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Abstract

In dynamic panel data models, which are particularly well-suited to cross-country
analysis, the Mean Group estimator (Pesaran and Smith, 1995) is under certain quite strong
conditions consistent, but theoretical and empirical evidence indicates that it can be biased
when the number of time observations is small. Possible explanations are sample-size bias
and omitted variables or measurement errors that are correlated with the regressors. I find
support for both hypotheses using a Monte Carlo experiment which analyzes cointegrated
systems. A possible solution for the MG estimator bias is a bootstrap bias-correction
procedure, but Pesaran and Zhao (1999) show that it performs well only when the true
coefficient of the lagged dependent variable is small. In this paper, I test three different
bootstrap procedures and obtain an appreciable reduction in the MG estimator bias,
especially when the suggestions of Li and Maddala (1997) are applied. Finally, I use
bootstrap bias-corrected estimators to investigate the long-run properties of money demand
in the euro area.
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1. Introduction1

In recent years there has been increasing interest in dynamic panel data models where

the number of time series observations T is comparable with N, the number of groups

(Pesaran, Shin and Smith, 1999). In most applications of this type, the parameters of interest

are the long-run effects and the speed of adjustment to the long run. Such panels can be very

useful in cross-country analysis.

Four procedures are commonly used to compute long-run relationships from such

panels: (i) applying aggregate time-series regression (TS estimator); (ii) estimating equations

for each group and then averaging the coefficients over groups (the Mean Group estimator,

MG, proposed by Pesaran and Smith, 1995); (iii) pooling the data, imposing the same slope

allowing for fixed or random common intercepts, and estimating pooled regressions (DFE or

DRE estimator); (iv) running a cross-section estimate with long-period averages for each

country’s variable (CS estimator).

Pesaran and Smith (1995) show that while in the static case all four methods give

consistent estimates of the average coefficients, in dynamic models this does not hold. In

particular, they show that under certain quite strong conditions (namely, the group-specific

parameters are distributed independently of the regressors and the regressors are strictly

exogenous) the MG and the CS estimators give consistent (unbiased) estimates of the

average group parameters. In contrast, the estimates obtained from ATS and DFE estimators

can produce inconsistent and potentially highly misleading estimates. The problem arises

when the regressors are serially correlated, so that neglecting coefficient heterogeneity

induces serial correlation in the disturbances, which generates inconsistent estimates. Their

conclusion is that “individual micro-relations should be estimated separately and the

averages of the estimated micro-parameters and their standard errors calculated explicitly”.

                                                                
1 For comments and suggestions I thank Eugenio Gaiotti, Chung-ming Kuan, Augustin Maravall, Peter

Pauly, George Tiao, Ruey Tsay and seminar participants at the Bank of Italy and at “The Taipei International
Conference on Modeling Monetary and Financial Sectors”. I also thank Claudio Trevisan for preparing data.
The opinions expressed in the paper are mine and do not necessarily reflect those of the Bank of Italy. The
software codes are available from the author. Address for correspondence: Banca d’Italia, Servizio Studi, Via
Nazionale 91, 00184, Rome, Italy. Tel.: +39-06-47922369 Fax: +39-06-47923723; e-Mail:
focarelli.dario@insedia.interbusiness.it .
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However, as noted in Pesaran, Smith and Im (1996) and Pesaran and Zhao (1999),

theoretical considerations and Monte Carlo evidence indicate that the MG estimator can be

affected by small-sample bias. Further, empirical applications estimating separate

relationships for a number of groups sometimes find differences in coefficients that are

significant but economically implausible. The MG estimator tends to be sensitive to these

abnormal coefficients. Pesaran, Shin and Smith (1999) argue that “one possible explanation

is that the group-specific estimates are biased because of sample-specific omitted variables

or measurement errors that are correlated with regressors”. This may become a big problem

when dealing with a large number of groups, since it is very difficult to use additional data

or a more appropriate specification for each group.

One possible way of tackling this problem is bootstrap bias-correction. To reduce the

small-sample bias of the Mean Group estimator in dynamic heterogeneous panels with T=20

and N=20, Pesaran and Zhao (1999) test such a procedure (together with three alternatives)

using standard bootstrap techniques. Their results show that the procedure performs well

when the true coefficient of the lagged dependent variable is small but poorly when it is

large.

The aim of this paper is twofold. First, via Monte Carlo simulations I further explore

the characteristics of the MG estimator bias by considering cointegrated systems, which are

in fact the most common case in empirical applications. Second, I further investigate the

possibility of using bootstrap techniques to correct the bias of the MG estimator, moving

from the standard bootstrap to a more sophisticated design according to the suggestions of Li

and Maddala (1997), i.e. using the moving block bootstrap and considering that if xit is an

I(1) process, bootstrapping the two innovations that drive the cointegrated system

simultaneously is convenient.

The Monte Carlo analysis confirms the existence of a downward bias in MG estimates

of the long-run coefficient in a cointegrated system. In particular, the bias diminishes as the

number of time-observations increases, and increasing the number of groups reduces the

variance of the bias. These results are consistent with the hypothesis that small-sample bias

plays a major role. Further, in a cointegrated system when strict exogeneity of the regressor

is ruled out and the two innovations driving the cointegrated system are allowed to be

correlated, the MG estimator has a very pronounced downward bias if the correlation is
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negative and an upward bias if it is positive. However, I also tested a different procedure

(MG-FMOLS, obtained by averaging FMOLS estimates computed applying the suggestions

of Hansen, 1992): this estimator shows a much smaller bias when a non-zero correlation

between the regressor and the error is allowed.

My simulations also show that the bootstrap bias-corrected estimators, based on the

suggestions of Li and Maddala (1997), can produce an appreciable correction of the MG

estimator bias.

Finally, I present an application of this procedure to investigate the long-run properties

of money demand in the euro area. The monetary policy debate in the euro area has shown

the necessity for a reliable estimate of money demand, as is attested by any number of

econometric papers (among these, Monticelli and Papi, 1996; Fagan and Henry, 1998;

Coenen and Vega, 1999; Dedola, Gaiotti and Silipo, 2001; Golinelli and Pastorello, 2000;

Brand and Cassola, 2000).

In particular, as noted by Dedola, Gaiotti and Silipo (2001), the magnitude of income

elasticity determines whether or not there is a trend in the velocity of circulation, which in

turn helps determine the reference value for money growth used by the ECB as the “first

pillar” of its strategy (European Central Bank, 1999a). The ECB sets this value assuming

that the growth rate of real output lies in the range between 2 and 2.5 per cent and that M3

income velocity (the ratio of nominal GDP to M3 money) declines at a trend rate of 0.5 to 1

per cent a year (European Central Bank, 1999b). Assuming that the other variables included

in the money demand equation are stationary in the long term, the ECB implicitly assumes

that the income elasticity ranges between 1.2 and 1.5 per cent, with a central value of 1.35.

This is consistent with previous studies, which use different methodologies and definitions

of money: the estimated income elasticity ranges between 1.14 per cent (Coenen and Vega,

1999) and 1.55 per cent (Fagan and Henry, 1998).

The paper is organized as follows. The next section briefly describes the MG estimator

in a heterogeneous dynamic model and investigates its bias for the long-run coefficients by

means of a Monte Carlo experiment. Section 3 presents three bootstrap procedures and tests

their ability to reduce the bias with various data generating processes. In Section 4 an
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application to euro-area money demand is presented. Conclusions are set out in the final

section.

2. Mean Group Estimator and its Bias

2.1 Mean Group Estimator

Consider the following heterogeneous dynamic model, extensively analyzed by

Pesaran and Smith (1995) and Pesaran and Zhao (1999):

εβλα titiitiiiti xyy ,,1,,
+++=

−
, i = 1, 2, … , N,  t = 1, 2, … , T (1.1)

where i denotes groups and t is the time index, i t,ε is assumed to be independently and

identically distributed with mean zero and variance i
2σ , and i t,ε is independent of iα ,

i
β , iλ  and i tx , .

The mean group estimator is based on individual group estimates. For the i-th group,

the estimate of the long-run coefficient is given by:

( )i i i
$ $ $θ β λ= −1 , i = 1,2, … , N    (1.2)

and the speed of adjustment is given by:






= −1ˆˆ λφ ii

i = 1,2, … , N    (1.2’)

where 
i
$λ  and 

i
$β are the OLS estimates of iλ  and 

i
β respectively.

The mean group estimator of ( ) ( )( )θ θ β λ= = −E Ei i i1 is given by:

( )MG i i
i

N

N
$ $ $θ β λ= 



−∑

=

1
1

1
, (1.3)

with its variance consistently estimated by:
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( ) ( )2

1
ˆˆˆ

)1(
1 ∑

=

−
−

=
N

i
MGiMG NN

Var θθθ (1.4)

The Mean Group estimator and its variance for the speed of adjustment can be

computed analogously.

Theoretically 
MG
$θ  converges on the true θ as both T and N go to infinity. However,

the estimator can be biased, for three reasons:

• when T is small, the presence of the lagged dependent variable, which biases the OLS

estimator of the coefficients of 
i
$λ  and 

i
$β  (Pesaran and Zhao, 1999);

• the fact that 
i
$θ  is a nonlinear combination of

i
$λ  and 

i
$β  (Pesaran and Zhao, 1999);

• the group-specific estimates of 
i
$λ  and 

i
$β may be biased because of sample-specific

omitted variables or measurement errors that are correlated with the regressors (Pesaran,

Shin and Smith, 1999).

2.2 The Data Generating Process  and Mean Group Estimator

In order to evaluate the characteristics of the MG estimator bias in a cointegrating

system, I adapt the data generating process used by Pesaran and Zhao (1999) to the

nonstationary case. This process (DGP1) allows for parameter heterogeneity across the

different groups:

εθλλα titiitiiti xyy ,,1,,
)1( +++= −

−
i = 1, 2, … , N,  t = 1, 2, … , T (2.1)

where

i t i t i tx x u, , ,= +−1 i = 1, 2, … , N,  t = 1, 2, … , T (2.2)

In each experiment, the disturbances and the parameters are generated according to
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i tu , ~ N ( )0 2, iτ , i t,ε ~ N( )0 1, i = 1, 2, … , N,  t = 1, 2, … , T

(2.3)

iα ~ N( )1 1, , iθ ~ N( )1 1, , µ
i
~ N ( )1 1, i = 1, 2, … , N.

As in Kiviet (1995) and Pesaran and Zhao (1999), the values of i
2τ  across i are

generated imposing the value of the signal-to-noise ratio 
( )
σ

σ
σ
σ

ε

ε

ε

2

2

2

2

2

2

1
−

==
−

y
R

R ts
Var

where R2 is the population value of the squared multiple coefficient of (2.1). Without loss of

generality I set σ ε

2
 =1, so it is easily seen that σ

2

s
 is equal to:

)(2

2

2
2

1
xVar itis θ

λ
λσ +















−
= . (2.4)

Since )(xit
Var  grows as T

iτ
2

, by inverting (2.4) we can compute

T
i

s

i θ
λ

λσ
τ 2

2

2
2

2 1 












−

= − .

In the simulations, I set λ = 0.8 and σ 2

S
=2, which Pesaran and Zhao (1999) show to

be the case with the largest bias for the MG estimator when the xit are stationary and for

T=N=20. In fact, they show that the choice of σ 2

S
=8 reduces the bias appreciably. It is

worth noting thatσ 2

S
=2 is equivalent to an R2 of 0.67, while σ 2

S
=8 is equivalent to an R2 of

0.89.

It is important to note that in DGP1 I retain the assumption that the xit are strictly

exogenous. In the standard case discussed in the time-series literature on cointegrated

systems, however, the dependence of xit on ε it is not ruled out. I will remove this assumption

later, in sub-section 3.3.
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I experimented with T = (10,20,50,100); N=(10,20,50,100). I first generated T+50

observations for xi and yi (with xi 0,
= 0 and y

i 0,
= 0) and then dropped the first 50

observations for each i. Only replications yielding a stable estimate of λ (namely those with

λ<.99) are included in the experiments.

Table 1

Simulation Results for the Bias and the RMSE of Mean Group Estimator

DGP2 (2.1’)-(2.4’): 1000 Monte Carlo replications
 Groups

Observations
10 20 50 100

λ θ λ θ λ θ λ θ
Bias -0.451 -0.142 -0.454 -0.252 -0.451 -0.121 -0.451 -0.185
St. Dev. 0.109 7.759 0.074 6.159 0.049 3.634 0.034 2.434
RMSE 0.464 7.756 0.460 6.161 0.454 3.634 0.452 2.439

10

M 269 597 1433 3029

Bias -0.247 0.201 -0.245 -0.218 -0.244 -0.09 -0.246 -0.126
St. Dev. 0.067 5.447 0.048 2.908 0.031 2.144 0.021 1.466
RMSE 0.256 5.447 0.249 2.915 0.246 2.144 0.247 1.470

20

M 53 115 299 589
- -Bias -0.105 -0.112 -0.103 -0.132 -0.104 -0.069 -0.103 -0.067

St. Dev. 0.037 2.174 0.026 1.600 0.016 0.988 0.012 0.697
RMSE 0.111 2.175 0.106 1.605 0.105 0.990 0.104 0.700

50

M 1 4 3 3

Bias -0.052 -0.120 -0.052 -0.044 -0.052 -0.002 -0.052 0.014
St. Dev. 0.023 1.558 0.016 1.103 0.010 0.669 0.007 0.458
RMSE 0.057 1.562 0.055 1.103 0.053 0.668 0.053 0.458

100

M 0 0 0 0

The results, summarized in Table 1, are based on 1000 replications and were computed
using GAUSS. The following general conclusions may be drawn:
• The average bias for λ depends solely on the number of observations; it decreases from

-.45 for T=10 to -.05 for T=100. The standard deviation of the bias for λ tends to

diminish with the increase in the number of groups; when N=100 the standard deviation

is about one fifth as large as when N=10.

• The bias for θ is substantially smaller than that for λ when T=(10,20), whereas the two

biases are comparable when T=(50,10). The standard deviation of the bias for θ is much

higher than that for λ; it tends to diminish, as the number of groups increases, faster than

in the case of λ.
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• The number of cases where the absolute value of the estimates of λ was greater than 0.99

(denoted as M in the tables) is not negligible for T=10 (approximately 0.3 per cent of the

cases) or for T=20 (approximately 0.03 per cent of the cases). For T=50,100 it is

practically nil.

• Finally, in unreported simulations, I compared these results with those obtained when x

is I(0).2 The magnitude of the bias turned out to be very similar for the two sets of

simulations. However, the standard deviation of the bias for θ is substantially lower

when x is I(0) than when it is I(1), while those for λ are similar for the two sets of

simulations.

In conclusion, the results show that the MG estimate of the long-run parameter is

downward biased, especially when T<100, in cointegrated systems where the signal-to-noise

ratio is kept constant and low, the regressor is strictly exogenous, and the true coefficient of

the lagged dependent variable is small. The increase in the number of groups has a limited

effect on the bias, but it does reduce its standard deviation. These results are consistent with

the hypothesis that the major source of bias is small sample size.

3. Bootstrap Bias-corrected Estimators

Bootstrap methods can be used to make the bias correction, in particular for pivotal

statistics (Li and Maddala, 1996a). As reported in Pesaran and Zhao (1999), Kiviet noted

that i
$θ θ−


 


 is asymptotically pivotal; it can then be shown that the bootstrap bias

correction will also lead to an estimator which is unbiased to order O(T-1).

In the Monte Carlo experiments, I use the DGP1 presented in sub-section 2.2 and focus

on two cases: (T=20,N=20), which was examined by Pesaran and Zhao (1999); and (T=65,

N=11), which is consistent with the information in the euro-area money demand data-set.

For each case, I test three different bootstrap procedures. Below, I illustrate the 3 procedures.

                                                                
2 In particular I used the DGP described in Pesaran and Zhao (1999, pp. 312-313), which is different from

DGP1 here because the regressor is stationary:  uxx titiiti ,1,, 1 ++




=

−
− ρρµ with ρ =0.95. I

experimented with T = (10,20,50,100); N=(10,20,50,100), while Pesaran and Zhao (1999) simulations were
focussed on T=N=20.
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Pesaran and Zhao (1999) proposed a standard bootstrap bias-corrected (BSBC1)

estimator designed in the following manner:

Procedure 1 (BSBC1)

1) compute the OLS estimates i$α ,
i
$λ and

i
$β  from equation (2.1), as well as the long-run

coefficients estimates 
i
$θ . The Mean Group estimate for the parameter θ is given by

( )∑ −
−

=







−
=

MN

i
iiMG MN 1

ˆ1ˆˆ 1
λβθ , by excluding the M cases where the absolute value of

λ̂ i
 is greater than .99;

2) for the j-th bootstrap replication, generate bootstrap samples
i t

j
,$ε , i = 1, 2, … , N; t = 1,

2, … , T by drawing randomly with replacement from the OLS residuals i t,$ε of equation

(2.1);

3) for the j-th bootstrap replication, generate bootstrap samples y j

ti,
 using

εβλα ˆˆˆˆ ,,1,,

j

titii

j

tiii

j

ti xyy +++=
−

 , i=1, i = 1, 2, … , N; t = 1, 2, … , T; j = 1, 2, … , B

where  yy
i

j

i 0,0,
= , i=1, 2, … , N;

4) for the j-th bootstrap replication, use y j

ti,
and the original observations i tx , to compute the

OLS estimates 
i

j$α ,
i

j$λ and
i

j$β , as well as 
i

j$θ  ;

5) repeat steps 2) through 4) B times;

6) compute the bootstrap estimates ∑∑
−

==−
=

iMN

i
i

B

ji
B

j
BMN 11

1
ˆˆ

)(
1

θθ , by excluding the

iM cases where 
i

j$λ  is greater than .99 in absolute value 3. The bias-corrected estimator

is then given by: θθθ ˆˆ*2ˆ
11 −=

BMGBSBC
.

The possibility of using the bootstrap for bias correction in cointegrated systems was

investigated by Li and Maddala (1997). They applied bootstrap methods to different

asymptotic procedures that correct for endogeneity and serial correlation in a cointegrating

                                                                
3 Pesaran and Zhao (1999) explicitly exclude Monte Carlo replications where λ̂ i

 is greater than .99 in

absolute value from the MG estimator. However, they do not specify whether or not they exclude from the

computation of the bootstrap bias-corrected estimates the bootstrap replications where 
i

j$λ  is greater than .99

in absolute value. Their results show an abnormal increase of the RMSE of the bias for the bootstrap bias-
corrected estimator; therefore, I infer that they did not exclude such bootstrap replications. If this is the case,
the algorithm I use is different from theirs.
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regression. For the Philips and Hansen (1990) fully modified OLS (FMOLS) estimates, they

found that bootstrap procedures reduce the bias to some degree. In particular, they adopted a

bootstrap procedure that differs from standard bootstrap in two ways:

a) to use the information that i tx , is I(1), they define i t i tx, ,$ν = ∆  and, after centering,

bootstrap the pairs( i t,$ε , i t,$ν );

b) since the errors driving cointegrated systems are typically autocorrelated and of unknown

structure, they use the moving block bootstrap (MBB) (Künsch, 1989, and Liu and Singh,

1992). With this method, the T observations are divided into T-k+1 overlapping blocks of

length K, and b=T/K of these blocks (with repeats allowed) are selected. Their simulation

results show that this method works well, although as they comment “the theoretical

justification for the MBB bootstrap is extremely (almost impossibly) complicated”.

Therefore, the second method I use is exactly the Li and Maddala procedure (BSBC2).

Namely:

Procedure 2 (BSBC2)

A) compute the FMOLS estimates 
i
$θ  from equation: εθγ titiiiti xy ,,,

++= . The Mean

Group estimator is given by ∑
=

=
N

i
iMGFMOLS N 1

ˆˆ 1
θθ ;

B) for the j-th bootstrap replication, calculate the FMOLS residuals i t,$ε  and the set of

residuals x titi ∆=
,,ν̂ . After centering these residuals, form the residual moving block

pairs of length k { ννεε ˆˆˆˆ 1,,1,,
,..,;,..,

−+−+ ktitiktiti
}, t = 1, 2, .. ,T-k+1. Draw b=T/k blocks

{ ννεε ˆˆˆˆ 1,,1,,
,..,;,.., jb

kti

jb

ti

jb

kti

jb

ti −+−+
}, jb=1, 2, .. , b randomly with replacement from the

residual moving block pairs to obtain ε̂ ,

j

ti
 and ν̂ ,

j

ti
, i = 1, 2, … , N; t = 1, 2, … , T; j = 1,

2, …, B;

C) for the j-th bootstrap replication, generate bootstrap samples x j

ti,
 and y j

ti,
, using,

respectively, ν̂ ,1,,

j

ti

j

ti

j

ti xx +=
−

and εβγ ˆˆˆ ,,,

j

ti

j

tiii

j

ti xy ++=  , i = 1, 2, … , N; t = 1, 2, … ,

T; j = 1, 2, …, B where xx i

j

i 0,0,
= , i=1, 2, … , N;

D)  for the j-th bootstrap replication, use y j

ti,
 and x j

ti,
 to compute the FMOLS estimates

i
j$θ  ;
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E) repeat steps B) through D) B times;

F) compute the bootstrap estimates ∑∑
==

=
N

i
i

B

j
B

j
NB 11

2
ˆˆ 1

θθ . The bias-corrected estimator is

then given by: θθθ ˆˆ*2ˆ
22 −=

BMGFMOLSBSBC
.

Finally, I test a third bootstrap method (BSBC3). In this case I apply the Li and

Maddala suggestions reported above as points a) and b) to bootstrap the Mean Group

estimates of λ and θ in a heterogeneous dynamic model. Therefore, the bootstrap scheme is

the following:

Procedure 3 (BSBC3)

i) compute the OLS estimates i$α ,
i
$λ and

i
$β  from equation (2.1) , as well as the long-run

coefficient estimates 
i
$θ . The Mean Group estimate for the parameter θ is given by

( )∑ −
−

=







−
=

MN

i
iiMG MN 1

ˆ1ˆˆ 1
λβθ , by excluding the M cases where λ̂ i

 is greater than

.99 in absolute value;
ii) for the j-th bootstrap replication, calculate the OLS residuals i t,$ε  and the set of

residuals i t i tx, ,$ν = ∆ . After centering these residuals, form the residual moving block

pairs of length k { ννεε ˆˆˆˆ 1,,1,,
,..,;,..,

−+−+ ktitiktiti
}, t = 1, 2, .. ,T-k+1. Draw b=T/k blocks

{ ννεε ˆˆˆˆ 1,,1,,
,..,;,.., jb

kti

jb

ti

jb

kti

jb

ti −+−+
}, jb=1, 2, .. , b randomly with replacement from the

residual moving block pairs to obtain ε̂ ,

j

ti
 and ν̂ ,

j

ti
, i = 1, 2, … , N; t = 1, 2, … , T; j = 1,

2, …, B;

iii) for the j-th bootstrap replication, generate bootstrap samples x j

ti,
 and y j

ti,
 using,

respectively, ν̂ ,1,,

j

ti

j

ti

j

ti xx +=
−

and εβλα ˆˆˆˆ ,,1,,

j

ti

j

tii

j

tiii

j

ti xyy +++=
−

 , i=1, i = 1, 2, … ,

N; t = 1, 2, … , T; j = 1, 2, …, B where xx i

j

i 0,0,
= and yy

i

j

i 0,0,
=  i=1, 2, … , N;

iv) for the j-th bootstrap replication, use y j

ti,
 and x j

ti,
 to compute the OLS estimates

i
j$α ,

i
j$λ and

i
j$β , as well as 

i
j$θ  ;

v) repeat steps ii) through iv) B times;
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vi) compute the bootstrap estimates ∑∑
−

==−
=

iMN

i
i

B

ji
B

j
BMN 11

3
ˆˆ

)(
1

θθ , by excluding the

iM cases where 
i

j$λ  is greater than .99 in absolute value. The bias-corrected estimator is

then given by: θθθ ˆˆ*2ˆ
33 −=

BMGBSBC
.

3.1 The simulation results

The simulation results are summarized in Table 2 and were computed using GAUSS.

They are based on 1000 Monte Carlo replications, and the number of bootstrap replications

B is set equal to 200.

The FMOLS estimates were computed by using a prewhitened kernel estimator

(specifically the Quadratic spectral kernel recommended by Andrews; 1991) with the plug-in

bandwidth recommended by Andrews and Monahan (1992). According to Hansen (1992),

the use of the plug-in bandwidth parameter eliminates the arbitrariness of the choice and can

dramatically improve the estimates of cointegrating relationships. I used a Gauss code

prepared by Hansen (available at the web page

http://www.ssc.wisc.edu/~bhansen/progs/jbes_92.html).

The block length in BSBC2 and BSBC3 is set equal to one fifth of T. As noted by

Berkowitz and Kilian (2001), choosing a block length involves a tradeoff. As the block size

becomes too small, the moving block bootstrap destroys the time dependency of the data

which is the reason why MBB is believed to improve over the standard bootstrap. As the

block size becomes too large, pseudo-data will tend to look alike. Several procedures have

been proposed to set the block size automatically (see the discussion in Li and Maddala,

1996, and Berkowitz and Kilian, 2001). The block length chosen here is the same as in Li

and Maddala (1997) and is consistent with the results in Berkowitz and Kilian (2001).

The following general conclusions may be drawn from these results:

• The MG-FMOLS estimator bias (computed by averaging the FMOLS estimates for the

long-run parameter θ over the groups) is greater than that of the standard MG estimator

(computed by averaging the OLS estimates of the dynamic model over the groups).
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• The bootstrap bias-corrected estimators significantly reduce the downward bias of the

Mean Group estimators. In particular, the bias reduction is more effective when the Li

and Maddala (1997) guidelines are applied. However, the bias reduction is associated

with a slight increase in both standard error and RMSE.

• The bootstrap bias-corrected estimator applied in a dynamic model (BSBC3) shows the

smallest bias for the long-run coefficient θ.

Table 2

Simulation Results for the Bias of Mean Group Estimators

And Bootstrap Bias-corrected Estimators

DGP1 (2.1-2.4); 1000 Monte Carlo replications; 200 Bootstrap replications

BSBC1

 (1)-(6)

BSBC2

(A)-(F)

BSBC3

(i)-(vi)

λ θ θ λ θ
Panel A:    N=20,T=20

Bias -0.245 -0.218 -0.334 -0.245 -0.218
St. Dev. 0.048 2.908 4.318 0.048 2.908

Mean Group
Estimator

RMSE 0.249 2.915 4.329 0.249 2.915

Bias -0.084 -0.184 -0.225 -0.106 -0.108
St. Dev. 0.056 4.040 4.994 0.057 3.937

Bootstrap Bias-
corrected Estimator

RMSE 0.101 4.042 4.996 0.120 3.937

Panel B:    N=11,T=65
Bias -0.082 -0.124 -0.201 -0.082 -0.124
St. Dev. 0.030 1.825 1.895 0.030 1.825

Mean Group
Estimator

RMSE 0.087 1.828 1.904 0.087 1.828

Bias -0.011 -0.092 -0.154 -0.023 -0.067
St. Dev. 0.033 1.942 2.098 0.034 2.096

Bootstrap Bias-
corrected Estimator

RMSE 0.034 1.943 2.102 0.041 2.096

3.2 A further investigation when xit is not strictly exogenous

As was discussed in sub-section 2.2, in DGP1 the xit are considered as strictly

exogenous, thus ruling out the possible dependence of xit on ε it (for some t). I now introduce

a second Data Generating Process (DGP2) that, as is standard in the time-series literature on

cointegrated variables, allows for a non-zero correlation between the two sets of residuals uit

and ε it.
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To illustrate the cases under investigation, I use the notation of cointegrated systems

used by Li and Maddala (1997):

ωθ +=
titiiti xy ,,,

i = 1, 2, … , N,  t = 1, 2, … , T (3.1)

where

ν tititi xx ,1,,
+=

−
i = 1, 2, … , N,  t = 1, 2, … , T (3.2)

The DGP2 for the cointegrated system (3.1) and (3.2) posits that ηi,t = (ωi,t ,ν i,t  )’

follows for each group i a stationary VAR(1) process

 













+














=















−

−

u ti

ti

ti

ti

i
ti

ti

,

,

1,

1,

,

, ε
υ
ωϕ

υ
ω

                 (3.3)

where
















=

φφ
φφ

ϕ
22,21,

12,11,

ii

ii

i
and












































≡














σσ
σσε

ε

εε

2

,,

,

2

,

,

,
,),0(~

0
0

uiui

uii

ti

ti
IIDNEIIDN

u
. (3.4)

It is assumed that E> 0, a positive definite matrix. In the simulation, I set:
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The free parameter K is set equal to (-.5,0,.5). It is worth noting that when uit and ε it

have zero correlation (K=0) we are in the same case as DGP1 (namely, xit is strictly

exogenous). In all cases, the true cointegrating parameter is chosen as iθ ~ N( )1 1, i = 1, 2, …

, N. For the sake of brevity I consider only the case where N=11 and T=65.



Table 3

Simulation Results for the Bias of Mean Group Estimators

And Bootstrap Bias-corrected Estimators

DGP2 (3.1)-(3.4); N=11,T=65; 1000 Monte Carlo replications; 200 Bootstrap replications

BSBC1

 (1)-(6)

BSBC2

(A)-(F)

BSBC3

(i)-(vi)

λ θ θ λ θ

Panel A: σ 2

,ui
set according to eq. (2.4)

K=-.5
Bias -0.042 -0.505 -0.164 -0.042 -0.505
St. Dev. 0.058 0.202 0.144 0.058 0.202

Mean Group
Estimator

RMSE 0.072 0.543 0.218 0.072 0.543

Bias 0.020 -0.466 -0.001 0.048 -0.076
St. Dev. 0.061 0.219 0.164 0.054 0.238

Bootstrap Bias-
corrected Estimator

RMSE 0.064 0.515 0.164 0.072 0.249
K=.5

Bias -0.537 0.303 0.069 -0.537 0.303
St. Dev. 0.096 0.107 0.064 0.096 0.107

Mean Group
Estimator

RMSE 0.546 0.321 0.094 0.546 0.321

Bias -0.508 0.304 0.002 -0.446 0.123
St. Dev. 0.104 0.115 0.073 0.113 0.121

Bootstrap Bias-
corrected Estimator

RMSE 0.519 0.325 0.073 0.460 0.173

Panel B: σ 2

,ui
=1

K=-.5
Bias -0.008 -0.074 -0.129 -0.008 -0.074
St. Dev. 0.032 0.100 0.099 0.032 0.100

Mean Group
Estimator

RMSE 0.033 0.124 0.135 0.033 0.124

Bias 0.038 -0.043 -0.034 0.026 0.011
St. Dev. 0.031 0.108 0.109 0.029 0.106

Bootstrap Bias-
corrected Estimator

RMSE 0.049 0.116 0.089 0.039 0.107
K = 0

Bias -0.048 -0.023 -0.091 -0.048 -0.023
St. Dev. 0.023 0.083 0.096 0.023 0.083

Mean Group
Estimator

RMSE 0.053 0.086 0.105 0.053 0.086

Bias -0.005 -0.006 -0.030 -0.011 0.007
St. Dev. 0.023 0.086 0.104 0.025 0.093

Bootstrap Bias-
corrected Estimator

RMSE 0.024 0.087 0.084 0.027 0.093
K=.5

Bias -0.157 0.023 -0.036 -0.157 0.023
St. Dev. 0.034 0.076 0.086 0.034 0.076

Mean Group
Estimator

RMSE 0.160 0.080 0.072 0.160 0.080

Bias -0.121 0.028 -0.012 -0.101 0.007
St. Dev. 0.037 0.080 0.093 0.037 0.085

Bootstrap Bias-
corrected Estimator

RMSE 0.126 0.085 0.072 0.107 0.085
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The three bootstrap bias-corrected estimates are computed as illustrated at the

beginning of this section. Again, the number of Monte Carlo replications is 1000 and that of

bootstrap replications B is 200.

Panel A gives the results when σ 2

,ui
is set according to eq. (2.4); they suggest the

following:

• In contrast to DGP1, the MG-FMOLS estimator bias (computed by averaging the

FMOLS estimates for the long-run parameter θ) is much smaller than that of the MG

estimator (computed by averaging the OLS estimates) where K = (-.5,.5); this result is

also confirmed in unreported simulations where K = (-.9,-.3,.3,.9).

• As in DGP1, the bootstrap bias-corrected estimators significantly reduce the absolute

value of the Mean Group estimator bias, irrespective of the value for k. In particular, the

bias reduction is greater for the moving block bootstrap computed applying the

guidelines of Li and Maddala (1997). The bias reduction is associated with a slight

increase in both the standard error and the RMSE.

• The bootstrap bias-corrected estimator applied to the FMOLS estimates (BSBC2) shows

the smallest bias for the long-run coefficient θ.

Panel B gives the results when σ 2

,ui
= 1, which implies a much better fit of the data and

is common in the cointegrated system literature. Consistent with the simulations in Pesaran

and Zhao (1999), there is a dramatic bias decrease for both the MG and MG-FMOLS

estimators; in particular, the two biases turn out to be very similar in size. Again, the

bootstrap bias-corrected estimators significantly reduce the absolute value of the Mean

Group estimator bias.

In summary, where there is a non-zero correlation between the two sets of residuals uit

and ε it, averaging the FMOLS estimates over the groups leads to a smaller bias in

cointegrated systems, but when xit is strictly exogenous averaging the dynamic OLS

estimates is less biased. In both cases, the application of the guidelines of Li and Maddala

(1997) for bootstrapping cointegrating regressions leads to an appreciable improvement in

the bootstrap’s ability to reduce the bias.
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4. An application to euro-area money demand

I consider two alternative specifications of the euro area’s money demand: from

Dedola, Gaiotti and Silipo (DGS, 2001), and from Coenen and Vega (CV, 1999). A

comparison of these two models is well beyond the scope of this paper; a detailed discussion

is presented in Dedola, Gaiotti and Silipo (2001).

Both models make real money a function of real output in the long run. However, the

models differ in their treatment of interest rates; in particular, DGS includes in the long run

relationship the own rate of money, which is expressed as a differential with respect to either

the short-term or long-term market rate:

llslyrm tiitiitiiti ,,3,,2,,1, βββ ++= (4.1)

where rm is the logarithm of real M3 money, y is the logarithm of seasonally adjusted real

output, sl is the spread between the short-term money market rate and the own rate of money

(short-term opportunity cost), ll is the spread between the long-term money market rate and

the own rate of money (long-term opportunity cost).

The Coenen and Vega model includes in the long run relationship the spread between

the long-term and short-term market rates, and the rate of inflation (4.2).

inf ,,3,,3,,1, tiitiitiiti spyrm βββ ++= (4.2)

where sp is the spread between the long-term and short-term money market rate (yield curve

steepness), and inf is the annualized quarterly inflation rate.

I have data for 11 countries (N=11) and for the whole area; the time span ranges from

1983q1 to 1999q1 (T=65). A full description of the data is given in Dedola, Gaiotti and

Silipo (2001); they also performed unit root tests, where the ADF statistics show that almost

all the variables included in the two models are I(1).

Tables 4 and 5 report in Panel A the long-run elasticities for the individual country and

the area-wide equation for both models obtained using FMOLS estimates. These estimates

were computed applying the suggestions of Hansen (1992) cited in subsection 3.1.

Preliminarily, I removed the effects of outliers and seasonal factors from the dependent
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variable by using a two-stage procedure: in the first stage, I ran an OLS estimate with the 3

variables and quarterly seasonal dummies as regressors and identified as outliers the

observations estimated with an error greater in absolute value than 3 times the standard error

of the regression; in the second stage I included in the OLS regression the additional dummy

variables for the outliers identified.4

The last column of Panel A reports the Lc test proposed by Hansen (1992) in order to

test parameter stability in the context of fully modified estimation of cointegrated regression

models when the likelihood of parameter variation is relatively constant throughout the

sample. The Lc test indicates that for the DGS model there is evidence of parameter

instability for four equations (Austria, Germany, Ireland and Portugal), and five for the CV

model (Austria, Germany, Luxembourg, Netherlands and Portugal).

The individual country equations allow us to draw two general conclusions. First, the

estimates of income elasticity are relatively robust and not too different across countries.

Second, the effect of interest rates is quite difficult to capture with precision and there is a

high variability across countries.

In the DGS model (Table 4) the long-run income elasticity ranges from .49 in Finland

to 1.87 in Belgium with an average of 1.33 (considering only the 7 equations where

parameter stability is accepted, the average is equal to 1.35). Using aggregate time-series

regression the long-run income elasticity is identical (1.35).

In the CV model (Table 5) the long-run income elasticity ranges from .76 in Italy to

2.05 in Belgium with an average of 1.47 (considering only the 6 equations where parameter

stability is accepted, the average is equal to 1.57). Using aggregate time-series regression,

the long-run income elasticity is slightly smaller (1.38).

                                                                
4 In unreported estimates, I checked that the results obtained without performing the preliminary estimates

of the effects of outliers and seasonal factors are in fact similar to what is presented in Tables 4-5.



Table 4

EURO AREA MONEY DEMAND LONG-RUN EFFECTS (DGS MODEL)
Standard errors are reported in italics. The symbol *** indicates a significance level of 1 per cent or less; ** between 1 and
5 per cent; * between 5 and 10 per cent. In panel A, the Mean Group Estimator is obtained by averaging the FMOLS
coefficients across countries. The Bootstrap Bias corrected Estimator is calculated according to the procedure BSBC2
described in Section 3. The block length is equal to 13 observations. Outliers and seasonal factors are eliminated from the
dependent variables by using a two-stage procedure: in the first stage, an OLS estimate is run with the 3 variables and
quarterly seasonal dummies and outliers are identified as the observations estimated with an error greater in absolute value
than 3 times the standard error of the regression; in the second stage, the additional dummy variables for the outliers
identified are included in the OLS regressions. The last column of Panel A reports the Lc test proposed by Hansen (1992) in
order to test parameter stability in the context of fully modified estimation of cointegrated regression models. In panel B, the
Mean Group Estimator is obtained by averaging the coefficients across countries where the equation is stable (namely those
where the speed of adjustment is < -0.01). Again,  the effects of outliers are eliminated by using the same procedure outlined
above. The Bootstrap Bias corrected Estimator is calculated according to the procedure BSBC3 described in Section 3. The
block length is equal to 13 observations.

Panel A: FMOLS ESTIMATES
Country Real GDP Short-term

opportunity cost
Long-term

opportunity cost
Test for parameter

instability

Individual Country Equation
Austria 1.29 (0.05) *** -0.94 (0.41) ** 2.80 (1.03) *** 0.87 **
Belgium 1.87 (0.07) *** 0.97 (0.47) ** -3.15 (0.58) *** 0.33
Finland 0.49 (0.49) -7.60 (1.86) *** -3.97 (2.88) 0.61
France 1.55 (0.10) *** 2.46 (0.42) *** -1.57 (0.74) ** 0.41
Germany 1.32 (0.04) *** -3.26 (0.43) *** -0.98 (0.63) 1.75 ***
Ireland 1.36 (0.18) *** -15.57 (4.94) *** 0.21 (2.95) 1.26 ***
Italy 1.01 (0.20) *** -3.00 (1.71) * 4.42 (1.55) *** 0.13
Luxembourg 1.20 (0.10) *** 1.45 (1.61) -3.13 (2.51) 0.46
Netherlands 1.65 (0.04) *** 2.13 (0.39) *** -1.48 (0.73) ** 0.29
Portugal 1.23 (0.18) *** -4.62 (1.50) *** -1.09 (1.59) 6.88 ***
Spain 1.67 (0.09) *** -1.19 (0.42) *** 1.62 (0.70) ** 0.54

Area-wide equation 1.35 (0.03) *** 0.01 (0.28) -0.33 (0.39) 0.31

MG Estimator and Bootstrap Bias corrected Estimator
MG Estimator 1.33 -2.65 -0.58

t-percentile confidence intervals
1 per cent 1.22 1.82 -9.92 -2.00 -1.99 0.54
5 per cent 1.31 1.71 -8.60 -2.38 -1.77 0.29
10 per cent 1.34 1.68 -7.76 -2.62 -1.62 0.16
BSBC Estimator 1.70 -3.76 -0.65

Panel B: OLS ESTIMATES
Real GDP Short-term

opportunity cost
Long-term

opportunity cost
Speed of adjustment

Area-wide equation 1.29 (2.05) *** 0.72 (0.46) -2.64 (0.87) *** -0.15 (0.04) ***

MG Estimator and Bootstrap Bias corrected Estimator (ARDL 1,1,1)
MG Estimator 1.31 3.07 -5.06 -0.09

 t-percentile confidence intervals
1 per cent 1.04 1.93 1.11 9.98 -9.81 -2.06 -0.12 -0.03
5 per cent 1.09 1.79 1.53 7.94 -9.31 -2.81 -0.10 -0.04
10 per cent 1.13 1.73 1.80 7.12 -8.61 -3.29 -0.10 -0.05
BSBC Estimator 1.42 3.67 -6.03 -0.06



Table 5

EURO AREA MONEY DEMAND LONG-RUN EFFECTS (CV MODEL)
Standard errors are reported in italics. The symbol *** indicates a significance level of 1 per cent or less; ** between 1 and
5 per cent; * between 5 and 10 per cent. In panel A, the Mean Group Estimator is obtained by averaging the FMOLS
coefficients across countries. The Bootstrap Bias corrected Estimator is calculated according to the procedure BSBC2
described in Section 3. The block length is equal to 13 observations. Outliers and seasonal factors are eliminated from the
dependent variables by using a two-stage procedure: in the first stage, an OLS estimate is run with the 3 variables and
quarterly seasonal dummies and outliers are identified as the observations estimated with an error greater in absolute value
than 3 times the standard error of the regression; in the second stage, the additional dummy variables for the outliers
identified are included in the OLS regressions. The last column of Panel A reports the Lc test proposed by Hansen (1992) in
order to test parameter stability in the context of fully modified estimation of cointegrated regression models. In panel B, the
Mean Group Estimator is obtained by averaging the coefficients across countries where the equation is stable (namely those
where the speed of adjustment is < -0.01). Again, the effects of outliers are eliminated by using the same procedure outlined
above. The Bootstrap Bias corrected Estimator is calculated according to the procedure BSBC3 described in Section 3. The
block length is equal to 13 observations.

Panel A: FMOLS ESTIMATES
Country Real GDP Yield curve

steepness
Inflation Test for parameter

instability
Individual Country Equation

Austria 1.29 (0.06) *** 0.96 (0.49) * 0.17 (0.22) 0.858 **
Belgium 2.05 (0.08) *** -1.74 (0.54) *** -0.24 (0.35) 0.666
Finland 2.00 (0.57) *** 2.54 (3.12) -2.62 (1.94) 0.208
France 1.40 (0.09) *** -2.11 (0.43) *** -0.13 (0.38) 0.244
Germany 1.45 (0.06) *** 2.66 (0.57) *** -0.43 (0.31) 1.786 ***
Ireland 1.53 (0.14) *** 3.26 (1.44) ** 3.31 (1.31) ** 0.381
Italy 0.76 (0.34) ** 4.71 (1.67) *** -0.78 (1.03) 0.335
Luxembourg 1.23 (0.05) *** -2.20 (0.68) *** -0.24 (0.42) 0.864 **
Netherlands 1.60 (0.05) *** -2.63 (0.52) *** -0.03 (0.38) 1.637 ***
Portugal 1.17 (0.19) *** 1.96 (1.23) -0.89 (0.36) ** 7.122 ***
Spain 1.66 (0.07) *** 1.02 (0.41) ** 0.19 (0.29) 0.572

Area-wide equation 1.38 (0.03) *** 0.22 (0.25) 0.21 (0.18) 0.208

MG-FMOLS Estimator and Bootstrap Bias corrected Estimator
MG Estimator 1.47 0.77 -0.15

t-percentile confidence intervals
1 per cent 1.42 1.97 0.30 2.72 -1.15 0.44
5 per cent 1.47 1.88 0.50 2.39 -0.91 0.26
10 per cent 1.51 1.83 0.60 2.18 -0.81 0.17
BSBC Estimator 1.85 1.21 -0.24

Panel B: OLS ESTIMATES
Country Real GDP Yield curve

steepness
Inflation Speed of adjustment

Area-wide equation 1.15 (0.13) *** -2.57 (1.31) * -2.25 (1.18) * -0.09 (0.04) **

MG Estimator an Bootstrap Bias corrected Estimator (ARDL 1,1,1)
MG Estimator 1.03 -3.72 -2.61 -0.09

t-percentile confidence intervals
1 per cent 0.63 1.61 -7.52 -2.43 -4.03 -1.71 -0.12 -0.03
5 per cent 0.78 1.49 -6.18 -2.78 -3.87 -1.96 -0.11 -0.04
10 per cent 0.85 1.44 -5.79 -2.93 -3.65 -2.07 -0.10 -0.05
BSBC Estimator 1.56 -4.10 -2.87 -0.07
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The Bootstrap Bias-corrected estimates based on 1000 replications of the moving-

block bootstrap scheme (BSBC2) outlined in section 3 (with block length =13) are reported

in the last row of Panel A in Tables 4 and 5. Consistent with the Monte Carlo results

presented in section 3, there is greater long-run income elasticity than with the MG

estimator: 1.7 in the DGS model and 1.85 in the CV model.

In order to test the robustness of these estimates I also estimate the MG estimator using

dynamic OLS estimates. In both models I chose to work with an ARDL model with

maximum lag equal to one. Again, I first eliminated the effects of outliers. The individual

country estimates (unreported) show much greater variability than those obtained with

FMOLS estimates. As far as the long-run income elasticity is concerned, MG estimates5 are

quite similar to those obtained with FMOLS (1.31 in the DGS model and 1.03 in the CV

model). Using Bootstrap Bias-corrected estimates (BBSC3), again there is greater long-run

income elasticity than with the MG estimator (the long-run income elasticity is 1.42 in the

DGS model and 1.56 in the CV model). Finally, I also estimated for both models an ARDL

with maximum lag equal to 2. For the long-run income elasticity, the unreported results are

very similar to those obtained when the maximum lag was 1.

5. Conclusion

In recent years there has been increasing interest in dynamic panel data models where

the number of time series observations is comparable to the number of groups. The Mean

Group estimator (estimating equations for each group and then averaging the coefficients

over groups) is a consistent estimator. However, in a Monte Carlo experiment conducted by

Pesaran and Zhao (1999) with 20 groups and 20 time observations, the long-run coefficient

of the I(0) regressor was found to be downward biased, in particular when the lagged

dependent variable is large (0.8), possibly as an effect of small-sample bias.

In this paper, Monte Carlo simulations are used to further explore the characteristics of

the MG estimator bias by considering cointegrated systems, which are in fact the most

                                                                
5 Only stable equations (namely those with λ< .99) are included in the computation of the Mean Group

estimator. The number of such cases is 3 in the DGS model (Austria, Ireland and Luxembourg) and 4 in the CV
model (those three plus Germany). The frequency of unstable equations is relatively high, possible evidence of
model misspecification.
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common case in empirical applications; I analyze a wider range of cases defined as a

function of the number of groups and time observations.

In cointegrated systems where the signal-to-noise ratio is kept at relatively low, the

regressor is strictly exogenous, and the true coefficient of the lagged dependent variable is

small, my results confirm the existence of a downward bias for the long-run coefficient of

the regressor, in particular when T<100. Increasing the number of groups has a limited effect

on the bias, but does reduce its variance. These results are consistent with the hypothesis that

small-sample bias is a major factor.

When  the hypothesis of strict exogeneity is ruled out and the two innovations driving

the cointegrated system are allowed to be correlated, the MG Estimator has a more

pronounced downward bias if the correlation is negative, but is upward biased if the

correlation is positive. The MG-FMOLS estimator (computed averaging FMOLS estimates)

displays the same pattern, but with a smaller bias. These results are consistent with the

intuition of Pesaran, Shin and Smith (1999), who cite sample-specific omitted variables or

measurement errors that are correlated with regressors as another possible explanation of

MG estimator bias.

In order to perform bias correction, I apply the guidelines of Li and Maddala (1997)

for bootstrapping cointegrating regressions (namely, use the moving block bootstrap and

consider that if xit is an I(1) process it is convenient to bootstrap the two innovations that

drive the cointegrated system simultaneously). My simulations show an appreciable

improvement in the bootstrap’s ability to reduce the bias, in particular when these

suggestions are applied to the MG estimator in a heterogeneous dynamic model if xit is

strictly exogenous and to the MG-FMOLS if non-zero correlation between the two sets of

residuals uit and ε it. is allowed. However, I also find a slight increase in both the standard

error and the RMSE.

Finally, I apply these procedures to estimate the long-run coefficients for euro-area

money demand in two different models. The Mean Group estimates computed averaging

either the FMOLS or the dynamic OLS estimates are quite similar to those obtained by

estimating the area-wide equation, consistent with the hypothesis that aggregation bias is not

relevant in this framework. With respect to the MG estimators, the Bootstrap bias-correction
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estimators produce an increase in the long-run coefficients, consistent with the results of the

Monte Carlo experiment. The estimate of the long-run income elasticities is roughly 1.5,

which is the upper bound of the ECB’s implicit assumption for determining the reference

value for money growth. This result is robust to different model specifications and to

different treatments of number of lags used in the analysis.
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