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This paper uses Garch models to estimate the objective and risk-neutral density functions
of ¿nancial asset prices and, by comparing their shapes, recover detailed information on
economic agents’ attitudes toward risk. It differs from recent papers investigating analogous
issues because it uses Nelson’s (1990) result that Garch schemes are approximations of the
kind of differential equations typically employed in ¿nance to describe the evolution of asset
prices. This feature of Garch schemes usually has been overshadowed by their well-known role
as simple econometric tools providing reliable estimates of unobserved conditional variances.
We show instead that the diffusion approximation property of Garch gives good results and can
be extended to situations with i) non-standard distributions for the innovations of a conditional
mean equation of asset price changes and ii) volatility concepts different from the variance.
The objective PDF of the asset price is recovered from the estimation of a nonlinear Garch
¿tted to the historical path of the asset price. The risk-neutral PDF is extracted from cross-
sections of bond option prices, after introducing a volatility risk premium function. The direct
comparison of the shapes of the two PDFS reveals the price attached by economic agents to the
different VWDWHV RI QDWXUH. Applications are carried out with regard to the futures written on the
Italian 10-year bond.
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�� ,QWURGXFWLRQ1

It is now a common practice among researchers and practitioners to extract detailed

IRUZDUG�ORRNLQJ information from ¿nancial asset prices. Recently, much interest has been

devoted to recovering the risk-neutral probability density function (henceforth PDF) of asset

prices embodied in the prices of options. The characteristics of the risk-neutral density can be

recovered from a panel of option prices by estimating the parameters of a system of stochastic

differential equations, a ¿eld in which non-parametric or semi-non-parametric (SNP) schemes

have found an increasing role. Examples are the non-parametric approach to the term structure

modeling and option pricing of Aït-Sahalia (1996a,1996b), Aït-Sahalia and Lo (1998, 2000)

and Aït-Sahalia HW DO. (1998) as well as the SNP model coupled with ef¿cient method of

moments (EMM) employed to estimate the parameters of a short term interest rate diffusion by

Gallant and Tauchen (1998) and applied to an option pricing scheme by Chernov and Ghysels

(2000). Despite the Àexibility of such estimators, in this paper we adopt a more parametric

approach to extract the information contained in the objective and the risk neutral distribution

functions of the futures contract written on the Italian 10-year benchmark government bond

(henceforth BTP). We do this by adopting a Garch scheme as a tool to recover the coef¿cients

of the underlying continuous time generating process, both under the objective and the risk-

neutral measures. Though the motivation and the contents of this paper are intrinsically linked

to the alternative analyses mentioned above, there are many original aspects in our work: i)

compared to the non-parametric approach we explicitly consider a true stochastic volatility

case, as revealed by the use of a discrete time Garch model as a continuous time stochastic

volatility ¿lter, along the lines put forward by Nelson (1992� 1996) and Nelson and Foster

(1994)� ii) compared to EMM estimation, our auxiliary model is not as highly parametrized

as required by that technique� we use an auxiliary (discrete time) model that is close to the

continuous time scheme and our need for indirect inference is only required as a correction for

the GLVDJJUHJDWLRQ bias (see Section 2.1)� iii) from a more technical standpoint, unlike Chernov

and Ghysels (2000) we do not impose linearity for the drift function of the volatility process

under the risk neutral probability measure. Instead we propose a risk premium volatility

4 We wish to thank the participants of the CEF99 Conference, Boston College, June 1999. Our gratitude
goes also to Andrea Beltratti, Jens Jackwerth, Loriana Pelizzon, and to an anonymous referee who raised relevant
and helpful points. Responsibility for any views or errors in the paper rests with the authors, who can be reached
at the following e-mail addresses: IRUQDUL�IDELR#LQVHGLD�LQWHUEXVLQHVV�LW and DQWRQLR�PHOH#X�SDULV���IU
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surface that is a polynomial function of the primitives of the model and we test and compare

its ability to price options against the competing linear speci¿cation� iv) ¿nally, we investigate

a central issue of ¿nancial analysis, i.e. whether volatility risk is priced and what is its shape.

The paper is organized as follows: Section 2 shows how to use Garch models to estimate

the density functions under the objective and risk neutral measures. Section 3 applies the

techniques developed in Section 2. Section 4 compares the shapes of the two densities and

recovers parameters of interest for risk management. Section 5 concludes.

�� 5HFRYHULQJ WKH 3')

2.1 2EMHFWLYH PDF� '*3�EDVHG DQDO\VLV

Derivatives are typically priced upon the assumption that the value of the underlying

asset is a solution of a stochastic differential equation (SDE) with ¿xed variance such as:

_8| ' > � 8| � _|n j � 8| � _`
E��
| c(1)

where 8 is the underlying price process (e.g., the price of a share or the price of futures

written on bonds), ` E�� is a standard Brownian motion, > a real parameter and j the volatility

parameter.

The empirical evidence has strongly rejected the assumption of stability of j in ¿nancial

markets, showing instead that volatility evolves according to an unpredictable sequence of

calm and turbulence, i.e. to heteroskedasticity. With heteroskedastic returns the evaluation

of derivative assets becomes more dif¿cult than in the standard Black and Scholes (1973)

world� also, the Black and Scholes model suffers severe distorsions (Hull and White, 1987).

Allowing variance to be generated according to an autonomous SDE, generally translates in

closed-form solutions requiring highly restrictive assumptions� Hull and White, the typical

reference model, assume that the price of the underlying asset follows (1) with j2 being the

solution of another SDE:

_j2| ' � � j2
| � _|n l � j2| � _`

Ej�
|
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where ` Ej� is a Brownian motion, and �c l real parameters. To derive a closed-form solution

for the price of a call option based on this model,2 they assume among other things that:

(i) the instantaneous correlation between the two Brownian motions ` E�� and ` Ej� is nil�

(ii) � is nil and (iii) in pricing assets, agents do not need compensation for the Àuctuations of

volatility.3 We will relax the above three assumptions throghout the paper and the basic pricing

methodology that we will follow is based on the simulation of the relevant pair of stochastic

differential equations. This latter tool is necessary whenever one attempts to generalise the

Hull and White model by resorting to more complex dynamics and analytic solutions are

no longer available. Under such conditions, approximating schemes based on conditionally

heteroskedastic autoregressive models represent, in our view and with the support of the data,

a simple tool to recover the parameters of the continuous time model. As we will show, they

can be used either as a GLUHFW device or as an LQGLUHFW device within an indirect inference

approach. Nelson (1990), for instance, showed that there exist versions of Ar(1)-Garch(1,1)4

processes that converge in distribution to the solution of the Hull and White model.5 Other

schemes, better responding to real life, have also been suggested� in particular, if one supposes

that the conditional volatility of an asset price follows the Power Arch scheme of the ¿rst order

introduced by Ding HW DO. (1993), i.e.

jB? ' /� n k� � Em0?3�m � � � 0?3��B n q� � jB?3�c
� 5 E��c ��c E/�c k�c q�c B� 5 -e

n
(2)

where the indexing ? ' fc �c ��� refers to consecutive observations sampled at the same

frequency, and 0? is a sequence of zero mean uncorrelated error terms coming from (3) below,

then Fornari and Mele (1997, 2001) have shown that equation (2), coupled with equations of

the form:

5 Other examples of closed-form solutions for the price of derivatives on assets with stochastic volatility
have been provided by Heston (1993) or Leblanc (1995).

6 It is well known that (iii) is equivalent to the property that traded risks are discounted martingales under
the so called PLQLPDO PDUWLQJDOH PHDVXUH introduced by Föllmer and Schweizer (1991).

7 By Ar(1)-Garch(1,1) we mean that, given a stationary series %w, its conditional mean evolves according to
an autoregressive model of the ¿rst order, while its conditional variance is a Garch(1,1).

8 See, however, Corradi (2000) for conditions under which the diffusion approximation property fails.
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8? ' 8?3� n E� � w� � 8?3�� n 8
�
?3� � 0?c

0? ' Ej � ��?c �? � ����_�c �c w� 5 -2
nc � 5 Efc��c

(3)

are approximating processes converging in distribution toward the solution of the following

stochastic differential system:

_8| ' E� w � 8|� � _|n j| � 8�
| � _`

E��
|

_jB| ' E/ � ) � jB| � � _|n l � jB| � _`
Ej�
|

where c wc /c )c lc B are non negative parameters, ` E�� is a standard Brownian motion,

` Ej�
' 4�` E��

n

s
�� 42 �` E2�, ` E2� another standard Brownian motion (` E2� independent

of ` E��) and 4 5 E��c ��. In models such as (2)-(3), the concept of volatility is not restricted a

priori, as in the traditional Garch(1,1) scheme, but can be estimated from the data� for example,

when B ' � the relevant volatility concept is the standard deviation, while when B ' 2 it is

variance that matters. Note further that leaving B free to be estimated will generaly translate

in a greater Àexibility for the estimation of both the simulated objective PDF of the asset price

and the risk-neutral option pricing function

�| ' e3oEA3|� � .'
| E8A �g�

n(4)

where g is the strike of the option, A is the expiration date, ' is the risk neutral PDF, and o

is the (constant) risk-free interest rate. However, although the methods that we employ in this

paper could allow in principle to obtain consistent estimates of �c c w, the computational effort

would be considerably increased, so that we only restrict attention to the special case � ' �

and  ' w ' f. The model that we take as the DGP in this paper is thus

_8| ' j| � 8| � _`
E��
|

_jB| ' E/ � ) � jB| � � _|n l � jB| � _E4 �`
E��
| n

s
�� 42 �` E2�

| �
(5)
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whereas the discrete-time model that we use as a direct and/or indirect device to estimate the

parameter vector of interest @3 ' E/c)c lc 4c B� is

8? ' 8?3� n 8?3� � 0?c 0? ' Ej � ��?c(6)

with (2) as the volatility propagation equation.

As concerns the discrete-time model, one can easily allow for the case of a non-

normal distribution, normality being unanimously rejected as a conditional or unconditional

representation of the innovations. The speci¿cation that we adopt here is that � is generated

by the JHG:6

� � }e_v '
v � i TE��

2
s
3v
v � m�mv�

2
�n �

v � sv � KE �v �
c s2

v '
KE

�
v
�

2
2

v � KE �
v
�

where KE�� is the Gamma function, and v (v : f) is the tail thickness parameter of the }e_.

Fornari and Mele (1997) showed that in some interesting cases the joint use of EBc v� can

provide enough Àexibility to ¿t complicated asset price dynamics.

To obtain an estimate of @3 within this framework, one can start by estimating the

parameters K ' E/�c k�c q�c �c B� of the discrete time system (6) and (2) by maximum

likelihood (ML),

eK ' @h}4@ 
K

u� E8 ( K�c

where u� E�� is the likelihood implied by the chosen model and � is the sample size.

In a preliminary step, one then recovers the parameter vector of interest @3 by using the

PRPHQW FRQGLWLRQV that guarantee the convergence in distribution of the discrete time system

toward (5), i.e.:

9 *HG stands for the JHQHUDO HUURU GLVWULEXWLRQ.
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/ ' {
3�*2 � /�

) ' {
3� � E�� ?Bcv � dE� � ��B n E� n ��Bo � k� � q��

l ' {
3�*2 �

t
EE6Bcv � ?2Bcv� � E�2BW n �2BWW�� 2 � ?2Bcv � �BW � �BWW� � k�

4 '
2
B3vn�

v � sBn�
v � KE Bn2

v
� � E�BW � �BWW�

KEv3��
t
E6Bcv � ?2Bcv� � E�2BW n �2BWW�� 2?2Bcv � �BW � �BWW

�W ' �� �(7)

�WW ' � n �

?Bcv '
2
B

v
3� � sB

v � KE
Bn�
v
�

KE
�
v
�

6Bcv '
2
2B

v
3� � s2B

v � KE2Bn�
v

�

KE
�
v
�

where { is the fraction of the sample frequency to the “numéraire” period (e.g., { '
�
2e

if the

sample frequency is hourly and the unit of time is expressed in days). The derivation of these

formulae is detailed in Fornari and Mele (1997, 2000). To get an intuition of them, let /� be a

sequence of the form E/����f,

)� ' �� ?Bcv � dE�� ��B n E� n ��Bo � k� � q�

l� '

t
E6Bcv � ?2Bcv� � dE�� ��2B n E� n ��2Bo� 2?2

Bcv � E�� ��B � E� n ��B � k�

and

�1�& '

������&I
�

���B � E� � � � r&�B �.E
������&I

�

���B � E� � � � r&�B�t
E6Bcv � ?2Bcv� � dE�� ��2B n E� n ��2Bo� 2?2Bcv � E�� ��B � E� n ��B

c

where �
�
�&I
�

is }e_. Then formulae (7) are identifying conditions: (2) and (6) can be embedded

in a scheme of the form

�8�E&n�� � �8�& ' �j�E&n�� � �8�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E/� � )� � �j

B
�&� n l� � �j

B
�& � �1�&

(8)
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when � ' �� if there exist sequencies of the form E/����fc E)����fc El����f such that

*�4��f �
3�/� ' /c *�4��f �

3�)� ' )c *�4��f �
3�*2l� ' l , then (8) converges in distribution

to the solution of (5) as � & f. As regards the intuition behind 4 in (7), this can be based on the

appealing result that:

l3�
�

�
.

#
�8�& � �8�E&3��

�8�E&3�� � �j�&
�
�j

B
�E&n�� � �j

B
�&

�j
B
�&

* I�&

$
��f

$ 4c

where I�& denotes the sigma-algebra generated by �8fc �8�c �82�c ���c �8�E&3�� and �j
B
fc �j

B
�,

�j
B
2�c ���c �j

B
�& . The same approximating scheme holds trivially for a conditionally normal

Garch, after setting B ' v ' 2c � ' f.7

One general dif¿culty with the moment conditions reported in (7), however, is that the

class of strong Garch models (those for which the rescaled innovations, 0?
j?

, are i.i.d.) is not

closed under temporal aggregation (Drost and Nijman, 1993� Drost and Werker, 1996) so that

when the continuous time parameters obtained via (7) are plugged into a Euler’s discretization

of (5), a GLVDJJUHJDWLRQ bias arises. Hence they must be regarded only as a starting point for

an indirect inference approach which delivers their unbiased estimates for the chosen discrete

frequency. Thus model (2) and (6), i.e.,

8?n� � 8? ' j?n� � 8? � �?n�c �? � }e_v
jB?n� � jB? ' /� � dE� � ?Bcv � dE� � ��B n E� n ��Bo � k� � q��o � jB?n

k� � jB? � dm�?m
B � E� � � � r?�B � .Em�?m

B � E�� � � r?�B�oc r? � signE�?�

can be used as one of the possible discrete time counterparts of the DGP in an indirect inference

scheme with simulations drawn from

�8�E&n�� � �8�& ' �j�E&n�� � �8�& � ���E&n��

�j
B
�E&n�� � �j

B
�& ' E/ � ) � �j

B
�&� � �n l � �j

B
�& � �1�& �

s
�

(9)

: In a companion paper devoted to term-structure issues (Fornari and Mele, 2001), we show that formulae
(7) indeed provide a reasonable approximation, in that the correction introduced by indirect inference is not
important in terms of a speci¿cation test based on the ex-post adequacy of an approximating model having the
form (2) and (6).
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for � ' �3_ with _ : �
2
.8 We also double the dimension of the high frequency generator by

replacing �1�& �
s
� with �

h1�E&n��, where .E�h1�&� ' f, varE�h1�&� ' � and corrE���& � �
h1�&� '

4 � �, for all �.

We leave B to be estimated by maximum likelihood, so that the parameter vector of

interest to be recovered restricts to @ ' E/c)c lc 4�. The indirect inference estimation

then runs as follows. After simulating (9) in correspondence of values of @, we obtain

�c�
h8 Er�

E@� '

q
�
h8 Er�
�& E@�

r�*�
&'f

, r ' �c ���c 7, where 7 is the number of simulations. For

each simulation we retain the values of h8 Er� which correspond to integer indexes of time and

estimate the auxiliary model on each simulated series to get

eKE���crE@� ' @h}4@ 
K

u� E�c�
h8 Er�

E@�( K�c r ' �c ��c 7c

where �c�
h8 Er�

E�� denotes the set of the bond futures prices with integer indices of time under

simulation r and time interval �. An indirect estimator of @ is the solution �h@� , say, of the

system:

�h@� G f ' eK� � �

7

7[
r'�

eKE���crE�h@� ��
The asymptotics for �h@�E@f� can be found in a straight forward manner by combining

Gouriéroux HW DO. (1993), and Broze HW DO. (1998), speci¿cally:

s
� E�e@� E@f�� @f���"c��f

_$ �

�
fc
7 n �

7
ET 3�

f a3�f Ufa
3�
f T �3�

f �

�
c(10)

where @f is the true parameter vector in (5), Tf is the e%e Jacobian matrix of the binding

function (here, the derivatives of the discrete time parameters with respect to the continuous

time parameters) evaluated at @f, af the pseudo-true Hessian and Uf the pseudo-true covariance

matrix of the scores of the auxiliary parameters.

; Such a value for k avoids asymptotic bias due to simulations� see Broze HW DO. (1998).
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2.2 5LVN�QHXWUDO PDF� RSWLRQ EDVHG DQDO\VLV

In this subsection we present the scheme designed to recover the risk-neutral PDF.

Given the model presented in the preceding sub-section under (5), the methodology here

consists in calibrating the parameters of the analogous continuous time bivariate diffusion

which generates, under the risk-neutral measure, the changes in the underlying asset 8| and

its volatility jB| in such a way as to match, as closely as possible, observed cross-sections of

option prices with different strike prices and times to expiration. The assumption underlying

our method is that the market is correctly pricing the options by formula (4). Under the risk-

neutral probability measure, by Girsanov theorem system (5) can be written as

_8| ' �bE��| � j| � 8| � _|n j| � 8| � _f̀E��
|

_jB| ' E/ � ) � jB| � l � 4 � jB| � b
E��
| � l �

s
�� 42 � jB| � b

E2�
| � � _|

n l � jB| � E4 � _f̀E��
| n

s
�� 42 � _f̀E2�

| �

(11)

where f̀E�� and f̀E2� are standard Brownian motion under a probability measure ' that is

absolutely continuous with respect to � , the primitive, objective measure and bE��c bE2� are

to be interpreted as risk-premia associated with the Àuctuations of the (original) Brownian

motions, measurable with respect to the ¿ltration of E` E��c` E2�
� under'. To ensure existence

for the measure ', it is suf¿cient to impose a Novikov condition on bE��c bE2�. Furthermore,

the market incompleteness argument which affects schemes as (5) where the asset 8 has to

cope with two sources of risk, loses strength if the option is taken to complete the markets

in the Bajeux and Rochet (1996) sense and according to the further developments in Romano

and Touzi (1997), as concerns an extension of the Bajeux and Rochet results to the case of a

correlation process and general risk-premia of the kind that is considered here. This means

essentially that bE�� and bE2� could be uniquely determined via preference restrictions of a

representative agent. As regards bE��, we have immediately by the martingale property of

e3o| � 8| under ' that it must satisfy: bE�� ' �o � j3�.9 Substituting back into (11),

< The fact that �+4,
? 3 does not necessarily imply that agents are risk-lovers in a model with 1) stochastic

volatility� 2) negative correlation between volatility and the asset price� 3) positive risk-premia for volatility. A
proof of this is available on request. All these conditions are met in our empirical implementation of the model�
in Section 4 we show indeed that risk aversion is positive for a wide range of values of F.
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_8| ' o � 8| � _|n j| � 8| � _f̀E��
|

_jB| ' E/ � ) � jB| n o � l � 4 � jB3�| � b
E2�
| � l � jB|

s
�� 42� � _|

n l � jB| � E4_f̀E��
| n

s
� � 42_f̀E2�

| ��

(12)

It remains to identify the risk-premium bE2�. Although this can be done through a

representative agent argument, as put forward before, we assume here that it can be reasonably

represented by means of a polynomial structure. This idea follows from bE2� being measurable

with respect to the ¿ltration of E` E��c` E2�
� and, further, by combining a result of Harrison

and Kreps (1979) with Romano and Touzi (1997), from the circumstance that the ¿ltration of

E` E��c` E2�
� and the ¿ltration of E8c j� must coincide: then bE2� is a functional of past and

current values of E8c j�. We restrict attention to a Markovian structure and take the following

form:10

b
E2�
| = \E8|c j|� ' R� n R2 � jB| n R� � j2B| n

Re

jB
|

�(13)

We call the preceding function YRODWLOLW\ ULVN SUHPLXP VXUIDFH. Our objective now is that

of estimating the parameter vector i ' ERo�
e
o'� in (13) and recover the shape of such unknown

function. To do this, we simulate system (12) from the current period | up to maturities

A ' dA�c ��c A��
o, where A matches the maturities of observed cross-sections of �� n �2

traded options, where the additional �2 options come from the observed structure of the strike

prices. In practice, the risk-neutral PDF is easily obtained by matching the observed to the

theoretical option prices, the latter being simulated from the bivariate data generating process

of 8 and jB under ', where the vector of parameters @_ � E/c)c lc 4� is ¿xed at the indirect

inference estimates �e@� E@f� obtained before and the only unknown left to be determined are

the coef¿cients in i� For each simulation �, the call prices are evaluated for the observed strike

prices as ��cA
�

Ei� ' �
r�6

� e3oEA�3|� �
Sr�6

�'�E8A
�
c�Ei��g��

n, where 8A
�
c�Ei� denotes the price

at time A� at the �-th simulation obtained with the parameter vector i, r�6 is the number of

simulations and g� is the � � |� strike price (� ' �c ��c �2). The measure of distance between

43 We started with a much more complicated functional form, but (13) gave the best results with the data
employed in Section 3.
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observed and ¿tted prices can be constructed as(Ei� ' �
��n�2

S��

�'�

S�2

�'� d��cA
�

� ��cA
�

Ei�o
2,

where ��cA
�

is the observed option price� an estimator of i is @h}4�?id(Ei�o. More details of

this are reported in Section 3.

�� (PSLULFDO DQDO\VLV

So far we showed the usefulness of Garch schemes in approximating models developed

in continuous time as systems of stochastic differential equations. To recall, the discrete time

coef¿cients of a Garch(1,1) or a Power Arch(1,1) are employed to recover the parameters of

the continuous time model to which they converge via the moment conditions (7). Then such

parameters are corrected for the disaggregation bias by indirect inference and used to simulate

paths of the asset price 8A (A : |). Under the risk-neutral measure, the corrected coef¿cients

obtained for system (5) under the objective measure are still inserted in the simulation scheme

(12) of the asset price and volatility under the risk-neutral measure� in addition explicit account

is here made for the functional form of the volatility risk premium, whose parameters are

identi¿ed by ¿tting option prices obtained averaging the discounted values of E8A � g�
n

over the simulations. Though we are mainly interested in the density sE8 �, it is worth

pointing out that, under the objective measure, other distributions can be extracted from the

simulation scheme� also, response analyses to modi¿cations of the parameters of the SDE can

be envisaged, which may turn out useful for applications dealing with the measurement of the

so-called Value-at-Risk (VaR). For example, the densities s E8c |c A � and }Ej2c |c A � or the joint

density ^E8c j2� can be constructed through a Monte Carlo simulation of (5) performed by the

Euler-Maruyama discretization scheme of the type reported in (9).

To start with the objective density function, eqs. (2) and (6) are estimated with a }e_-

based likelihood function as illustrated in sub-section 2.1. These estimates are performed for

the full sample 1-Jan-1991 to 20-Jan-1997 as well as for two sub-samples having the same

origin but ending on 22-Jul-1996 and 22-Oct-1996 respectively. Results for the three samples

are reported in Table 1 for the Power Arch(1,1) case.11 The conditional distribution of the errors

departs from normality, as highlighted by v, the tail-thickness parameter, which is signi¿cantly

different from two and more supportive of a Laplace assumption, even though this hypothesis

44 The choice of these three samples follows from previous work investigating market’s ability at forecasting
of¿cial interest rate moves. For this reason all of the three samples end the day before a change in the of¿cial
interest rates. This circumstance has obviously no direct implication in the present work.
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has to be statistically rejected.12 The estimate of B is very close to unity, though increasing

across the three dates Ef�HSc f�bbc���b�� a standard volatility concept based on the variance (i.e.

B ' 2), for instance, is rejected. However, we repeat the estimates also for a Garch(1,1) with

conditionally normal errors which, providing a discrete time approximation for the well-known

Hull and White (1987) scheme, may provide a benchmark in the option pricing application

reported below. The values of the parameters that maximise the likelihood function in this case

are reported in Table 2. Table 3 reports the four continuous time parameters computed using

the moment conditions (7). These ¿gures are corrected via the indirect inference principle as

shown in Table 4. In the three Garch cases (Table 4 last three lines) the effect of the correction

was sizeable, with seven out of the nine changes exceeding 20 percent. The drift parameter )

moves from f��bH to f��Dc from f�2�2 to f��H and from from f�2. to f��D in the three samples

respectively, while the diffusion terms are strongly pushed downwards, from f�be, f�bf and

f�H� to f�.D, f�Sf and f�SD. The corrections are much lower in the case of the Power Arch

scheme, with just one coef¿cient out of 12 changing by more than 20 percent. The volatility

drift coef¿cients ()) were f�H2, f�.e, f�DS at the three dates and the corrected ¿gures f�bf, f�Sf

and f�Sf� the analogous ¿gures for the diffusion terms move from f�D�, f�DD and f�Se to f�S�,

f�DD and f�D.. The coef¿cient of conditional correlation remains stable after the correction.

We evaluated the t-ratios for the corrected coef¿cients with concern only for the case in

which the Power Arch plays the role of auxiliary model (it will also be the only scheme upon

which the subsequent analysis rests) and for the overall sample. For the vector of parameters

Ef�f�Dcf�SDc f�D.c�f�DS� (Table 4, last column, ¿rst four rows) the corresponding t-ratios,

evaluated according to the variance in (10), were found to be E2��e�c .���c ���ec���.f�, highly

supportive of the signi¿cance of the estimates. It is also interesting to note that three out of

the four coef¿cients obtained as concerns this sample through the moment conditions (7) (see

Table 3, last column, ¿rst four rows) are within the 95 percent con¿dence bands de¿ned by the

corresponding indirect inference estimates and by the t-ratios reported above. The continuous

time coef¿cient / fails, albeit marginally (its value based on formulae (7) is 0.01269 against

a lower value of the con¿dence band as of 0.0137) to reconcile with the indirect inference

correction.13

45 In the three cases the closest-to-unity value that cannot be statistically rejected is approximately 1.1.

46 Analogous results supporting the reliability of the continuous time coef¿cients implied by the Power Arch
via closed formulae (7) were found in a closely related paper (Fornari and Mele, 2001). See also Fornari and
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The objective PDF at two dates, based on these coef¿cients, will be shown, along with

the risk neutral PDF, in Section 4. As recalled before, apart from the density sE8 �, one can

obtain other information items from the simulation scheme based on system (5). To brieÀy

illustrate this opportunity, some additional information about the objective data generating

process has been evaluated for the ¿rst of the three dates analyzed, 22 July 1996, for the Power

Arch case only. The closing price of the futures on that day was 117.59, the (not rescaled)

conditional variance 2��S � �f3D� In Figures 1 - 3 we show the distribution of the BTP futures

price, sE8 �c and the densities of the continuously compounded returns (�) evaluated at three

horizons, 60, 20 and 5 days, i.e. }E�c |cSf�, }E�c |c2f�, }E�c |c D�, where with }E�c |c 5� we

denote the probability of � at time | n 5 E5 : f� given time |. The density of the returns

is obtained as in Aït-Sahalia and Lo (2000), i.e. }E�c |c 5� is recovered by ¿rst evaluating the

(� ' A � |)-period continuously compounded returns, �� ' *L}E
8
A

8|
� and then constructing a

kernel estimator of the density function }E�� of these returns.14 The relation between }E�� � and

sE8c |c A � can be established by noting that

�hE8A � 8 � ' �hE8|e
�� � 8 � ' �hE�� � *L}E8*8|�� '

] *L}E8*8|�

3"
}E�� �_�� �

In a second step the price density sE8c |c A � corresponding to the return density estimated in

the ¿rst step is recoverd as:

s E8c |c A � '
Y

Y8
�hE8A � 8 � '

}E*L}E8*8|��

8
�(14)

This is the density that we use in Section 4� an analogous device will be used to get the

risk-neutral density that is also used in Section 4.

The two types of densitites (of prices and returns) are based on a single long simulation of

200,000 points drawn at the frequency of 20 per day, which have been successively re-sampled

Mele (2000) for further discussion.

47 Details on kernel estimation can be found in Härdle and Linton (1994). The reason for adopting kernel
estimation is here purely related to graphical purposes, i.e. to nicely represent the simulated PDF.
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at the desired daily frequency, giving a total of 10,000 points. We also performed a sensitivity

analysis exercise, in which the diffusion coef¿cient of the conditional volatility equation and

the speed of reversion of the conditional volatility to its long run mean (which equals /*) as

can be easily seen from (5)) are moved away from their original values (see Table 4, ¿rst

column, Power Arch case)� this last exercise would be helpful, within a VaR strategy, to

anticipate how worse a portfolio’s risk might become in a particularly turbulent environment.

Figure 1 shows three price densities: the distribution labelled with (1) corresponds to the

simulation performed with the estimated parameters (reported in Table 4)� label (2) indicates

that the diffusion parameter in the volatility equation has been set to its original value of Table

4 plus one� label (3) indicates instead that the coef¿cient of autocorrelation of the volatility

has been lowered from the estimated ¿gure (0.9857) to 0.9642, while the diffusion parameter

has been lowered by 0.5. The most evident thing to see is the larger area put especially in

the left tail when the diffusion parameter of the variance equation is increased, which would

attach positive probability to outcomes earlier considered as irrealistic. The densitites reported

in Figure 2 are drawn conditional on the estimated parameters� they highlight the range of

possible outcomes, expressed in terms of returns, which one may expect 5, 20 and 60 days

ahead. It is evident that the typical gaussian quantiles employed in most VaR applications

would fail substantially in the de¿nition of H[WUHPH HYHQW at the 60-day horizon, quite a typical

one in most practical cases. The lower value of the diffusion parameter in the volatility

equation, under which the densities of Figure 3 are drawn, evidences the greater weight of

FHQWUDO HYHQWV rather than WDLO HYHQWV, compared with Figure 2. It is interesting to note, looking

at Figure 2, the negative skewness of the distribution which, in principle, one would not

expect when 8| evolves like a martingale with ¿xed volatility or with stochastic volatility not

correlated with 8| itself. In the present situation, i.e. with negative correlation between the two

Brownian motions, one would instead expect positive skewness to appear, given that returns

fall when the shock to the volatility (hence the volatility) increases. This kind of results, i.e.

the ¿nding of a negative skewness, is however in accordance, for instance, with Heston (1993).

What happens is that the negative correlation between the sources of risk increases the area in

the left tail of the returns distribution, an occurrence which ¿nds compensation in an additional

probability mass in the positive range of returns, aimed at forcing the density to still integrate

to one.
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Coming to the risk neutral PDF, it is worth considering that if risk-premia were

negligible, the values of the four relevant parameters obtained under the objective measure

would deliver the optimal pricing scheme also for the call options under the equivalent

probability. To test this, and indirectly to evidence the presence of a volatility risk premium,

we evaluated the option prices by re-interpreting system (5) under the risk-neutral measure�

in this scheme the price of each option is obtained as the average of 1,000 simulated prices.

The parameters which best priced the three samples of options are reported in Table 5 for both

the Garch and the Power Arch case� options are evaluated according to (4). The ¿t of the

two models at the three dates, 22 July and 22 October 1996 and 20 January 1997, is based

on cross sections of 107, 140 and 135 options, respectively, with maturity ranging from 51 to

149 days� the constant short term interest rate has been ¿xed at 5.0 percent (per year)15. There

are sizeable differences between the objective and the hypothetical risk-neutral parameters,

suggesting that volatility risk is priced by economic agents since, if this were not the case, the

parameters should indeed stay unchanged under the two measures.16 Under the Power Arch

scheme the three sums of squared pricing errors were 4.79, 5.05 and 5.69 for the three dates

respectively, which amounts to a mean squared error slightly above 4 percent on average. The

same measure nearly doubles with the Garch assumption and highlights the importance of

adopting a proper parametrization of the volatility dynamics.

At this point we use equation (12) and ¿x the relevant vector of parameters at the values

appearing under the objective measure� in addition, we let o and b
E2�
| , as generated by (13),

reveal the risk premia required for the Àuctuations of the two state variables� as before, each

option price is obtained as simple average of 1,000 simulated prices.17 From now on we will

work only with the Power Arch pricing scheme, based on its superior pricing performance, as

evidenced by the preliminary test of Table 5. We use the functional form of (13) for bE2�| and we

manage to select values for R��Re which produce pricing errors analogous to those previously

obtained in Table 5, when the objective parameters were free to vary and accommodated the

48 Option prices are closing prices. In all cases the regression of the 1,000 simulated prices on a constant
revealed that the latter was statistically signi¿cant, which supports the validity of the pricing procedure.

49 Recent independent work by Chernov and Ghysels (2000) addresses the problem of employing past returns
and option prices jointly in the estimation of the relevant parameters of the asset price diffusion.

4: Since antithetic variates are employed, the simulated prices for each option are 4,000, due to 1,000 times
the (four) combinations of the sign of the two sources of noise. In any case we report the prices to be 1,000 since
1,000 is the WUXH number of errors drawn at the beginning of the simulation.
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presence of volatility risk premia. The coef¿cients of this functional form, which does not

include any power of the ¿rst state variable, i.e. the futures price, while it includes three of the

volatility, speci¿cally (jBc j2Bc �
jB
�c in addition to a constant term, for the three dates employed

throughout the paper are shown in Table 6 along with the pricing errors� the shape of the three

risk premium functions is reported in Figure 4. A major concern we had about the stability

of this functional form did not turn out to be motivated: the curve appears noticeably stable

across the three dates. This is quite an important and reassuring evidence, since the results

of the following section, which focuses on the state price densities, rest on the stability of the

prices of risk.

To have additional evidence on the stability of such estimated risk premium functions

we enlarged the analysis to a much wider sample. This is made up of 29,173 call options

quoted at Liffe and collected between December 18, 1995 and January 31, 1997, embracing

the three single dates analyzed before� the maturity of the options ranges from 21 to 147 days

and their prices are daily closing prices. The identi¿cation of the volatility risk premium in

this larger sample is carried out on two sub-samples of options, both spreading the whole time

sample but differing as concerns moneyness. The ¿rst subsample is made up of 7,621 options,

which are selected according to the criterion employed by Chernov and Ghysels (2000), based

on discarding all the options whose moneyness falls below 0.97 and beyond 1.03. The second

sub-sample considers instead the 15,045 options whose moneyness ranges between 0.93 and

1.07� it is used to test the adequacy of the nonlinear volatility risk premium function at pricing

in- and out-of-the-money call options. For the ¿rst sub-sample we report, in the fourth line of

Table 6, the volatility risk premium speci¿cation which delivers the best ¿t� again, it does not

change signi¿cantly from the speci¿cation adopted in the ¿rst three single trading days.

The value of the pricing error over the 284 trading days and for all the options observed

in a given day is reported in Figure 5. It is analogous in size to the value recorded on July

22, 1996 and is worth noting that 0.045 (i.e. 4.5 percent) is the average value for all of the

284 trading days analyzed, including 11 days in which the error was slightly above 10 percent,

which have not been reported in Figure 5 for graphical reasons. This result is not worse than

the ¿gures reported in Chernov and Ghysels (2000), who found the equivalent of our pricing

error to be, for options with moneyness ranging from 0.97 to 1.03 and for all the maturities

observed in the market, 8.1 percent under the Black and Scholes pricing scheme and 6.3 under
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Heston’s (1993) stochastic variance scheme. When the sample is further enlarged to consider

out- and in-the-money options, yet the best functional form of the volatility risk premium

does not change� in this case, however, the mean squared percentage error nearly doubles, to

reach 8.5 percent (Table 6, last line). Analogous ¿gures from Chernov and Ghysels are not

available in this case, since the authors choose not to price options with moneyness beyond

1.03, given the reported lack of liquidity for such instruments� in any case, the errors they make

in pricing options with all maturities and with moneyness ranging from 0.94 to 1.03 are 6.1

percent under Black and Scholes and 4.0 employing Heston’s model. It is obvious to conclude

that the greatest part of the additional errors made by our pricing scheme in the second larger

sample (Table 6, last column, last line, against last column, sixth line) must be attributed to

thinly-traded in-the-money options.

�� ,PSOLFDWLRQV IRU ULVN PDQDJHPHQW

Before examining the indications about risk which one can draw from the estimated

density functions, we brieÀy illustrate why comparing the two types of PDF assumes particular

relevance in ¿nance. First of all, as outlined in Aït-Sahalia and Lo (2000), the ever expanding

liquidity of ¿nancial markets and the increasing globalization calls for appropriate insurance

of economic agents’ portfolios, a necessity which has recently been popularized by the Value

at Risk (VaR) strategy. If an investor did not consider the information contained in the risk-

neutral measure, but were to follow the indications deriving only from the objective, it is

immediate to see, from what explained in Sections 2.1 and 2.2, that his portfolio would be

substantially unbalanced, since he could not include information about state prices. A measure

of risk aversion can be directly extracted from the estimated PDFS, which is important insofar as

it sheds light on the preferences of investors themselves. By using a simple general equilibrium

model à la He and Leland (1993), one has the standard result that:18

V|E8A � �
�-�

E8A �

���aE8A �
' V

L �
A E�A �

L �
|E�|�

(15)

with V constant, where �-� and ���a are the risk-neutral and the objective density,

respectively, LrE�� is the instantaneous utility function as of time r of a representative agent,

4; See Rosenberg and Engle (1998) and Jackwerth (2000) for related work.
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and �r is consumption which equals 8r at r ' A . If VE�� varies across prices one is led to

conclude that signi¿cant information contained in the risk neutral density is not included in

the objective. Hence, a direct measure represented by the ratio �-�*���a is a simple test

for risk-neutrality. Also, Aït-Sahalia and Lo (2000) make the key insight that the coef¿cient

of the Arrow-Pratt measure of absolute risk aversion — 4E8A �, say — can be expressed as

�V�
|
E8

A
�

V|E8A �
' �L ��

A
E8A �

L �

A
E8

A
�
� 4E8A �, which ¿nds empirical counterpart in the expression:

e4E8A � '
E���a

| �
�
E8A �

���a
| E8A �

�
E�-�

| �
�
E8A �

�-�E8A �
(16)

where primes indicate derivatives. In the following applications ¿rst derivatives for both

densities have been evaluated numerically.19

Figure 6 shows the objective and the risk neutral densities estimated on January 20,

1997, while Figure 7 reports the coef¿cient of absolute risk aversion (@o@) obtained with

formula (16) and the marginal rate of substitution (6or)20 obtained as ratio of the risk-neutral

to the objective PDF, as in (15)� ¿gures 8 and 9 show the analogous objects as of October 22,

1996. The different shapes and information contents of the two densities naturally reÀect in

the deviations of @o@ from zero and in the fact that 6or is not constant, which one would

instead ¿nd under risk neutrality, i.e. under absence of risk premia� this is especially true

for deep-in and deep-out of the money states, with discrepancies vanishing as long as the

moneyness approaches unity. The estimated coef¿cients of absolute risk-aversion21 at the

4< We can interpret the exercise of the present section as an experiment carried out in a partial equilibrium
world, in which one investor holds bonds with maturity Wa until W (W ? Wa), sells them to another investor at W ,
and then consumes the receipts at W . While this interpretation is restricitve, it is also very helpful in assessing a
¿st order approximation of attitudes towards risk of market participants.

53 Actually, puv is a proxy for the marginal rate of substitution, since it does not disentangle the constant �
and the level of marginal utility. See formula (15).

54 We remind some well-known basic facts which may help the reader through the results presented below.
Pratt (1964) shows that, given a utility function for money x+{,, the function �+{, @ �x33+{,@x3+{, is interpreted
as a measure of local risk aversion or local propensity to insure (hence ��+{, would measure propensity to
gamble)� it is a decreasing function of { if and only if the cash equivalent is a direct function of the economic
agent’s assets, and a negative function of the risk premium and the amount he would be willing to pay for
insurance. Utility functions for which �+{, is decreasing are candidates to use when describing the behaviour of
people who would pay less for insurance as far as their assets increase� however there are not strong a-priori for
not having utility functions for which �+{, is ¿rst decreasing and then increasing. From an analytical standpoint,
�+{, is a also a measure of the concavity of x+{, at {.

Starting from the de¿nition of absolute risk aversion, that is
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two dates are slightly decreasing from RXW�RI WKH�PRQH\ to DW�WKH�PRQH\ VWDWHV, which can

in principle support the idea that investors are willing to pay less for insurance the higher their

wealth. As of January 1997 the @o@ equals values as high as 0.3 for out-of-the-money states,

then dropping toward zero as long as moneyness moves to unity (i.e. when 8| approximately

equals 133)� as of October 1996 this behavior is much more pronounced, with @o@ decaying

very slowly towards nil to subsequently become largely negative for deep in-the-money states.

In any case the WDLO EHKDYLRU of the absolute risk aversion is very different from the behavour in

the remaining domain of the expected prices at expiration. Analogous indications come from

the 6or being very variable across states (i.e. prices at expiration). These series of proxies for

the 6or naturally embody indications on the expected returns from buying at time | an Arrow-

Debreu security paying one unit of money in a given state and selling it at time A (see, again,

Aït-Sahalia and Lo, 2000)� this type of information is fundamental in revealing the probability

which the market attaches to the occurrence of a given state, which in turn helps to quantify

the proper value-at-risk of a portfolio. In fact

o� '
���a

E8A �

e3o� � �-� E8A �
� �(17)

is approximately the expected return of an Arrow-Debreu security written at | for the state 8A .

It is then interesting to compare the indications coming out of the densities estimated in this

paper to the analogous indications arising from the standard scheme of Black and Scholes.

By ¿xing the standard deviation of the futures price changes to 9.1 percent per year (the

�+{, @ � @ �
x33+{,

x3+{,
@ � g

g{
orj^x3+{,`, it is easy to derive the utility associated to a given value of u+{,,

by integrating, exponentiating and integrating again the above expression, i.e., with imprecise but usual notation,

�

U
� @ orj^x3` . f, x �

U
h
�

U
�. If the local risk aversion is constant f, viz., �+{, @ f all {, then

x+{, � { if f @ 3

x+{, � �h�f{ if f A 3

x+{, � h
�f{ if f ? 3=

The three utilities are linear, strictly concave and strictly convex, respectively. Coming back to the eco-
nomic meaningfulness of having decreasing absolute risk aversion (investors wish to gamble when their wealth
increases) the utility x+{, @ �+e � {,f> f A 4> { � e, cannot have decreasing risk aversion. As Pratt (1964)
shows one can obtain decreasing and increasing absolute risk aversion for different ranges of { by considering
the case where x3+{, @ +{d . e,�f +d A 3> f A 3,, for which u+{, is strictly decreasing when {. e{

4�d
� 3=

Pratt (1964) indicates a set of utility functions which have strictly decreasing risk aversion. Among these,
x+{, � orj+{. g,> g � 3, x+{, @ +{. g,t , g � 3>3 ? t ? 4=
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historical value), we evaluated the objective and the risk-neutral PDF under the Black and

Scholes assumption. Expected rates of return for various states of the futures price for both

the Black and Scholes scheme and the model composed by (5), (12) and (13) are reported in

Figure 10. They evidence, for the sample ending on January 20, 1997, remarkable differences

between the prices to be paid for insurance against the occurrence of most of the price states

reported there. Once again, the importance of an adequate characterization of the price and

volatility dynamics emerges clearly.

�� &RQFOXVLRQV

This paper has shown how nonlinear Garch schemes can be effectively employed to

approximate stochastic differential equations (SDE) typically adopted in ¿nance as law of

motion for the state variables. A practical application involved the estimation of the objective

and risk-neutral densities of the BTP futures price. The objctive PDF is obtained by ¿rst

estimating a Power Arch(1,1) for the log-changes of the BTP price and then evaluating the

continuous time equivalent of the estimated discrete time coef¿cients. Such parameters are

then corrected via the indirect inference principle and subsequently employed to simulate price

paths from the relevant SDE. The risk neutral density is simulated instead from the relevant

SDE, which has the same parameters as the objective density, but includes a volatility risk

premium which is a nonlinear function of the states (futures price and variability), whose

parameters are chosen to ¿t observed cross sections of option prices as closely as possible.

We have shown that the closed form relations of Nelson (1990) that provide the expression

for the continuous time parameters are a reasonable approximation of the limiting process.

This conclusion is more robust in the Power Arch(1,1) case, con¿rming the results obtained

in a related work (Fornari and Mele, 2001). This implies that in principle one can employ

daily data to recover the parameters according to which prices evolve in continuous time. We

have determined the shape of the absolute risk aversion of market participants to BTP futures

trading, showing that risk averse behaviour may emerge for out and in-the-money strike prices.

This also provides information about economic agents’ willingness to risk. With regard to the

measurement of Value-at-Risk we have shown that if economic agents rely on the Black and

Scholes assumptions, insuring against the occurrence of a given state may be dif¿cult.
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Table 1

3DUFK 0RGHOV

(VWLPDWLRQ IURP -DQXDU\ �� ���� WR -XO\ ��� ����

8| ' ��.�Db(j2| ' f�ffff2�SSfH

�| '
8| � 8|3�

8|3�
' 0|( 0| m U|3� � }e_����HH

jf�HSf.| ' ��.H.b � �f3e n f�fHb.�Em 0| m �f�D�De0|3��f�HSf. n f�b2�2jf�HSf.|3�

(VWLPDWLRQ IURP -DQXDU\ �� ���� WR 2FWREHU ��� ����

8| ' �22�Sf(j2| ' f�ffff2f2.SD

�| '
8| � 8|3�

8|3�
' 0|( 0| m U|3� � }e_���f�H

jf�bHSe| ' H�DH�D� � �f3D n f�fHH.SEm 0| m �f�ee�bS0|3��f�bHSe n f�b2�Hbf�bHSe|3�

(VWLPDWLRQ IURP -DQXDU\ �� ���� WR -DQXDU\ ��� ����

8| ' ����e.(j2| ' f�ffff�.��S2

o| '
8| � 8|3�

8|3�
' 0|( 0| m U|3� � }e_��2SHD

j���H.f| ' 2�D�.2e � �f3D n f�fH�2eEm 0| m �f��b�20|3�����H.f n f�b2SS2j���H.f|3�

Note: Power Arch models are all Power Arch(1,1). 8| is the value of the Italian 10-year bond (BTP) futures� j2
|

is its conditional variance� I| is the information set dated t� }e_v indicates the General Error Density de¿ned in

sub-section 2.1 All the parameters are signi¿cant according to the Bollerslev and Wooldridge’s (1992) consistent

t-statistics. Sample size is 1208, 1274, and 1334 for the three sub-samples, respectively.
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Table 2

*DUFK 0RGHOV

(VWLPDWLRQ IURP -DQXDU\ �� ���� WR -XO\ ��� ����

8| ' ��.�Db(j2
| ' f�ffff2D�H.S

�| '
8| � 8|3�

8|3�
' 0|( 0| m U|3� � � Efc j2| �

j2| ' ��ffHD� � �f3. n f�fH�b�02|3� n f�b��ej2
|3�

(VWLPDWLRQ IURP -DQXDU\ �� ���� WR 2FWREHU ��� ����

8| ' �22�Sf(j2
| ' f�ffff2��S�

�| '
8| � 8|3�

8|3�
' 0|( 0| m U|3� � � Efc j2| �

j2| ' 2�bS�e � �f3. n f�fHfe02|3� n f�b�Db2j2|3�

(VWLPDWLRQ IURP -DQXDU\ �� ���� WR -DQXDU\ ��� ����

8| ' ����e.(j2
| ' f�ffff2DeSD

�| '
8| � 8|3�

8|3�
' 0|( 0| m U|3� � � Efc j2| �

j2| ' 2�bS�e � �f3. n f�f.2��02|3� n f�b2�DSj2
|3�

Note: All Garch models are Garch(1,1). 8| is the value of the Italian 10-year bond (BTP) futures� j2| is its

conditional variance� I| is the information set dated t. All the parameters are signi¿cant according to the Bollerslev

and Wooldridge’s (1992) consistent t-statistics. Sample size is 1208, 1274, and 1334 for the three sub-samples,

respectively.



30

Table 3

&RQWLQXRXV WLPH SDUDPHWHUV LPSOLHG E\ WKH GLVFUHWH WLPH SDUDPHWHUV

22 July 96 22 October 96 20 January 97
��-�M

/ H�be � �f32 e�2b� � �f32 ��2Sb � �f32
) f�H�SDb f�.e�HS f�DDb�e

l f�Df.bS f�DD2.� f�S�HfS

4 �f�S��H. �f�DDeHS �f�D2bbe
C�-�M

/ ��Dfee � �f3e ��eH�He � �f3e ��eH�He � �f3e
) f��bH2� f�2��He f�2.2.b

l f�be2�� f�bf2eb f�Hfbe�

Note: The parameters are obtained by replacing the discrete time parameters of Table 1 and 2 into the monent

conditions (7). For the Garch case the instantaneous correlation coef¿cient has been ¿xed at zero.

Table 4

&RQWLQXRXV WLPH SDUDPHWHUV HVWLPDWHG YLD LQGLUHFW LQIHUHQFH

22 July 96 22 October 96 20 January 97
��-�M

/ H�e � �f32 E�S�f� ��D � �f32 E��H�e� ��Df � �f32 E�H�2�
) f�bf E�f�2� f�Sf E��b��� f�SD E�S�2�

l f�S� E2e�f� f�DD Ef�ff� f�D. E����f�
4 �f�SD E�S�2� �f�DH E�e�D� �f�DS ED�.�

C�-�M

/ e�D � �f3D E�.f�f� ��e � �f3e E�D�D� ��� � �f3e E�2D�.�
) f��D E����f� f��H E�2��.� f��D E�ee�e�
l f�.D E�2f��� f�Sf E����D� f�Sf E�2D�b�

Note: These estimates correct those derived through (7) for the (dis)aggregation bias due to the strong Garch class

being not closed under temporal (dis)aggregation� see sub-section 2.1. In parentheses, the percentage change with

respect to the values reported in Table 3. The correction is based on the indirect inference procedure described

in sub-section 2.1. Data are simulated out of the auxiliary model (9) with a frequency of 20 per day� the overall

length of the three simulations is thus equal to sample size times 20. The sample size for the three sub-samples is

1208, 1276, 1334, respectively.
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Table 5

3DUDPHWHUV RI V\VWHP ��� ZKLFK PLQLPL]H WKH RSWLRQ SULFLQJ HUURU

4 / ) l �
S

�

�'�
02
�

�

��-�M

a�,+ 22cbS �f�fSb H�S � �f3e f��2D f���D �f. f�feH

�S|� 22c bS �f��S2 e�.D � �f3e f���f f�2Df �ef f�f�S

a@?� 2fc b. �f��.f ��f � �f3� f�.ef f��ef ��D f�fe2

C�-�M

a�,+ 22cbS f�f 2�S � �f3e f�D2 f���D �f. f���2

�S|� 22c bS f�f 2�H � �f3e f�S2 f�fef �ef f���D

a@?� 2fc b. f�f 2�H � �f3e f�Se f�f�D ��D f�fbf

Note: These estimates refer to system (5) interpreted under the risk-neutral measure. They differ from those obtained

under the objective since they embody information concerning the risk premia related to the Àuctuation of the two

state variables E8c j2�. N is the number of options employed in each of the three samples, 0� is the difference

between the observed and the predicted price of the i-th option. The maturities of the options at the three dates

ranged from 51 to 149 days.

Table 6

&RHI¿FLHQWV RI WKH YRODWLOLW\ ULVN SUHPLXP IXQFWLRQ

R� R2 R� Re

S
�

�'�
02
�

�

��-�M

a�,+ 22c bS E�� 10.0 -9.6 -40.0 -0.045 0.044
�S|� 22c bS E�� 7.5 -9.6 -33.0 -0.017 0.006
a@?� 2fc b. E�� 10.0 -9.6 -40.0 -0.035 0.025
8�,, r@6R,eE2� 7.0 -15.0 -40.0 -0.075 0.045
8�,, r@6R,eE�� 7.0 -15.0 -40.0 -0.075 0.085

Note: The term 0� is the difference between observed and predicted option prices. � is the number of options

employed in the evaluation of the pricing error (see Table 5 for the ¿rst three samples and notes (2), (3) to this

Table for the other samples). The functional form of the volatility risk premium is: b
E2�
| ' R� n R2 � jB| n

R� � j2B| n Re*j
B
| � E

�
� The maturity of the options at this date ranged between 51 and 149 days. E2� The full

sample comprises 284 trading days between December 18, 1995 and January 31, 1997. The call options examined

in this case were those with moneyness ranging from 0.97 to 1.03. There were 7,621 of such options� their maturity

ranged from 21 to 147 days. E�� The full sample comprises 284 trading days between December 18, 1995 and

January 31, 1997. The options examined in this case were those with moneyness ranging from 0.93 to 1.07. There

were 15,045 such options� their maturity went from 21 to 147 days.
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Figure 1
'HQVLW\ IXQFWLRQV RI WKH %73 IXWXUHV SULFH DW -XO\ ��� ����

100 105 110 115 120 125 130 135 140 145 150

(1)

(2)

(3)

The curve labelled as E�� is the density function of the BTP futures prices simulated according to the set of

parameters reported in Table 4. The curve labelled by E2� is the same density but with the diffusion parameter of

the volatility equation equal to the value in Table 4 plus one. The curve labelled by E�� is drawn by setting the

diffusion parameter of the conditional volatility equation equal to the value in Table 4 minus 0.5, while the two

coef¿cients in its drift term are scaled so to bring the autocorrelation of the variance from 0.9857 to 0.9642.

Figure 2
'HQVLW\ IXQFWLRQV RI %73 IXWXUHV UHWXUQV DV RI -XO\ ��� ����

-3 -2 -1 0 1 2 3

(3)

(2)

(1)

The curve labelled by E�� is }E�c |c D�� E2� is }E�c |c2f�� E�� is }E�c |c Sf�. The prices of the BTP futures

are simulated by plugging the parameters reported in Table 4 into system (5).
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Figure 3
'HQVLW\ IXQFWLRQV RI %73 IXWXUHV UHWXUQV DV RI -XO\ ��� ����

-3 -2 -1 0 1 2 3

(3 )

(2 )

(1 )

The curve labelled by E�� is }E�c |c D�� E2� is }E�c |c 2f�� E�� is }E�c |c Sf�. The prices of the BTP futures

are simulated by plugging the parameters reported in Table 4 into system (5) and lowering the diffusion coef¿cent

of the volatility equation by 0.5 and reducing the autocorrelation of the volatility.

Figure 4
9RODWLOLW\ ULVN SUHPLXP
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1 0

0 0 .0 1 0 .02 0 .03 0 .04 0 .0 5 0.06 0 .07 0 .08 0.0 9 0 .1

vo la t ility

(1 )

(2 )

(3 )

The volatility risk premium (vrp) comes from the following speci¿cation: �oR ' R�nR2j
B
|nR�j

2B
nRe*j

B
| .

The parameters are reported in Table 6. The curve labelled by E�� is 22 July 1996� E2� is 22 October 1996� E�� is

20 January 1997. The volatility reported on the x-axis is j.
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Figure 5
2SWLRQ 3ULFLQJ (UURU
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The option pricing error reported in this graph refers to 284 trading days between December 18, 1995 and

January 31, 1997, for a total of nearly 18,000 options. Each point is the average of the squared deviation between

observed and theoretical prices of all options within a trading day.

Figure 6
-DQXDU\ ��� ����� 2EMHFWLYH DQG 5LVN�QHXWUDO 3')

100 110 120 130 140 150 160

objec tive (1)

risk-neutral (2)

The density labelled by E�� is the objective density function of the BTP futures price at January 20, 1997. It is

obtained by simulating (5) with the continuous time parameters reported in Table 4. The curve density labelled

by E2� is the risk neutral density function. It is obtained by simulating system (12) with the continuous time

parameters reported in Table 4 and the volatility risk premium (13) with those reported in Table 6.
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Figure 7
-DQXDU\ ��� ����� 0DUJLQDO UDWH RI VXEVWLWXWLRQ DQG DEVROXWH ULVN DYHUVLRQ
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E�� The term ara is the coef¿cient of absolute risk aversion. It is obtained as � ���a

���a
� � �-�

�-�
where the symbol

’ denotes derivatives and�-� and���a are, respectively, the risk-neutral and the objective densities of Figure

6. E2� The term 6or proxies the marginal rate of substitution� it is obtained as �-�*���a , where �-�

and���a are, respectively, the risk-neutral and the objective densities of Figure 6.

Figure 8
2FWREHU ��� ����� 2EMHFWLYH DQG ULVN�QHXWUDO 3')

10 0 1 05 1 10 11 5 1 20 1 25 13 0 1 35 1 40 14 5

r is k- ne utr a l (2 )

ob jec tiv e  (1 )

The density labelled by E�� is the objective density function of the BTP futures price at October 22, 1996. It is

obtained by simulating (5) with the continuous time parameters reported in Table 4. The density labelled by E2�

is the risk neutral density function. It is obtained by simulating system (12) with the continuous time parameters

reported in Table 4 and the volatility risk premium (13) with those reported in Table 6.
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Figure 9
2FWREHU ��� ����� 0DUJLQDO UDWH RI VXEVWLWXWLRQ DQG DEVROXWH ULVN DYHUVLRQ
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E�� The term @o@ is the coef¿cient of absolute risk aversion. It is obtained as � ���a

���a
� � �-�

�-�
where the

symbol ’ denotes derivatives and �-� and ���a are, respectively, the risk-neutral and the objective densities

of Fugure 8. E2� The term6or proxies the marginal rate of substitution� it is obtained as�-�*���a , where

�-� and���a are, respectively, the risk-neutral and the objective densities of Figure 8.

Figure 10
-DQXDU\ ��� ����� ([SHFWHG UHWXUQV RI $UURZ�'HEUHX VHFXULWLHV

- 0 .2
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1

1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0

( 1 )

(2 )

E�� This curve reports the expected returns of Arrow-Debreu securities evaluated according to the risk-neutral

and the objective densities based on the simulation of diffusions (5) and (12)-(13), respectively, with the parameters

reported in Tables 4 and 6. E2� This curve reports the expected returns of Arrow-Debreu securities evaluated

according to the objective and risk-neutral densities derived from the scheme of Black and Scholes.
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