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1. Introduction1

The procyclicality of productivity is a firmly established stylized fact of industrialized

economies. Yet, assessing the source of such cyclical behavior remains an open issue, which

has crucial implications for understanding the main impulses and propagation mechanisms

underlying business cycles. Indeed, appraising the empirical relevance of each different

explanation of the short-run behavior of productivity helps considerably in the evaluation of

alternative macroeconomic models.

The basic mechanism underlying the standard Real Business Cycle model (RBC)

suggests that business fluctuations are driven by exogenous technology shocks, which thus

explain the cyclical behavior of productivity (e.g., Prescott, 1986; Cooley and Prescott, 1995).

Another explanation, which dates back at least to Solow (1964), hinges on variations of

unobserved factor utilization over the cycle. In this interpretation, the cyclical pattern of

measured productivity originates endogenously from fluctuations in inputs and output.2 It

is argued that significant adjustment costs concerning both hiring and capital accumulation

induce a form of factor hoarding, so that firms utilize inputs more intensively in booms than

in recessions. Reported measures of labor and capital inputs do not properly consider the

movements in effective input services, causing a cyclical mismeasurement in the standard

Solow residual. A third explanation of procyclical productivity is advanced by Hall (1988;

1990) and is based on imperfect competition and increasing returns.3

It is important to recognize, however, that the different explanations of the procyclical

behavior of productivity are not mutually exclusive. For example, increasing concern about the

1 We thank Filippo Altissimo, Steven Davis, Jordi Galì, Luigi Guiso, Charles Himmelberg, Miles Kimball,
Ned Phelps, Giovanni Veronese and seminar participants at Ente Einaudi (Rome), the Bank of Italy and the 2000
SED meeting in San José for helpful discussions and suggestions. Part of this project was conducted while F.
Nucci was visiting the Department of Economics at Columbia University. The hospitality they offered and the
financial support provided by NATO and CNR are gratefully acknowledged. Of course, responsibility for any
remaining error is entirely our own. The views expressed here are our own and do not necessarily reflect those of
the Bank of Italy. E-mail: marchetti.domenicojunior@insedia.interbusiness.it, francesco.nucci@uniroma1.it

2 Recent contributions include Gordon (1990), Bernanke and Parkinson (1991), Burnside, Eichembaum
and Rebelo (1993), Basu (1996), Burnside and Eichembaum (1996), Sbordone (1996; 1997), Basu and Kimball
(1997) and Imbs (1999).

3 Among the other possible sources of procyclical productivity, Caballero and Lyons (1990; 1992) empha-
size the role of productive spillovers operating at the firm level stemming from aggregate activity (increasing
returns external to the firm), whereas Basu and Fernald (1997) ascribe part of the procyclicality to a reallocation
of inputs during booms to more productive firms and industries.
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reliance of early RBC models on large-scale, highly volatile technology shocks led scholars

in the RBC tradition to augment the basic framework with non-technology shocks or with

features that would act as an amplification mechanism, such as variable factor utilization.

Indeed, when account is taken of the latter element, the remeasurement of technology impulses

in RBC models seems to yield more plausible first and second moments as compared with the

Solow residual, and a lower probability of technological regress (Burnside and Eichenbaum,

1996, and King and Rebelo, 2000).

The fact that unobservable factor utilization and other elements have been successfully

incorporated into RBC models makes it harder to assess the empirical relevance of competing

views of the business cycle on the basis of the procyclical productivity puzzle. However, a new

test has been recently suggested in the literature. Basu, Fernald and Kimball (1998) and Galì

(1999) have provided evidence that favourable technology shocks reduce input use on impact.

The empirical finding of a negative short-run relationship between inputs and technology

shocks is hard to reconcile with the RBC paradigm. In these models a technology improvement

induces a positive impact on labor and output, via intertemporal substitution between labor and

leisure, and this result holds no matter how extensively the baseline framework is augmented.

On the contrary, a negative relationship between labor input and technology shocks has been

shown to be consistent with business cycle models with sticky prices (see, e.g., Galì, 1999, and

Kimball and Weil, 2000). Intuitively, if a positive technological shock occurs but output does

not vary significantly because of nominal rigidities, firms will produce the same quantities as

before by utilizing less labor.

Using firm-level panel data drawn from two high quality sources (the Bank of Italy

Survey of Investment in Manufacturing and the Company Accounts Data Service), this

paper contributes to the large empirical literature on the procyclical productivity puzzle,

assessing the empirical relevance of the different explanations proposed. Moreover, it

provides microeconomic evidence on the response of input use to a technology improvement,

shedding some light on the role that technology shocks actually play in business cycles.

To our knowledge, all the empirical studies focusing on these issues have been conducted

on aggregate data at different levels of sectoral disaggregation.4 Such data may have the

4 Malley, Muscatelli and Woitek (1999) use the most highly disaggregated data, i.e. the NBER 4-digit SIC
level productivity database maintained by Bartelsman, Becker and Grey.
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advantage of spanning the whole economy. However, in light of the significant heterogeneity

across firms, theory calls for an investigation on firm-level data. An important advantage of

using microeconomic panel data is that they allow us to control for unobservable individual

idiosyncracies that reflect important characteristics of a firm. Moreover, panel data allows us to

study dynamics for the individual firms, so that, for example, a more precise assessment can be

made of how the firm’s production plans and factor allocation evolve over time. By contrast,

the use of more highly aggregated data, for example sectoral data, would cause individual

idiosyncrasies to wash out in the aggregation process, inducing a potentially serious bias in

the estimates.

Following Basu and Kimball (1997), the theoretical framework used in our investigation

is based on a dynamic cost-minimization problem which allows us to control simultaneously

for all potential sources of procyclical productivity. By imposing the optimality conditions

from this model on a gross-output production function, a suitable empirical specification is

derived. A clear advantage of this approach is to provide evidence on the importance of each

component of the Solow residual: that stemming from imperfect competition and increasing

returns, that due to variable intensity in factor use and that due to technology shifts. Of course,

the intensity of labor and capital utilization are not observable. In order to identify these

variable service flows, we assume that more intense utilization of installed capital implies

faster depreciation and that effort per hour is related to the number of hours worked.

Estimations are conducted using the generalized method of moment (GMM) estimator

for panel data developed by Arellano and Bond (1991). A highly refined estimate of

technology change is obtained, where all the “non-technology” components of Solow residuals

are net out. We investigate the cyclical properties of this measure and document, for example,

that its correlation with standard measures of the cycle is weaker with respect to the Solow

residual. This implies that a significant portion of the procyclicality of productivity is induced

by unobservable factor utilization. Most importantly, we study the impact of a technology

improvement on input growth and find that, unambiguously, a negative relationship emerges

from our micro-data. Moreover, a notable feature of our data allows us to discriminate among

the possible interpretations of this finding. In particular, the Bank of Italy Survey has collected

information on the frequency and size of price revisions for each firm. This allows us to

split the sample according to the degree of price stickiness present in each firm. We find
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that the negative relationship between input use and technology change is much stronger for

firms whose product prices are more rigid. This result lends support to an interpretation of

contractionary technology shocks based on business cycle models with nominal rigidities.

In order to verify if our model-based estimates of firm-level technology are sensible,

we compare them with survey data on observable indicators of innovative activities. These

indicators are expenditure for, respectively, research and development (R&D), purchases of

patents and new product experimentation. The link between these indicators and our measure

of technological shock is found to be highly significant (and stronger than that associated with

the standard Solow residual). This provides independent evidence that the innovation process

is well captured by our analytical approach. We also compare our model-based measure of

factor utilization with sample information on the rate of capacity utilization, as assessed by

each firm, and again find a strong relationship.

The remainder of the paper is organized as follows. Section two outlines the

theoretical model underlying the empirical framework. Section three presents the data and

the methodology used for estimation. In section four we report the econometric results of

the baseline model, briefly examining the structural parameters; we also derive our refined

measure of technological change and discuss its cyclical properties. In section five we analyze

the relationship between estimated technology change and input growth and examine the

role of price stickiness. In Section six we investigate whether our model-based measures

of technology variation and factor utilization are sensible. The final section draws some

conclusions.

2. Theoretical framework

We consider a production function subject to a technology disturbance, where gross

output of firm i is produced from effective units of labor and capital and from intermediate

inputs:

Yit = F (eLit, eKit,Mit, Zit).(1)

Yit denotes gross output. eLit is effective labor services and has three dimensions: the number
of employees, Nit, the number of hours per worker, Hit, and the hourly effort, Eit, so thateLit = NitHitEit. Effective capital services ( eKit = KitUit) combines the installed capital

stock,Kit, and its rate of utilization, Uit. The variable Uit represents the speed of operation or
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the number of hours the capital is used. Mit is the quantity of materials and energy input and

Zit is an index of technology.

Taking logs of both sides of (1) and differentiating with respect to time yields:

dy =
∂F

∂eL eLY (dn+ dh+ de) + ∂F

∂ eK eK
Y
(dk + du) +

∂F

∂M

M

Y
dm+ dz,(2)

where lower-case letters represent logs, the rate of growth of each input is weighted by the

output elasticity with respect to that input and we assume for simplicity that the elasticity to

technology is equal to one. Time subscripts and the index i are omitted for clarity.

In order to measure output elasticities, we recall the first order condition of a simple

firm’s optimization problem,

P
∂F

∂X
= µPX ,(3)

where X is one of the factors of production with its price, PX , and P is the product price

charged as a mark-up, µ, over marginal costs. Using the above expression, the output elasticity

with respect to each input can be reformulated. For example, in the case of capital services the

following relation holds

∂F

∂ eK eK
Y
= µ

PK
PU

eK
Y
= µsK,(4)

where sK is the revenue-based capital share. The product of µ, the price-cost margin,

measuring the degree of firm’s market power, and sK , the revenue-based capital share, can be

expressed in terms of another product: namely, that between the degree of internal returns to

scale, γ, and the cost-based capital share, cK .5 In this paper, although we allow for imperfect

competition, we abstract completely from the analysis of firm’s pricing policies. For this

reason, we find it more sensible to express output elasticities in terms of the returns to scale

parameter:

∂F

∂eL eLY = γcL;
∂F

∂ eK eK
Y
= γcK ;

∂F

∂M

M

Y
= γcM .(5)

5 To see this, we first recall that γ, the measure of the local degree of returns to scale, can be viewed as the
inverse of the cost elasticity to output: γ = Costs

Y
1
MC , where MC is marginal cost (Fernald and Basu, 1999).

In addition, the ratio of revenue-based and cost-based capital shares is equal to total costs over total revenues:
(Costs/PY ). Using the definition of µ as P/MC, we have: γcK = µsK . Of course, this holds true for the other
inputs as well.
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Inserting expressions (5) in (2) gives us an estimating equation. The latter, however,

cannot yet be treated as a regression, because it contains time variations of capital and labor

utilization (respectively, du and de) that are not observable. Indeed, a large body of statistical

and anecdotal evidence indicates that inputs are used more intensively in booms than in

recessions (Shapiro, 1996). Sizeable adjustment costs prevent firms from instantaneously

hiring (laying-off) workers or increasing (decreasing) the capital stock when more (less) of

these inputs is required. This induces a form of factor-hoarding with the implication that

employment (N) and the capital stock (K) are quasi-fixed factors and the intensity of their

use varies over the cycle. Of course, the increase in factor utilization also comes at a cost to

the firm and the “optimal” input use is set by balancing benefits and costs at the margin.

These considerations suggest adding more structure to the theoretical framework.

Following Basu and Kimball (1997), we consider a dynamic cost minimization set-up, where

adjustment costs in hiring and capital accumulation provide motivation for factor-hoarding and

cyclical variation in factor use. The optimization problem is formulated as follows:

Min
H,E,A,I,U,M

Z ∞

0

·
NWG(H,E) +NWΨ

µ
A

N

¶
+ PIKJ

µ
I

K

¶
+ PMM

¸
e−rtdt(6)

subject to

Y = F (NHE,UK,M,Z)

◦

K= I − δ(U)K
◦

N= A.

In addition to the variables defined earlier, the above expressions introduce some new

ones. W is the base wage and WG(H,E) is total compensation to each worker, which

takes into account both the hours and the effort expended; as argued convincingly by Basu

and Kimball (1997) and Fernald and Basu (1999), implicit contracts may govern the wage

payment, so that the actual variation of this compensation is not observed. A denotes net

hiring and NWΨ
¡
A
N

¢
measures the adjustment cost of varying the number of workers. The

accumulation process, also, encounters adjustment costs, which are captured by the function

J
¡
I
K

¢
; the product of this term and PIK gives capital expenditure, where PI is the price of

investment goods. PM is the price of materials input and δ is the rate of capital depreciation
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that varies with utilization, U . More intensive capital utilization causes depreciation of the

capital stock to be faster, because of wear and tear and because time devoted to maintenance

is reduced.

The first order conditions with respect to the choice variables are derived in the first

Appendix together with the Euler equations for the quasi-fixed factors. As is well known,

in the context of a cost-minimization problem the Lagrange multiplier, λ, associated to the

production constraint has, intuitively, the economic interpretation of marginal costs. Hence,

an expression for the marginal value product of each input can be obtained. In the case of

effective capital input, for example, it would be

λ
∂F

∂ eK = λγcK
Y

UK
.(7)

Manipulating the equilibrium conditions and combining them with the expressions for

marginal products stemming from equations (5) gives a suitable expression for changes in

capital utilization:

du =
1

1+∆
(dpM + dm− dpI − dk)− ξ

1+∆
(di− dk),(8)

where lower-case letters continue to represent logs and we have used the fact that in steady-

state: ( I
K
)∗ = δ∗. Two new entities are defined in (8). The first, ∆, represents the elasticity

of marginal depreciation with respect to utilization, i.e. ∆ = Uδ
00

δ
0 , and captures the degree

of convexity of depreciation as a function of capital utilization.6 The second, ξ, denotes the

elasticity of marginal costs of adjustment with respect to the accumulation rate, ξ = δJ
00

J 0 , and

measures the degree of convexity of adjustment costs. As in Basu and Kimball (1997), it

can be useful to define these elasticities in terms of steady-state variables and treat them as

time-invariant.7

6 It is customary in the literature to assume a non-negative, increasing and convex depreciation function,
δ(U) (see, e.g., Burnside and Eichembaum, 1996; Greenwood, Hercowitz and Huffman, 1988 and the references
therein).

7 A feature of equation (8) is that capital utilization is negatively related to investment spending. Intuitively,
this traces back to the first order condition with respect to capital utilization,U (see eq. A.3 in Appendix I), setting
the marginal benefit of increased utilization equal to its marginal user cost. Building on this relationship, eq. A.9
states that the marginal cost in terms of increased capital depreciation, ∂δ

∂U , depends upon the ratio between
the current marginal value product of capital, λ ∂F

∂ eK (see eq. 7), and the future marginal products of capital, q.
Thus, whenever q and, consequently, investment, I, decline, ∂δ∂U increases; in turn, due to the convexity of the
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With regard to effective labor input, the following relation holds:

del = dn+ dh+ de = dn+ (1+ ζ) dh,(9)

where ζ defines the elasticity of hourly effort with respect to hours per worker: ζ = de
dh
.

Thus, the unobserved change in hourly effort, de, can be expressed as the change in hours per

workers, dh, times the elasticity ζ .

The elasticities embedded in equations (8) and (9) are interesting per se as regards their

size; furthermore, they help to make equation (2) an estimating framework, together with the

interplay of optimal conditions from cost-minimization. Thus, inserting equations (8) and (9)

in (2) and using the expressions in (5) for output elasticities yields the following regression

framework

dy = γ [cL(dn+ dh) + cKdk + cMdm] + γζcLdh+(10)

+
γ

1+∆
cK (dpM + dm− dpI − dk)− γξ

1+∆
cK(di− dk) + dz.

The unknown parameters to be estimated are γ, ζ, ∆ and ξ. All other entities, including

input shares, are observable. The first term in brackets in the right-hand side is the weighted

average of percentage changes in the observed components of inputs; therefore, γ represents

the degree of internal returns to scale. The second term refers to change in labor effort

(ζdh = de), while the third and fourth terms reflect change in the intensity of capital

utilization. The last term, dz, represents technology variation. Estimation of equation (10)

is useful for several purposes. It yields estimates of the structural parameters of the model and,

most importantly, it allows us to derive a highly refined measure of technological change.

3. Data and estimation

3.1 The data

In the empirical analysis we rely upon firm-level data on a sample of Italian

manufacturing firms drawn from two main sources: the Survey of Investment inManufacturing

depreciation function, an increase of ∂δ∂U mirrors a rise in capital utilization.
Another prediction of equation (8) is the positive partial correlation between changes in utilization and

materials input. This feature seems rather plausible; several authors (for example, Basu 1996) have used materials
growth as a measure of unobserved change in utilization.
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(SIM) and Company Accounts Data Service reports. A detailed description of these sources

and the variables used in the paper is provided in Appendix II, together with some descriptive

statistics. The Survey of Investment has been carried out by the Bank of Italy at the beginning

of each year since 1984. We believe the data to be of unusually high quality, due to the

representativeness of the sample, appropriately stratified by industry classification, firm size

and geographical location, and to the professional experience of the interviewers. On average,

the number of firms in each annual survey is about 1,000, with the data having a panel

structure; because of attrition, however, the balanced panel consists of less than 300 firms.

The survey collects both quantitative and qualitative information on each firm. The former

refers to a considerable number of economic variables, including factor demand and the value

of sales, the latter to a variety of characteristics that help to describe each firm.

The SIM survey does not cover a few of the variables needed for our analysis, such as

gross production and purchases of intermediate inputs. Hence, we also employ data from the

Company Accounts Data Service. The latter dataset, maintained by a consortium of the Bank

of Italy and a very large number of Italian banks, is the principal source of information on the

balance sheets and income statements of Italian firms. It collects detailed information drawn

from the annual accounts of more than 30,000 firms. Merging the information from the two

sources resulted in an unbalanced panel of slightly less than 1,000 firms, which was used in

the estimation process. Data range from 1984 to 1997 and include about 8,000 observations

overall. The variability of industrial output during the fourteen-year period considered, which

includes the 1993 and 1997 industry-wide recessions, plus branch-specific and firm-specific

output fluctuations, appears sufficient to convey plenty of microeconomic evidence on the

cyclical behavior of the variables of interest.

In the estimation, output is measured as gross output at constant prices; intermediate

goods of energy and materials are included among inputs, in addition to manhours and capital

stock services. In order to compute the cost-based capital share, cK , and the other cost-shares,

the series for the required payment to capital, rPKK, was constructed. We utilized data on

firm-level capital stock at constant prices, K, and the sectoral deflator of capital stock, PK ,

as well as firm-level estimates of the user cost of capital, r, as computed by applying the

well-known Hall-Jorgenson approach (see Appendix II).
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3.2 Estimation

The theoretical model developed in section two provides the basis for our empirical

framework. In particular, the estimating equation stems from eq. (10) and is specified as

follows:

dyit = αdxit + β(cL,itdhit) + ε [cK,it (dpM,it + dmit − dpI,it − dkit)]
+θ [cK,it(diit − dkit)] + b0Wit + dvit,(11)

where dxit represents the weighted average of the growth of observed inputs - i.e., dxit =

cL,it(dn + dh) + cK,itdk + cM,itdm - with cL,it, cK,it and cM,it being the cost-based input

shares. The terms in brackets are measurable entities and, as illustrated in section two, they

are part of the definition of deit and duit, i.e. the intensity of use of labor and capital. Wit is a

vector of dummy variables referring to, respectively, the SIC two-digit sector of manufacturing

industry, the year, the firm’s size and the occurrence of a corporate operation such as a merger,

an acquisition or a break-up. The specification in level also contained a firm-specific effect,

which was eliminated by taking first differences. The error terms in the level equation, vit, are

assumed to have finite moments with E(vit) = E(vitvis) = 0, for all t 6= s.

In estimating eq. (11) one has to take into account that (unobservable) technology

variation is likely to be correlated with changes in effective labor and capital services and in

materials input. This would yield a specification error inducing inconsistency in the parameter

estimates. In order to account for this endogeneity of regressors, we adopt the generalized

method of moments (GMM) estimation procedure developed by Arellano and Bond (1991)

for panel data. This method was shown to be efficient within the class of instrumental

variable procedures, as it optimally exploits all linear moment restrictions deriving from the

assumptions made on the error terms. In our estimation the lagged values of the endogenous

explanatory variables dated period t-2 and earlier are utilized as instruments. In particular,

we truncate the set of these instruments at the third lag because, as was shown by Ziliak

(1997), using fewer instruments makes it possible to attenuate the potential bias that arises

in the optimal GMM estimator when all the available linear orthogonality conditions are

exploited. In addition, we also employ external, demand-side instruments, which appear

relevant on economic grounds and have been used extensively in the literature (see, e.g.,

Hall, 1988, Burnside, 1996, and Basu et al., 1998). These additional instruments are: the
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contemporaneous growth rate of material input prices and the real exchange rate, the variation

of sectoral order-book levels drawn from business surveys conducted by ISAE (Institute for

Economic Analyses, a public body providing technical support to the Italian Treasury) and

a measure of unanticipated monetary shock based on a vector autoregression (VAR) model.8

Throughout the paper we report the estimates obtained using all the instruments mentioned

above. However, as a sensitivity inspection, we also ran equation (11) after excluding from

the set of instruments the external, demand-side instruments, either together or singly; in all

cases, the results are qualitatively unchanged.

The optimal method of Arellano and Bond makes it possible to compute standard errors

for the estimated parameters that are asymptotically robust with respect to heteroschedasticity.

Moreover, a set of diagnostic tests can be derived to assess the validity of both the instruments

used (as recommended by Burnside, 1996) and the empirical specification. Two such tests are

considered in our analysis: the Sargan statistic of over-identifying restrictions, which verifies

the lack of correlation between errors and instruments, and the statistic developed by Arellano

and Bond (1991), testing for the absence of second-order serial correlation in the differenced

residuals. Moreover, in order to assess the relevance of our instruments, we examined their

correlation with each endogenous regressor (e.g. Ziliak, 1997). In all cases, the results of the

Wald test point to a strong rejection of the hypothesis that instruments are uncorrelated with

the endogenous variables (see Table 1).

Since the estimation is conducted on firm-level data, our results are not subject to the

aggregation bias and composition effects that may arise in aggregate data regressions, inducing

misleading inference.9 Furthermore, not only do we avoid failures of aggregation and the

ensuing first-order problems in estimating macro-models, but in the presence of imperfect

competition potentially characterizing the firm environment the fact that we use gross-output

data prevents our empirical framework from being misspecified, as would be the case with

value-added data (Basu and Fernald, 1995).

8 The measure of monetary shock is obtained from a monthly recursive VARmodel estimated at the Bank of
Italy over the period 1975-1997 (Dedola and Lippi, 2000). The specification includes the following variables: the
industrial production index, the CPI, an index of commodity prices, the three-month interbank rate, the nominal
effective exchange rate and M2. The three-month interbank rate is assumed to be the policy variable, determined
according to contemporaneous information on the first three series only and to lagged information on all six
series. The error term from the fitted policy rule provides our measure of monetary impulse.

9 A classic reference on aggregation bias is Theil (1954); for an insightful discussion of the effect of aggre-
gation on the estimate of the returns-to-scale parameter, see Basu and Fernald (1997).
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4. Results

4.1 Evidence from the baseline model

Before turning our attention to the estimated measure of technology variation and its

cyclical behavior, it is worth examining the parameter estimates from the regression equation

(11). Comparing equations (10) and (11) makes it clear how to use the estimates from (11)

to trace back the values of structural parameters γ, ζ, ∆ and ξ. The estimation results are

summarized in Table 1. While the first four rows of Table 1 refer to the reduced form

parameters (α, β, ε and θ), the last four report the implied values of the structural parameters

and their associated standard errors (α is exactly equal to γ). First of all, it can be noted

that the point estimate of the returns to scale parameter, although slightly higher than one, is

not statistically different from unity. Hence, consistently with most microeconomic evidence

reported in the literature (see, e.g., Baily, Hulten and Campbell, 1992, for U.S. firms), the

hypothesis of constant returns to scale is not rejected by our sample.

Let us examine the results on the other structural parameters. Consider first the

coefficient ζ, which represents the elasticity of effort that an employee spends in one hour

of work (de) in response to a change in the number of hours devoted to work (dh). The

estimated value of ζ is -.38, with a standard error of .20. That is, if hours per worker increase

by, say, ten per cent, then hourly effort declines by about four per cent (while effective labor

input per employee, dh + de, increases by roughly six per cent). In other words, while in

our sample hours per worker is a pro-cyclical indicator and effective labor input provided by

each employee is also pro-cyclical, hourly effort is not. Thus, increasing hours at the margin

would lead to a reduction in the amount of effort spent during the marginal hour. This seems a

plausible result, in light of the physical fatigue associated with the extension of the daily work

schedule.10

The elasticity∆measures the response of marginal depreciation of capital to an increase

in utilization. The estimate of this elasticity is positive (.811), although it is not statistically

significant; this provides only mild evidence in favor of the convexity of the depreciation

10 A different result, namely a positive elasticity of effort to hours, is reported by Basu and Kimball (1997)
for data of U.S. manufacturing sectors. Apart from the difference in the aggregation level of the data, a possible
explanation for the diverging evidence lies in the rigidities of the Italian labor market. The latter, presumably,
induce Italian firms to overexploit their existing work force during expansions to the point that hourly effort starts
to diminish. On the other hand, U.S. firms do not need to stretch the productive capacity of their employees to
the same extent, since they can hire new ones more easily.
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function, δ(U).11 Finally, the elasticity ξ provides information on the degree of convexity of

the adjustment costs typical of the accumulation process. Our results indicate that the marginal

installment cost of capital, J 0 , is increasing in the rate of investment, I
K
(ξ is estimated to be

equal to .118 with a standard error of .066).

4.2 Measuring technology change

Perhaps the most important implication of equation (11) is that it allows us to derive

a highly refined measure of technological shock. In order to implement our model in a

sufficiently flexible fashion, we obtain our firm-level measure of technology change, dzit, by

estimating eq. (11) separately for durable and non-durable goods and allowing for a sector-

specific returns-to-scale parameter, γ, as recommended by Burnside (1996).12 In particular,

dzit is computed as the sum of regression residuals, dvit, and the parameters associated with

the control dummy variables, i.e. dzit = dvit + b
0
itW i,t (unlikeWi,t, the vectorW i,t excludes

corporate operation dummies). We include the dummy variables in our measure of dzit
because, given our analytical framework, they capture the sector, the year and the size-specific

components of firm’s technological growth.13

In the manufacturing industry as a whole, the average of dzit across observations is about

.018, that is a yearly technology improvement of more than 1.5 per cent. This is about twice

as much as the average of cost-based and revenue-based standard Solow residuals, which we

also computed on our firm-level data (see Table 2). With respect to the latter two variables,

however, the volatility of dzit, as measured by the coefficient of variation, is found to be

substantially smaller. The probability of a technological regress, i.e. that dzit is negative, is

11 Our value for the elasticity∆ is not statistically different from the estimates of Burnside and Eichembaum
(1996) and Basu and Kimball (1997), respectively equal to .56 and 1.13; the large standard errors suggest some
caution when these elasticities are used for model calibration.

12 Basu et al. (1998) also estimate two separate equations for durables and non-durables and allow the mark-
up µ (which corresponds to the returns-to-scale parameter, γ, in our framework) to differ by sector. In the majority
of sectors we do not find a significant departure from constant returns to scale. There are exceptions, however. In
Chemicals, Rubber and Transport equipment there is some evidence of increasing returns to scale; conversely, in
Textiles, Electrical machinery and Other manufacturing returns to scale seem to be diminishing. As a robustness
inspection, we also derived dzit from a single equation for the entire manufacturing industry, both restricting and
not restricting γ to be equal across sectors. The pattern of dzit remains qualitatively unchanged and all the results
in this and the following sections continue to hold.

13 To check robustness, we replicated in the paper with a measure of dzit, net of the control effects, b0W i,t;
the results were substantially unaffected.
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about one third and is less than figures obtained with the standard measures of productivity

(.43 for both the cost-based and revenue-based Solow residuals).

We begin the investigation of the cyclical properties of dzit by looking at its relationship

with some cyclical indicators. In Table 3 we report results of simple regressions of the growth

rate of technology on the growth rate of aggregate industrial production, sectoral industrial

production and GDP. The key evidence is that, although our refined measure of technological

change is positively related with the pro-cyclical indicators, the relationship is indeed weaker

than in the case of Solow residuals. For example, if aggregate industrial production is used

as indicator, the regression coefficient when dzit is used is 55 per cent (41 per cent) smaller

than in the case of the cost-based (revenue-based) Solow residuals. Similar, and stronger,

results have been obtained with GDP. This evidence can be interpreted as suggesting that

unobservable factor utilization accounts for half or more of the procyclicality of standard

measures of technological shocks.

We also attempted to see how much each source of procyclical productivity accounts

for the size of the Solow residual, by computing the respective contributions.14 The effects of

departure from constant returns to scale and perfect competition are found to be negligible. By

contrast, the role of factor utilization turns out to be of some importance: on average, about

12 per cent of the Solow residual is accounted for by variable intensity in factor use. The

predominant component, however, is technology variation, which accounts for the remaining

88 per cent. Taken together, the results of Table 3 and those just mentioned suggest that “pure”

technological shocks are the largest component of standard measures of productivity growth;

on the other hand, the fraction of the Solow residual attributable to variable factor utilization,

whilst relatively small in size, is the most cyclical component.

Although the main focus of this paper is on measures of technology variation at firm-

level, we also calculated a weighted average of dzit across firms, in order to examine the

main features of aggregate technology shocks. The weights used are the shares of firms’ gross

output in total output. Admittedly, the limited number of annual observations that we obtained,

14 More precisely, we subtracted dxit from both sides of eq. (11) and then divided each of them by the term
in the left-hand side, which is the cost-based Solow residual (dyit−dxit). Thus, each term on the right-hand side
represents the contribution of the corresponding variable to the Solow residual and their sum is, of course, equal
to one. Each of these contributions varies across firms and over time. If we look at the median (or the mean) of
each of these terms we can evaluate the importance of each component synthetically.
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due to the fact that the panel covers the period 1984-1997, prevented us from conducting any

meaningful regression analysis and drawing conclusive evidence. Yet, some features seem

interesting. The time average of the aggregate measure is .016, a figure almost identical to

the sample mean of dzit; the standard deviation is reduced to .012. Importantly, also, the

probability of technological regress, calculated on this aggregate, is about 15 per cent, much

lower than the one calculated at the firm level.15

5. Technology shocks and input growth

5.1 The contemporaneous relationship

We argued before that it is rather hard to compare the empirical merits of alternative

classes of business cycle models on the basis of the pro-cyclical productivity puzzle. The

reason is that explanations of the puzzle are not mutually exclusive and they often co-exist in

recent theoretical set-ups. However, a new test has been recently proposed in the literature.

In particular, the analysis of the impact effect of a technology impulse on input growth can

help to ascertain the empirical relevance of alternative macroeconomic models. Indeed, an

unambiguous prediction of RBC models is that a favourable technology variation results in

a rise in input. This conclusion holds even if the baseline framework is augmented with a

number of extensions (King and Rebelo, 2000). By contrast, business cycle models featuring

some degree of price stickiness are fully consistent with a contractionary effect of technology

improvements (see, e.g., Galì, 1999, and Kimball and Weil, 2000). In particular, following

Basu et al. (1998) and Galì (1999), let us consider a framework where the quantity theory

determines the demand for money and, in the short run, money supply is fixed and price

flexibility is imperfect. Hence, real balances (and, thus, aggregate demand) are also fixed in

the short run. When a technology improvement occurs, firms meet their demand by producing

the same output as before. However, to produce the unchanged amount of output firms need

fewer inputs, so that a technology impulse would result in a short-run reduction in workers,

15 This is a reasonable result, indicating that in most years the firms which experience a positive technological
shock outnumber those experiencing a negative one.

We also calculated two aggregate measures of the Solow residual: the first was obtained as a weighted
average of the firm-level Solow residuals, while the second was computed directly on aggregate data (i.e., sub-
tracting aggregate inputs, weighted by aggregate shares, from aggregate output), as in the case that firm-level
information is not available. The probability of regress increases in both cases and their correlation with a pro-
cyclical variable (change in aggregate gross-output) is higher than in the case of aggregate dz.
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total hours and, in general, effective factor services. Of course, as prices start to decline over

time, the standard RBC mechanism enters into play and output and input eventually rise.16

We are able to investigate this issue by using our firm-level measure of technology

variation. In particular, we examine the effect of technology change on input growth by

regressing several measures of input change on dzit. A critic might argue that, since dzi,t
was obtained from equation (11) as a regression residual, it should be orthogonal to the input

growth variables. For the latter variables, however, a number of instruments were used in

that regression; these instruments, which have been shown to be non-weak, are orthogonal

to technology shocks, as confirmed by the test of over-identifying restrictions. Therefore,

when used in the first stage regressions, the instruments aim to capture the variability of inputs

due to technology-unrelated factors. Consequently, if our instrumental choice is appropriate,

the residuals of our instrumental variables regression are orthogonal to technology-unrelated

components of input growth, but potentially correlated with the remaining components. It is

exactly this correlation that we seek to investigate in this and the following sections.

Since our measure of technological shock is exogenous, we do not need an instrumental

variable estimator and may resort to a standard random-effects model. Table 4 reports the

estimation results. The overall evidence lends strong support to the hypothesis that, on impact,

the effect of a technology change on input growth is negative. This result is, in general, largely

significant statistically. For example, when we regress total hours growth, dnih + dhit, the

regression coefficient is -.086, with a standard error of .022. A similar result is obtained

when the dependent variable is the growth in the number of employees, dnit, (-1.0; standard

error: .015). On the other hand, when the change of hours per capita, dhit, is considered the

coefficient is not statistically significant.17 We also used other measures of input services: the

observable component of input growth, dxit, and the growth of unobserved labor and capital

16 In Galì’s (1999) model, employment declines in response to a technology impulse not only in the case of
exogenous monetary policy, but also when the monetary authority responds in a systematic fashion to technology
variations. Under a constant money growth rule, Dotsey (1999) shows that output remains roughly unchanged
after a technology shock, thus implicitly confirming the finding that inputs decline on impact. In his analysis,
however, this effect is reversed when monetary rules are of the Taylor type.

17 A possible explanation of this finding is that after the introduction of a technology improvement, the
firm may find it necessary to devise training programs for employees. In particular, the number of hours for
training and for unmeasured human capital activities might increase to let workers catch up with the technological
innovations. This increase could partly offset themechanism of declining hours illustrated earlier, explaining why,
overall, hours per worker do not fall significantly after favourable technology improvements.
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utilization.18 Again, the results indicate a contemporaneous contractionary effect of technology

improvements; they also show that unobserved factor utilization behaves in the same way as

observed inputs, confirming that firms view this variable as another form of primary input. We

also estimated other panel regressions where the dependent variables are the same as before

but distributed lags of dzit are used as regressors. While the coefficents associated with lags of

dzit are generally positive, suggesting a recovery over time in input growth, those associated

with the contemporaneous change in technology remain negative and statistically significant

in most cases, providing further support for the view that technology shocks are contractionary

in the short run.19

In addition to the evidence at firm level, we also examined the relationship between

aggregate measures of technological variation and input use. Once the firm-level measures of

technology and input growth are appropriately aggregated across firms, simple descriptive

evidence can be obtained. Again, the limited number of observations prevents us from

conducting regression-based tests. Yet, an interesting result is that the correlation coefficients

between aggregate measures of technology variation and input growth are generally negative.

All these empirical results point towards models of business fluctuations consistent with

a decline in labor use in response to a positive technology shock. Since we use firm-level data,

explanations of our finding based on reallocation effects (i.e., technology shocks would reduce

aggregate output and input use because of the cost of reallocating resources) or cleansing

effects (i.e., recessions would enhance average productivity by eliminating inefficient firms)

are ruled out. In general, therefore, our result appears in contrast to a key prediction of the RBC

paradigm. On the other hand, it has been shown to be consistent with models characterized by

price rigidities. Because our evidence is based on microeconomic data, we believe it reinforces

that recently obtained by Basu et al. (1998) and Galì (1999). In particular, Basu et al. (1998),

18 The latter variable is measured as cKduit+cLdeit, consistently with equations (8), (9) and (10) in Section
Two. Intuitively, the sum of duit and deit, weighted by the corresponding cost-share, represents their contribution
to output growth.

19 Arguably, the negative relationship found between input growth and dzit might be spuriously driven by
some relevant economic variable, on either the demand or the supply side, omitted from the analysis. To tackle
this issue, we inserted in the regressions a proxy of the firm’s economic activity, such as the growth rate of firm’s
sales or sectoral output. In both cases the results remain substantially unchanged. For example, when the firm’s
sales growth is included in the regression of growth in total hours on dzit, the coefficient of the latter variable
is -.262, with a standard error of .020 (it is -.099, with a standard error of .022, when sectoral output growth is
included).
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using sectoral data spanning the whole U.S. economy, show that after a technology innovation

a significant fall in inputs occurs on impact. Fitting a structural VAR model to aggregate data

for the U.S. and other industrialized countries, Galì (1999) estimates the covariance between

total factor productivity and employment growth, conditional on technology being the unique

source of fluctuations. Identification is achieved through the restriction that only technology

shocks have permanent effects on productivity. His results point to a negative and statistically

significant relationship between technology shocks and labor inputs.20

While Basu et al. (1998) and Galì (1999) provide a theoretical interpretation of

their results on the ground of price stickiness, they do not provide direct evidence to

support this view. In principle, as emphasized by Cooley (1998), an alternative explanation

of contractionary technology shocks can be found in vintage-capital models, where an

investment-specific technology improvement may induce a short-run reduction in employment

due to an intense labor reallocation from older to newer vintages (see, e.g., Campbell, 1998).

In the following section, by exploiting a notable feature of our data, we provide evidence

that sheds light on the role of price stickiness, helping to discriminate among these two

explanations.

5.2 Sample splitting based on price stickiness

We have provided extensive evidence that, on impact, a technology improvement results

in a contraction of inputs. We have also discussed two possible explanations, one of which is

based on business cycle models with price rigidity. Thus, for an empirical appraisal of such

models and a better interpretation of our results, it would be of some interest to investigate the

effect of a technology rise on input growth in firms with different degrees of flexibility in price

adjustment. If the prediction of sticky price models holds at the empirical level, we should

observe that, on average, the stickier transaction prices are, the stronger the contractionary

effect of a technology shock would be.

20 Shea (1998), also, examines the impact of technology shocks on employment. Using VAR models, he
considers the dynamic effects on the economy of shocks to observable indicators of research activities (R&D
spending and patent applications). He finds that a positive technology shock increases labor in the short run and
decreases it in the long run and that, generally, total factor productivity (TFP) does not respond to technology
shocks at any horizon. Apparently, these findings are at odds with the prediction of sticky price models of a con-
tractionary impact effect of technology improvements. However, a consideration is in order: the latter prediction
holds only if a technology variation implies a TFP movement. Indeed, in the few VAR models estimated by Shea
where a significant short-run variation of TFP is observed after a technology shock, inputs respond in the opposite
direction to that of TFP, which is consistent with the predictions of sticky-price models (see Galì, 1998).
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Despite the crucial role assigned to price stickiness in the macroeconomic debate,

empirical evidence on the degree of price flexibility is rather limited; this is due, probably,

to difficulty in gathering firm-level data (an exception is, for example, Kashyap, 1995). Very

interestingly, the SIM database includes firm-specific information on the frequency and size

of actual price variations. This set of information allows us to conduct a test on the effects

of technology shocks that, we believe, is rather powerful. We split the sample according

to the frequency of price revisions reported by each firm and examine whether the response

of input growth to a change in technology differs across the two samples. In particular, in

the 1996 survey firms were asked the following question: “How frequently does the firm

typically modify its selling prices?”. The possible answers were five: “Several times in a

month”, “Every month”, “Every three months”, “Every six months” and “Once in a year or

less frequently”. In Table 5 we report the regression results obtained separately for two sub-

samples: the first is selected by pooling the firms which have chosen one of the first three

answers; the second comprises the firms which have chosen one of the last two answers. The

evidence largely supports the view that, for firms with stickier prices, technology shocks are

contractionary; conversely, for firms whose prices are less sticky the effect is weaker and not

statistically significant. For example, if change in total hours, dnih + dhit, is considered, the

estimated effect of dzit in the sample of firms with stickier prices is -.23; it is .02 in the other

(with standard errors equal, respectively, to .035 and .051). No matter whether current change

in technology alone or a distributed lag of it is considered, the effect of dzit on input growth

is always negative on impact for firms whose prices are less flexible; conversely, this negative

effect is generally not found in firms whose prices are more flexible.21

We also devised another split of the sample based on the size of price revisions. In

particular, we focused on annual price variations as reported each year by every firm. We

computed firm-specific time averages of the annual change of selling prices (taken in absolute

value) and used the sample mean of such time averages as a splitting criterion. Table 6

documents the estimation results from this exercise. The main findings illustrated before

21 Specific features of a given market or product may induce, ceteris paribus, a higher or lower frequency of
price revisions. Hence, we also split the sample according to whether the extent of price stickiness of each firm,
computed from the answer to the SIM question, was greater or smaller than the sectoral median (or mean). The
results are very similar to those presented above. For example, when total hours growth is regressed on dzi,t, the
estimated coefficient is equal to -.101 in the ”sticky price” sample and to .025 in the other sample (with standard
errors of, respectively, .046 and .052).



28

are confirmed: the evidence supports a negative impact effect of technology change on input

growth only in firms characterized by stickier prices.

6. Are our model-based estimates sensible?

Measuring technological change presents a number of well-known challenges, and

several alternatives are possible. In our paper we rely on the production-function approach

proposed by Basu et al. (1998) - which controls for imperfect competition, increasing returns

and unobservable factor utilization - except that in the estimation we use microeconomic panel

data, taking into account the wide heterogeneity across firms. Whilst we believe that our

procedure provides a valid measure of the firm-level, time-varying stochastic technological

progress, it might be appropriate to compare it with alternative, independent proxies of

technological innovation. Interestingly, the SIM data allow us to verify the robustness of our

model-based estimates on the basis of independent sample information at the firm-level. In

particular, the 1995 survey has collected data on expenditure in (i) R&D, (ii) patent purchases

and (iii) design and production of experimental products. Shea (1998) also uses observable

indicators of research activities to extract information on technological change; the indicators

that he uses are R&D spending and patent applications for 19 two-digit U.S. manufacturing

industries.

It is known that some caution is necessary when intepreting these direct measures

of innovative activities as indicators of technological progress. On one hand, patenting

fluctuations may partly reflect changes in legislation and the procedures of the Patent Office.

On the other hand, technological innovations may be embodied in new equipment. In addition,

they may not be due exclusively to scientific and engineering developments, but depend also

on variations in management techniques, capital organization and other intangible inputs, such

as the information capital embodied in production processes (see Shea, 1998 and references

therein). Another problem with R&D spending and patents as measures of a technological

improvement is that the latter occurs only when actual output is affected and not when the

inventive activity begins. Consequently, the lags between the inception of the innovative

process and the effects on output might vary from firm to firm, so that it is difficult to ascertain

the exact timing of the effects. Despite these limitations, we explored the link between our

model-based measures of technology and the information on “tangible” research activities

drawn from the sample. In Table 7 we present results from different regressions for 1995 of
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our measure of technology change, dzit, on, respectively, R&D expenditure, patent purchases

and expenditure in new product experimentation. In order to control for scale effects, we

divided each explanatory variable in our regressions by the level of output. The evidence

indicates that there is a strong relationship across firms between dzit and each indicator of

technological activities. We also used the two traditional measures of TFP as dependent

variables: the revenue-based and the cost-based Solow residual. While their relationship with

the indicators of innovative activity is positive and statistically significant, the size of each

estimated coefficient is generally lower than that associated to dzit. This lends additional

support to the view that our measures of technological change are more refined than standard

Solow residuals.

Another check of robustness for our model-based estimates refers to capital and labor

utilization. Again, we examined the link between them and independent information drawn

from the sample. Of course, variations in the intensity of capital and labor use are not observed.

Yet, firms in the SIM survey are asked each year to appraise their own rate of effective capacity

utilization in the past year. We used this information by estimating a panel regression of duit,

as derived from eq. (8), on variations of the reported firm-level capacity utilization rate. The

relationship was found to be very strong: the coefficient associated to capacity utilization is

.150 with a standard error equal to .013.22

7. Conclusion

In this paper we use a dynamic cost minimization model, originally proposed by Basu

and Kimball (1997), to derive a measure of technology change that is robust to increasing

returns, imperfect competition and unobserved factor utilization. Most importantly, by

estimating the model on firm-level panel data drawn from two high-quality sources, we take

into account the considerable heterogeneity across firms and avoid the potentially serious

problems induced by aggregation. We show that while the effects of departures from constant

returns to scale and perfect competition on the Solow residual are negligible, the variation in

the intensity of input use accounts for a large portion of the cyclicality of standard measures

of productivity growth. Also, explicitly considering variable factor utilization and eliminating

it from the measure of technology change induce, with respect to the Solow residual, more

22 The regression includes a number of dummy variables as control factors, referring to different years,
sectors, firm size, type of ownership, location and the occurrence of corporate operations.
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reasonable properties (for example, a lower probability of technological regress) and a stronger

correlation with independent indicators of innovative activities (e.g., spending on R&D and

patent purchases).

We employ firm-level estimates of technology change to evaluate its impact on input

growth. We provide extensive evidence that positive technology shocks tend to riduce inputs

on impact, confirming the finding presented in the literature for aggregate and sectoral U.S.

data. We discuss and rule out a number of alternative explanations and interpret our result

as evidence in favor of business cycle models with price rigidity. Unlike other recent

contributions, we are able to provide direct evidence to support this view. In particular, by

using survey information on both the frequency and size of price adjustments, we show that

the negative effect of technology shocks on inputs is much stronger for firms with a larger

degree of price stickiness.



Appendix I: Optimality conditions

The first-order conditions of the constrained optimization problem (6) in the text are the

following (see Basu and Kimball, 1997):

H : λ
∂F

∂eLEL = WL∂G∂H ; (A.1)

E : λ
∂F

∂eLHL = WL∂G∂E ; (A.2)

U : λ
∂F

∂ eKK = qK
∂δ

∂U
; (A.3)

M : λ
∂F

∂M
= PM ; (A.4)

A : φ =W Ψ́; (A.5)

I : q = PI J́ ; (A.6)

where λ, φ, and q are the Lagrange multiplier associated, respectively, with the first, second

and third constraint. The Euler equations for the quasi-fixed factors are

N :
◦

φ = rφ− λ∂F
∂eLEL+WG+W (Ψ− AL Ψ́); (A.7)

K :
◦
q = (r + δ)q − λ ∂F

∂ eKU + PI(J − I

K
J́); (A.8)

Combining condition (A.3) with the expression for marginal product of capital stemming

from equation (4) in the text ( ∂F
∂ eK = µsK Y

UK
) yields

U
∂δ

∂U
=
λ

q
µsK

Y

K
; (A.9)

similarly, joint consideration of condition (A.4) and the expression for marginal product of

intermediate inputs gives

λµ =
PMM

sMY
; (A.10)
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if we combine the expression for marginal productivity of capital with (A.10), the following

relation holds:

λ
∂F

∂ eK =
sK
sM

PMM

UK
; (A.11)

combining (A.9), (A.10) and condition (A.6) yields

U
∂δ

∂U
=
sK
sM

PMM

PI J́K
. (A.12)

If we differentiate the above equation with respect to time and divide both sides by U ∂δ
∂U
,

we obtain equation (8) in the text for percentage changes in capital utilization. If we insert

(8) and (9) in equation (2) in the text and use the expressions (5) for output elasticities, the

estimating equation (10) is obtained.



Appendix II: Data sources, definition of variables and descriptive statistics

Data Sources. The two main sources used in the paper, both at the firm-level, are

the Bank of Italy Survey of Investment in Manufacturing (SIM) and the Company Accounts

Data Service (CADS). The SIM database goes back to 1984. The questionnaire is sent to

each enterprise at the beginning of each year and the questions refer to the year just past

and the previous year (this allows data consistency to be checked over time). Interviewers

are officials of the Bank of Italy, who tend to establish long-run relationships with firms’

managers and are also responsible for verifying the accuracy of the information collected.

The sample is stratified according to three criteria: sector of economic activity, size and

geographical location. With regard to the first, the three-digit Ateco-91 classification of the

National Institute of Statistics (ISTAT) is used (fully consistent with the international Standard

Industrial Classification). Size refers to the number of employees; four classes are considered:

50-99, 100-199, 200-999, 1000+ employees. Due to difficulties in ensuring high quality in

the data collection, small firms, defined as those with fewer than fifty employees, are excluded

from the SIM sample. Firm location refers to the regions (nineteen). The presence of outliers

and missing data within the sample is dealt with by means of appropriate statistical techniques.

The company accounts report is a data service provided by an institution (Centrale dei

Bilanci) established by the Bank of Italy and a pool of banks. Information on the annual

accounts of around 30,000 Italian firms has been collected since 1982 and data are reclassified

to ensure comparability across firms.

Panel structure. Merging the information from the two sources resulted in an unbalanced

panel of around 1,000 firms. After taking rates of growth, there is a total of 6,811 observations.

The structure of the sample by number of observations per firm is reported in Table A.1.

Table A.1

Sample structure by number of observations per firm

Number of annual observations 3 4 5 6 7 8 9 10 11 12 13
Number of firms 136 130 103 88 80 73 80 96 37 42 85
Source: SIM and CADS.
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Sectoral classification. The sectors of economic activity in manufacturing industry

are: 1) Food and tobacco products; 2) Textiles and Clothing; 3) Leather and footwear;

4) Wood and furniture; 5) Paper and publishing; 6) Chemicals; 7) Rubber and plastic

products; 8) Transformation of non metalliferous minerals; 9) Metals and Metallurgy; 10)

Machinery for industry and agriculture; 11) Electrical machinery (including Computers and

office equipment); 12) Transport equipment (automobiles, railways, ships, aircraft and other

motor vehicles) and 13) Other manufactures.

Variable definitions and sources. Gross output is measured as firm-level production

(source: SIM) deflated by the sectoral production deflator computed by ISTAT. Employment

is firm-level average employment over the year (source: SIM); manhours are also firm-level

and include overtime hours (source: SIM). The use of intermediate inputs is measured as firm-

level net purchases of intermediate goods of energy, materials and business services (source:

SIM), deflated by the corresponding sectoral deflator computed by ISTAT. Investment is firm-

level total fixed investment in buildings, machinery and equipment and vehicles (source: SIM),

deflated by the sectoral investment deflator published by ISTAT. Capital stock is measured

as the beginning-of-period stock of capital in equipment and non-residential buildings at

1997 prices. It was computed by applying backwards a procedure based on the perpetual

inventory method (using firm-level investment figures from SIM and sectoral depreciation

rates from ISTAT), using as a benchmark the information on the capital stock in 1997 (valued

at replacement cost), collected by a special section of the Bank of Italy Survey conducted for

that year. The capital deflator is the sectoral capital deflator computed by ISTAT.

In order to construct the series of required payment to capital, rPKK, we used the firm-

level, time-varying estimates of the user cost of capital computed at the Bank of Italy by

De Mitri, Marchetti and Staderini (1998) on the basis of the SIM and CADS datasets. A

further source is the Credit Register (CR) data, which are collected by a special unit of the

Bank of Italy (Centrale dei Rischi) and include detailed information on bank-firm contracts.

De Mitri et al. (1998) followed the well-known Hall-Jorgenson approach, as developed by

Auerbach (1983) for firms that use both equity and debt finance. Thus, the user cost of capital
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is expressed as follows:

r =
(1− S)
(1− τ) [gi(1− τ ) + (1− g)e− π + δ] (A. 13)

where τ is the corporate tax rate and S reflects corporate tax rates, investment tax credits,

depreciation allowances and any relevant subsidy, all of which are set to the appropriate

firm-specific value according to Italian law in the given year and to a number of firms’

characteristics; g is the firm-specific ratio of financial debt over total liabilities (source: CR);

i is the average borrowing rate payed by the firm (source: CR); e is the required nominal

return to equity (i.e., the opportunity cost associated with holding part of the firm’s equity),

approximated by the average yield of Italian Treasury bonds (BTP), on the ground that the

equity premium on the Italian stock market is usually estimated to have been negligible, or

even negative, during most of the period considered; π is the sector-specific expected increase

of capital good prices (source: SIM) and δ is the sectoral rate of capital depreciation (source:

ISTAT).

Descriptive statistics of key variables. See Table A.2.

Table A.2

Descriptive statistics of selected variables (percent)

Variable 25th perc. 50th perc. 75th perc. Mean
Gross output growth, dy -6.4 3.0 12.4 2.9
Total hours growth, (dn+ dh) -3.3 .2 4.3 .7
Capital stock growth, dk -3.0 -.5 2.9 .8
Materials growth, dm -7.6 3.0 13.8 3.0
Labor cost-share, cL 15.0 20.5 26.9 21.9
Capital cost-share, cK 7.6 13.1 20.8 15.5
Materials cost-share, cM 53.4 64.5 73.4 62.9
Source: SIM and CADS.
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Table 1

Baseline model - Equation (11)

GMM estimates on firm-level panel data
Dependent variable: dyit

dxit 1.054 (.056)
cL,itdhit -.404 (.210)
cK,it(dpM,it + dmit − dpI,it − dkit) .582 (.190)
cK,it(diit − dkit) -.069 (.033)
Wald tests of joint significance:

year dummies 40.2 (12; .001)
sectoral dummies 33.6 (12; .001)
firm size dummies 8.4 (4; .079)
corporate operat. dummies 11.0 (6; .088)

Sargan test of over-identifying restrictions 62.4 (68; .67)
Test of 2nd order serial correlation -.64 (.52)
Wald tests for weak instruments:

dxit 420.9 (106; .00)
cL,itdhit 290.0 (106; .00)
cK,it(dpM,it + dmit − dpI,it − dkit) 492.8 (106; .00)
cK,it(diit − dkit) 287.0 (106; .00)

Implied estimates of structural parameters
γ = α 1.054 (.056)

ζ = β
γ

-.384 (.20)

∆ = γ−ε
ε

.811 (.657)

ξ = − (1+∆)θ
γ

.118 (.066)

Legend: the sample period is 1984-1997. Variables and parameters are defined in the text. Heteroschedasticity-

consistent s.e. for parameter estimates are shown in brackets. For each test, degrees of freedom and p-values are reported in

brackets; the test for second-order serial correlation is distributed asymptotically as a standard normal. The instrument set

includes: lagged values of the endogenous explanatory variables at time t-2 and t-3; contemporaneous growth rate of material

input prices and of the real exchange rate; variation of sectoral order-book levels drawn from the ISAE business survey; a

VAR-based measure of monetary shock. In the Wald tests for weak instruments the null hypothesis is that instruments jointly

explain none of the variation in the endogenous variable. S.e. of structural parameters are not heteroschedasticity-consistent.



37

Table 2

Alternative measures of productivity change

Descriptive statistics
Variable Mean Coefficient 5th 95th

of variation percentile percentile
dzit .018 4.33 -.098 .126

Revenue-based .008 9.50 -.101 .114
Solow residual

Cost-based .007 11.43 -.110 .116
Solow residual

Legend: the statistics reported are computed over all firms and years; dzit is computed as described in the text.

Table 3

The cyclicality of different productivity measures

Panel data estimation of random-effects model
Dependent variables

dzit Cost-based Revenue-based
Cyclical indicators Solow residual Solow residual

Aggregate industrial .139 (.030) .306 (.031) .234 (.029)
output growth

Sectoral industrial .089 (.019) .211 (.019) .173 (.018)
output growth

GDP growth .178 (.068) .511 (.070) .325 (.066)

Legend: the results in the table refer to nine different panel regressions, each with one cyclical indicator only as

explanatory variables (apart from the constant). Aggregate industrial output is measured by the index of industrial production

in total Italian manufacturing (source: ISTAT); sectoral industrial output is measured by the index of industrial production of

the SIC two-digit sectors corresponding to each firm. Parameter estimates are reported with standard errors in brackets.
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Table 4

The relation between technology shocks and input growth

Panel data estimation of random-effects model
Dependent variables Regressors

dzit dzit−1 dzit−2
Total hours growth -.086 (.022)

” -.046 (.028) .132 (.030) .078 (.029)
Employment growth -.100 (.015)

” -.078 (.020) .082 (.021) .064 (.021)
Hours per capita growth .012 (.017)

” .029 (.021) .048 (.022) .012 (.022)
Factor utilization growth -.066 (.006)

” -.065 (.007) .020 (.008) -.005 (.008)
Input growth -.088 (.023)

” -.104 (.029) .179 (.030) .051 (.030)

Legend: each row corresponds to a regression. Parameter estimates are reported with standard errors in brackets. The

growth rate of unobserved capital and labor utilization is computed as cKduit + cLdeit; input growth is measured by dxit.
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Table 5

Technology shocks, input growth and price stickiness

Sample splitting based on the frequency of price changes

Panel data estimation of random-effects model
Dependent variables Sample Regressors

dzit dzit−1 dzit−2
Total hours growth SP -.230 (.035)

” NSP .020 (.051)
” SP -.227 (.044) .186 (.045) .095 (.044)
” NSP .080 (.060) .081 (.060) .038 (.062)

Employment growth SP -.207 (.024)
” NSP -.050 (.036)
” SP -.193 (.030) .080 (.032) .058 (.031)
” NSP -.008 (.045) .097 (.045) -.001 (.047)

Hours per capita growth SP -.029 (.026)
” NSP .052 (.040)
” SP -.039 (.033) .099 (.034) .035 (.033)
” NSP .028 (.027) -.012 (.027) -.020 (.028)

Factor utilization growth SP -.106 (.009)
” NSP -.021 (.014)
” SP -.081 (.011) .029 (.012) -.003 (.011)
” NSP -.038 (.015) -.000 (.015) -.021 (.016)

Input growth SP -.251 (.035)
” NSP .001 (.054)
” SP -.265 (.043) .273 (.044) .105 (.043)
” NSP -.005 (.061) .100 (.062) -.058 (.064)

Legend: each row corresponds to a regression. Parameter estimates are reported with standard errors in brackets.

The sample is split according to the degree of price stickiness as measured by the frequency of price changes reported by the

SIM Survey. SP is the sample of firms that modify selling prices no more than twice a year; NSP is the sample of firms that

modify prices more than twice a year (see text for more details). The growth rate of unobserved capital and labor utilization

is computed as cKduit + cLdeit; input growth is measured by dxit.
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Table 6

Technology shocks, input growth and price stickiness

Sample splitting based on the size of price changes

Panel data estimation of random-effects model
Dependent variables Sample Regressors

dzit dzit−1 dzit−2
Total hours growth SP -.120 (.028)

” NSP -.033 (.035)
” SP -.104 (.036) .130 (.038) .126 (.036)
” NSP .026 (.045) .127 (.048) -.004 (.050)

Employment growth SP -.112 (.020)
” NSP -.084 (.024)
” SP -.107 (.026) .089 (.027) .082 (.026)
” NSP -.038 (.031) .065 (.034) .035 (.035)

Hours per capita growth SP -.010 (.021)
” NSP .045 (.027)
” SP .004 (.027) .040 (.028) .044 (.027)
” NSP .058 (.034) .061 (.037) -.045 (.038)

Factor utilization growth SP -.048 (.008)
“ NSP -.091 (.010)
“ SP -.063 (.010) .017 (.010) -.002 (.010)
“ NSP -.070 (.012) .027 (.013) -.012 (.013)

Input growth SP -.131 (.030)
” NSP -.024 (.038)
” SP -.181 (.037) .175 (.039) .106 (.037)
” NSP -.003 (.045) .178 (.049) -.043 (.050)

Legend: each row corresponds to a regression. Parameter estimates are reported with standard errors in brackets.

The sample is split according to the degree of price stickiness as measured by the size of price changes reported by the SIM

Survey. SP is the sample of firms whose average selling price variation, taken in absolute value, is below the overall sample

mean; NSP is the sample of firms whose average selling price variation is above the overall sample mean. The growth rate of

unobserved capital and labor utilization is computed as cKduit + cLdeit; input growth is measured by dxit.
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Table 7

Model-based measures of technology shocks

and survey data on innovative activities
Dependent Regressors
variables

R&D Expenditure for Expenditure for
expenditure patent purchases experimental products

dzit .373 (.148) 1.47 (.402) 1.17 (.266)

Revenue-based .280 (.144) 1.13 (.39) 1.21 (.257)
Solow residual

Cost-based .289 (.151) .99 (.410) 1.11 (.269)
Solow residual

Legend: the results in the table refer to nine different regressions, each with one regressor only (apart from the

constant). Parameter estimates are reported with standard errors in brackets. Each regressor is divided by the value of firms’

production.
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