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Abstract

We examine the properties of several residual-based cointegration tests when long

run parameters are subject to multiple shifts driven by an unobservable Markov process.

Unlike earlier work, which considered one-o¤ deterministic breaks, our approach has the

advantage of allowing for an unspeci�ed number of stochastic breaks. We illustrate this

issue by exploring the possibility of Markov switching cointegration in the stock-price

dividend relationship and showing that this case is empirically relevant. Our subsequent

Monte Carlo analysis reveals that standard cointegration tests are generally reliable, their

performance often being robust for a number of plausible regime shift parameterizations.
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1 Introduction

The concept of cointegration has dominated the debate in time series econometrics in the

past decade, by stressing the possible existence of long run equilibrium relationships among

nonstationary variables. However, researchers have been concerned with the e¤ects that

structural changes may have on inference in models with cointegrated variables. Indeed,

failure to detect and account for parameter shifts is known to be a serious form of misspe-

ci�cation which adversely a¤ects inference procedures and generally leads to poor forecasting

performance. Such issues are especially relevant for cointegration analysis, since it normally

involves long spans of data, which are likely to exhibit structural breaks.

Since the seminal work of Perron (1989), it is known that unit root tests have di¢ culties

(i.e. low power) in distinguishing between an I(1) processes and I(0) processes with breaks.

Conversely, Leybourne et al. (1998) and Leybourne and Newbold (2000) demonstrated that

routine application of Dickey�Fuller tests when the true process is I(1) with a relatively early

break leads to frequent rejections of the null of a unit root.

The implications of structural breaks for the performance of stationarity tests were studied

by Lee et al. (1997). They showed that when an existing break is ignored, these tests will

be biased towards rejecting the null of stationarity in favour of the false alternative of a unit

root. Notwithstanding this, there will be no power losses if the unit root alternative is true,

since the limiting distribution is asymptotically invariant to this type of shifts.

Concerning the e¤ects of changes in variance, Hamori and Tokihisa (1997) showed that

spurious stationarity will also arise if Dickey�Fuller tests are applied to a process that su¤ers

an upward break in variance. Early shifts will contribute to increase the size distortions and

the e¤ects do not seem to disappear asymptotically. On the other hand, Kim et al. (2002)

considered the case of a decrease in variance and demonstrated that, unlike what was con-

jectured by Hamori and Tokihisa (1997), severe spurious rejections occur in this situation.

While the literature on the impact of structural breaks on unit root tests is large, papers

speci�cally dealing with the e¤ect of parameter non-constancy on cointegration tests are

less abundant. Gregory et al. (1996) found that, in the context of the linear quadratic

model, the Dickey�Fuller test su¤ers considerable power losses in the presence of a structural

break. This is not necessarily a weakness, though, since the alternative of Engle�Granger

cointegration involves a time-invariant relationship. These conclusions are further supported

by the evidence presented in Gregory and Hansen (1996). Campos et al. (1996) examined

the properties of cointegration tests when the marginal process of one of the cointegrating

regressors is I(0) with a break, con�rming the decrease in power of the Dickey�Fuller test.

It should be noted, however, that these studies are limited in scope, in the sense that they

only consider one type of structural break (single deterministic shift) and concentrate on the

Dickey�Fuller cointegration test.

In turn, given the �exibility of Markov switching models, it would be natural to extend

their use to model changes in long-run relationships. Hall et al. (1997) and Krolzig (1997), for

example, illustrate the usefulness of such a speci�cation by analyzing the Japanese consump-

tion function and co-movements in international business cycles, respectively. Nevertheless,

these papers do not explicitly analyze the e¤ects of Markov-type changes on the properties
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of cointegration tests. The e¤ects of Markov shifts on unit root tests were recently invest-

igated by Nelson et al. (2001) and Psaradakis (2001, 2002), who demonstrated that both

standard unit root tests and tests that are robust with respect to a single break face serious

di¢ culties in the presence of Markov regime switching. The present paper may be viewed as

an extension of this work to the case of cointegration tests.

As a simple illustration of the e¤ects of Markov regime shifts in a cointegrating relation-

ship, consider the simple case of a bivariate relationship where only the intercept is switching,

so that

yt = �0 + �1St + �xt + ut; (1)

with yt and xt both I(1) variables, St is a two-state, homogeneous �rst-order Markov chain

with transition probabilities pij = Pr(St+1 = jjSt = i). If switching is not accounted for,

then the researcher would be estimating yt = � + �xt + et; where et = �1St + ut. Hence,

we see that not accounting for regime switching will introduce further autocorrelation in the

errors of the cointegrating regression. Following Nelson et al. (2001) and Psaradakis (2002),

it is straightforward to show that, for
P
i pii 6= 1; the strength of autocorrelation in fetg will

increase with the magnitude of the breaks, as well as with the persistence in the Markov

chain that drives the regime shifts.

Note, however, that no procedures have been developed to test cointegration in such

a setting. Thus, in this paper, we investigate the ability of residual-based cointegration

tests when the long-run parameters are subject to multiple shifts driven by an unobservable

Markov process. We focus on residual-based procedures, as these are the most commonly

used tests in empirical applications. We consider the popular Augmented Dickey�Fuller

(ADF) residual-based test, as well as tests proposed by Phillips and Ouliaris (1990) and

Gregory and Hansen (1996). The latter are designed to be robust with respect to regime

shifts in the cointegration vector. In addition, we analyze the test for the null hypothesis

of cointegration proposed by McCabe et al. (1997). Finally, we investigate whether or not

the time-varying cointegration approach of Park and Hahn (1999) is able to detect Markov

switching-type cointegration. While this is a more general formulation that detects smoothly

changing cointegrating coe¢ cients, it could be able to detect our speci�cation, which only

considers two possible states.

We assume that distinct cointegration regimes may exist, which are randomly selected by

nature according to the realization of an unobservable Markov process. Unlike previous work,

which either considered an one-o¤ deterministic break or assumed that the break points are

known when cointegration is being tested, our speci�cation has the considerable advantage

of allowing for an unspeci�ed number of endogenous stochastic changes in regime. We also

analyze the implications of changing error variances, an issue that was not considered in

earlier work on the subject.

To illustrate the problem, we consider the long run relationship between stock prices and

dividends. We discuss how Markov-type shifts in the cointegration vector can arise in this

case. Indeed, this framework is consistent with several explanations for the observed asym-

metries in, and departures from, the long run price-dividend relationship, thus motivating

the usefulness of this study. Also, we use this example to provide empirically plausible para-

meterizations (in particular, the magnitude of parameter shifts) of the general case in (1)
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discussed above. Naturally, we recognize that none of the tests analyzed in this paper were

speci�cally designed for that particular purpose. Nevertheless, given that no direct testing

procedures are available for Markov switching cointegration, we believe that, by characteriz-

ing the properties of existing tests in this context, we can shed some light on the �ndings of

previous literature and establish some guidance for future empirical practice.

The remainder of the paper is organized as follows. Section 2 brie�y reviews the cointeg-

ration tests of interest. In Section 3 we consider the possibility of a Markov switching long

run relationship between stock prices and dividends and show that this case is empirically

relevant, with an application using US, UK and Swedish data. Section 4 describes the ex-

perimental design and reports and discusses the results of the experiments. A �nal section

concludes.

2 Cointegration Tests

In this section, we provide a brief description of the cointegration tests examined in the

empirical section and subsequent Monte Carlo study. Given the model

yt = �0ct + �
0xt + ut; (2)

where zt = (yt; x
0
t)
0 is a (1 + k)-vector of I(1) variables and ct is a vector of deterministic

terms (such as a constant or time trends), the variables in zt will be cointegrated if futg is
stationary. To test this hypothesis, we employ �standard�tests with the null hypothesis of

no cointegration, tests which have cointegration as their null, as well as cointegration tests

that allow for regime shifts.

2.1 Standard Cointegration Tests

The ADF and the Z� tests of Phillips and Ouliaris (1990) test whether the residuals ût from

(2) have an autoregressive unit root. While the ADF test corrects for serial correlation by

adding lagged �ût terms in the test regression �ût = �ût�1 + �t, the Phillips�Ouliaris test

make use of a nonparametric modi�cation, which involves the estimation of the long-run

variance of the errors f�tg. To choose an appropriate lag length for the ADF test, we adopt a
downward testing selection procedure based on two-sided 5%-level t-type tests for the signi�c-

ance of the coe¢ cient on the longest lag, with the maximum lag length set equal to 6. For the

Z� test, the long-run variance of f�tg is estimated by using a prewhitened quadratic spectral
kernel estimator with a data-based bandwidth and a �rst-order autoregressive prewhitening

�lter, as recommended in Andrews and Monahan (1992).

2.2 Gregory�Hansen Tests

We also consider the tests proposed by Gregory and Hansen (1996), which consider an al-

ternative hypothesis in which the cointegrating vector may be subject to a regime shift at an

unknown time. They analyzed models that accommodate, under the alternative hypothesis

of cointegration, the possibility of changes in parameters. The testing procedures involve

computing the usual statistics (GH-AEG and GH-Z�) for all possible break points � 2 J and
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then selecting the smallest value obtained, since it will potentially present greater evidence

against the null hypothesis of no cointegration1.

These test statistics have non-standard limiting distributions with no closed form and,

therefore, critical values were obtained by resorting to simulation methods. In this paper,

we examine a type of structural break that was not previously considered, namely a change

in slope and no constant term (consistent with the theoretical present value model of stock

prices and dividends discussed below),

yt = �01xt + �
0
2xtDUt + ut; (3)

where DUt is a dummy variable such that DUt = 0; if t > [T� ] and DUt = 1; if t � [T� ],

with [:] denoting the integer part operator.

For comparison, and following Gregory and Hansen (1996, p. 110), we obtained critical

values for this model, with a single regressor, using the same response surface: with 10,000

replications for sample dimensions T 2 f50; 100; 150; 200; 250; 300g, critical values at the p
percent level are obtained and then the regression

C(p; T ) =  0 +  1T
�1 + error,

is run. The critical values at the 5% signi�cance level for model (3) are �4:192 for the
GH-ADF test and �30:322 for the GH-Z� test, respectively.

2.3 Tests with Cointegration as the Null Hypothesis

The tests described above are based on the principle of testing for a unit root in the residuals

of the cointegrating regression. Other tests have been developed which test whether the

residuals are stationary and, therefore, have cointegration as the null hypothesis. Since

we are focusing on the e¤ects of neglected parameter changes, it is also interesting to relate

cointegration tests with structural change tests, as the former may be derived from the latter.

Hansen (1992) proposed some LM-type structural change tests in cointegrated models,

making use of the fully-modi�ed OLS (FM-OLS) estimator. A versatile feature of those tests is

the possibility of using them as cointegration tests. In fact, if the alternative hypothesis is that

the intercept follows a random walk, then structural change testing becomes cointegration

testing, albeit with the null hypothesis of cointegration. In model (2), if yt and xt are not

cointegrated, then the error term ut is I(1). Decomposing ut so that ut = wt + vt, with fwtg
being a random walk and fvtg an I(0) process, model (2) then becomes

yt = �t + �
0xt + vt; (4)

with �0ct = �t = � + wt, that is, the intercept �absorbs�the random walk wt when there is

no cointegration. In view of this fact, Hansen (1992) suggested using the statistic

Lc =

PT
t=1 ŝ

0
tM̂

�1
t ŝt

T !̂1:2
; (5)

to test the null of cointegration, where ŝt represents the scores associated with the FM-OLS

estimates, the weighting matrix M̂ is the moments matrix of the regressors and !̂1:2 is a
1� denotes the unknown relative timing of the break point and the trimming region is J = (0:15; 0:85),

following Gregory and Hansen (1996).
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consistent estimate of the (conditional) long-run variance of futg. However, this statistic
was designed to test the stability of the whole cointegration vector, so there are advantages

in regarding a version that tests only (partial) structural change in the intercept. This is

related to the well known statistic of Kwiatkowski et al. (1992) (KPSS henceforth) to test

for stationarity.

Shin (1994), Harris and Inder (1994) and McCabe et al. (1997), for example, extend its

use to test for the null hypothesis of cointegration. Here, we use the latter version

MLS =

PT
t=1(

Pt
j=1 "̂j)

2

T 2�̂2
; (6)

based on the dynamic OLS (DOLS) estimator of Saikkonen (1991) with �ltered residuals

("̂j) from an ARIMA(p; 1; 1) model and the variance estimator (�̂2) proposed in Leybourne

and McCabe (1999); see McCabe et al. ( 1997) for more details on the computation of the

statistic.

2.4 Time-varying cointegration

As explained in the Introduction, we are interested in a cointegration setup in which the

relationship is allowed to change over time. Tests devised for nonlinear cointegration, such as

Breitung (2001) or Saikkonen and Choi (2004), for example, could be useful in this context.

Instead, we follow the suggestion of Granger (2008) that any non-linear model can be approx-

imated by a time-varying parameter linear model. This principle was implicitly introduced

by Park and Hahn (1999) in cointegrated relationships (and developed further in Bierens and

Martins, 2010).

Park and Hahn (1999) propose a time-varying approach in which the cointegration vector

is modeled as a smooth function and semi-parametrically parameterized by a Fourier expan-

sion. They suggest two tests for the null hypothesis of standard cointegration against the

alternative of time-varying cointegration, with statistics given by

b�1 = PT
t=1 bu2t �PT

t=1b�2tb!2T� ; b�2 = PT
t=1

�Pt
i=1 bui�2

T 2b!2T� ; (7)

where the b�t�s are the residuals of the regression of yt on xt and t; t2; :::; tn; and
b!2T� = 1

T

X
jkj<`T

g (k=`T )

TX
t=k+1

bu�;tbu�;t�k
is a long-run variance estimator, g (�) is a kernel function with truncation lag `T and the bu�;t�s
are the residuals of the regression of yt on 'i (t=T )xt for i = 1; :::;K; with the 'i�s Fourier

and other functions. As to the latter, we consider

'1(r) = cos(2�r); '2(r) = sin(2�r); '3(r) = cos(4�r);

'4(r) = sin(4�r); '5(r) = 1; '6(r) = r; '7(r) = r2;

with r = t=T: Note that the b�2 statistic is in essence the KPSS statistic, albeit with a di¤erent
set of residuals.
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To see why Park and Hahn�s (1999) approach may be useful to detect Markov switching-

type behavior, note that Park and Hahn (1999) assume that the elements of �t are of the

form ' (t=T ) ; where ' (r) has a Fourier �exible functional form. Let

�PHt = �0 +
X
i

�ir
i +

X
j

�je'j(r);
where the �0s are the Fourier coe¢ cients and e'j(r) are the trigonometric functions, and let
�MS
t = �0 + �1St; where �1 > 0 and fStg is a �rst-order Markov chain. Given any metric,
the distance between �PHt and �MS

t is not trivial as it depends, essentially, on the magnitude

of the jump, �1; and on the periodicity of the trigonometric functions, K: Clearly, �
PH
t and

�MS
q are uncorrelated for all t; q: Moreover, the bounds are given by �

MS
= �0 + �1 and

�MS = �0 and, on the other hand,

�
PH

= max
t
�PHt � �0 +

X
i

�i +
X
j

���j��
�
PH

= min
t
�PHt � �0 �

X
j

���j�� :
Hence, for

P
j

���j�� close to zero, the bounds will coincide when �0 � �0 (corresponding to

the case of standard cointegration) and �1 �
P
i �i:

3 The Stock Price-Dividends Relationship

3.1 The Present Value model

Consider the simple condition linking real stock prices (Pt) and end-of-period dividends (Dt)

Pt = e�rEt(Dt + Pt+1) (8)

where the real interest rate r is assumed to be constant and Et denotes the conditional

expectation at time t. A particular solution of the above stochastic di¤erence equation is

given by the present value relation

P pvt =
1X
s=t

e
�r(s�t+1)
t EtDs; (9)

in which a stock price is equal to the present discounted value of expected future dividends2.

Several authors have noted, however, that, for certain periods, the evolution of stock prices

appears to be disconnected and far more volatile than the underlying fundamental relationship

(9), see LeRoy and Porter (1981) and Shiller (1981), for example. The unprecedented recent

swings in stock prices (steady rise at the end of the last century and subsequent fall) has

given impetus to a renewed interest in the present value speci�cation. Bubbles, fads, noise

traders or time varying discount factors have been proposed, but are not entirely successful

in explaining the extent of the deviations from fundamentals (see Flood and Garber, 1980,

Campbell and Shiller, 1988 and West, 1988 inter alia).

2This will form a unique solution by applying the transversality condition lim
s!1

e�rsEt(Ps) = 0:
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It has been extensively documented that stock prices and dividends appear to be non-

stationary and, hence, (9) implies that these variables should be cointegrated. However,

very few studies explicitly test the existence of a long run relationship between stock prices

and dividends. When they do (Campbell and Shiller, 1987 and Kanas, 2003, for example),

standard cointegration tests do not validate the cointegration hypothesis, which implicitly

supports the �rational�bubbles hypothesis. Some authors have instead argued that the price-

dividend relationship exhibits fractional cointegration, resulting from the high persistence of

temporary deviations from the long run equilibrium (see Caporale and Gil-Alana, 2004, for

example).

Other explanations have looked at potential nonlinearities in the price-dividend relation-

ship. Asymmetric dynamics can arise due to transaction costs, such that small deviations

occur if the bene�ts from trading are not outweighed by the costs of trade, but larger devi-

ations will be arbitraged out. On the other hand, recent behavioural �nance models suggest

that the actions of traders di¤er between bull and bear markets, e.g., traders may tend to

overreact to good news in rising markets and trend-chase prices, while exhibiting a more

conservative behaviour in falling markets (see Barberis and Thaler, 2003 for a recent survey).

Non-linear speci�cations such as threshold or smooth-transition cointegration models have

been used to detect these nonlinearities (see McMillan, 2004 and Bohl and Siklos, 2004, for

example).

An alternative, but related, explanation focus on regime shifts in the dividends process,

re�ecting di¤erent phases in asset markets, which account for a substantial part of stock

prices behavior. Indeed, Markov switching models have been extensively (and successfully)

used to characterize and account for regime changes that typically occur in �nancial time

series, see Bonomo and Garcia (1994), Schaller and Van Norden (1997), Dri¢ ll and Sola

(1998), Psaradakis, Sola and Spagnolo (2004) and Sarno and Valente (2005), for example.

However, most of this literature focus on explaining asymmetries in the deviations from

the long run equilibrium. We note instead that changes in expectations regarding dividends

(following persistent shocks to output or productivity, say) or shifts in the dividend process it-

self (re�ecting business cycle conditions) implies that the present value relationship is subject

to regime shifts. Thus, we consider the cointegration counterpart of the framework discussed

in Dri¢ ll and Sola (1998), in which deviations from stock prices fundamentals are explained

by allowing the dividends process, as well as the present value relationship, to switch between

two regimes.

To see this, assume, as in Froot and Obstfeld (1991), that log dividends (dt) follow a

random walk

dt+1 = dt + �+ �t+1 (10)

with trend growth � and �t normally distributed with zero mean and variance �
2. If dividends

at t are known, then the stock price is proportional to dividends

Pt = �Dt (11)

with � = (er�e�+�2=2)�1: As can be seen, � contains several elements that can be thought of
as being time-varying, including changes in the real interest rate r, shifts in dividends growth

� or periods when market volatility � changes.
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To capture this, we allow for switching behaviour in the log dividends process by specifying

a Markov switching model as in Bonomo and Garcia (1994) and Dri¢ ll and Sola (1998) such

that

dt+1 = dt + �0(1� St+1) + �1St+1 + [�0(1� St+1) + �1St+1]�t+1 (12)

where fStg is a homogeneous �rst-order Markov chain on f0; 1g; with transition matrix
P = (pij), where pij = Pr(St+1 = jjSt = i); i; j 2 S: This then implies that stock prices

are, as before, proportional to the current dividend, but with the factor of proportionality

depending on the regime operative at time t, that is, Pt = �0Dt when St = 0 and Pt = �1Dt

when St = 0; with the �0 and �1 satisfying

�0 = (er � p00�0e�0+�
2
0=2)�1 (13)

�1 = (er � p11�1e�1+�
2
1=2)�1 (14)

see Dri¢ ll and Sola (1998)3. Thus, unlike most of the previous literature, we introduce

�exibility in the canonical present value model by explicitly allowing for shifts in the discount

factor term de�ning the long run price-dividend relationship.

Note that the Markov switching setup for the stock price-dividend relationship is able

to detect the type of nonlinearities mentioned above and has the advantage of also being

consistent with the presence of rational bubbles, as discussed in Hall, Psaradakis and Sola

(1999) and Fukuta (2002). Moreover, a Markov switching model is able to capture the long-

memory fractional linear model features reported elsewhere (see Gabriel and Martins, 2004,

for example).

From the economic point of view, we have established how Markov switching can arise in

the price-dividends long run relationship, as it is not credible that the path taken by stock

prices is such that there is, for all times, an increasing discrepancy between stock prices

and fundamentals. From a methodological perspective, it is useful to ascertain whether or

not the behaviour of tests on cointegration between stock prices and dividends is distorted

by stochastic structural breaks that are unaccounted for and nonlinearities induced by this

speci�cation. Thus, we �rst consider the empirical evidence on the magnitude of potential

shifts in � and we subsequently analyse the performance of the tests described in section 2.

3.2 An empirical illustration

To illustrate empirically the points discussed above, we look at data on stock prices and

dividends for the US, the UK and Sweden4. US data has been extensively studied in the

literature, mainly because data covering such a long span is readily available. The UK and

Sweden cases (countries for which long run annual datasets have been constructed and are

3These authors specify this model in terms of the price-dividend ratio and therefore do not explicitly analyse

cointegration between Pt and Dt.
4US data (from 1900 to 1996) is available for Robert Shiller�s webpage (www.econ.yale.edu/~shiller),

where stock prices are January values for the Standard and Poor Composite Index, dividends are

year-averages and both series are de�ated by January values of the producer price index. UK and

Swedish data (1918-1996) are taken from Campbell (1999), available from John Campbell�s webpage

(www.economics.harvard.edu/faculty/campbell) and the corresponding CPI is used to de�ate the series. Fol-

lowing Psaradakis et al. (2004) and several other authors, we do not include the latest available sampling

period, as the deviations from the implied relationship are unusually large and persistent, albeit temporary.

9



available) have been studied in a unit roots/cointegration setting before, but with quarterly

data only, covering a much shorter period (usually from 1960 onwards). Thus, it is an

interesting empirical exercise to analyse these two cases and contrast them with the well

known US case.

Figure 1 shows the series in real terms, from which the abrupt changes in the time path of

the variables are noticeable for the three countries. This is particularly true in the latter part

of the sample, namely for the UK and the US. Table 1 reports the results from cointegration

tests, as well as DOLS estimates of the cointegrating relationship Pt = �Dt + ut
5. All tests

for the null hypothesis of no cointegration fail to reject in the US case, which is consistent

with previous results in the literature. There is strong evidence of a long run relationship for

UK data, but results are mixed for Sweden. On the other hand, the KPSS-type test (MLS ) of

McCabe et al. (1997) does not reject the existence of a (stable) long-run relationship between

the two series for the UK and US, but rejects cointegration for Sweden.

The reason for the results against cointegration may be that the errors of the cointegrating

regression capture unaccounted breaks and thus exhibit non-stationary behavior. Thus, we

resort to the tests of Gregory and Hansen (1996), which are designed to be robust with

respect to a regime shift in the cointegrating vector. These point to the existence of a long

run relationship in the three countries, albeit with a potential structural break (with the

exception of the GH-ADF for the US).

To complement these tests, we use the Park-Hahn procedures. They show that there

is substantial evidence of a time-varying cointegration vector, namely for Sweden and the

US. Indeed, all tests reject the null of a stable long run relationship (except the b�1 with
n = 1 for the US), while only b�2 rejects in the case of the UK. Furthermore, assuming a
time-varying long-run relationship speci�cation Pt = �tDt+ut between prices and dividends,

we can estimate the time-varying long run coe¢ cient �t; as in Park and Hahn (1999). In

Figures 2 to 4 we present the sequences b��;t for each country, with 'i (r) ; i = 1; :::; 7; de�ned
above. This procedure is clearly picking up the �dot.com�bubble at the end of sample in the

three countries and while there appears to be evidence of swings in the cointegration vector,

these are of di¤erent magnitudes in each case. The shifts are much less pronounced for the

UK, with � ranging from approximately 20 to 24, which is consistent with the all the tests

in Table 1 (including the b� i tests). For Sweden and the US, changes are more pronounced,
though the pattern of shifts is not systematic.

The Park and Hahn (1999) approach is useful in capturing the statistical features of the

price-dividend relationship, but provides little guidance as a test for the theoretical aspects

of the present value model. A statistical framework that is able to capture the time-varying

nature of the present value model and, in addition, is more easily linked with the theory is the

Markov switching approach, as discussed above. Thus, we now estimate the bivariate system

linking the log dividends process with the present value relationship as in Dri¢ ll and Sola

(1998), with the cointegrating parameter being subject to discrete changes. More speci�cally,

5The number of leads and lags for DOLS was determined using the Akaike information criterion. Note that

there are no e¢ ciency losses in pursuing a single-equation route when compared to multi-equation methods,

as we are studying a bivariate relationship with potentially a single cointegration vector.
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we consider the following model:

Pt = f�0 + (�1 � �0)St)gDt + f�0 + (�1 � �0)St)gvt; fvtg
iids N(0; 1) (15)

dt = �0 + (�1 � �0)St + dt�1 + f�0 + (�1 � �0)St)gut; futg
iids N(0; 1); (16)

with fStg de�ned as before. Note that (15) is speci�ed as a standard cointegrating regression,
instead of an implicitly cointegrated, ratio-type formulation (cf. Dri¢ ll and Sola, 1998, Eq.

(16) and Appendix A for details on the estimation algorithm). Also, note that the system

(15)�(16) is estimated simultaneously, with the same Markov chain driving changes in both

the price-dividend equation and the log dividends process, with r in (13)-(14) set at the

sample average gross real return in each case.

No meaningful estimates of the parameters in (15)�(16) were obtained for UK data, how-

ever, again in accordance with the results discussed above, supporting a stable, linear relation-

ship. The maximum likelihood estimates of (15)�(16) with Swedish and US are reported in

Table 2. In the regime 0; we have a low growth/high volatility state in the dividends process,

with cointegration vector [1;��0], with �̂
Sweden

0 = 22:908 and �̂
US

0 = 19:367; while regime

1 corresponds to a high growth/low volatility regime with [1;��1] ; with �̂
Sweden

1 = 42:146

and �̂
US

1 = 30:088: The probabilities of staying at each regime are high, indicating persistent

regimes. These estimates contrast with the results in Table 1 for the �invariant� model,

where �̂
Sweden

= 29:195 and �̂
US

= 25:353; which is approximately the average of the two

regimes identi�ed in Table 2. Also notice that the variances are signi�cantly di¤erent in the

two regimes.

The results are remarkably similar to those obtained in Dri¢ ll and Sola (1998), in that

regime switching seems to provide a good explanation for the dynamics of the price-dividend

relationship, at least for Sweden and the US. However, there is no direct way of testing for

Markov switching cointegration. In fact, a researcher using the usual statistical tools would

�nd con�icting evidence concerning the existence of cointegration between stock prices and

dividends. It would be interesting to ascertain wether the tests discussed in section 2 are

robust in a Markov switching setting. Thus, in what follows, we attempt to characterize

the behavior of residual-based cointegration tests, by means of Monte Carlo simulations,

assuming that the long run relationship is subject to Markov regime changes, considering

empirically plausible parameterizations.

4 Monte Carlo Analysis

4.1 Experimental Design and Simulation

In our experiments, we consider Markov switching cointegration, as de�ned in Hall et al.

(1997), where long-run parameters switch between di¤erent cointegrating regimes. Following

the previous section, the DGP is speci�ed as

yt = (�0 + �1St)xt + (�0 + �1St)ut; (17)

xt = xt�1 + &t; t = 1; : : : ; T; (18)

where St is a binary random variable in S = f0; 1g; de�ned as before, indicating the unob-
served cointegrating regime at date t.
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Furthermore, it is assumed that fStg is independent of the I(0) processes futg and f&tg.
Hence, the cointegrating equation undergoes discrete shifts governed by the Markov chain

fStg, with the cointegrating vector changing stochastically between (1;��0) and (1;��0��1),
and ut representing the extent to which the system is out of long-run equilibrium.

For simplicity, we assume that xt has no intercept, which is consistent with the present

value model (9) and the empirical results in section 3. Concerning the magnitude of the

breaks in the coe¢ cients, we �x �0 = 1 for the relevant cases and let �1 take on the values

f0:5; 1g. Thus, our design encompasses the relative magnitude of the breaks found in the
empirical estimations of the previous section. In addition, the variance of the errors is also

allowed to switch between regimes, so that �0 = 1 and �1 2 f0; 1g.
The model in (17)�(18) is very �exible and it encompasses the regime-shift models dis-

cussed by Gregory and Hansen (1996), which are obtained when p11 = 1 or p00 = 1. This spe-

ci�cation also allows for a wide range of regime changes, depending on the values of the trans-

ition probabilities. In our simulations, we take (p00; p11) 2 f(0:98; 0:98); (0:95; 0:95); (0:95; 0:9)g.
The �rst pair of transition probabilities (p00; p11) = (0:98; 0:98) implies highly persistent

regimes, the average duration of each regime being 50 time periods. The probabilities

(p00; p11) = (0:95; 0:95) imply less persistence, with an average regime duration of 20 time

periods. Finally, the probabilities (p00; p11) = (0:95; 0:9) allow for asymmetric persistence, the

mean duration of two regimes being 20 and 10 time periods. These values for the transition

probabilities seem sensible, as we may expect some breaks to occur in a long run relationship,

though not frequently.

To get an insight into di¤erences in performance caused by the presence of regime shifts,

a benchmark model with no regime switching is also considered. For every DGP, the errors

futg are generated as an autoregressive process ut = �ut�1 + "t, where � 2 f0; 0:75; 1g and
f("t; &t)0g

iids N(0; I2). The selected sample sizes are T = 100 and T = 200: In order to atten-

uate the e¤ect of initial values, 50+T arti�cial observations are generated in each replication

(setting x0 = u0 = 0), but the �rst 50 observations are discarded. In all experiments, the

number of replications is 10 000.

It is worth noting that we allow for regime shifts under the hypothesis of no cointegration

in our experiments, a case which has not been considered previously and is very seldom taken

into account in applied work. Nevertheless, this is in line with recent research on unit roots

and structural breaks reviewed in the introduction.

4.2 Numerical Results

In Tables 3�5, we record rejection frequencies for the various tests at the 5% level of signi�c-

ance. Figures in parentheses are the size-corrected power of null-of-no-cointegration (NNC)

tests, the correction being based on the corresponding results with � = 1 in each table. Given

the way the DGP is parameterized, it is not clear which value for � should be used under the

null hypothesis of cointegration to obtain size-adjusted powers for the MLS and Park-Hahn

tests, so such results will not be presented for this type of tests.

Table 3 summarizes results from earlier studies for a model with no regime switching (cf.

Gregory and Hansen, 1996, Table 2). For the model with no intercept, the ADF, GH-ADF

and Z� tests reject the null of no cointegration more often than they should. The GH -Z�
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test tends to be slightly biased towards the null when T = 100, while the MLS test display

reasonable Type-I error probabilities, at least for � = 0. In terms of power, standard tests

perform better and are less a¤ected by autocorrelation.

Tables 4 and 5 present the results when the cointegrating vector is allowed to switch

between di¤erent regimes. Instead of discussing the results for each set of experiments, per-

haps it is more interesting to highlight some general common features of the results (regardless

the particular model under study), which help to answer the questions posed in the end of

the previous section. Firstly, it is clear that, independently of other parameter values, as

the size of the break increases, both the power and size performance of all tests worsens.

The problem seems to a¤ect standard tests to a larger extent than GH -type tests, at least

in terms of their ability to detect cointegration. The MLS test is more a¤ected in terms of

level distortions than in terms of power loss, which is consistent with the results in Lee et

al. (1997). It should be mentioned, however, that for a smaller break (�1 = 0:5) all tests

perform reasonably well. As for the Park-Hahn tests, the b�1 tests behaves quite well, with
power improving with the size of the break, whereas the b�2 is clearly unable to detect Markov
switching cointegration, with power peaking only at 7% for T = 100 and �1 = 0:5.

On the other hand, changes in variance have ambiguous e¤ects. A mild increase in the

rejection frequencies under the null of NNC tests is accompanied by slightly higher nominal

power, while both power and size distortions decrease for the Park-Hahn and MLS tests.

If we consider size-adjusted power, we observe that it stays very much the same, the gains

being only marginal. Although this somehow contradicts the results in Hamori and Tokihisa

(1997) and Kim et al. (2002) for univariate series and single deterministic breaks, it is

more in accordance with Nelson et al. (2001). Note that, in our case, it is not possible to

distinguish between upward shifts or downward shifts in variance (unless only one switch in

regime occurs), since the relationship is switching between two states at unknown timings.

Therefore, we may expect an �averaging�e¤ect to be taking place, in terms of types of change

in variances, which does not have a very dramatic impact on the performance of the tests.

Thirdly, increasing the size of the sample does not always have a positive impact on the

small-sample properties of the tests, especially when there is no autocorrelation (although

signi�cant improvements occur for � = 0:75). This is not surprising, since, on one hand, we

should expect some improvements due to the longer sample length, but, on the other hand,

this is counteracted by the fact that the number of breaks will increase, even in the case of

relatively persistent regimes. Higher power is attained occasionally when the sample size is

100, except for the MLS test, again con�rming the results in Lee et al. (1997). However, it is

clear that, in general, the estimated Type-I error probabilities for both types of tests diverge

from the nominal value of 5% as T grows, and the tendency is aggravated for larger shifts,

quite severely in the case of the MLS test with � = 0. As before, b�2 performs badly for larger
T , but b�1 improves its performance.

Moving next to the combined e¤ects of regime shifts and autocorrelation, it is interesting

to notice that the overrejection tendency of the MLS test is attenuated when � = 0:75, while

the power of the ADF improves slightly. This may have to do with the fact that these tests

are correcting for autocorrelation parametrically (as discussed in sections 2.1 and 2.3) and
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that the correction is being more e¤ective for this structure of serial correlation6. On the

other hand, autocorrelation in the errors a¤ects the power of the other NNC tests, especially

GH tests. Nevertheless, this becomes less problematic as the sample size grows. In the case

of the time-varying statistic b�1, higher autocorrelation induces a slight decrease in power.
Concerning the persistence of cointegration regimes, even though the number of breaks

is larger when the transition probabilities decrease from 0:98 to 0:95, the degree of autocor-

relation is typically smaller. Thus, the simulations show that standard tests do a better job

at rejecting a false null hypothesis of no cointegration. On the other hand, Gregory�Hansen

tests perform better when the transition probabilities are 0:98, probably because, being ro-

bust to a single break, they are able to cope better with the smaller number of shifts. Still,

the e¤ects of more breaks become apparent in the excessive frequency of rejections of the null

of no cointegration. Despite slight improvements in power, this is also the case when there is

asymmetry in the regimes (p00 = 0:95; p11 = 0:9), since the autocorrelation function of the

errors is a decreasing function of jp00 � p11j (see also Nelson et al., 2001, who discuss similar
implications for the univariate case). As for the MLS and Park-Hahn tests, the converse

situation takes place: more breaks produce a slight decrease in the estimated power.

Finally, a word on the relative performance of the tests. Firstly, as the simulations make

clear, Phillips�Ouliaris-type tests are superior to ADF-type tests in terms of (nominal and

size-adjusted) power, although they are more liberal in general. Secondly, there may be con-

siderable advantages in using robust tests, especially when autocorrelation in the errors is

present. Within this class of tests, the GH-Z� version seems to be the most well-balanced in

terms of power and size. Turning to the MLS test, although its power remains reasonable

across DGP�s, the problem lies in the excessive number of rejections of the null of cointeg-

ration, when the DGP is in fact cointegrated. This evidence suggests that this test may, in

some circumstances, behave as structural change test rather than a cointegration test, since

it also has power against omitted structural change, as discussed in section 2.3. Regarding

the procedures for time-varying cointegration, the b�1 statistic performs reasonably well, par-
ticularly when we allow for a large number of super�uous trend terms (n): This suggests that

employing this procedure can be a robust and �exible way to detect sudden shifts in a long

run relationship.

As for the b�2; it is of little use in this setup, since the simulation results suggest thatb�2 p! 0; as T ! 1. Therefore, we conjecture that most probably there is a constant 
 > 0
such that T 
b�2 � b��2 = Op (1) ; under the Markov switching model. Deriving such constant


 and the respective limiting law is not trivial and is left for future research. This seems

to be an important topic, as it would lead to a test for Markov switching cointegration by

means of a well-known test statistic (KPSS). Nevertheless, we conducted a simple simulation

exercise to infer on the value of 
: Using the Monte Carlo setup at the bottom of Table

5 (T = 200; pii = 0:95 and � = 0); we tried a grid of values for 
 ranging between 0 and

2 to �nd an approximate value for 
 such that P (T 
b�2 < 0:16) = 0:95; where 0:16 is the

5% asymptotic critical value for the test b�2: We found 
 to equal 1:014; which suggests that
maybe Tb�2 = Op (1) ; under the Markov switching model.

6 Indeed, additional experiments not reported here show that if a non-parametric version of the KPSS

statistic is used in this context, the e¤ect of autocorrelation increases monotonically, as usual.
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5 Conclusion

In this paper, we have investigated the �nite-sample properties of cointegration tests when

the cointegrating vector is subject to Markov regime shifts. We motivate our study by

considering how Markov switching may arise in a long run present value model of stock

prices and dividends. In our empirical analysis, we show that there is substantial evidence of

shifts in the long run price-dividend relationship for the US and Sweden, though not for the

UK.

Our subsequent experiments reveal that a combination of high regime persistence and

large magnitude of shifts can a¤ect the ability of tests to detect cointegration, but not to a

great extent. Furthermore, Markov-type heteroskedasticity in the equilibrium errors has an

insigni�cant impact on the performance of the tests. We also conclude that the Gregory-

Hansen tests, namely the GH-Z� procedure, displays a reasonable behaviour, in particular

when less frequent breaks occur, which is likely to be empirically more relevant in the study

of long run relationships. Similarly, the time-varying cointegration procedure b�1 performs
well, but with no apparent advantage over the standard tests analyzed here.

It is important, however, to stress that a researcher should be cautious in interpreting

the results of KPSS-type tests. In fact, the MLS statistic also has power against parameter

instability. This means that a rejection can occur either because there is no long run relation-

ship, or because there is cointegration with potential structural changes. One can conclude

that a standard cointegration model (assuming parameter stability) is not supported by the

data, but further testing may be needed to clarify this rejection (lack of cointegration or

parameter instability). Our study suggests that a suitable normalization of these statistics

may lead to an appropriate testing procedure for this type of DGP.

Finally, our results seem to suggest that if the underlying relationship between stock prices

and dividends were to follow a two-state Markov switching process, the usual tests would be

able to reject the null of no cointegration. Indeed, our simulation study, based on a plausible

parameterization similar to the price-dividend relationship, shows that standard cointegration

tests appear to be quite robust in detecting the existence of a long run relationship, even in

the case where it follows a non-linear Markovian process. Previous literature on structural

breaks and cointegration (Gregory et al., 1996, Gregory and Hansen, 1996, Campos et al.,

1996, etc.) focused on cases when there is a single deterministic, permanent shift. When

more breaks occur, as in our setup, the performance of the usual residual-based tests appears

to be reasonable. As we noted before, the higher the persistence of the regime shifts (i.e., the

closer we approach the one-o¤ shift case), the more likely it is for the residuals to resemble a

unit root process. Thus, more frequent switching is less problematic for the tests�behaviour.

Note that we focused our analysis on a DGP with no intercept, which is in accordance

with the theoretical present value model. It is possible that for more general cases, in which

the intercept or trend terms are subject to shifts, the performance of the tests may worsen, in

line with previous literature. It might be the case that researchers need to look elsewhere in

order to explain the large deviations of stock prices from fundamentals. For instance, while

simpler Markov switching processes are, in practice, indistinguishable from market bubbles,

these models are not able to capture the �dot-com�bubble of 1995-2001, thus suggesting the
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existence of a more complex dynamic structure between stock prices and dividends.
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Table 1: Cointegration analysis

ADF Z� GH-ADF GH -Z� MLS b�1; n = 1 b�1; n = 4 b�2
Sweden �1:302 �15:059� �6:740�� �53:578�� 6:215�� 30:499� 98:541� 11:096�

UK �5:397�� �44:523�� �4:648�� �47:986�� 0:020 0:001 4:252 0:344�

US �2:117 �10:597 �3:20 �31:351�� 0:339 0:747 76:138�� 11:046��

Estimated � (standard error):

Sweden 29:195 (1:320)

UK 21:272 (0:528)

US 25:353 (0:695)

Note: ** means rejection at the 5% signi�cance level;.* means rejection at the 10% signi�cance level

Table 2: Maximum likelihood estimates
Sweden Eq. (15) �0 �1 �0 �1 p00 p11

22:908
(5:957)

42:146
(7:329)

0:0652
(0:0131)

0:3152
(0:0385)

0:9646
(0:1694)

0:9958
(0:0351)

Eq. (16) �0 �1 �0 �1

�0:0034
(0:0103)

0:0386
(0:0102)

0:1587
(0:0517)

0:1149
(0:0325)

US Eq. (15) �0 �1 �0 �1 p00 p11

19:367
(5:698)

30:088
(5:709)

0:1466
(0:0192)

0:2995
(0:0635)

0:9798
(0:0376)

0:9843
(0:0422)

Eq. (16) �0 �1 �0 �1

�0:0014
(0:0010)

0:0316
(0:0041)

0:1513
(0:0012)

0:0462
(0:0012)

Note: Standard errors are in parentheses.
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Table 3: Testing for cointegration with no regime shifts (� = 1)
T = 100 T = 200

� = 0 0.75 1 0 0.75 1

ADF 0:99
(0:988)

0:934
(0:921)

0.06 1:00
(1:00)

0:997
(0:943)

0.052

Z� 1:00
(1:00)

0:989
(0:973)

0.072 1:00
(1:00)

1:00
(1:00)

0.066

GH-ADF 0:978
(0:97)

0:741
(0:644)

0.066 0:999
(0:998)

0:975
(0:972)

0.06

GH-Z� 1:00
(1:00)

0:728
(0:855)

0.026 1:00
(1:00)

1:00
(1:00)

0.042

MLS 0.044 0.148 0.856 0.046 0.074 0.948

Note: Size-adjusted power in parentheses
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Table 4 - Change in slope, no constant (�1 = 0:5)

p00 = p11 = 0:98 p00 = p11 = 0:95 p00 = 0:95; p11 = 0:9

� = 0 0.75 1 0 0.75 1 0 0.75 1

�1 = 0:5, �1 = 0

ADF (T = 100) 0:73
(0:715)

0:754
(0:729)

0.06 0:781
(0:739)

0:797
(0:74)

0.069 0:868
(0:821)

0:859
(0:78)

0.079

Z� 0:928
(0:907)

0:846
(0:788)

0.083 0:958
(0:922)

0:882
(0:782)

0.099 0:979
(0:949)

0:925
(0:82)

0.113

GH-ADF 0:909
(0:897)

0:64
(0:556)

0.068 0:863
(0:838)

0:614
(0:521)

0.072 0:888
(0:851)

0:665
(0:545)

0.079

GH-Z� 0:971
(0:98)

0:678
(0:776)

0.03 0:952
(0:962)

0:636
(0:70)

0.035 0:959
(0:965)

0:68
(0:708)

0.045

MLS 0.334 0.231 0.836 0.304 0.21 0.814 0.214 0.178 0.81b�1; n = 1 0.515 0.462 - 0.472 0.429 - 0.388 0.356 -b�1; n = 4 0.788 0.775 - 0.803 0.767 - 0.717 0.666 -b�2 0.069 0.065 - 0.004 0.003 - 0.011 0.009 -

ADF (T = 200) 0:676
(0:661)

0:846
(0:837)

0.057 0:902
(0:839)

0:95
(0:907)

0.084 0:962
(0:908)

0:979
(0:936)

0.106

Z� 0:93
(0:886)

0:921
(0:864)

0.097 0:991
(0:96)

0:992
(0:942)

0.132 0:999
(0:986)

0:999
(0:974)

0.17

GH-ADF 0:778
(0:766)

0:834
(0:815)

0.058 0:853
(0:779)

0:872
(0:784)

0.095 0:924
(0:856)

0:922
(0:829)

0.118

GH-Z� 0:953
(0:954)

0:896
(0:89)

0.054 0:982
(0:962)

0:948
(0:90)

0.082 0:996
(0:979)

0:979
(0:921)

0.118

MLS 0.65 0.27 0.927 0.425 0.165 0.89 0.264 0.109 0.89b�1; n = 1 0.572 0.504 - 0.394 0.361 - 0.300 0.285 -b�1; n = 4 0.885 0.839 - 0.775 0.711 - 0.609 0.577 -b�2 0.007 0.007 - 0.000 0.000 - 0.000 0.000 -

�1 = 0:5, �1 = 1

ADF (T = 100) 0:779
(0:748)

0:814
(0:755)

0.072 0:826
(0:76)

0:85
(0:748)

0.103 0:899
(0:847)

0:90
(0:778)

0.112

Z� 0:98
(0:966)

0:916
(0:819)

0.108 0:993
(0:968)

0:937
(0:758)

0.148 0:998
(0:986)

0:966
(0:794)

0.174

GH-ADF 0:917
(0:902)

0:685
(0:528)

0.086 0:886
(0:847)

0:667
(0:476)

0.102 0:92
(0:884)

0:719
(0:481)

0.109

GH-Z� 0:99
(0:99)

0:706
(0:706)

0.05 0:987
(0:986)

0:692
(0:65)

0.06 0:994
(0:983)

0:72
(0:636)

0.071

MLS 0.287 0.211 0.797 0.248 0.192 0.753 0.158 0.152 0.753b�1; n = 1 0.460 0.435 - 0.425 0.405 - 0.339 0.357 -b�1; n = 4 0.732 0.777 - 0.755 0.754 - 0.647 0.705 -b�2 0.000 0.000 - 0.000 0.000 - 0.000 0.000 -

ADF (T = 200) 0:738
(0:678)

0:912
(0:876)

0.072 0:914
(0:814)

0:971
(0:899)

0.144 0:973
(0:909)

0:988
(0:933)

0.164

Z� 0:981
(0:95)

0:975
(0:918)

0.146 0:989
(0:972)

0:997
(0:923)

0.301 1:00
(0:992)

1:00
(0:962)

0.36

GH-ADF 0:828
(0:787)

0:893
(0:845)

0.084 0:88
(0:77)

0:928
(0:804)

0.137 0:944
(0:868)

0:956
(0:858)

0.152

GH-Z� 0:989
(0:986)

0:957
(0:924)

0.085 0:997
(0:989)

0:981
(0:911)

0.127 1:00
(0:996)

0:994
(0:94)

0.153

MLS 0.572 0.216 0.898 0.375 0.128 0.835 0.223 0.094 0.833b�1; n = 1 0.543 0.456 - 0.375 0.343 - 0.283 0.275 -b�1; n = 4 0.862 0.799 - 0.737 0.682 - 0.577 0.569 -b�2 0.000 0.000 - 0.000 0.000 - 0.000 0.000 -
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Table 5 - Change in slope, no constant (�1 = 1)

p00 = p11 = 0:98 p00 = p11 = 0:95 p00 = 0:95; p11 = 0:9

� = 0 0.75 1 0 0.75 1 0 0.75 1

�1 = 1, �1 = 0

ADF (T = 100) 0:62
(0:597)

0:575
(0:546)

0.06 0:678
(0:58)

0:641
(0:521)

0.088 0:795
(0:685)

0:753
(0:602)

0.108

Z� 0:766
(0:708)

0:712
(0:709)

0.108 0:817
(0:656)

0:77
(0:533)

0.146 0:914
(0:725)

0:876
(0:575)

0.187

GH-ADF 0:858
(0:832)

0:61
(0:532)

0.071 0:762
(0:712)

0:571
(0:461)

0.09 0:812
(0:716)

0:64
(0:456)

0.101

GH-Z� 0:912
(0:916)

0:681
(0:70)

0.046 0:829
(0:817)

0:606
(0:57)

0.062 0:865
(0:818)

0:67
(0:555)

0.083

MLS 0.396 0.329 0.808 0.352 0.277 0.755 0.244 0.218 0.736b�1; n = 1 0.566 0.535 - 0.516 0.484 - 0.416 0.395 -b�1; n = 4 0.833 0.839 - 0.847 0.828 - 0.749 0.728 -b�2 0.053 0.053 - 0.002 0.002 - 0.005 0.005 -

ADF (T = 200) 0:57
(0:506)

0:67
(0:608)

0.067 0:849
(0:628)

0:875
(0:648)

0.151 0:945
(0:734)

0:952
(0:73)

0.202

Z� 0:758
(0:623)

0:772
(0:61)

0.137 0:956
(0:688)

0:957
(0:65)

0.277 0:991
(0:784)

0:994
(0:711)

0.367

GH-ADF 0:681
(0:67)

0:668
(0:654)

0.054 0:779
(0:627)

0:756
(0:56)

0.126 0:89
(0:668)

0:871
(0:573)

0.189

GH-Z� 0:851
(0:812)

0:796
(0:728)

0.077 0:919
(0:77)

0:88
(0:635)

0.154 0:975
(0:792)

0:958
(0:633)

0.226

MLS 0.646 0.428 0.904 0.39 0.265 0.827 0.228 0.168 0.803b�1; n = 1 0.594 0.565 - 0.406 0.391 - 0.307 0.303 -b�1; n = 4 0.902 0.889 - 0.772 0.754 - 0.622 0.608 -b�2 0.006 0.006 - 0.000 0.000 - 0.000 0.000 -

�1 = 1, �1 = 1

ADF (T = 100) 0:664
(0:63)

0:667
(0:607)

0.07 0:722
(0:61)

0:734
(0:568)

0.106 0:844
(0:742)

0:83
(0:658)

0.122

Z� 0:872
(0:812)

0:789
(0:659)

0.115 0:917
(0:786)

0:845
(0:578)

0.169 0:966
(0:861)

0:922
(0:655)

0.206

GH-ADF 0:881
(0:846)

0:639
(0:50)

0.084 0:818
(0:758)

0:62
(0:465)

0.102 0:862
(0:793)

0:669
(0:441)

0.11

GH-Z� 0:952
(0:95)

0:697
(0:662)

0.058 0:911
(0:893)

0:639
(0:566)

0.067 0:943
(0:918)

0:697
(0:553)

0.077

MLS 0.373 0.277 0.794 0.338 0.232 0.744 0.224 0.184 0.732b�1; n = 1 0.536 0.515 - 0.495 0.465 - 0.393 0.383 -b�1; n = 4 0.812 0.839 - 0.830 0.810 - 0.722 0.732 -b�2 0.000 0.000 - 0.000 0.000 - 0.000 0.000 -

ADF (T = 200) 0:613
(0:536)

0:781
(0:708)

0.083 0:879
(0:655)

0:922
(0:726)

0.165 0:956
(0:815)

0:973
(0:84)

0.201

Z� 0:871
(0:743)

0:872
(0:702)

0.167 0:98
(0:784)

0:984
(0:705)

0.35 0:998
(0:913)

0:998
(0:85)

0.429

GH-ADF 0:743
(0:677)

0:761
(0:687)

0.086 0:814
(0:648)

0:838
(0:628)

0.152 0:919
(0:775)

0:921
(0:726)

0.179

GH-Z� 0:916
(0:88)

0:852
(0:782)

0.097 0:964
(0:879)

0:925
(0:744)

0.16 0:992
(0:924)

0:976
(0:778)

0.201

MLS 0.67 0.332 0.894 0.427 0.192 0.812 0.259 0.118 0.803b�1; n = 1 0.584 0.538 - 0.400 0.381 - 0.304 0.292 -b�1; n = 4 0.894 0.871 - 0.768 0.743 - 0.614 0.604 -b�2 0.000 0.000 - 0.000 0.000 - 0.000 0.000 -
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Figure 1: Stock Prices and Dividends (Sweden, UK and US)
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Figure 2: Estimates of �t - Sweden

Figure 3: Estimates of �t - UK
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Figure 4: Estimates of �t - US
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