cross tabulations over attributes where aggregate data is available from the
Swiss Federal Statistical Office are used as control totals. Table 2 lists the cross tabulations
that are related to the census, highlighting those relevant for transportation planning and
those finally selected for the synthesis procedure. Using the Municipality attribute for the
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Table 3: Description of the Analyzed Attributes

Controlled Level Attribute Scale # Classes Recoding

grouped by H Canton Nominal 26→ 23 OW→ NW, UR→ GL, AI→ AR

X H Household size Ratio 17→ 7 7, 8, 9, . . .→ 7
Household type Nominal 20→ 7 Coarser categories
Children Ratio 13→ 4 3, 4, 5, . . .→ 3

P Age Ratio → 16 5-year steps; 75, 80, 85 . . .→ 75
Sex Nominal 2
Foreigner Nominal 2
Martial status Nominal 4→ 3 Widowed→ Divorced
Education Ordinal 13→ 6 Coarser categories

H Municipality Nominal 2 896
Age of head Ratio
Age of oldest child Ratio
Age of youngest child Ratio

P Workplace location Ordinal 7
Commute mode Nominal 143

control totals would lead to many missing observations; to avoid this problem, the Canton
attribute has been used instead. Table 3 lists the properties of the control variables and the
uncontrolled attributes used in the validation described below.

Reference Sample We used a random sample of 5 % of the households in our true population
as reference sample, as this is the sampling rate provided by the Swiss PUS (Swiss Federal
Statistical Office, 2000b).

Missing Observations As dealing with missing observations is beyond the focus of this paper,
a rather simple method has been chosen to avoid this problem. In the true population, all
households that correspond to missing observations in the sample have been removed, and
the control totals have been recomputed afterwards.

Conflicting Control Totals In a first run, control totals at the finest level available have been
used. However, apart from a significant number of missing observations, control totals
conflicted in various ways. To reduce the impact of this problem, rare categories have been
merged manually, as suggested by Guo and Bhat (2007) and Auld and Mohammadian
(2010). Table 3 also shows the recodings that have been applied to the data.

Grouping As the canton occurs in each control variable and also in the reference sample,
synthesizing the population of each canton separately is advisable over synthesizing the
whole population of Switzerland at once. In fact, none of the three algorithms exhibited
satisfactory convergence behavior in the latter case.
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3.2 Validation

All three algorithms (HIPF, IPU, and Ent) have been run with the prepared data, aborting after an
absolute difference of less than 10−3 persons/households has been reached for each control total.
Except for IPU, an optimal fit has been computed for each canton; IPU has converged to misfits
of up to 40 persons/households for five of the smaller cantons. Apart from that, convergence
rates are comparable.

In the next step, integer weights were computed using probabilistic drawing with replacement,
or Monte-Carlo sampling, from each set of fractional household weights estimated by the three
algorithms. The probability to draw a household has been set proportional to the household
weight estimated by each algorithm. After that, for each algorithm, a set of fractional weights
(at convergence) and integer weights (after sampling) is available for the validation; in each
case, the total number of households in the sample equals that of the true population. Using
these weights, three-dimensional joint distributions for each combination of the attributes listed
in Table 3 are computed – separately for each canton, at the person level, using the values
of the variables before recoding. The estimated joint distributions are then compared to the
corresponding joint distribution of the true population using the information-based G2 and the
distance-based SRMSE metrics, as suggested by Pritchard and Miller (2009) and earlier by
Knudsen and Fotheringham (1986). Denoting by Nabc the number of persons with attributes
a, b, c in the true population, the metrics are defined as follows:

G2 = 2
∑
abc

Nabc ·
Fabc
Nabc

SRMSE =

√
|A||B||C|

∑
abc(Fabc −Nabc)2∑

abcNabc

. (10)

For both statistics, a smaller value indicates a better fit.

The comparison results in twelve statistics (two for each HIPF, IPU, Ent, each before and after
sampling) for each of the

(
14
3

)
= 364 joint distributions for each canton. Table 4 presents the

results of the analysis. Each row shows data for one canton; as described in Section 3.1, some
cantons were merged when preparing the data, and the analysis reflects this. The second column
denotes whether IPU converged for the canton in question. Parentheses around a check mark
mean that convergence has been achieved within a precision above 10−3. The right half of the
table presents, for each of the twelve statistics, the number of joint distributions where this
statistics was the lowest among the three algorithms tested. For each canton, the algorithms
performing best or second-best within the respective scenario are typeset in bold or italics. In
most of the cases, HIPF seems to outperform both IPU and Ent in terms of the tested metrics.
This is most notable for the statistics of the joint distributions after fitting and before the sampling.
Also, note that for the cantons where IPU did not converge, all joint distributions estimated by
IPU performed worse compared to the other algorithms w.r.t. the test statistics.
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Table 4: Comparison of the goodness-of-fit of HIPF, IPU, and Ent for the synthetic population for Switzerland

Canton IPU → 0 Persons Households P/H Number of joint distributions closest to the true population
G2 SRMSE

After fitting After sampling After fitting After sampling
HIPF IPU Ent HIPF IPU Ent HIPF IPU Ent HIPF IPU Ent

Zurich X 1 201 877 567 573 2.12 201 36 127 141 141 82 92 53 219 127 86 151
Bern X 916 135 415 901 2.20 157 90 117 143 127 94 189 34 141 130 60 174
Lucerne X 337 166 140 594 2.40 217 23 124 293 34 37 239 20 105 201 70 93
Glarus + Uri X 69 969 28 661 2.44 298 26 40 190 40 134 253 54 57 183 92 89
Schwyz X 124 140 50 017 2.48 270 30 64 209 76 79 285 47 32 219 76 69
Nidwalden + Obwalden 67 164 27 598 2.43 270 0 94 291 0 73 291 0 73 272 0 92
Zug 92 591 40 819 2.27 335 0 29 262 0 102 303 0 61 255 0 109
Fribourg X 230 908 94 093 2.45 314 19 31 263 36 65 278 15 71 245 38 81
Solothurn X 237 832 102 584 2.32 229 43 92 197 50 117 209 61 94 181 67 116
Basel-Stadt (X) 179 128 95 999 1.87 316 15 33 287 22 55 257 34 73 273 31 60
Basel-Landschaft X 252 761 111 675 2.26 283 9 72 249 19 96 260 24 80 154 65 145
Schaffhausen X 70 330 31 427 2.24 248 13 103 204 121 39 253 47 64 162 104 98
Both Appenzell X 65 265 26 862 2.43 333 1 30 294 3 67 293 14 57 198 9 157
St. Gallen X 437 732 183 750 2.38 244 63 57 186 122 56 188 77 99 136 137 91
Graubünden 174 137 77 781 2.24 304 0 60 269 0 95 254 0 110 245 0 119
Aargau X 532 903 224 128 2.38 293 35 36 187 49 128 168 99 97 142 143 79
Thurgau (X) 221 526 91 537 2.42 183 8 173 144 6 214 197 4 163 201 2 161
Ticino X 298 664 134 916 2.21 205 118 41 131 61 172 188 93 83 92 144 128
Vaud X 612 626 278 752 2.20 278 15 71 234 12 118 118 55 191 168 39 157
Valais (X) 258 435 107 378 2.41 278 0 86 302 1 61 311 0 53 195 0 169
Neuchâtel 161 223 74 049 2.18 290 0 74 115 0 249 219 0 145 159 0 205
Geneva X 383 841 181 611 2.11 297 26 41 184 120 60 196 50 118 126 132 106
Jura 65 958 27 471 2.40 307 0 57 277 0 87 282 0 82 242 0 122

14
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3.3 Discussion

Only HIPF considers expansion factors at the person level; both IPU and Ent operate on
household-level expansion factors only. The joint distributions computed for the analysis
are person-based; it would be worthwhile to repeat the analysis with household-based joint
distributions by additionally weighting each person record with the inverse of the household
size.

The dissatisfactory results of IPU for the cantons where a perfect fit could not be estimated
indicate the importance of a perfect fit in the fitting stage. Given that a fit exists (cf. Section 2.1),
the fitting algorithm should be able to compute it.

While the probabilistic sampling procedure controls the total number of households, the person
count may diverge after sampling. Various techniques are possible to control both household and
person count during the sampling procedure: (a) repeated sampling, (b) probabilistic substitution
of households, or (c) further combinatorial optimization. The same applies to retaining the
controlled distributions. Given the availability of a true population, it will be possible to derive
sampling strategies to generate accurate synthetic populations.

4 Conclusion

This paper presents HIPF, a novel algorithm for estimating household-level expansion factors
for a sample consisting of persons grouped to households and control totals at both levels. The
algorithm constantly switches between the household and the person domain, employing an
entropy-optimizing adjustment step. Adaption to other kinds of populations is possible. Run
time and convergence are comparable to other existing algorithms (IPU and Ent) when applied
to the generation of a synthetic population for Switzerland from a 5 % sample.

A detailed analysis of the goodness-of-fit of the synthetic to the true population using the G2 and
SRMSE metrics shows that HIPF often outperforms IPU and Ent. This holds for the fractional
expansion factors computed by the algorithms as well as for the final population derived from
the expansion factors using probabilistic sampling. Future challenges are validation against
other metrics, development of an optimal algorithm for the generation stage, and improvement
of the algorithm’s convergence speed.
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A Analysis of the Persons-per-Household Ratio Adjustment

In this section, we analyze the optimization problem that arises when adjusting the persons-per-
household ratio respecting the Principle of Minimum Discrimination Information. The problem
is defined as follows: Minimize∑
h

f ′h ln
f ′h
fh

(11)

subject to the constraints∑
h

f ′h = n (12)∑
h

ph · f ′h = ν. (13)

Applying the method of Lagrange multipliers yields the following Lagrange function:

Λ =
∑
h

f ′h ln
f ′h
fh

+ λ1

(∑
h

f ′h − n

)
+ λ2

(∑
h

ph · f ′h − ν

)
. (14)

The necessary condition∇Λ = 0 for the optimum of the original problem leads to the following
precondition, valid for all households h:

∂

∂f ′h
Λ = ln

f ′h
fh

+ f ′h
1

f ′h
+ λ1 + λ2 · ph

= ln
f ′h
fh

+ (1 + λ1 + λ2 · ph) = 0

f ′h
fh

= e−1−λ1 ·
(
e−λ2

)ph
= c · dph (with c := e−1−λ1 and d := e−λ2).

(15)

This means that the ratio of new vs. old expansion factors is determined by the household size
only, and that it follows a geometric progression with respect to the household size. Thus, we
can rewrite the constraints:

(12)⇐⇒
∑
p

∑
h: ph=p

f ′h = n (16)

⇐⇒
∑
p

∑
h: ph=p

fh · c · dph = n (17)
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⇐⇒
∑
p

(
c · dp ·

∑
h: ph=p

fh

)
= n (18)

⇐⇒ c ·
∑
p

Fp · dp = n (19)

(13)⇐⇒ c ·
∑
p

p · Fp · dp = ν. (20)

Cancelling c yields a necessary and sufficient condition for d:

(19) ∧ (20)⇐⇒ 1

n
·
∑
p

Fp · dp =
1

ν
·
∑
p

p · Fp · dp (21)

⇐⇒
∑
p

Fp · dp =
∑
p

(
n · ν−1 · p

)
· (Fp · dp) (22)

⇐⇒ 0 =
∑
p

(
n · ν−1 · p− 1

)
· (Fp · dp) (23)

⇐⇒ 0 =
∑
p

((
n · ν−1 · p− 1

)
· Fp
)
· dp. (24)

Except for ill-formed cases (n > ν or n · p ≤ ν for all p), for d > 0, this polynomial and its first
bν · n−1c derivatives have exactly one real-valued root, while the bν · n−1c+ 1-th derivative is
strictly greater than zero. Thus, if a solution exists, it is unique and can be found by solving the
above polynomial for d. This in turn means that the f ′h derived from this solution constitute the
only critical point for the Lagrange function (14). Due to the nature of the objective function
this can only be a global minimum.
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