
Temididiscussione
del Servizio Studi

A core inflation index for the euro area

by R. Cristadoro, M. Forni, L. Reichlin and G. Veronese

Number 435 - December 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6576979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

The purpose of the Temi di discussione series is to promote the circulation of working
papers prepared within the Bank of Italy or presented in Bank seminars by outside
economists with the aim of stimulating comments and suggestions.

The views expressed in the articles are those of the authors and do not involve the
responsibility of the Bank.

Editorial Board:
ANDREA BRANDOLINI, FABRIZIO BALASSONE, MATTEO BUGAMELLI, FABIO BUSETTI, RICCARDO

CRISTADORO, LUCA DEDOLA, FABIO FORNARI, PATRIZIO PAGANO; RAFFAELA BISCEGLIA

(Editorial Assistant).

This paper is part of the research project “Monitoring the Euro Area Business Cycle”. As
the others which are part of the project, it was presented and discussed in an internal seminar
and at an international conference, held at the Bank of Italy in Rome, 7-8 September 2001.



A CORE INFLATION INDEX FOR THE EURO AREA

by Riccardo Cristadoro∗, Mario Forni∗∗, Lucrezia Reichlin∗∗∗ and Giovanni Veronese∗

Abstract

This paper proposes an index of core inßation for the euro area which exploits
information from a large panel of time series on disaggregated prices, industrial production,
labor market indicators, Þnancial and monetary variables. The index is the result of a
smoothing operation at both the cross-sectional and time series level. By extracting the
common component of national inßation and disregarding the idiosyncratic one, we clean
inßation from measurement error, discrepancies in data recording and dynamics originated
by national or sectoral idiosyncratic shocks (cross-sectional smoothing). By extracting the
component with periodicity longer than one year we clean from high frequency variation and
seasonal components which are not relevant for monetary policy (time series smoothing). The
indicator is shown to have a number of desirable characteristics and to perform very well as
a forecaster of the euro area harmonized consumer price index at one and two years horizon,
which is the relevant horizon for the ECB monetary policy.

JEL classiÞcation: C51,E31,E32, E52.

Keywords: core inßation, dynamic factor model, inßation forecast and monetary policy.
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1. Introduction1

The growing importance given to the goal of price stability and the introduction of

explicit inßation targets by many central banks has stimulated research on the construction

of reliable inßation measures and, in particular, on core inßation indexes (see for example

Cecchetti, 1994). Given the institutional arrangements within the European Monetary Union

these problems have a great relevance for the monetary policy in the euro area. The mandate

of the European Central Bank is to maintain price stability: this goal was given a precise

quantitative content in terms of the monetary union Harmonized Index of Consumer Prices

(HICP), whose year on year growth rate should not exceed 2 per cent in the medium term.

The two pillars strategy followed by the ECB implies that the Central Bank should monitor a

large number of monetary and real indicators with the aim of obtaining a reliable picture of

the current and future inßation outlook. Some authors (see Galí, 2001) have recently argued

that it would be useful to have a core inßation indicator for the euro area, able to summarise

the wide range of statistics analysed under the two pillars and free of the distortions and short

term volatility of the HICP. Economists at the ECB have recently published several papers on

this topic2 and one article on the evaluation of existing core inßation measures was published

in the ECB Monthly Bulletin3.

This paper proposes a new index of core inßation for the euro area and documents

its predictive power in forecasting inßation at six, twelve, eighteen and twenty-four months

horizons. Different methods of estimating a core index have been discussed in the literature.

One of them involves the removal from the CPI basket of those items that are believed to

have little correlation with long term movements of inßation. This is obtained via limited

inßuence estimators or considering an index net of food and energy prices (e.g. Bryan and

Cecchetti, 1994). In the same spirit, Bryan and Cecchetti (1993) by estimating the common

1 We thank Filippo Altissimo, Antonio Bassanetti, Marco Lippi and Roberto Sabbatini and participants
at the CEPR-Banca d�Italia conference for comments. The views expressed in this paper are those of the au-
thors and do not necessarily reßect the position of the Bank of Italy, or any other institutions with which the
authors are afÞliated. E-mail: cristadoro.riccardo@insedia.interbusiness.it; forni@unimo.it; lreichli@ulb.ac.be
veronese.gio@tiscalinet.it.

2 Angelini et al. (2000a), Angelini et al. (2000b), Morana (2000), and Vega and Wynne (2000).

3 The ECB is rather skeptical about the usefulness of a core index claiming that �in no way can a single
measure be trusted to capture, by itself, the deep sources of inßationary or deßationary pressures prevailing in the
economy, and so replace a broadly based assessment of price developments� (ECBMonthly Bulletin, July 2001).
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component on a small panel of disaggregated prices, obtain an estimate of the bias in the U.S.

CPI. Alternatively, as in Quah and Vahey (1995), one can exploit the dynamic links existing

among prices and real activity to extract a core or �long run� component of the inßation

process4. While in the former case information coming from sources other than the price

cross-section is typically disregarded, in the latter no use is made of the disaggregated price

data.

Our method retains the basic intuitions of both approaches by offering a uniÞed

framework for the identiÞcation of the underlying sources of price ßuctuations. The

methodology builds on Forni, Hallin, Lippi and Reichlin (2000, 2001a) and it is applied to

a large panel of data comprising prices, as well as real and nominal variables. We exploit the

empirical fact that the series of interest exhibit strong comovements to postulate a dynamic

factor model. The latter decomposes each series of the panel into two unobserved orthogonal

components, one which is �strongly correlated� with all other variables (common component)

and one which is �poorly correlated� (idiosyncratic component).

We deÞne the core inßation index as the medium- and long- run common component of

the euro area CPI. Our goal is then to clean the CPI from the idiosyncratic component and from

the high frequency movements of the common component. The procedure is in three steps.

First, we estimate the covariance of the common components of the panel at all relevant leads

and lags thereby exploiting the information on the dynamic structure of the panel. Second,

we estimate the factors that generate the common component by minimizing the variance of

the idiosyncratic component with respect to the total variance5. This achieves the goal of

cross-sectional smoothing. Third, we extract the long run common component of our series by

projecting onto the leads and lags of the factors estimated in step two. This Þnal step produces

an estimate of the long run component which exploits the multivariate information of our data

set. A speciÞc procedure is designed to handle the end of sample unbalance.

Our methodology improves on existing methods. We use information contained in

a large cross-section to eliminate the idiosyncratic noise, getting rid in this way of local

shocks, i.e. shocks speciÞc to a region or sector that do not propagate across the euro

area. Within the same framework, the cross-section is also used to achieve intertemporal

4 See among others Blix (1995), Bagliano and Morana (2000) and Golinelli et al. (2001).

5 For a detailed explanation of the method see Forni, Hallin, Lippi and Reichlin, (2001b).
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smoothing, i.e. the cleaning from seasonal and high frequency dynamics. Our core index is

thus obtained via a procedure that wipes out the high frequency noise, improving on standard

univariate intertemporal smoothing methods used for business cycle analysis (e.g., Hodrick

and Prescott, Baxter and King or Christiano and Fitzgerald). Furthermore, unlike structural

VAR procedures6, while still taking into full account the dynamic structure of the data, we use

all available information by extracting the relevant signal from hundreds of time series. Finally,

by suitably exploiting both the cross-sectional and the time-series dimensions, we obtain an

indicator which, unlike the existing ones, is at the same time smooth and non lagging and is

not subject to important revisions.

Our claim is that the core index presented here provides a better estimation of the

euro area inßation in comparison with the 12-month growth of CPI or other commonly

used measures. It can usefully complement the ECB monetary strategy by providing a

methodologically well grounded synthesis of the large set of data examined under the Þrst

and the second pillar.

A crucial test of the usefulness of the indicator is its predictive power for inßation.

As is well known, forecasting inßation proved always to be a difÞcult task7, it is therefore

an important result that our indicator clearly outperforms other core measures and common

univariate forecasting methods. In particular its current level proves to be a good forecast of

inßation over horizons relevant for monetary policy.

As a byproduct of our exercise we obtain relevant information on the dynamic covariance

structure of European inßation that can be exploited to construct empirically founded structural

models. We leave this to future research.

The paper is organized as follows. In section two, we illustrate our methodology

euristically. In section three, we brießy describe the data and report information on the

structure of the EURO inßation in terms of a dynamic factor model which is the result of

our estimates. In section four, we report the time series of our core inßation index, analyze

its turning points and compare it graphically with alternative measures of inßation and its

core. In section Þve we address questions related to the degree of synchronization of sectoral

6 See Quah and Vahey (1995), Folkertsman and Hubrich (2001), Bagliano et al. (2001).

7 See Stock and Watson (2001).
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and national prices, their leading and lagging structure and their correlations with indicators

of the real side of the economy and relevant Þnancial variables. In section six, we perform

a forecasting exercise by running a horse race on out-of-sample performance of predictive

models using our index as a regressor and alternative models such as standard autoregressive

models and equations containing alternative predictors. Section seven concludes.

2. Theory

The basic theory and technical solutions in this paper are essentially the same as those

proposed in Altissimo et al. (2001) for the indicator of the economic activity. Most of the

technical material can be found in Appendix B. Here we provide only the basic equation of the

model and give the main intuitions behind the method employed.

2.1 The model and the theoretical indicator

As anticipated above, we rely on the Generalized Dynamic Factor Model proposed in

Forni, Hallin, Lippi and Reichlin (2000) and Forni and Lippi (2001). As in the traditional

dynamic factor model, introduced by Sargent and Sims (1977) and Geweke (1977), each

variable, say xjt, is represented as the sum of two mutually orthogonal unobservable

components: the �common component�, call it χjt, and the �idiosyncratic component�, ξjt.

The common component is driven by a small number, say q, of common �factors� or common

shocks uht, h = 1, . . . , q, which are the same for all of the cross-sectional units, but possibly

are loaded with different coefÞcients and lag structures. By contrast, the �idiosyncratic

component� is driven by speciÞc shocks. In the traditional factor model, such component

is orthogonal to all of the other idiosyncratic components in the cross-section, while in the

GDFM a limited amount of correlation is allowed (see below). In this sense, the model can be

regarded as a generalization of the traditional dynamic model. Since the GDFM is designed to

handle a large cross-section of time series, it is convenient to assume an inÞnite cross-sectional

dimension, i.e. j = 1, . . . ,∞. Hence, we have

xjt = χjt + ξjt = bj(L)ut + ξjt =

qX
h=1

bjh(L) uht + ξjt(1)

for j = 1, . . . ,∞.
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The impulse-response function bjh(L), h = 1, . . . , q, is a s-order polynomial in the lag

operator, i.e. bjh(L)uht = bjh0uht + bjh1uht−1 + · · · + bjhsuht−s. We do not put restrictions
on the coefÞcients bjh1, . . . , bjhs. Hence the model is quite ßexible, in that the reaction of each

variable to a given common shock may be small or large, negative or positive, immediate or

delayed. Moreover, a variable can react with a given impulse-response proÞle, say, to shock

1 and with a completely different proÞle to shock 2. This can accomodate a very wide range

of different behaviors of the common components χjt, j = 1, . . . ,∞. In particular, with
reference to the delay with which the shocks are loaded, some of them will be �leading� with

respect to the European CPI, some will be �coincident� and some will be �lagging�. Estimating

the model enables us to see whether there are prices (or countries) which anticipate the changes

of the general price index and to unveil the lead-lag relations of prices with the other variables

in the system.

To conclude the presentation of the model, let us say that we need the additional

assumptions listed in Forni, Hallin, Lippi and Reichlin (2000), both for estimation purposes

and in order to distinguish the idiosyncratic from the common components in a context where

the traditional orthogonality assumption is relaxed. We refer to the paper above for their

precise formulation. Loosely speaking, the assumptions concern what could be called the

�total amount of cross-correlation� in the system, and ensure that such amount is small for the

idiosyncratic components and large for the common ones.

Now let us discuss the properties of the model with reference to the main features of

our proposed indicator. As anticipated in the introduction, we focus on the European CPI,

but we clean it both from the idiosyncratic component and the high frequency noise. Since

both operations entail a variance reduction we can call them respectively the �cross-sectional

smoothing� and the �temporal smoothing�. We shall discuss these two operations in turn.

The idiosyncratic component is intended to capture shocks that are speciÞc to a country

or to a sector, such as, say, technology shocks affecting the price of a particular industry.

According to our estimates, local or sectoral shocks do not explain a large fraction of the

European inßation, because negative and positive shocks approximately cancel out in the

aggregate; however, they are non-negligible.

We think that monetary policy should not react with common, Europe-wide measures to

shocks having essentially a local or sectoral nature, even if they are so important to affect the
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European CPI to a certain extent. Local or sectoral measures are better suited in such cases. If

this idea is correct, cross-sectional smoothing will provide a better index, as far as the role of

such index is to provide a signal for policy intervention by the European Central Bank.

In addition to local and sectoral shocks, the idiosyncratic component reasonably includes

measurement errors, insofar as these errors are independent of the other shocks affecting the

variable and are poorly correlated with most of the other variables in the panel. Eliminating

measurement errors is an additional reason for cross-sectional smoothing.

Cleaning from the idiosyncratic noise is then a Þrst important advantage of using the

factor model to construct a core inßation indicator. However, the idiosyncratic noise is not

the only one affecting the variables, and in particular the CPI. As is well known, the common

components χjt, just like any other stationary variable, can be decomposed into the sum of

waves of different periodicity (the so-called �spectral decomposition�)8 More speciÞcally, we

can disentangle a medium- and long-run component, say χLjt and a short-run component, say

χSjt, by aggregating respectively waves of periodicity larger than, or smaller than, a given

critical period τ . This can be done by applying to the series the theoretical band-pass Þlter

discussed in Sargent (1987) and Baxter and King (1999), i.e.

χjt = χ
L
jt + χ

S
jt = d

L(L)χjt + d
S(L)χjt,(2)

where dS(L) = 1 − dL(L) and dL(L) is a two-sided, symmetric, inÞnite-order, square-

summable Þlter whose k-th coefÞcient is

dLk =
1

πk
sin

µ
k · 2π

τ

¶

In other words, the European prices are affected both by long-lasting shocks and shorter-

run movements, including both seasonal and very short-run, high-frequency changes. With

monthly data, such short-run movements are typically responsible of a large fraction of total

volatility. We think that, in constructing the price index, such short-run and seasonal noise

should be washed out, in order to unveil the underlying medium- and long-run tendencies.

Once again, the reason is that the index should be a signal for policy, and, taking into account

the delay with which monetary policy measures affect the economy, there is simply no point

8 See e.g. Brockwell and Davis (1987). For a discussion on the interpretation see Lippi (2001).
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in reacting to transitory shocks. Hence, our proposed price indicator is the medium and long-

run common component of the European CPI. Assuming without loss of generality that the

European CPI is the Þrst variable in our panel, our core indicator is then χL1t. While the idea

of the temporal smoothing is not new in the core literature, the way in which we do it, by

exploiting the cross-sectional information, is novel. This point will be clear in a moment.

2.2 The estimation procedure

It should be stressed that our price indicator χL1t is a theoretical entity which is not

observed, and therefore has to be estimated. In what follow we shall describe shortly our

estimation procedure.

Estimation is in three steps. In the Þrst one we estimate the covariance structure of

the common and the idiosyncratic components. More precisely, we estimate the spectral

density matrix of the common and the idiosyncratic components by means of a dynamic

principal component procedure explained in detail in Appendix B. The theoretical basis of

such procedure is in Forni, Hallin, Lippi and Reichlin (2000) and consistency of the entries of

this matrix as both n and T go to inÞnity can easily be shown on the basis of the results in that

paper.

From the estimated spectral-density matrices we can obtain the auto-covariances and

cross-covariances at all leads and lags by applying the inverse Fourier transform. Notice that

we can easily get also covariances for the long-run and the short-run components χLjt and

χSjt simply by applying such transformation to the relevant band of the estimated spectra and

cross-spectra.

In the second step, we compute an estimate of the static factors, following Forni, Hallin,

Lippi and Reichlin (2001). With the term �static factors� we mean the q(s + 1) shocks

appearing in equation 1, including the lagged ut�s, so that, say, u1t and u1t−1 are different

static factors. The static factors are not identiÞed in the model unless we introduce additional

assumptions, so that we shall in fact estimate a vector of linear combinations of such factors,

say vt, spanning the same information space.

Such estimates, say �vt, are obtained as the generalized principal components of the

x�s, a construction which involves the (contemporaneous) variance-covariance matrices of
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the common and the idiosyncratic components estimated in the Þrst step (see, Appendix

B). The generalized principal components have an important �efÞciency� property: they are

the contemporaneous linear combinations of the x�s with the smaller idiosyncratic-common

variance ratio. As shown in the paper quoted above, they can consistently approximate any

point in the common-factor space, including the common components χjt�s, as n, T →∞ in a

proper way. Similarly, we can produce forecasts of the common components (and the factors

themselves) simply by projecting χjt+k (or the k-th lead of the factors) on �vt. This forecast

approximates consistently the theoretical projection.

In the third and Þnal step we use the static factors to get our estimate of χL1t. Let

us observe that, having an estimate of the leads and the lags of χ1t, obvious estimates of

our indicator χL1t could be obtained by applying the truncation of the Þlter dLj (L) proposed

by Baxter and King (1999) or the data-dependent approximation suggested by Christiano

and Fitzgerald (2001). Such univariate Þltering, however, would not exploit the superior

information embedded in the cross-sectional dimension of the model and would generally

require long leads of the series thus creating an end of sample problem.

By contrast, here we project χL1t on the leads and lags of the estimated static factors

vt−m, . . .vt+m. We do not perform OLS, but use the projection coefÞcients derived by the

covariance matrices of the cyclical components estimated in the Þrst step. Clearly, at the end

of the sample, we are forced to project only on the contemporaneous and lagged factors. The

lag-window size m should increase with the sample size T , but at a slower rate. Consistency

of such estimator is ensured, for appropriate relative rates of m, T and n, by the fact that (a)

χL1t is a linear combination of the present, past and future of the static factors; (b) both the

factors and the covariance matrices involved are estimated consistently.

This approach resembles, in a multivariate framework, the procedure by Christiano

and Fitzgerald (2001) to approximate the band-pass Þlter. However, exploiting the superior

information embedded in the cross-sectional dimension, enables us to obtain a good smoothing

by using a very small window (for the cyclical indicator of the economic activity in Altissimo

at al. we use m = 1, while here we use m = 0, i.e. we project statically). This is very

important in that we get readily a reliable end-of-sample estimation and are not forced to

revise our estimates for a long time (say 12 months or more) after the Þrst release, as with the

univariate procedure.
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Price data are typically affected by large short-run volatility. An important reason why

people look at the 12-th difference rather than the 1-st difference is that the former is a kind

of temporal smoothing of the latter. Precisely, it is the sum of the past twelve Þrst differences.

Howerver this smoothing entails a backward time phase shift. In other words, what we obtain

in this way is a reasonably smooth thing, which unfortunately describes what was going on

about six months ago. By contrast, our smoothing does not entail any phase shift, so that our

indicator is cleaned from high frequency noise without being backward looking.

Intuition suggests that our core inßation indicator should then be a good predictor for

future inßation. As explained in what follows, this is in fact the case: our index is the best

predictor that we can Þnd for the yearly European CPI at 6, 12, 18 and 24 months.

To conclude this Section, we mention that we have a procedure that handles the end-of-

sample unbalance. Typically data referring to period T become available some periods later

and different variables have in general a different delay. Hence if we want to estimate the

model as it stands we are forced to wait until the latest observation arrives. Clearly we can

reduce the problem by eliminating from the data set series whose delay is larger than a given

value. But even so we are necessarily left with a few months, at the end of the sample, for

which some observations are available and some others are not. In the Appendix, we explain

our procedure to handle this problem.

3. The dataset and its covariance structure

The recent empirical research on forecasting inßation, both in the US and in Europe,

reßects the lack of theoretical consensus on the original sources of price ßuctuations9. To date

there seems to be little agreement on what variables constitute an optimal set of forecasters of

inßation, and some researchers have argued that indicator variables used in isolation have very

limited predictive power (Cecchetti et al., 2000).

One strand of analysis, relying on the modern Phillips-curve based models, focuses

on the search for proper measures of real economic activity to forecast inßation (Stock

and Watson, 1999). In contrast monetary theories of inßation provide support for different

candidate indicators to forecast inßation that are based on various money aggregates. For the

9 Despite the everlasting sequence of claims of success of the Phillips curve tradition (Mankiw, 2000), and
claims of breakdown of the same tradition (Atkeson and Ohanian, 2001).
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euro area, Nicoletti (2001) provides evidence that monetary aggregates contain useful and

additional information on medium-long term inßation prospects relative to the other non-

monetary indicators. Finally the forward looking nature of asset prices and other Þnancial

variables have inspired the exploration of their ability to forecast inßation (Stock an Watson,

2001). However as concluded by these authors �...the variables with the clearest theoretical

justiÞcation for use as predictors often have scant empirical predictive content�.

Also in the design of the ECB monetary policy strategy different potential sources of

inßationary pressures are considered. On the one hand, it is recognized that inßation is

ultimately a monetary phenomenon and thereby a prominent role is assigned to monetary

aggregates, the so called Þrst pillar. On the other hand, the second pillar consists in �a broadly-

based assessment of the outlook for price developments and the risks to price stability�,

entailing the use of a wide range of indicators, believed to have leading properties for price

developments.

3.1 The dataset

To construct the core inßation indicator we collected a wide range of statistics including

both monetary and real variables. Hence we have tailored the choice of variables in the dataset

to cover all the above mentioned macroeconomic phenomena for the six largest countries of

the euro area.

Our dataset includes more than 400 monthly time series10. Price variables, being the

focus of our analysis, constitute almost one third of the dataset (130 series) and comprise

consumer, producer and commodity prices. Relevant information for future price dynamics

can potentially be derived by price expectations. For european countries these are available

through the EC surveys that are conducted each month and concern manufacturing, retail and

construction sectors as well as consumers.

As a measure of real activity we included the general industrial production indices

of the six largest european countries, together with their breakdown by Þnal destination

(consumption, investment and intermediate goods). Sales and turnover indices have also been

considered for the same countries. Furthermore, the conÞdence indicators derived from the

10 A more detailed description of the dataset is in Appendix A and refer to Table A1 for a synthesis.
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EC Surveys are widely used in short term analisys and have been selected among real activity

measures.

In view of the importance of the Phillips Curve in the analysis of inßation dynamics

a natural choice of variable would also include labor market statistics: in particular wages,

unemployment and, wherever available, vacancies.

The selection of an appropriate set of statistics for monetary and Þnancial markets is a

more complex task given the multiplicity of alternative deÞnitions of money and the rapidly

evolving range of instruments created by Þnancial operators. Given their central role in the

ECB monetary policy strategy we included the national components of M1, M2 and M3, as

well as the corresponding european aggregates. We also constructed real measures of money,

by deßating the nominal quantities with the national CPIs11.

To capture the complex Þnancial enviroment of modern economies a relatively large

collection of interest rates has been considered. Our panel contains almost 80 nominal interest

rates (on Government bills and bonds as well as on private loans); we also constructed interest

rate spreads and real interest rates based on Government long and short term maturities. Other

Þnancial variables that might contain useful information for future price developments, like

stock market prices and exchange rates were also considered.

3.2 The estimation of the covariance structure of the data

We now turn to the Þrst step of our method i.e. the estimation of the covariance structure

of the data and the determination of the number of common factors driving the panel. The

estimation of the spectral densities requires variables to be covariance stationary and free of

any deterministic component. The data treatment involved three steps: the Þrst consisted

in the outlier removal, then deterministic seasonality, when present, was removed, Þnally, if

necessary to achieve stationarity, the data were log-differenced12.

11 Despite the recent empirical evidence on the importance of other monetary indicators such as the nomi-
nal/real money gap, or the money overhang (Trecroci and Vega, 2000), we do not proceed in their construction,
given the arbitrary nature of their deÞnition and estimation.

12 Deterministic seasonality was removed by regressing each variable on a set of monthly dummies and their
interaction with a linear trend. The log differencing was applied only to variables displaying I(1) behaviour. See
appendix A for details.
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The analysis of the spectral density matrix of the data reveals that 4 common dynamic

factors are sufÞcient to explain more than 50 per cent of the observed varaibility of the series

on the [0,π] interval and more than 60 per cent on the [0, π
7
] interval (see, Table A2 and Figure

1).

Figure 1: Cumulated variance explained by Þrst 4 dynamic common factors
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As is more clearly revealed in Figure 2, most of the explanatory power of the common

dynamic factor is at businness cycle frequences (the vertical line in the graph corresponds to

ßuctuation of periodicity longer than 14 months). The peak at frequency 0.60 corresponds to

periodicity of one year and reveals some common seasonality left in the data after the dummy

regression that can be interpreted either as an imperfect removal of seasonals or as a Þlter

induced peak.
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Figure 2: First seven eigenvalues of the spectral density matrix of the data
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4. The inßation indicator for the euro area

In Section 2, we have described our index of core inßation, coret, as the long run

common component of the euro area HICP. To be more precise, we deÞne coret as:

coret =
12X
k=1

wk ·
¡
χLk, tσk + µk

¢
(3)

where the weights wk are those used by Eurostat in the aggregation of HICP and are based

on the Þnal national consumption of each country, χLk,t is the long run common component of

the HICP in country k, standardized and expressed in deviation from the mean, and σk and

µk are the standard deviation and the mean of the original log differenced HICP series. This

core indicator has to be interpreted as a measure of the area wide common price ßuctuations

at medium to long term perioditicity; factors that are speciÞc to a particular country will not

be reßected in the core index and should not, in principle, be considered for the monetary

policy of the euro area. On the contrary if the shock is shared by the majority of the European

economies and it has an impact on the inßation rate beyond the short term, this is reßected in

the core index. The estimate of our core inßation index is shown in Figure 3, where to allow a

comparison with the ECB target, the core inßation is expressed as a 12-month difference.
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Figure 3: Core vs actual HICP inßation

(year on year percentage changes)
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Visual inspection of Figure 3 reveals that in the ninties the euro area inßation process

has experienced three phases. The Þrst episode lasted from the beginning of the nineties to

the end of summer 1993, and it is characterised by a stable core inßation at around 3.5 per

cent (while headline inßation was ßuctuating from 3 to 5 per cent). The second phase, only

brießy interruped in 1995, is dominated by the deceleration in price dynamics that preceded

the monetary union: core inßation monotonically declined, stabilising below 2 per cent by the

end of 1997, as a result of tight monetary policies and wage moderation in Europe. The current

phase, that began in the summer of 1999, is characterised by an increase in the core inßation

that rose to above 2 per cent at the beginning of last year, stabilising afterwards. Also in this

last episode the pattern followed by the core index has been remarkably smooth, avoiding, in

particular, the rather large downswing of the headline inßation at the beginning of 1999 that

rised worries about a deßation in Europe.

Figure 4 clearly illustrates the effects of our cross-sectional and intertemporal smoothing.

The annualized month on month changes of the core indicator are immune to the high-

frequency volatility of the HICP measure.
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Figure 4: Core inßation vs HICP inßation

(month on month changes at an annual rate)
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Summary statistics can give a more precise characterization of the main features of our

indicator. Compared with the headline inßation, as should be expected, the core indicator is

smoother with a standard deviation 20 per cent lower and much narrower ßuctuations over the

sample period (the range is 2 percentage points, while for headline inßation it is more than 4,

see Table 1).

Themean core inßation (by construction) is close to the headline average over the sample

and the two indicators show a correlation coefÞcient of 0.94. If we restrict the analysis to the

period for which the commonly used HICP net of unprocessed food and energy prices (pNFE)

is available for the euro area (January 1996 onward, considering year on year changes) the

comparison of the statistics reveals that our core indicator has a standard deviation of 0.28, the

pNFE has a deviation of 0.41, while correlation of these two measures with headline inßation

has been 0.92 and 0.48 respectively. All these are indications of a better tracking performance

of the core measure proposed vis a vis other commonly used indexes; this issues will be further
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investigated in Section 6, where the forecasting properties of alternative indicators of future

inßation will be explored.

Table 1: Summary Statistics

Euro area 
headline 
inflation

Core 
inflation 
indicator

Euro area 
headline 
inflation

Core 
inflation 
indicator

Index excluding 
unprocessed 

food and energy 

Index 
excluding 
food and 
energy 
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Correlation with 
headline inflation

Maximum
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5. The relationship of the core inßation index with real and nominal variables

The analysis performed at this stage reveals some interesting features of the dynamic

structure of the panel.

The series included in the dataset show an high degree of comovement at lower

frequencies, the variance of the common components being more than 60 % of total variance

of the series on average. The feature is shared by all sectors even though this ratio is greater

for interest rates, prices and wages (above 65 per cent) and lower for surveys, share indexes

and industrial productions (below 50 per cent). Monetary aggregates in this respect are in the

middle of the distribution.

Activity indicators, like industrial productions are, generally speaking, inversely related

to inßation13: a decrease in core inßation tends to be followed by an increase in real activity.

Among the survey indicators, answers to questions concerning the general economic situation

are negatively related to inßation, while those related to past or expected price trends are

positively related to the core measure. However, as mentioned above, the association among

these variables is rather weak.

13 Of 46 industrial production indicators included in the panel, 39 are countercyclical with respect to our
inßation measure.
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The relation between core inßation and interest rates, on the other hand, is very strong.

Nominal interest rates are generally leading (10 months on average) and positively associated

with price variables while ex post real interest rates are lagging. Rather surprisingly the spreads

between long and short term interest rates are negatively related to the core index and lagging.

A possible explanation for this result is that our indicator captures only longer run movements

of inßation and interest spreads might have little informative content for the trend component

of the inßationary process, being more related to shorter term dynamics. In this sense the

signal they provide might not be very useful for monetary policy purposes.

No clear pattern emerges from the analysis of the behaviour of monetary aggregates. In

any case, M3 for the euro area displays a strong positive correlation with our core index and a

long lead (more than one year); while the real measure of M3, still retaining leading properties,

has a weaker relation.

Turning to labour markets, wage rates in manufacturing and minimum wages are also

strongly related with inßation and, on average, slightly leading. Vacancies are generally

inversely related with inßation and lagging. In the case of unemployment no clear lead/lag

relation emerges.

As far as prices are concerned, food prices generally share little commonality both in

term of variance explained by the common factors and of correlation with the core index. This

result provides some justiÞcation for the heuristic approach of looking at the consumer price

index net of these items. On the other hand, energy prices, show a slightly higher commonality

and are generally leading, hence, once their common component has been estimated they do

provide some useful information about future overall inßation. Excluding them altogether

from the index is therefore not always appropriate.

6. Forecasting inßation in the euro area

In this section we evaluate the forecasting ability of our core inßation indicator and

compare it with some alternative indicators that have been proposed in the literature. Our

target variable will be the year on year rate of growth of the european HICP, computed as

πt = 100 ∗ (log(Pt)− log(Pt−12))14 which is the ECB reference measure for inßation.

14 Where Pt is the level of the overall harmonized price index fro the euro area.
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We compute out-of-sample forecasts from different single equation models involving the

candidate indicators in isolation and in conjunction with the lags of the target variable. Finally,

we also examine a naive forecast of future inßation based on current values of our core index.

In the Þrst two cases the core index generally performs better than the other variables, but,

as recently noted by Atkenson and Ohanian (2001), a simple random walk model of inßation

often does better than state of the art models. The random walk forecast is indeed hard to

beat with our monthly data, but the naive forecast based on the current value of the core index

outperforms it at all horizons considered.

We use monthly data from January 1996 to March 2001. The starting point of our

forecasting exercise coincides with the Þrst date for which ofÞcial HICP data on the euro area

inßation are available15. We consider 14 alternative monthly indicators, that the ECB routinely

monitors to produce the broad assessment of price pressuress in the euro area. In particular we

have the three main euro area monetary aggregates, M1, M2, and M3; a group of indicators

of current real activity like industrial production and the conÞdence indicators extracted from

the European surveys in the manufacturing, construction and retail sectors. We also use the

overall unemployment rate as an indicator of labor market tightness. Finally we analyze the

predictive content of data on current and expected price trends as surveyed among consumers

and industrial sector Þrms.

6.1 The methodology

The forecasts of inßation in the euro area are produced using the following bivariate

linear model:

πt+h = α+ β(L)πt + γ(L)x
i
t + εt+h(4)

where πt is the percentage change in the HICP series at time t, and xit is the candidate indicator

i under exam. For each model, 132 different lags combinations of the dependent variable and

the indicator (from lag 0 to lag 12) are estimated and used to forecast inßation.

Furthermore, three alternative transformations of each indicator are considered. The

Þrst one is the annual rate of growth: for example when considering M1 we adopt the

15 The HICP data starts only in January 1995. Earlier data comes only in the form of national CPIs that,
unlike the HICP, are not constructed according to a common set of rules.
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transformation (1 − L12) log(M1t) ∗ 100. The second transformation is the monthly rate of
growth at an annual rate of the indicator in its seasonally adjusted version16: for M1 this would

be (1 − L) log(M1SAt ) ∗ 1200. The third transformation is the quarterly rate of growth, at an
annual rate, of the indicator in its seasonally adjusted version. The (1 − L12) transformation
while taking care of any seasonal component in the indicator variable has the disadvantage of

making the transformed variable considerably lagging with respect to (1− L) transformation.

At each step we produce the forecast of the year on year HICP growth rate 6, 12, 18 and

24 months ahead, using data prior to the forecasting period. For example the 6 months ahead

forecast of inßation rate in January 1996 is obtained by using models estimated only up to July

1995, while the 12 months ahead forecast of the same month uses models estimated only up

to January 1995. Each model-lag combination produces a time series of 63 forecast errors

We assess the accuracy of alternative inßation forecasts by comparing the root mean

squared error (RMSE) for each set of forecasts. The RMSE of model i, in forecasting

inßation h steps ahead, is given by, RMSEhi =
q

1
T

PT
t=1(πt+h − bπit+h|t)2,where bπit+h|tis the

time t forecast, from model i, of the inßation prevailing at time t+ h.

6.2 Results

At the outset we looked at two simple models, traditionally used as benchmarks to

assess the forecast ability of an indicator: the random walk model (or naive forecast) and

the autogressive scheme. In any given period t, the random walk forecast of inßation h steps

ahead is the inßation rate in period t; hence the forecast error of the random walk is given by

(πt+h − πt), i.e. the acceleration of the inßation in the forecasting range. As expected from
the strong persistence in the inßation process, the RMSE for the random walk model is very

small at the 6 months horizon, 0.184; it more than doubles at the 12 months horizon becoming

0.485, rises to 0.754 at the 18 months horizon, and to 0.913 for the forecast of two years ahead

inßation (Table 2).

We considered 13 different speciÞcations of the autoregressive model, using lags from

0 to 12: averaging across these speciÞcations the RMSE for the AR model is well above the

one of the random walk model. In particular the shorter is the forecast horizon considered

16 By construction our core inßation measure does not have any seasonal pattern, therefore we do not sea-
sonally adjust it.
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the poorer is the relative performance of the AR model17. In particular this pattern is not due

to large errors produced by models with a particular lag combination, since by looking at the

distribution of the RMSE for AR models with different lag orders we learn that the median

RMSE is close to the average at all forecast horizons.

Table 2: Random-walk and Autoregressive Model RMSE (1996-2001)

6 months 12 months 18 months 24 months

Random Walk of 
Inflation 0.429 0.696 0.868 0.956

0.445 0.859 1.134 1.475

0.485 0.887 1.189 1.565

0.515 0.906 1.256 1.655

0.478 0.895 1.183 1.565

0.507 0.906 1.256 1.524

0.484 0.906 1.181 1.510

All lags: 0 - 12

Data dependent lag selection

RMSE at forecast horizon of 

AR inflation 
model

minimum

mean

maximum

Akaike

median

BIC

The same picture emerges when the lag order of the AR model is selected in a data

dependent way: at each step we produce a forecast only from the AR model with the best

in sample performance according to the Bayesian Information Criteria (BIC), and calculate

the RMSE statistics by averaging the resulting squared forecast errors18. Following this

method does not lead to any improvement, the RMSE of the AR model being always above

the random walk model. This is not surprising however because the in-sample performance

of any model (as measured by this type of Information Criteria) tells us nothing about its

out-of-sample forecasting ability. Next we analyze how the alternative indicators perform in

predicting the inßation rate when they are used as the only regressors in the rhs of our model,

i.e. by assuming β(L) = 0 in equation 4.

As done for the AR model we compare forecasting performance on the basis of RMSE

statistics for each model. Table C2 in Appendix C reports results for all the indicators and for

17 In other terms the Theils�s U coefÞcient (the ratio between the AR model and the random walk RMSE)
falls with the length of the forecast horizons.

18 This practice introduced by Stock and Watson (1999), appears currently to be standard practice.
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all the transformations considered19. Some interesting results are thus obtained. First, our core

inßation indicator outperforms systematically the autoregressive model: in particular when

using the monthly rates of growth (center panel of Table C2). Second, few other variables are

able, on their own, to provide forecasts that outperform the autoregressive model: these are the

two broadest euro area monetary aggregates (M2 and M3) and, to a lesser extent, the consumer

survey indicators of price trends (past and expected). However their superiority with respect

to the autoregressive scheme is limited to the farthest horizons of 18 and 24 months. Finally

all the measures of real activity and of labor market conditions perform poorly.

However none of the indicators performs better than the random walk model of inßation,

for all forecast horizons. This fact is in line with the evidence recently presented for the U.S.

inßation by Atkeson and Ohanian (2001) and it is also robust with respect to the kind of

transformation used for the indicator (one-, three- or twelve-month differences).

The results of Table C2 just provide a Þrst idea of the predictive content of the alternative

indicators; a more complete picture emerges when one considers the forecasting performance

of alternative indicators used in conjunction with lagged inßation (Table C3).

Again our core inßation index produces systematically better forecasts than those of the

AR model and of the other candidate indicators. More importantly, at horizons beyond 12

months they outperform the forecasts produced by the random walk model. euro area M2 and

M3 also outperform the AR model, however they generally do not produce better forecasts

than the random walk model.

The picture improves dramatically when we use a forecasting model that we label �naive

core model�. In this speciÞcation our core inßation index is used as such to forecast inßation:

this means that our forecast at time t for the inßation rate at time t + h ( bπt+h), is just πCoret .

Since we have constructed our core inßation measure to reßect only ßuctuations of frequency

lower than π
7
, we anticipate that it should have a good predictive content in itself. Indeed Table

3 below shows that the �naive core model� ouperforms the random walk model of inßation at

all forecast horizons, including the shortest ones of 6 and 12 months.

19 In Table C2 and C3 the cells are shaded whenever the variable indicated under the row heading outperforms
the AR model (whose RMSE are reported in the upper part of the table). For example in the Þrst panel of Table
C2 the median RMSE, across lags from 0 to 12 of the rhs variable, for our core inßation index at horizons of 6 and
12 months is lower than the median one obtained from all lag combinations of the AR model. Correspondingly
those cells are shaded in grey.
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Table 3: Forecast performance of the Random-walk vs Core Inßation naive model (1996-2001)

6 months 12 months 18 months 24 months

Random Walk of 
Inflation 0.429 0.696 0.868 0.956

0.387 0.498 0.687 0.792

0.370 0.510 0.684 0.794

0.375 0.548 0.704 0.795

0.445 0.609 0.735 0.803

RMSE at forecast horizon of 

Transformation of the 
core inflation index

Naive  Core 
Inflation model

(1- L)

(1-L3 )

(1-L6 )

(1-L12 )

An objection that can be moved against the results obtained so far is that we have

not really used only information up to time t when forecasting inßation at horizone t + h,

since our core index is based on a variance covariance structure that is estimated over the

full sample. This is a serious objection even though one can expect that covariances will not

change dramatically as new data are added. In any case we explored the predictive perfomance

of the core indicator in a �full real time� exercise. At each step we re-estimated not only the

forecasting regression but also the dynamic factor model on which the core indicator is based.

As expected results are affected only when we consider a forecasting horizon that spans the

period 1996 to 2001. In this case the initial estimates of our core index are rather poor since

they are based on a rather short time series20. The RMSE of the forecast obtained in this way

are still rather good compared with alternatives, but no longer dominate all other forecasts.

On the other hand, if we focus on the shorter horizon 1999-2001, that coincides with the

20 When predicting the inßation rate in January 1999, in the 2 years ahead forecasting exercise, the core
index and the regression model are estimated with data only up to January 1994. Hence the covariances of the
data are estimated on a relatively short time range (1987-1994).
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monetary union period, the forecasting performance of the core index (and of the naive forecast

in particular) is once again superior with respect to all alternatives (see, Table 4).

Table 4: Forecast performance of the Random-walk vs Core Inßation naive model in real time (1999-2001)

6 months 12 months 18 months 24 months

Random Walk of 
Inflation 0.517 0.873 1.091 1.089

AR model of 
inflation 0.418 0.770 0.961 1.160

0.432 0.676 0.912 0.980

0.417 0.682 0.904 0.963

0.437 0.719 0.912 0.936

0.522 0.785 0.906 0.909

RMSE at forecast horizon of 

Transformation of the core 
inflation index

Naive  Core Inflation 
model

(1- L)

(1-L3 )

(1-L6 )

(1-L12 )

These results are extremly promising and emphasize the quality of the procedure that

we have proposed. Not only we outperform the random walk model of inßation, but also the

forecasts from all the other proposed indicators. In particular these results suggest that our

indicator extracts optimally the underlying sources of inßationary pressures capturing most of

the information relevant for the analysis of current and future price dynamics. In this sense the

core index we propose is a methodologically well founded and convenient way of synthesizing

the large set of statistics analysed under the Þrst and the second pillar by the ECB.

7. Conclusion

Monetary policy makers have available an ever-expanding set of indicators that may

contain useful information on price pressures in the economy. However no clear methodology

exists to conveniently summarize all this information in a uniÞed framework. This paper

develops a new core inßation indicator for the euro area that exploits the information from a

large monthly database containing more than 400 series, regarding prices as well as other real

and nominal variables.

Our core inßation indicator results from the combination of a smoothing procedure

along the cross-sectional and temporal dimension: this operation is achieved by extracting
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the medium- and long-run common component of the euro area CPI, using a dynamic factor

model approach.

The core index we propose has major advantages over the more traditional inßation

measures. It provides a more timely and more precise signal of the inßationary process. During

some episodes the core inßation indicator departed from the actual headline inßation, giving

a more reliable picture of the future price developments (as in the spring of 1999, when it

clearly shows that fears of a deßation were misplaced). Moreover our core index turns out

to have substantial predictive ability for the euro area inßation over horizons of 6,12,18 and

24 months. The forecasts produced by a naive core model (simply obtained by setting future

inßation equal to the current core index level) outperform all the alternative univariate models

considered, conÞrming its ability to successfully summarize all the information regarding the

inßationary pressures. These features make our core inßation index a relevant tool for the ECB

monetary policy strategy.



Appendix A: the dataset

This appendix provides a brief description of the data series used in this paper. The

full cross-section comprises 450 series taken from a variety of sources: Eurostat, BIS, OECD,

ECB data archives, Bank of Italy, National Statistical OfÞces, and Datastream. The data cover

with great detail the six largest countries of the euro area, while, due to data limitations, only

aggregate data for the other countries have been collected.

There are 140 aggregate and sectoral level price variables: consumer price series were

reconstructed by linking HICP data, to national CPI data for each country; producer prices

are obtained mainly from Eurostat, and in general we sought to maintain the same sectoral

coverage of the industrial production series.

We included industrial production and other indicators of economic activity (like sales

and turnover indexes), for a total of about 60 series. Labor market variables (essentially

unemployment, vacancies and wages) are around 20.

Financial variables are by far the most represented group, with 90 interest rates, 40

monetary aggregates and 20 stock prices and exchange rates.

Finally some survey statistics have also been included (see, Table A1 for details).

Our method entails the estimation of the spectral matrix of the data and therefore requires

a proper pre-treatment of the data so that anomalous values that can bias the estimation

and non stationarity is taken care of. Hence prior to the analysis we removed outliers and

other deterministic effects using the routines embodied in Tramo-Seats. We also removed

deterministic seasonality by regressing the series on a set of dummy21. Interest rates, exchange

rates and share prices were not seasonally adjusted and for the Þrst two groups no outlier

detection was performed.

Preliminary inspection revealed that our data are not affected by the same kind of non-

stationarity. Given the large number of variables in the panel, careful individual treatment of

non-stationarity was not feasible. Rather, we followed an automatic procedure treating in the

same way all the series of a given economic class (e.g. industrial production, consumer prices

21 The regressors also included the same dummies interacted with an yearly trend to capture evolving deter-
ministic seasonality that might be present in the data.
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and so on). Then we checked whether this resulted in an improper treatment of the data, such

as over-differencing, incomplete removal of outliers or inadequate seasonal adjustment. The

kind of stationarity inducing transformation applied to each class was also confronted with the

results obtained with commonly used unit root tests, that appear to broadly conÞrm our choice

(see, Table A1).

Table A1: Stationarity Tests for the Transformed Data1

5% 10% 5% 10%

Consumer prices 45 (1-L)log 9 6 3 0

Producer prices 94 (1-L)log 3 2 9 5

Industrial production 46 (1-L)log 0 0 0 0

E.C. survey & price expectations 62 (1-L) 2 0 2 2

Monetary aggregates - nominal 21 (1-L)log 0 0 0 0

Monetary aggregates - real 21 (1-L)log 0 0 0 0

Interest rates - spreads 6 none 4 4 4 4

Real interest rates (ex post) 12 none 9 8 6 6

Nominal interest rates 78 (1-L)log 0 0 9 3

Exchange rates 11 (1-L)log 0 0 0 0

Share prices and indexes 11 (1-L)log 0 0 0 0

Employment statistics 10 (1-L) 2 2 2 2

Wages 9 (1-L)log 0 0 0 0

Other indicators 8 (1-L)log 0 0 0 0

ADF with constant & 
trendNumber of 

variables
Data 

TransformationSECTOR
ADF with constant

1 Each column under ADF reports the number of cases in which the test detected a unit root in the transformed variables.



Table A2: Variance Explained by the Þrst ten common factors
Freq. 1 2 3 4 5 6 7 8 9 10
0.00 0.36 0.22 0.12 0.08 0.05 0.04 0.03 0.03 0.02 0.01
0.15 0.35 0.17 0.13 0.09 0.06 0.05 0.04 0.02 0.02 0.01
0.30 0.33 0.14 0.09 0.07 0.06 0.05 0.04 0.03 0.03 0.03
0.45 0.2 0.14 0.1 0.09 0.07 0.06 0.05 0.04 0.04 0.03
0.60 0.3 0.12 0.1 0.08 0.06 0.06 0.05 0.04 0.03 0.03
0.75 0.23 0.12 0.1 0.08 0.07 0.06 0.06 0.05 0.04 0.03
0.90 0.18 0.13 0.1 0.09 0.07 0.06 0.06 0.05 0.04 0.03
1.05 0.17 0.13 0.1 0.1 0.08 0.07 0.06 0.05 0.04 0.03
1.20 0.19 0.12 0.1 0.09 0.07 0.07 0.06 0.05 0.05 0.03
1.35 0.2 0.15 0.1 0.09 0.08 0.07 0.05 0.04 0.03 0.03
1.50 0.2 0.13 0.12 0.09 0.07 0.07 0.05 0.04 0.04 0.03
1.64 0.19 0.12 0.11 0.1 0.08 0.07 0.06 0.05 0.04 0.03
1.79 0.2 0.12 0.1 0.09 0.08 0.08 0.06 0.05 0.04 0.03
1.94 0.21 0.14 0.11 0.1 0.09 0.07 0.05 0.04 0.03 0.03
2.09 0.23 0.15 0.12 0.09 0.08 0.06 0.05 0.04 0.03 0.03
2.24 0.14 0.12 0.11 0.09 0.09 0.08 0.07 0.06 0.05 0.04
2.39 0.16 0.13 0.12 0.1 0.09 0.07 0.05 0.05 0.04 0.03
2.54 0.18 0.15 0.12 0.09 0.08 0.07 0.05 0.04 0.04 0.03
2.69 0.13 0.12 0.1 0.1 0.09 0.08 0.07 0.06 0.05 0.04
2.84 0.16 0.13 0.11 0.1 0.09 0.08 0.06 0.05 0.04 0.03
2.99 0.17 0.15 0.12 0.11 0.08 0.07 0.05 0.04 0.03 0.03
3.14 0.17 0.15 0.12 0.11 0.08 0.07 0.05 0.04 0.03 0.03

mean over [0, 
PI] 0.21 0.14 0.11 0.09 0.08 0.07 0.05 0.04 0.04 0.03

CUMULATED
over [0, PI] 0.21 0.35 0.46 0.55 0.63 0.69 0.75 0.79 0.83 0.86

mean over [0, 
0.45] 0.31 0.17 0.11 0.08 0.06 0.05 0.04 0.03 0.03 0.02

CUMULATED 
over [0, 0.45] 0.31 0.48 0.59 0.67 0.73 0.78 0.82 0.85 0.88 0.90



Appendix B: technical details

Estimating the covariances of the common components

In the Þrst step of our procedure, we estimate the spectral-density matrix and the

covariances of the common components. We start by estimating the spectral-density matrix

of xt =
¡
x1t · · · xnt

¢0. Let us denote the theoretical matrix by Σ(θ) and its estimate
by �Σ(θ). The estimation is accomplished by using a Bartlett lag-window of size M = 18,

i.e. by computing the sample auto-covariance matrices �Γ(k), multiplying them by the weights

wk = 1− |k|
M+1

and applying the discrete Fourier transform:

�Σx(θ) =
1

2π

MX
k=−M

wk · �Γ(k) · e−iθk.

The spectra were evaluated at 101 equally spaced frequencies in the interval [−π, π], i.e.
at the frequencies θh = 2πh

100
, h = −50, . . . , 50.

Then we performed the dynamic principal component decomposition (see Brillinger, 1981).

For each frequency of the grid, we computed the eigenvalues and eigenvectors of �Σ(θ).

By ordering the eigenvalues in descending order for each frequency and collecting values

cosrresponding to different frequencies, the eigenvalue and eigenvector functions λj(θ) and

Uj(θ), j = 1, . . . , n, are obtained. The function λj(θ) can be interpreted as the (sample)

spectral density of the j-th principal component series and, in analogy with the standard static

principal component analysis, the ratio

pj =

Z π

−π
λj(θ)dθ/

nX
j=1

Z π

−π
λj(θ)dθ

represents the contribution of the j-th principal component series to the total variance in the

system. Letting Λq(θ) be the diagonal matrix having on the diagonal λ1(θ), . . . ,λq(θ) and

Uq(θ) be the (n× q) matrix
¡
U1(θ) · · · Uq(θ)

¢
our estimate of the spectral density matrix

of the vector of the common components χt =
¡
χ1t · · · χnt

¢0 is given by
�Σχ(θ) = U(θ)Λ(θ) �U(θ)(5)
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where the tilde denotes conjugation. Given the correct choice of q, consistency results for the

entries of this matrix as both n and T go to inÞnity can easily be obtained from Forni, Hallin,

Lippi and Reichlin (2000). Results on consistency rates can be found in Forni, Hallin, Lippi

and Reichlin (2001a).

Following Forni, Hallin, Lippi and Reichlin (2000), we identiÞed the number of common

factors q by requiring a minimum amount of explained variance: we selected q = 4.

An estimate of the spectral density matrix of the vector of the idiosyncratic components

ξt =
¡
ξ1t · · · ξnt

¢0 can be obtained as the difference �Σξ(θ) = �Σ(θ)− �Σχ(θ).

Starting from the estimated spectral-density matrix we obtain estimates of the covariance

matrices of χt at different leads and lags by using the inverse discrete Fourier transform, i.e.

�Γχ(k) =
2π

101

50X
h=−50

�Σχ(θh)e
iθhk.

Moreover, we compute estimates of the covariance matrices of the medium- and long-run

component χLt = (χL1t, ...,χ
L
nt)

0 by applying the inverse tranform to the frequency band of

interest, i.e. [−2π/τ , 2π/τ ]. Precisely, letting ΓχL(k) = E
¡
χLt χ

L0
t−k
¢
, the corresponding

estimate will be

�ΓχL(k) =
2π

2H + 1

HX
h=−H

�Σχ(θh)e
iθhk,

where H is deÞned by the conditions H/101 > τ and (H + 1)/101 < τ .

Estimating the static factors

Starting from the covariances estimated in the Þrst step, we estimate the static factors

as linear combinations of (the present of) the observable variables xjt, j = 1, . . . , n. Indeed,

as observed in the main text, the static factors appearing in representation (1), i.e. uht−k,

h = 1, . . . , q, k = 1, . . . , s, are not identiÞed without imposing additional assumptions and

therefore cannot be estimated. This however is not a problem, since we need only a set of

r = q(s+ 1) variables forming a basis for the linear space spanned by the uht�s and their lags.

We can then obtain �χjt by projecting χjt on such factors and �χ
L
jt by projecting χLjt on the leads

and the lags of such factors.
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Our strategy is to take the Þrst r generalized principal components of �Γχ(0) with respect

to the diagonal matrix having on the diagonal the variances of the idiosyncratic components

ξjt, j − 1, . . . , n, denoted by �Γξ(0). Precisely, we compute the generalized eigenvalues µj,
i.e. the n complex numbers solving det(ΓTχ(0) − z�Γξ(0)) = 0, along with the corresponding
generalized eigenvectors Vj, j = 1, . . . , n, i.e. the vectors satisfying

Vj�Γχ(0) = µjVj�Γξ(0),

and the normalizing condition

Vj�Γξ(0)V
0
i =

½
0 for j 6= i,
1 for j = i.

Then we order the eigenvalues in descending order and take the eigenvectors corresponding to

the largest r eigenvalues. Our estimated static factors are the generalized principal components

vjt = V
0
jxt, j = 1, . . . , r.

The motivation for this strategy is that, if �Γξ(0) is the variance-covariance matrix of the

idiosyncratic components (i.e. the ξjt�s are mutually orthogonal), the generalized principal

components are the linear combinations of the xjt�s having the smallest idiosyncratic-common

variance ratio (for a proof see Forni, Hallin, Lippi and Reichlin, 2001b). We diagonalize the

idiosyncratic variance-covariance matrix since, as shown in the paper cited above, this gives

better results under simulation when n is large with respect to T as is the case here.

By using the generalized principal components and the covariances estimated in the

Þrst step we can estimate and forecast χt. Precisely, setting V = (V1 · · · Vr) and

vt = (v1t · · · vrt)0 = V0xt, our estimate of χt+h, h = 0, . . . , s, given the information available

at time t, is

�χt+h = �Γχ(h)V
³
V0�Γ(0)V

´−1
vt(6)

= �Γχ(h)V
³
V0�Γ(0)V

´−1
V0xt.

In Forni, Hallin, Lippi and Reichlin (2001b) it is shown that, as both n and T go to ∞ in

a proper way, �χt converges in probability, entry by entry, to χt, and �χt+h converges to the

theoretical projection of χt+h on the present and the past of u1t, . . . , uqt.
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Estimating the cyclical part of the common components

Finally we estimate the medium- and long-run common components χLjt by using the

covariances estimated in the Þrst step in order to project χLjt on the present and m leads and

lags of the estimated static factors.

SetVt = (v
0
t+m · · ·v0t · · ·v0t−m)0 and

W =


V 0n×r · · · 0n×r
0n×r V · · · 0n×r
...

... . . . ...
0n×r 0n×r · · · V| {z }

2m+1 blocks


.

Moreover, set Xt = (x0t+m · · ·x0t · · ·x0t−m)0, so that Vt = W0Xt. The sample variance-

covariance matrix ofXt is

M =


�Γ(0) �Γ(1) · · · �Γ(2m)
�Γ0(1) �Γ0 · · · �Γ(2m− 1)
...

... . . . ...
�Γ
0
(2m) �Γ0(2m− 1) · · · �Γ(0)

 ,

while E
¡
χLt X

0
t

¢
can be estimated by

R =
³
�Γ0χL(m) · · · �Γ0χL(0) · · · �ΓχL(m)

´
.

Our estimate of the common cyclical components is then

�χLt = RW (W0MW)
−1
W0Xt.(7)

At the end of the sample, i.e. from T − m onward, we have the problem that xT+h, h > 0,

is not available. Our estimate is then obtained by substituting our forecast of the common

components �χT+h, in place of xT+h and applying the formula 7.

Treatment of the end-of-sample unbalance

Let us assume that T is the last date for which we have observations for all of the

variables in the data set and that there are some variables for which we have observations
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until dates T + 1, . . . , T + w. Without loss of generality we can then reorder the variables in

such a way that

xt =
¡
x10t x20t · · · xw0t

¢
,

where xjt, j = 1, ..., w, is such that the last available observation reefers to T + j − 1.
Correspondingly, the sample covariance matrices �Γ(k) are partitioned as follows

�Γ(k) =


�Γ11(k) �Γ12(k) · · · �Γ1w(k)
�Γ21(k) �Γ22(k) · · · �Γ2w(k)
...

... . . . ...
�Γw1(k) �Γw2(k) · · · �Γww(k)

 .

A similar partition holds for �Γχ(k).

Our idea is simply to shift the variables in such a way to retain, for each one of them, only

the most updated observation, and compute the generalized principal components for the re-

aligned vector. In such a way we are able to get information on the factors uhT+j, h = 1, . . . , q,

j = 1, . . . , w, and to exploit it in prediction.

Precisely, we set

x∗t =
¡
x10t x20t+1 · · · xw0t+w−1

¢
.

Notice that the sample covariance matrices of x∗t are then

�Γ∗(k) =


�Γ11(k) �Γ12(k − 1) · · · �Γ1w(k − w + 1)

�Γ21(k + 1) �Γ22(k) · · · �Γ2w(k − w + 2)
...

... . . . ...
�Γw1(k + w − 1) �Γw2(k + w − 2) · · · �Γww(k)


and the matrices �Γ∗χ(k) are deÞned in the same way. Then we compute the matrix V∗ of

the generalized eigenvectors of �Γ∗χ(k) with respect to �Γξ(k) (the latter matrix is diagonal and

thefore is the same for xt and x∗t ) and obtain forecasts of χ∗T+h as in equation (7):

�χ∗T+h = �Γ
∗
χ(h)V

∗
³
V∗0 �Γ∗0V

∗
´−1

V∗0x∗T .

Finally we use the forecasts in �χ∗T+h, h = 1, . . . to replace missing data and to get the forecasts

of χT+h, h > w, which are needed to apply (7).



Appendix C: dataset dynamic structure and forecast results

Table C1: Properties of the dataset

SECTOR Number of 
variables

Explained 
variance

All data set 447 0.63 219 49.0% 37 8.3% 191 42.7%

Consumer prices 45 0.67 15 33.3% 15 33.3% 15 33.3%

Producer prices 94 0.71 50 53.2% 8 8.5% 36 38.3%

Industrial production 46 0.46 6 13.0% 3 6.5% 37 80.4%

E.C. survey & price expectations 62 0.52 23 37.1% 1 1.6% 38 61.3%

Monetary aggregates - nominal 21 0.59 10 47.6% 1 4.8% 10 47.6%

Monetary aggregates - real 21 0.56 7 33.3% 2 9.5% 12 57.1%

Interest rates - spreads 6 0.72 1 16.7% 0 0.0% 5 83.3%

Real interest rates (ex post) 12 0.79 2 16.7% 2 16.7% 8 66.7%

Nominal interest rates 78 0.77 78 100.0% 0 0.0% 0 0.0%

Exchange rates 11 0.60 3 27.3% 0 0.0% 8 72.7%

Share prices and indexes 11 0.47 7 63.6% 0 0.0% 4 36.4%

Employment statistics 10 0.63 3 30.0% 0 0.0% 7 70.0%

Wages 9 0.65 3 33.3% 5 55.6% 1 11.1%

Other indicators 8 0.48 4 50.0% 0 0.0% 4 50.0%

Leading Coincident Lagging



0.655 0.835 0.932 0.978

Forecast 
Horizon

6 
months

12 
months

18 
months

24 
months Horizons 6 12 18 24 Horizons 6 12 18 24

Random Walk RMSE 0.429 0.696 0.868 0.956 Random Walk RMSE 0.429 0.696 0.868 0.956 Random Walk RMSE 0.429 0.696 0.868 0.956

Minimum 0.445 0.859 1.134 1.475 Minimum 0.445 0.859 1.134 1.475 Minimum 0.445 0.859 1.134 1.475

Mean 0.485 0.887 1.189 1.565 Mean 0.485 0.887 1.189 1.565 Mean 0.485 0.887 1.189 1.565

Maximum 0.515 0.906 1.256 1.655 Maximum 0.515 0.906 1.256 1.655 Maximum 0.515 0.906 1.256 1.655

Median 0.478 0.895 1.183 1.565 Median 0.478 0.895 1.183 1.565 Median 0.478 0.895 1.183 1.565

BIC 0.507 0.906 1.256 1.524 BIC 0.507 0.906 1.256 1.524 BIC 0.507 0.906 1.256 1.524

Akaike 0.484 0.906 1.181 1.51 Akaike 0.484 0.906 1.181 1.51 Akaike 0.484 0.906 1.181 1.51
Minimum 0.452 0.673 1.707 1.421 Minimum 0.385 0.578 0.801 1.061 Minimum 0.387 0.582 0.766 0.939
Mean 0.48 0.692 1.796 1.713 Mean 0.409 0.613 0.846 1.149 Mean 0.417 0.622 0.81 1.035
Maximum 0.527 0.717 1.939 1.973 Maximum 0.436 0.662 0.887 1.31 Maximum 0.449 0.659 0.856 1.198
Median 0.474 0.692 1.783 1.701 Median 0.406 0.61 0.86 1.117 Median 0.416 0.616 0.81 1.024
BIC 0.465 0.695 1.825 1.709 BIC 0.399 0.594 0.833 1.124 BIC 0.401 0.582 0.766 0.94
Akaike 0.498 0.7 1.715 1.535 Akaike 0.424 0.674 0.825 1.125 Akaike 0.452 0.652 0.766 0.94
Minimum 1.456 1.559 1.582 1.442 Minimum 1.411 1.613 1.653 1.539 Minimum 1.435 1.618 1.645 1.522
Mean 1.476 1.606 1.627 1.567 Mean 1.437 1.643 1.666 1.575 Mean 1.461 1.649 1.658 1.552
Maximum 1.5 1.651 1.699 1.903 Maximum 1.469 1.677 1.68 1.632 Maximum 1.493 1.693 1.673 1.601
Median 1.477 1.61 1.625 1.493 Median 1.437 1.639 1.666 1.567 Median 1.457 1.645 1.656 1.552
BIC 1.502 1.68 1.604 1.444 BIC 1.475 1.682 1.688 1.604 BIC 1.496 1.706 1.661 1.564
Akaike 1.499 1.653 1.658 1.638 Akaike 1.456 1.674 1.686 1.549 Akaike 1.488 1.685 1.67 1.522
Minimum 1.373 1.512 1.702 1.751 Minimum 1.397 1.5 1.555 1.616 Minimum 1.415 1.514 1.6 1.682
Mean 1.471 1.676 1.76 1.779 Mean 1.43 1.601 1.686 1.744 Mean 1.46 1.641 1.716 1.754
Maximum 1.554 1.79 1.805 1.821 Maximum 1.484 1.76 1.788 1.801 Maximum 1.535 1.811 1.799 1.781
Median 1.479 1.688 1.763 1.767 Median 1.418 1.573 1.69 1.756 Median 1.446 1.613 1.72 1.772
BIC 1.434 1.72 1.85 1.806 BIC 1.402 1.635 1.766 1.776 BIC 1.415 1.694 1.819 1.785
Akaike 1.466 1.759 1.857 1.901 Akaike 1.435 1.642 1.748 1.733 Akaike 1.421 1.69 1.791 1.76
Minimum 1.432 1.595 1.638 1.569 Minimum 1.344 1.511 1.562 1.614 Minimum 1.355 1.537 1.601 1.636
Mean 1.455 1.678 1.668 1.652 Mean 1.354 1.601 1.665 1.742 Mean 1.37 1.626 1.704 1.761
Maximum 1.507 1.811 1.725 1.864 Maximum 1.377 1.701 1.814 1.851 Maximum 1.383 1.747 1.897 1.863
Median 1.444 1.647 1.649 1.597 Median 1.353 1.594 1.653 1.754 Median 1.371 1.616 1.669 1.778
BIC 1.427 1.658 1.777 1.675 BIC 1.356 1.511 1.583 1.632 BIC 1.361 1.536 1.757 1.718
Akaike 1.437 1.736 1.744 1.791 Akaike 1.356 1.565 1.779 1.832 Akaike 1.356 1.642 1.87 1.872
Minimum 0.976 0.871 0.76 1.068 Minimum 1.339 1.344 1.155 1.185 Minimum 1.307 1.298 1.102 1.103
Mean 1.141 1.038 0.969 1.117 Mean 1.379 1.447 1.341 1.33 Mean 1.378 1.415 1.279 1.263
Maximum 1.277 1.167 1.107 1.195 Maximum 1.4 1.502 1.512 1.538 Maximum 1.413 1.496 1.434 1.446
Median 1.139 1.048 1.009 1.105 Median 1.382 1.469 1.349 1.299 Median 1.385 1.412 1.294 1.242
BIC 1.05 1.033 1.04 1.195 BIC 1.4 1.495 1.362 1.285 BIC 1.413 1.496 1.281 1.234
Akaike 0.976 0.885 0.994 1.28 Akaike 1.405 1.41 1.186 1.185 Akaike 1.353 1.404 1.102 1.103
Minimum 0.819 0.888 0.772 0.973 Minimum 0.99 1.033 0.964 0.865 Minimum 0.958 1.004 0.971 0.885
Mean 0.899 0.913 0.838 1.049 Mean 1.112 1.126 1.057 0.998 Mean 1.079 1.088 1.035 0.998
Maximum 0.989 0.944 0.87 1.265 Maximum 1.287 1.308 1.297 1.365 Maximum 1.221 1.197 1.109 1.114
Median 0.891 0.908 0.854 1.006 Median 1.089 1.1 1.02 0.924 Median 1.07 1.072 1.034 0.978
BIC 0.919 0.949 0.863 1.083 BIC 1.126 1.111 0.984 0.951 BIC 1.106 1.072 0.965 0.913
Akaike 0.838 0.873 0.823 1.166 Akaike 1.023 1.04 1.019 0.978 Akaike 1 1.008 1.104 1.157
Minimum 1.33 1.499 1.681 1.637 Minimum 1.323 1.486 1.559 1.603 Minimum 1.336 1.485 1.581 1.634
Mean 1.433 1.666 1.742 1.68 Mean 1.34 1.531 1.652 1.693 Mean 1.354 1.554 1.672 1.698
Maximum 1.592 1.8 1.797 1.699 Maximum 1.382 1.613 1.734 1.729 Maximum 1.387 1.652 1.748 1.721
Median 1.414 1.681 1.742 1.682 Median 1.335 1.523 1.656 1.716 Median 1.35 1.541 1.676 1.707
BIC 1.543 1.823 1.793 1.649 BIC 1.382 1.489 1.702 1.722 BIC 1.362 1.629 1.736 1.72
Akaike 1.564 1.815 1.83 1.649 Akaike 1.361 1.588 1.694 1.695 Akaike 1.356 1.626 1.723 1.699
Minimum 1.276 1.447 1.759 1.858 Minimum 1.309 1.485 1.552 1.607 Minimum 1.328 1.481 1.553 1.64
Mean 1.371 1.729 1.936 1.886 Mean 1.322 1.52 1.686 1.741 Mean 1.335 1.551 1.728 1.766
Maximum 1.465 1.956 2.056 1.944 Maximum 1.37 1.641 1.876 1.857 Maximum 1.345 1.719 1.929 1.865
Median 1.376 1.737 1.965 1.87 Median 1.314 1.499 1.67 1.731 Median 1.333 1.508 1.733 1.783
BIC 1.301 1.862 1.965 1.977 BIC 1.37 1.488 1.719 1.809 BIC 1.343 1.481 1.877 1.757
Akaike 1.42 1.927 2.066 1.963 Akaike 1.358 1.556 1.866 1.876 Akaike 1.357 1.688 1.915 1.88
Minimum 1.474 1.518 1.842 1.855 Minimum 1.456 1.574 1.599 1.626 Minimum 1.484 1.58 1.619 1.676
Mean 1.576 1.846 2.032 1.898 Mean 1.528 1.674 1.721 1.731 Mean 1.554 1.709 1.761 1.757
Maximum 1.65 2.045 2.125 2.007 Maximum 1.57 1.8 1.871 1.803 Maximum 1.592 1.853 1.899 1.838
Median 1.57 1.863 2.058 1.885 Median 1.541 1.67 1.709 1.747 Median 1.565 1.706 1.762 1.765
BIC 1.481 1.747 2.237 2.028 BIC 1.456 1.574 1.599 1.691 BIC 1.484 1.58 1.77 1.765
Akaike 1.525 1.945 2.135 1.958 Akaike 1.5 1.634 1.851 1.77 Akaike 1.504 1.739 1.873 1.887
Minimum 1.351 1.451 1.654 1.706 Minimum 1.354 1.474 1.552 1.606 Minimum 1.372 1.468 1.571 1.648
Mean 1.382 1.563 1.693 1.73 Mean 1.374 1.5 1.63 1.71 Mean 1.389 1.506 1.639 1.728
Maximum 1.428 1.663 1.734 1.769 Maximum 1.392 1.54 1.691 1.804 Maximum 1.401 1.562 1.69 1.817
Median 1.377 1.57 1.693 1.73 Median 1.375 1.493 1.637 1.709 Median 1.392 1.501 1.649 1.712
BIC 1.38 1.573 1.743 1.738 BIC 1.392 1.492 1.648 1.666 BIC 1.4 1.501 1.666 1.737
Akaike 1.403 1.608 1.752 1.767 Akaike 1.392 1.534 1.667 1.738 Akaike 1.402 1.54 1.674 1.766
Minimum 1.369 1.485 1.618 1.586 Minimum 1.366 1.494 1.553 1.602 Minimum 1.376 1.494 1.571 1.609
Mean 1.445 1.614 1.661 1.608 Mean 1.377 1.534 1.629 1.647 Mean 1.394 1.551 1.64 1.642
Maximum 1.56 1.728 1.686 1.633 Maximum 1.397 1.611 1.69 1.666 Maximum 1.438 1.634 1.695 1.655
Median 1.431 1.628 1.669 1.603 Median 1.375 1.519 1.638 1.661 Median 1.387 1.541 1.645 1.649
BIC 1.413 1.668 1.788 1.645 BIC 1.385 1.503 1.688 1.655 BIC 1.38 1.534 1.723 1.662
Akaike 1.507 1.724 1.73 1.652 Akaike 1.386 1.577 1.665 1.63 Akaike 1.38 1.605 1.676 1.646
Minimum 0.958 0.855 0.806 0.85 Minimum 1.351 1.301 1.139 1.106 Minimum 1.345 1.236 1.075 1.029
Mean 1.195 1.058 0.935 0.911 Mean 1.372 1.418 1.337 1.333 Mean 1.383 1.383 1.267 1.245
Maximum 1.319 1.235 1.067 1.067 Maximum 1.394 1.486 1.511 1.569 Maximum 1.4 1.47 1.439 1.504
Median 1.242 1.039 0.939 0.881 Median 1.37 1.436 1.352 1.31 Median 1.386 1.392 1.268 1.21
BIC 0.958 0.859 0.804 0.921 BIC 1.422 1.539 1.266 1.286 BIC 1.54 1.463 1.226 1.157
Akaike 0.958 0.855 0.806 0.926 Akaike 1.392 1.31 1.139 1.111 Akaike 1.345 1.236 1.075 1.03
Minimum 1.281 1.274 1.1 1.231 Minimum 1.385 1.469 1.441 1.41 Minimum 1.399 1.469 1.408 1.341
Mean 1.354 1.353 1.28 1.29 Mean 1.389 1.485 1.509 1.507 Mean 1.405 1.484 1.484 1.467
Maximum 1.377 1.394 1.376 1.392 Maximum 1.393 1.491 1.543 1.586 Maximum 1.41 1.49 1.524 1.559
Median 1.369 1.359 1.327 1.275 Median 1.388 1.49 1.519 1.508 Median 1.405 1.487 1.502 1.468
BIC 1.335 1.436 1.262 1.276 BIC 1.392 1.491 1.502 1.434 BIC 1.404 1.529 1.467 1.383
Akaike 1.281 1.298 1.103 1.275 Akaike 1.392 1.505 1.456 1.421 Akaike 1.439 1.505 1.422 1.343
Minimum 1.543 1.639 1.698 1.503 Minimum 1.423 1.52 1.552 1.499 Minimum 1.497 1.569 1.569 1.49
Mean 1.699 1.921 1.84 1.655 Mean 1.52 1.65 1.624 1.521 Mean 1.576 1.699 1.64 1.509
Maximum 1.839 2.169 1.979 1.82 Maximum 1.615 1.782 1.715 1.573 Maximum 1.67 1.854 1.738 1.541
Median 1.702 1.934 1.832 1.664 Median 1.514 1.646 1.617 1.514 Median 1.575 1.692 1.628 1.504
BIC 1.543 1.639 1.698 1.921 BIC 1.433 1.52 1.552 1.573 BIC 1.497 1.569 1.569 1.524
Akaike 1.592 1.704 2.053 1.864 Akaike 1.514 1.534 1.576 1.565 Akaike 1.534 1.569 1.563 1.457
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Horizons 6 12 18 24 Horizons 6 12 18 24 Horizons 6 12 18 24
Random Walk RMSE 0.429 0.696 0.868 0.956 Random Walk RMSE 0.429 0.696 0.868 0.956 Random Walk RMSE 0.429 0.696 0.868 0.956

Minimum 0.445 0.859 1.134 1.475 Minimum 0.445 0.859 1.134 1.475 Minimum 0.445 0.859 1.134 1.475
Mean 0.485 0.887 1.189 1.565 Mean 0.485 0.887 1.189 1.565 Mean 0.485 0.887 1.189 1.565
Maximum 0.515 0.906 1.256 1.655 Maximum 0.515 0.906 1.256 1.655 Maximum 0.515 0.906 1.256 1.655
Median 0.478 0.895 1.183 1.565 Median 0.478 0.895 1.183 1.565 Median 0.478 0.895 1.183 1.565

BIC 0.507 0.906 1.256 1.524 BIC 0.507 0.906 1.256 1.524 BIC 0.507 0.906 1.256 1.524

Akaike 0.484 0.906 1.181 1.51 Akaike 0.484 0.906 1.181 1.51 Akaike 0.484 0.906 1.181 1.51
Minimum 0.369 0.685 1.708 0.944 Minimum 0.303 0.608 0.732 0.865 Minimum 0.307 0.583 0.739 0.871
Mean 0.417 0.74 1.85 1.39 Mean 0.349 0.625 0.805 0.977 Mean 0.359 0.628 0.804 0.973
Maximum 0.489 1.073 2.082 1.804 Maximum 0.399 0.653 0.887 1.161 Maximum 0.414 0.655 0.937 1.138
Median 0.42 0.718 1.841 1.394 Median 0.344 0.625 0.814 0.971 Median 0.352 0.629 0.801 0.955
BIC 0.427 0.691 1.766 1.568 BIC 0.356 0.612 0.848 1.091 BIC 0.359 0.615 0.804 1.076
Akaike 0.456 1.042 1.89 1.066 Akaike 0.333 0.651 0.808 0.994 Akaike 0.352 0.65 0.918 1.052
Minimum 0.426 0.965 1.273 1.598 Minimum 0.469 0.993 1.25 1.416 Minimum 0.472 0.987 1.235 1.426
Mean 0.579 1.227 1.517 1.896 Mean 0.531 1.115 1.319 1.504 Mean 0.561 1.149 1.335 1.519
Maximum 0.698 1.464 1.871 2.584 Maximum 0.602 1.251 1.444 1.593 Maximum 0.632 1.313 1.502 1.641
Median 0.588 1.245 1.509 1.831 Median 0.525 1.123 1.303 1.498 Median 0.562 1.148 1.315 1.509
BIC 0.521 1.191 1.33 1.766 BIC 0.503 1.166 1.276 1.48 BIC 0.533 1.206 1.286 1.452
Akaike 0.57 1.436 1.634 2.134 Akaike 0.58 1.212 1.364 1.526 Akaike 0.595 1.247 1.389 1.587
Minimum 0.439 0.923 1.447 1.747 Minimum 0.461 0.983 1.264 1.483 Minimum 0.484 1.004 1.316 1.587
Mean 0.53 1.166 1.59 1.915 Mean 0.518 1.138 1.473 1.686 Mean 0.537 1.174 1.504 1.712
Maximum 0.624 1.374 1.791 2.127 Maximum 0.572 1.356 1.653 1.786 Maximum 0.596 1.399 1.663 1.771
Median 0.537 1.161 1.587 1.903 Median 0.519 1.12 1.479 1.702 Median 0.533 1.149 1.508 1.724
BIC 0.514 1.157 1.56 2.022 BIC 0.506 1.184 1.541 1.738 BIC 0.511 1.253 1.643 1.763
Akaike 0.541 1.355 1.713 2.065 Akaike 0.474 1.252 1.713 1.743 Akaike 0.507 1.316 1.707 1.793
Minimum 0.426 0.809 0.993 1.339 Minimum 0.462 0.983 1.215 1.388 Minimum 0.467 0.993 1.197 1.356
Mean 0.471 0.856 1.051 1.584 Mean 0.518 1.051 1.279 1.508 Mean 0.53 1.046 1.269 1.461
Maximum 0.512 0.954 1.214 1.968 Maximum 0.56 1.109 1.357 1.618 Maximum 0.577 1.12 1.377 1.579
Median 0.476 0.843 1.026 1.558 Median 0.518 1.059 1.281 1.509 Median 0.528 1.044 1.259 1.454
BIC 0.503 0.809 1.015 1.466 BIC 0.515 1.024 1.379 1.472 BIC 0.501 1.022 1.472 1.461
Akaike 0.449 0.836 1.108 1.704 Akaike 0.505 1.095 1.387 1.464 Akaike 0.509 1.136 1.372 1.426
Minimum 0.426 0.722 0.816 1.323 Minimum 0.458 0.825 0.91 1.097 Minimum 0.46 0.793 0.842 1.007
Mean 0.46 0.775 0.888 1.448 Mean 0.496 0.968 1.08 1.318 Mean 0.498 0.948 1.008 1.234
Maximum 0.501 0.819 0.945 1.608 Maximum 0.534 1.109 1.257 1.573 Maximum 0.536 1.2 1.239 1.58
Median 0.456 0.773 0.902 1.449 Median 0.496 0.992 1.08 1.292 Median 0.499 0.956 1 1.192
BIC 0.495 0.757 0.902 1.441 BIC 0.52 0.996 1.213 1.294 BIC 0.523 0.984 1.018 1.236
Akaike 0.479 0.777 0.923 1.712 Akaike 0.478 0.983 1.052 1.249 Akaike 0.499 0.979 0.878 1.119
Minimum 0.448 0.843 0.935 1.278 Minimum 0.458 0.896 0.917 0.834 Minimum 0.47 0.885 0.928 0.8
Mean 0.534 0.915 0.983 1.369 Mean 0.493 0.917 1.009 1.079 Mean 0.509 0.91 0.996 1.016
Maximum 0.6 1.035 1.087 1.461 Maximum 0.516 0.963 1.17 1.507 Maximum 0.526 0.929 1.139 1.432
Median 0.536 0.904 0.983 1.371 Median 0.495 0.915 0.994 0.981 Median 0.51 0.91 0.988 0.981
BIC 0.55 0.854 0.935 1.431 BIC 0.499 0.943 1.036 1.103 BIC 0.511 0.911 1.013 1.059
Akaike 0.559 0.88 1.03 1.365 Akaike 0.507 0.927 0.955 0.854 Akaike 0.545 0.916 1.037 0.818
Minimum 0.401 0.776 1.129 1.392 Minimum 0.471 0.981 1.255 1.459 Minimum 0.485 0.974 1.241 1.474
Mean 0.493 1.05 1.249 1.526 Mean 0.502 1.025 1.3 1.524 Mean 0.508 1.03 1.286 1.508
Maximum 0.689 1.337 1.359 1.67 Maximum 0.528 1.101 1.373 1.599 Maximum 0.532 1.149 1.383 1.53
Median 0.469 1.06 1.251 1.525 Median 0.499 1.022 1.295 1.524 Median 0.507 1.025 1.277 1.509
BIC 0.604 1.16 1.23 1.453 BIC 0.517 1.022 1.454 1.613 BIC 0.518 1.158 1.447 1.597
Akaike 0.633 1.333 1.331 1.486 Akaike 0.481 1.102 1.416 1.598 Akaike 0.526 1.105 1.407 1.595
Minimum 0.443 0.869 1.318 1.508 Minimum 0.477 1.005 1.288 1.477 Minimum 0.503 1.024 1.318 1.485
Mean 0.516 1.129 1.451 1.662 Mean 0.527 1.099 1.432 1.608 Mean 0.548 1.135 1.459 1.612
Maximum 0.596 1.345 1.589 1.779 Maximum 0.566 1.234 1.613 1.763 Maximum 0.586 1.371 1.661 1.75
Median 0.505 1.137 1.46 1.687 Median 0.526 1.091 1.415 1.599 Median 0.549 1.112 1.441 1.604
BIC 0.588 1.289 1.492 1.641 BIC 0.521 1.025 1.547 1.739 BIC 0.53 1.025 1.696 1.783
Akaike 0.579 1.324 1.616 1.703 Akaike 0.49 1.215 1.603 1.65 Akaike 0.528 1.326 1.769 1.756
Minimum 0.487 0.915 1.52 1.693 Minimum 0.52 1.137 1.41 1.567 Minimum 0.563 1.142 1.433 1.659
Mean 0.573 1.236 1.677 1.926 Mean 0.598 1.281 1.578 1.774 Mean 0.631 1.318 1.616 1.81
Maximum 0.665 1.444 1.901 2.079 Maximum 0.661 1.435 1.828 1.982 Maximum 0.686 1.505 1.934 1.976
Median 0.569 1.25 1.662 1.93 Median 0.605 1.28 1.56 1.762 Median 0.637 1.318 1.603 1.806
BIC 0.568 1.104 1.828 2.002 BIC 0.548 1.142 1.669 1.736 BIC 0.584 1.142 1.726 1.848
Akaike 0.553 1.415 1.91 1.857 Akaike 0.543 1.284 1.749 1.665 Akaike 0.589 1.395 1.857 1.968
Minimum 0.419 0.89 1.327 1.563 Minimum 0.461 0.968 1.252 1.466 Minimum 0.472 0.961 1.26 1.493
Mean 0.487 1.043 1.444 1.779 Mean 0.508 1.036 1.369 1.6 Mean 0.519 1.048 1.376 1.604
Maximum 0.557 1.24 1.633 2.035 Maximum 0.563 1.135 1.47 1.763 Maximum 0.578 1.156 1.473 1.749
Median 0.482 1.035 1.428 1.735 Median 0.507 1.025 1.375 1.61 Median 0.52 1.045 1.393 1.595
BIC 0.518 1.092 1.433 1.872 BIC 0.517 1.007 1.419 1.663 BIC 0.524 1.021 1.411 1.735
Akaike 0.475 1.18 1.465 1.953 Akaike 0.479 1.078 1.404 1.57 Akaike 0.516 1.075 1.512 1.729
Minimum 0.407 0.776 1.112 1.382 Minimum 0.47 0.984 1.248 1.457 Minimum 0.491 0.965 1.235 1.467
Mean 0.473 0.95 1.204 1.508 Mean 0.509 1.039 1.298 1.52 Mean 0.523 1.045 1.284 1.5
Maximum 0.56 1.108 1.284 1.704 Maximum 0.528 1.135 1.376 1.592 Maximum 0.568 1.178 1.387 1.548
Median 0.467 0.969 1.205 1.508 Median 0.512 1.031 1.291 1.521 Median 0.521 1.035 1.273 1.495
BIC 0.471 0.986 1.182 1.544 BIC 0.515 1.017 1.439 1.597 BIC 0.518 1.022 1.418 1.579
Akaike 0.519 1.039 1.282 1.551 Akaike 0.479 1.129 1.423 1.529 Akaike 0.513 1.155 1.401 1.637
Minimum 0.408 0.78 1.028 1.262 Minimum 0.436 0.923 1.092 1.268 Minimum 0.445 0.91 1.045 1.232
Mean 0.493 0.87 1.109 1.395 Mean 0.471 0.968 1.184 1.417 Mean 0.481 0.95 1.137 1.376
Maximum 0.579 0.96 1.163 1.567 Maximum 0.528 1.007 1.285 1.602 Maximum 0.537 0.991 1.219 1.565
Median 0.491 0.861 1.106 1.371 Median 0.466 0.968 1.176 1.389 Median 0.479 0.948 1.132 1.345
BIC 0.517 0.875 1.141 1.411 BIC 0.506 1.044 1.21 1.445 BIC 0.482 1.02 1.167 1.327
Akaike 0.511 0.949 1.049 1.415 Akaike 0.519 0.956 1.097 1.291 Akaike 0.514 0.94 1.052 1.246
Minimum 0.425 0.877 1.126 1.499 Minimum 0.448 0.971 1.199 1.356 Minimum 0.456 0.97 1.168 1.291
Mean 0.525 0.985 1.233 1.711 Mean 0.48 1.015 1.255 1.458 Mean 0.493 1.022 1.229 1.426
Maximum 0.647 1.151 1.503 2.102 Maximum 0.518 1.069 1.309 1.604 Maximum 0.535 1.087 1.277 1.567
Median 0.526 0.973 1.192 1.661 Median 0.477 1.013 1.247 1.446 Median 0.49 1.02 1.233 1.417
BIC 0.517 0.895 1.126 1.66 BIC 0.512 1.031 1.217 1.395 BIC 0.473 1.031 1.205 1.361
Akaike 0.623 1.087 1.485 1.902 Akaike 0.488 1.039 1.21 1.394 Akaike 0.547 1.081 1.168 1.342
Minimum 0.459 0.898 1.207 1.384 Minimum 0.476 0.992 1.251 1.391 Minimum 0.531 1.029 1.273 1.405
Mean 0.519 1.049 1.378 1.658 Mean 0.558 1.156 1.387 1.537 Mean 0.6 1.192 1.38 1.539
Maximum 0.559 1.192 1.543 1.97 Maximum 0.627 1.358 1.504 1.631 Maximum 0.665 1.411 1.477 1.641
Median 0.517 1.049 1.361 1.654 Median 0.555 1.15 1.396 1.53 Median 0.599 1.176 1.383 1.551
BIC 0.539 0.898 1.268 1.754 BIC 0.53 1.024 1.313 1.516 BIC 0.565 1.038 1.305 1.531
Akaike 0.504 0.964 1.524 1.708 Akaike 0.487 1.039 1.281 1.407 Akaike 0.54 1.05 1.303 1.503

Minimum 0.356 0.744 1.168 1.099 Minimum 0.406 0.751 0.838 1.028 Minimum 0.398 0.706 0.828 0.935
Mean 0.421 0.931 1.603 2.051 Mean 0.426 0.791 0.957 1.090 Mean 0.434 0.739 0.875 0.995
Maximum 0.424 0.936 1.589 2.237 Maximum 0.431 0.792 0.940 1.103 Maximum 0.436 0.74 0.875 1.008
Median 0.499 1.121 1.904 6.874 Median 0.463 0.829 1.035 1.273 Median 0.47 0.764 0.918 1.255
BIC 0.455 0.988 1.471 6.274 BIC 0.473 0.814 0.958 1.137 BIC 0.456 0.742 0.892 1.031
Akaike 0.387 0.939 1.247 6.411 Akaike 0.419 0.855 0.828 1.090 Akaike 0.439 0.777 0.841 1.099

delta1 0.612 0.820 0.986 1.090 delta1 0.612 0.820 0.986 1.090 delta1 0.612 0.820 0.986 1.090
delta3 0.583 0.804 0.962 1.071 delta3 0.583 0.804 0.962 1.071 delta3 0.583 0.804 0.962 1.071
delta6 0.561 0.791 0.941 1.039 delta6 0.561 0.791 0.941 1.039 delta6 0.561 0.791 0.941 1.039
delta12 0.587 0.798 0.933 1.020 delta12 0.587 0.798 0.933 1.020 delta12 0.587 0.798 0.933 1.020
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