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Abstract 

 
This  paper  studies  the  dynamic  interactions and  the  spillovers that exist  among  patent application intensity, 
secret innovation  intensity  and stock returns of a well-defined technological cluster  of firms.  We study  the differ- 
ential behavior when there  is an Innovation Leader (IL) and the rest of the firms are Innovation Followers (IFs). 
The leader and the followers of the technological cluster  are defined according to their patent innovation  activity 
(stock of knowledge).  We use data  on stock returns and patent applications of a panel of technologically  related 
firms of the United States  (US) economy over the period 1979 to 2000. Most firms of the technological cluster are 
from the pharmaceutical-products industry.  Interaction effects and spillovers are quantified  by applying  several 
Panel  Vector  Autoregressive  (PVAR) market  value  models.  Impulse  Response  Functions (IRFs)  and  dynamic 
interaction multipliers  of the  PVAR  models are estimated.  Secret  patent innovations  are estimated by using a 
recent  Poisson-type  patent count  data  model, which includes  a set of dynamic  latent variables.   We show that 
firms’ stock returns, observable  patent intensities  and  secret  patent intensities  have significant  dynamic  inter- 
action  effects for technologically  related  firms.  The  predictive  absorptive  capacity  of the  IL is the  highest  and 
this type of absorptive  capacity  is positively  correlated with  good firm performance  measures.   The  innovation 
spillover  effects that exist  among  firms,  due  to  the  imperfect  appropriability of the  returns of the  investment 
in R&D,  are specially important for secret  innovations  and  less relevant for observed innovations.  The  flow of 
spillovers between followers and the leader is not symmetric  being higher from the IL to the IFs. 
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1. Introduction

During the past decades, innovations protected by patents have played a key role in business strategies.

This fact motivated several studies about the determinants of patents and the impact of patents on

innovation, firm value and competitive advantage. Five are the usual main motives for firms to patent

their inventions: protection from imitation, blocking competitors, technological image and reputation,

exchange potential in cooperations and as an internal firm R&D performance indicator. Patents help

sustaining competitive advantages by increasing the production cost of competitors, by signaling a

better quality of products and by serving as barriers to entry. If patents are rewards for innovation,

more Research and Development (R&D) should be reflected in more patent applications, but this is

not the end of the story.

There is empirical evidence showing that patents through time are becoming easier to get and are

more valuable to the firm due to increasing damage awards from infringers. Shapiro (2007) notes that

patents are playing an increasingly important, and shifting, role in the United States (US) economy:

“There is evidence that firms in a number of industries adjusted their strategies in the 1980s and

early 1990s in response to changes in the patent system. They began seeking more patents, but not

necessarily because they were devoting more resources to R&D” (Shapiro, 2007). The observed increase

in the R&D efficiency through the 90’s could be due to increases in R&D differentiation, the increase

in the number of research fields and technologies and the use of more sophisticated patent strategies

due to the increases in competitive pressure through time. Jaffe (1999) mentioned that a multiplicity

of explanatory factors flows in and therefore the individual contribution of each must remain unclear.

These findings motivate us to study the determinants of patents and the dynamic interdependence

among observed patent intensity, secret innovation intensity and stock returns. We do that by using new

Poisson-type count panel data models and Panel Vector Autoregressive (PVAR) econometric models,

which control for variables that are observed by the firms but unobserved for the econometrician (latent

variables).

The present paper builds on the patent-firm data set and some results of Blazsek and Escribano

(2010).1 The database applied includes 4,476 companies from several manufacturing and services
1 Application of patent data is motivated by Griliches (1990), who states that the main advantages of patent data are

the following: (a) by definition patents are closely related to inventive activity; (b) patent documents are objective since
they are produced by an independent patent office and their standards change slowly over time; and (c) patent data are
widely available in several countries, over long periods of time, and cover almost every field of innovation.
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industries of the US economy for the period 1979 to 2000. Firms of the data set are classified into

different technological clusters, where each group includes technologically related firms. We focus on

a specific cluster of 111 firms. Most of these firms are in the SIC283 drugs product-market sector.2

Nevertheless, some companies of the technological cluster belong to other product-market sectors, for

example, the computers, chemicals or food industries; see Tables 1 and 2.

The objective of this paper is to learn about the dynamic interaction between patent innovation

leaders and patent innovation followers of the technological cluster, by allowing for the presence of

secret patent innovations. Secret patent innovations are identified by using a recent Poisson-type

patent count data model of Blazsek and Escribano (2010), which includes a set of dynamic latent

variables. This patent count data model is estimated by the Maximum Simulated Likelihood (MSL)

method, employing the Efficient Importance Sampling (EIS) variance reduction technique of Richard

and Zhang (2007).

In the technological cluster analyzed, the permanent Innovation Leader (IL) and the permanent

Innovation Followers (IFs) in patent innovation activity are identified. Interaction effects are quantified

by applying PVAR specifications to several market value models, estimated by the Quasi Maximum

Likelihood (QML) method. Moreover, the Impulse Response Functions (IRFs) and the dynamic mul-

tipliers of the PVAR model are also estimated in order to have more precise information on dynamic

interaction effects.

The remaining part of this paper is organized as follows. The relevant literature is reviewed in

Section 2. The data set and the definitions of patent innovation leaders and followers are given in

Section 3. Description of the econometric models and summary of the empirical results are provided in

Section 4. Section 5 concludes. Statistical inference procedures of the econometric models are presented

in Appendices 1-4.

2. Innovation, competition and market value of firms

In this section, the relevant literature is summarized, relating innovation and R&D with competition

and with the market value of firms. The positive differential market value effects between the firms

that are innovation leaders and those that are followers are reviewed.

2 Standard Industry Classification (SIC)
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2.1. Innovation and market value

Innovation activity exists since it has a positive impact on the future cash flow and the current value

of a company, which motivates owners to promote innovative activity within their firm. As profits

on R&D are usually realized during several years in the future, current accounting based net profit

is a rather noisy measure of R&D benefits. Therefore, in the economics literature, several papers

have investigated the impact of R&D on stock market price, which avoids the problem of timing

differential of R&D expenses and the associated future cash flow to equity, since current stock prices

are determined by a forward-looking perspective of investors. This approach is also useful for the

consideration of different measures of R&D activity that may capture econometrically observable and

latent innovations, for example patents and trade secrets, respectively, as investors may be aware of

R&D related information hidden from the researcher.

Griliches (1981) constructs a stock of knowledge variable from lagged R&D expenses and the number

of patents. He finds a significant positive relationship between market value, R&D expenditure and

number of patents for a panel of large US firms for the period 1968 to 1974.

Pakes (1985) focuses on the dynamic relationships among the firm’s number of successful patent

applications, R&D expenditures and stock market value. Pakes concludes that the events that lead the

market to reevaluate the firm are significantly correlated with unpredictable changes in both the R&D

and the patents of the firm.

Hall (1993) uses data on US manufacturing firms for the period 1979 to 1991, finding that the stock

market valuation of R&D broke down in the mid-1980s.3

Lev and Sougiannis (1996) estimate the inter-temporal relation between R&D capital and stock

returns of public firms in the US during the period 1975 to 1991. These authors show that R&D capital,

defined as the weighted sum of past R&D expenses, is associated with subsequent stock returns.4

Blundell et al (1999) employ US firm-level panel data for the period 1972 to 1982. They examine

the relationship between surprise innovations and firm performance by using a dynamic panel count

data specification. The stock of innovation is constructed from a count of ‘technologically significant

and commercially important innovations’ commercialized by the firm. They find a positive impact of

innovation on market value.
3 Hall et al (2006) have similar findings.
4 See also Lev et al (2005).
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Chan et al (2001) investigate the relationship between R&D capital and stock returns of US firms

for the period 1975 to 1995. They define R&D capital, based on the estimates of Lev and Sougiannis

(1996), as a weighted sum of contemporaneous and past R&D expenses. Chan et al (2001) show a

positive relationship between the R&D to market value variable and abnormal future stock returns.

Furthermore, they evidence a delayed association of R&D activity and future excess stock returns,

which could be due to a delayed reaction of the stock market or an inadequate adjustment for risk (see

Chambers et al, 2002).

Hall et al (2005) investigate the relationship between knowledge stock and market value in the US

during the period 1963 to 1995. The knowledge stock variable is constructed from R&D expenses,

number of patents and patent citations, capturing the different importance of each patent. They build

on Griliches (1981) to estimate Tobin’s q equations. Their results show that, in addition to patent

counts, patent citations contain important information about stock market value.

Finally, some papers investigated the interaction of firms’ market value and R&D for European

firm-level data. Hall and Oriani (2006) investigate this interaction for German, French and Italian

data. Hall et al (2007) extend the analysis of Hall and Oriani (2006) for 33 European countries. Both

papers find country-dependent results about the stock market valuation of R&D activity.

2.2. Innovation and competition

Technological improvements give innovator companies a competitive advantage. Nevertheless, the non-

rival nature of knowledge may create a business-stealing effect among competitors as the innovator’s

effort decreases the cost of competitor firms’ subsequent innovations. There is a large literature of

economics and strategic management, which differentiates among firms by their R&D and patenting

activity to study the implications of a firm’s research intensity on its competitors’ market value and

innovations.5 The relationship between firms’ stock market value and R&D is investigated by recogniz-

ing that R&D activities are different among companies. Firms strategically decide to be R&D leaders

or followers. Companies that introduce innovative products are R&D leaders, while other firms, who

mimic the products of the innovation leaders, are followers. Results in the existing literature suggest

that R&D leaders have sustained future profitability.

Caves and Porter (1977) introduce a framework that explains intra-industry profit differentials
5 See for example the works of Porter (1979, 1980, 1985).
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based on pre-commitment to specialized resources such as R&D. Gilbert and Newbery (1982) analyze

a model where incremental innovations are awarded to the firm that spends the most on R&D, and

they show that the incumbent firm continues to earn monopoly rents. On the other hand, Reinganum

(1985) shows that incumbent firms have less incentives to invest in innovation: even though incumbents

make more profits in the short-term, entrants are more profitable in the long-term and they overtake

incumbents in the long run.

Jaffe (1986) finds evidence of knowledge spillovers6 by using various indicators of R&D activity. He

evidences that firms whose research is in a sector where there is high research intensity, obtain more

patents per dollar of R&D, higher accounting profits to R&D and higher market value to R&D than

firms in a sector with low R&D intensity.

Caves and Ghemawat (1992) investigate the factors that sustain profit differences across firms within

an industry and find that differentiation-related strategies, which include R&D, are more important

than cost-related strategies. They find that differentiation related strategies are indicative of research

leadership in the product market by introducing new products, services, brands, etc., while cost-related

strategies include higher capacity and cost structure advantages.

Jovanovic and MacDonald (1994) point out that innovation and imitation tend to be substitutes.

Though, the benefits generated by other firms’ R&D efforts depend on the technological differences

among firms and the absorptive capacity of the imitator firm. Naturally, these factors create time lags

in the adoption of technologies.7

Aghion et al (2005) develop a model where competition discourages laggard firms from innovating

but encourages neck-and-neck firms to innovate. Due to the effect of competition on the equilibrium

industry structure, their model generates an inverted-U shaped relationship between innovation and

competition. The paper provides empirical evidence that (1) the average technological distance between

innovation leaders and innovation followers increases with competition, and (2) the inverted-U is steeper

when industries are more neck-and-neck.

Lev et al (2006) use US data over the period 1975 to 2002. They differentiate between R&D leaders

and followers, and compare the stock market valuation of R&D leaders and followers. They show that

R&D leaders earn significant future excess returns, while R&D followers only earn average returns.
6 A spillover of knowledge occurs when a new innovation created by a company is adopted by another firm.
7 Nabseth and Ray (1974), Mansfield et al (1981), Rogers (1983), and Pakes and Schankerman (1984) report that

knowledge spills over gradually, in a dynamic fashion, to other firms.
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Finally, Ciftci et al (2011) find that R&D leaders obtain substantial risk-adjusted returns during

the first four-five future years. However, these excess returns converge to those of R&D followers

afterwards.

3. Data and definitions of innovation leaders and followers

The data applied in this paper have been derived from the general US patent-firm specific data set of

Blazsek and Escribano (2010). In Section 3.1, some details of this general data set are discussed. In

Section 3.2, the construction of the clusters of technologically related firms is summarized. In Section

3.3, the classification of firms to patent innovation leader and follower groups is presented.

3.1. General US patent-firm data set

The general data set includes 4,476 US firms from several manufacturing and services industries of the

US economy for the period 1979 to 2000. These firms published more than 500,000 patents during this

period. Blazsek and Escribano (2010) created a data set for these firms based on the recommendations

of Hall et al (2001).8

The panel data have been collected from several sources. Patent data are obtained from the National

Bureau of Economic Research (NBER) and Micro Patents Co. The database includes the United States

Patent and Trademark Office (USPTO) patent number, application date, publication date, USPTO

patent number of cited patents, 3-digit US technological class and assignee name (company name if the

patent was assigned to a firm) for each patent. Furthermore, annual stock returns, collected from the

Center for Research on Stock Prices (CRSP), have been downloaded from the Wharton Research Data

Service (WRDS). Additional company specific information have been obtained from the Standard &

Poor’s (S&P) Compustat data files. In particular, the data set includes book value of equity, stock

market value, SIC code and R&D expenditure for all firms. Firm-specific accounting data are corrected

for inflation by using consumer price index data collected from the US Department of Labor, Bureau of

Labor Statistics. Finally, annual data on the S&P500 stock index return obtained from the Compustat

data files are also included in the panel data set.

8 See the details of the data base procedures and a more detailed description of the general US database in Blazsek
and Escribano (2010).
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3.2. Technological clustering

We use a technology related grouping of all companies of the general US data set. Technology based

grouping of firms is preferred to product-market based (for example SIC based) grouping, as under

a technology based grouping, the flows of knowledge are expected to be more important. Using an

incorrect grouping dilutes the measurement of knowledge spillovers and makes it difficult to identify

competitors’ effects on firm’s innovation activities.

Technological clusters of firms can be formed based on the idea of firms’ technological proximity.

In the past literature, researchers employed different frameworks to capture technological proximity,

which included patent based,9 productivity based10 and alternative measures.11 See the reviews of

Mohnen (1996) and Cincera (2005).

The patent based technological proximity measures may be either technological category based or

patent citations based measures. In the technological category based approach, the number of patents

published by a firm in each technological category is counted, and a vector is formed for each company

over the technological category space. Technological proximity of two firms is computed by evaluating

the distance of their two vectors.12 In the patent citations based framework, the technological proximity

measures capture the overlap in patent citations between firms. These measures ask how many of the

patents that one firm cites are also cited by another firm.13

In this paper, we use a patent technological category based proximity measure to assign firms into

technologically similar groups. Some important questions related to the clustering procedure are:

(1) How to define technological categories? We use 36 technological sub-categories, as suggested

by Hall et al (2001). These authors create 36 two digit technological sub-categories from the

patent technological classification of USPTO, which contains about 400 technological classes.

(2) How to choose the clustering algorithm? We apply Ward’s linkage clustering (Ward, 1963)
9 See Griliches (1979), Scherer (1982), Jaffe (1986, 1988, 1989), Cohen and Levinthal (1989), Stuart and Podolny

(1996), Fagerberg et al (1996), Mowery et al (1996), Breschi et al (1998, 2003), Ahuja (2000), Harhoff (2000), Autant-
Bernard (2001), Fung (2003), Song et al (2003), Rosenkopf and Almeida (2003), Cantner and Meder (2007), Messeni
(2008), Fischer et al (2009) and Lychagin et al (2010).

10 See Kumar and Russell (2002), Frantzen (2004), Aghion et al (2005), Vandenbussche et el. (2006), Griffith et al
(2009) and Islam (2011).

11 See Adams (1990) and Kaiser (2002).
12 See Breschi et al (1998) and Benner and Waldfogel (2008) for reviews. See also the papers of Griliches (1979), Scherer

(1982), Jaffe (1986), Ahuja (2000), Fung (2003) and Song et al (2003).
13 See Stuart and Podolny (1996), Mowery et al (1996) and Fischer et al (2009).
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to perform technological clustering since several papers comparing different clustering techniques,

conclude that Ward’s method tends to identify better clusters than other methods.14

(3) How to measure the distance between two patent count vectors over the space of

technological categories?15 We use the angle distance measure to form technological clusters

of firms due to the fact that the angle measure of proximity is purely directional, therefore, it is

not directly affected by the length of the technological category count vectors.16

(4) How many groups of technologically similar firms to create? We group all firms of the

US data set into 16 clusters.

The technological clustering framework presented creates a technology related grouping of 16 clusters

of the 4,476 US companies of the data set of Blazsek and Escribano (2010). We focus on a specific

cluster of N = 111 companies.

In order to see the product-market industries of the companies of the technological cluster selected,

the SIC and Hall-Mairesse (HM, 1996) based sector classifications of these firms are presented in Tables

1 and 2, respectively. These tables show that the cluster selected mainly includes drugs firms from the

SIC283 sector (Table 1) and the Pharmaceuticals product-market related sector (Table 2). Neverthe-

less, these tables exhibit that the technological cluster includes companies from other product-market

sectors as well. For example, the technological cluster includes firms from the Grain mill products

(SIC2040), Beverages (SIC2080), Paints (SIC2851), Plastics products (SIC3089) and Electromedical &

electrotherapeutic apparatus (SIC3845) industries.

[APPROXIMATE LOCATION OF TABLE 1, TABLE 2]

Finally, Figure 1 shows the evolution of patent application counts and the estimated total patent

application intensity, over the period 1979 to 2000, for all firms in the technological cluster.17 This

figure shows an exponential growth of patent applications counts over the sample period. The level of
14 See Kuiper and Fisher (1975) and Jain et al (1986).
15 In the past literature, several distance measures have been used in the R&D literature. Three popular measure are:

(1) Euclidean or L2 distance (see Ahuja, 2000; Rosenkopf and Almeida, 2003); (2) angle between two vectors (see Jaffe,
1986, 1989; Autant-Bernard, 2001; Messeni, 2008; Lychagin et al, 2010) and (3) correlation coefficient.

16 “The length of the vector depends on the degree of focus or concentration of the firm’s research interests. (The length
is actually the square root of the Herfindahl index of concentration of the category shares.) Other proximity measures,
notably the Euclidean distance between the vector endpoints, are very sensitive to the length.” (Jaffe, 1986)

17 The patent intensity model applied to estimate total patent application intensity is summarized in Section 4.
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patent applications per year was about 600 patents in 1979, which increased to about 1,300 patents in

2000. Moreover, we observe a local peak of patent counts in 1995 with a level of about 2,000 patents.

This evolution of the number of patents applications is followed remarkably well by our new, flexible

and dynamic Poison-type, count panel data model of patent applications intensity (see Section 4 for

more details on the model specification and estimation).

[APPROXIMATE LOCATION OF FIGURE 1]

3.3. Definition of the IL and the IFs in the technological cluster

In the R&D literature, alternative definitions of R&D leadership have been proposed. For example,

Lev et al (2006) state: “Firms with R&D intensity measure greater than (lesser than or equal to) that

of the industry are classified as leaders (followers). These authors measure R&D intensity by using

two proxies: the R&D expenditure to sales ratio and the R&D expenditure to market value ratio.”

Furthermore, Chambers et al (2002) and Ciftci et al (2011) use the R&D capital to sales ratio variable

to indicate R&D leadership, where R&D capital is defined as “R&D assets is the asset that would have

been reported if R&D expenditures were capitalized and amortized over five years beginning in the

year after the expenditures were made.”

We define the permanent IL firm based on the absolute temporal dominance observed in the evo-

lution of the knowledge stock built up from the citations weighted annual patent counts, c̃fitnit, over

the period 1979 to 2000. The knowledge stock variable is computed as follows:
∑t

s=0 c̃fisnis(1− δ)t−s,

where nis denotes the number of successful patent applications, c̃fit is the number of citations received

from subsequent patents (forward citations, henceforth) corrected for sample truncation bias by the

fixed effects methodology of Hall et al (2001).18 We employ the c̃fit variable as several previous works

report that the number of forward citations of patents is an appropriate measure of patent quality

(Lanjouw and Schankerman, 1999; Hall et al, 2001). Finally, a depreciation rate, δ = 15% is used to

account for the decreasing value of past knowledge.19

The firm with the highest knowledge stock in every year during the observation period is called the

permanent IL of the technological cluster. Other firms in the technological cluster are assigned to the
18 See Blazsek and Escribano (2010) for further details.
19 In the R&D literature, several authors use δ = 15%. See for example Hall (1993) and Hall et al (2005).
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permanent IF group.20

Table 3 shows the first 20 of the 111 firms of the technological cluster, ranked according to the

mean knowledge stock over the period 1979 to 2000. The table shows the mean, computed over the

period 1979 to 2000, of the following nine variables: (V1) patent applications count, nit; (V2) forward

citations received count, cfit; (V3) forward citations received count corrected for sample truncation bias

(see Hall et al, 2001), c̃fit; (V4) knowledge stock,
∑t

s=0 c̃fisnis(1− δ)t−s; (V5) log R&D expenses, rit;

(V6) log book value, zit; (V7) log stock market value, mit; (V8) log R&D expenses to log sales, rit/sit;

and (V9) log R&D expenses to log stock market value, rit/mit. In Table 3, firms are ranked according

to the mean knowledge stock (V4). The second column of this table reports the patent innovation

leadership cluster for each company and shows that ‘Merck & Co., Inc.’ (Merck, henceforth) is the

permanent IL of the technological cluster for the first six out of the nine indicators considered in Table

3. The last two indicators, (V8) and (V9), are relative measures of R&D and clearly the rankings based

on those indicators are very different of the rest, (V1) to (V6), and so will be the firm identified as the

IL.

[APPROXIMATE LOCATION OF TABLE 3]

In order to motivate the choice of Merck as the permanent IL, Table 4 presents the evolution of

the knowledge stock for the firms with the highest mean (V4) over the period 1979 to 2000, with a

clear distance with the second and third firms of the ranking in terms of the stock of knowledge; Eli

Lilly and Abbott Laboratories. Notice also that there was a huge increase in the knowledge stock in

years 1995 to 1997 of these two firms (Figure 1 shows the aggregate effect in terms on the number

of patent applications). Nevertheless, even during those three years, Merck had a stock of knowledge

which is more than double, while during the rest of the years the distance is even larger; from three

to seven times bigger. Table 4 also exhibits that Merck has the highest knowledge stock in every year

among the firms presented, which represent the companies with the highest knowledge stock over the

period 1979 to 2000 in the technological cluster (see Table 3). These results support our conclusion

that Merck, is the permanent IL of the technological cluster. In addition, Figure 2 shows the number
20 Using a different clustering procedure, firms were also classified according to patent innovations intensity to Group

of Leaders (GL) and Group of Followers (GF) clusters. The GL group was formed by the following six companies: Abbott
Laboratories; Bristol-Myers Squibb Co; Eli Lilly and Co; Merck & Co, Inc; Pfizer, Inc; and Warner-Lambert Co. The
econometric PVAR models were also estimated for this classification and the results are qualitatively similar and available
from the authors.
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of patent applications and knowledge stock for the IL (Merck) and the cross-sectional mean knowledge

stock of the IFs during the period 1979 to 2000. This figure also supports the selection of Merck as

the permanent IL since both variables of Merck are above the mean knowledge stock and the mean

number of patent applications of IFs in every year from 1979 until 2000.

[APPROXIMATE LOCATION OF TABLE 4, FIGURE 2]

The variables (V8) and (V9) are considered in this paper in order to check the robustness of

the patent innovation leadership clustering procedure of our paper with the classification methods of

Chambers et al (2002), Lev et al (2006) and Ciftci et al (2011). These authors employ different R&D

intensity measures like; R&D to sales and R&D to market value ratios to detect R&D leadership. Table

5 summarizes the contemporaneous and dynamic cross-correlation coefficients among these variables.

The results of the rankings obtained for the variables R&D to sales (V8) and R&D to market value

(V9) are not consistent with the clustering method of the present paper, at least, due to the following

three reasons. First, the patent IL, according to variables (V8) and (V9), is different from the IL

determined by the (V4) variable.21 Second, the present work implements a technology based and not a

product-market based industry classification as Chambers et al (2002), Lev et al (2006) and Ciftci et al

(2011). Third, the correlation between market value and (V8)-(V9) are negative (countercyclical), while

the correlation coefficients between market value and (V1)-(V4) are positive (procyclical), motivating

the choice of variable (V4) for the definition of innovation leadership. The cross-correlation coefficients

corresponding to the knowledge stock (V4) are indicated by bold font in Table 5. Furthermore, from the

cross-correlations we conclude that R&D and book value are procyclical but lagging with the knowledge

stock. The number of patent applications and forward citations received are strongly procyclical and

leads the evolution of the stock of knowledge (V4). The two relative measures of R&D intensity, (V8)

and (V9), have a low and countercyclical cross-correlation with the stock of knowledge, and with several

of the other measures of innovation included in Table 5, supporting our view that (V8) and (V9) are

not good indicators to identify ILs.

These facts reflect the intrinsic innovation uncertainty and the uncertainty related to the appropri-

ability of the innovation returns. This uncertainty is reduced once the innovation is patented or the

innovation is kept secret.
21 R&D leadership clustering and correlation results for alternative variables of Chambers et al (2002), Lev et al (2006)

and Ciftcy et al (2008) are available from the authors.
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[APPROXIMATE LOCATION OF TABLE 5]

4. PVAR models and empirical results

The PVAR models of this paper include three endogenous variables: stock return, yit, log observ-

able patent intensity, lnλo
it and log secret patent intensity, lnλ∗it of i = 1, . . . , N technologically

related firms over t = 0, . . . , T periods. We form the following 3 × 1 vector from these variables:

Yit = (Y1it, Y2it, Y3it)′ = (yit, lnλo
it, ln λ∗it)

′. Moreover, the following deterministic, exogenous and pre-

determined variables are also included in the PVAR model: time trend, t, S&P500 stock index return,

yt, firm size measured by log book value of equity, zit and log R&D expenditure over log market value,

rit−1/mit−1.

The summary of the econometric models and their estimation results is organized as follows. In

Section 4.1, the benchmark innovation and market value Model 1 is presented, which measures the

interaction among a firm’s stock return, observable and latent patent intensity components without

making difference among firms of the panel according to patent innovations leadership. This section

also presents the specification of the dynamic Poisson patent count data model, which separates the

observable and secret components of firms’ patent intensity. In Section 4.2, two extended innovation

and market value models are considered: First, Model 2 measures different effects for the IL and for

IFs but it does not measure directly the inter-firm interaction effects of innovative activity between the

IL and IFs. Second, Model 3 makes difference among firms according to patent innovation leadership

and quantifies the impact of the IL on IFs and the effect of IFs on the IL.

4.1. Benchmark innovation and market value model

Model 1. The first innovation and market value model focuses on the interaction among the firm’s

stock return, observable patent innovations and secret patent innovations. The PVAR model is specified

in two systems of three equations as follows:




yit

lnλo
it

lnλ∗it




=




ωy

ωo

ω∗




+




ρy

ρo

ρ∗




t +




βy

βo

β∗




yt +




ψy

ψo

ψ∗




zit +




φy

φo

φ∗




rit−1

mit−1
+




ỹit

ln λ̃o
it

ln λ̃∗it




(1)
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with




ỹit

ln λ̃o
it

ln λ̃∗it




=




ayi

aoi

a∗i




+




ζ11 ζ12 ζ13

ζ21 ζ22 ζ23

ζ31 ζ32 ζ33







ỹit−1

ln λ̃o
it−1

ln λ̃∗it−1




+




eyit

eoit

e∗it




, (2)

where the patent intensity, λit is based on observable economic variables (denoted by λo
it) and unob-

servable information for the econometrician (denoted by λ∗it). The PVAR model can be reformulated

in a more compact matrix notation as follows:

Yit = γXit + Ỹit = ω + ρt + βyt + ψzit + φ
rit−1

mit−1
+ Ỹit, (3)

Ỹit = ai + ζỸit−1 + eit (4)

with eit ∼ N(0, Ωe), Ỹi0 ∼ N(0, Ω0), ai ∼ N(0, Ωa) and cov(Yi0, ai) = Ω0a for i = 1, . . . , N firms that

belong to the certain technologcal cluster, during t = 0, . . . , T years.

The elements of the eit = (eyit, eoit, e∗it, )′ vector of error terms may be contemporaneously cor-

related with each other (through Ωe), but are uncorrelated with their own lagged values and are

uncorrelated with all of the right-hand side variables of the regression equation. The ai ∼ N(0, Ωa) is

a 3× 1 random vector of firm-specific random effects with covariance matrix Ωa.22 The model controls

for the initial conditions, Ỹi0 ∼ N(0, Ω0) by introducing the Ω0 covariance matrix of Ỹi0 in a short-panel

setup.

In the system of equations (3), ω is a 3 × 1 vector of constant parameters. The ρ, β, ψ and φ are

3×1 parameter vectors, which measure the impact of a linear time trend, t, stock index return, yt, firm

size, zit and lagged R&D expenses to lagged market value, rit−1/mit−1, respectively, on Yit. The first

column of the Xit matrix is a 3× 1 vector of ones (for the constant parameters), while the subsequent

columns include the exogenous explanatory variables.

In the system of equations (4), ζ and Ωe are 3× 3 parameter matrices which capture the dynamic

and contemporaneous interaction, respectively, among the variables of Ỹit = (ỹit, ln λ̃o
it, ln λ̃∗it)

′. The

ζ11, ζ22, ζ33 elements in the diagonal of ζ capture the first-order autoregressive effects. The six off-
22 An alternative choice for unobservable heterogeneity could be the fixed effects specification discussed in Binder et at

(2005).
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diagonal elements of ζ measure the dynamic impacts of the three endogenous variables. More formally,

ζjk for j, k = 1, 2, 3 captures the partial effect of Ỹkit−1 on Ỹjit, keeping the rest of the variables constant.

Model 1 is covariance stationary when all eigenvalues of ζ are inside the unit circle. The statistical

inference of Model 1 is presented in Appendix 1.

In what follows, the estimation of the observable and latent patent innovation intensities is pre-

sented, which are included in the PVAR Models. An extension of the dynamic patent count data

model of Blazsek and Escribano (2010) is employed to model the patent innovation intensity (λit) of

i = 1, . . . , N firms over t = 0, . . . , T periods. The model includes dynamic latent variables and it can

separate patent intensity to observable (λo
it) and secret components (λ∗it). These authors show that the

latent variables improve the model specification of previous patent count data models.23

Conditional on the patent application determinants (R&D, etc.), which are “exogenous” follow-

ing the exogeneity testing results of Blazsek and Escribano (2010), we want to analyze the dynamic

interactions of patent application decisions based on observable and unobservable (secret) innovation

determinants at the firm level and their impact on firms’ rates of return. Therefore, this panel data

model is useful to identify important empirical regularities that have not been considered before, and

that are based on important unobserved firm level determinants of innovation like; innovation produc-

tivity, absorptive capacity, managerial ability, etc.; see Arora et al (2008).

Before presenting the patent applications count data model specification, let us introduce some

notation first. In the patent count model applied, the patent applications count, nit is the endogenous

variable. Denote the set of patent counts by Nij = {nit : t = 0, . . . , j} with 0 ≤ j ≤ T . Moreover, several

exogenous explanatory variables are also considered: log R&D expenditure, rit, firm size measured by

the log book value, zit, and number of citations made to previous patents of other firms (backward

citations, henceforth) in the same industry, cb1it and in other industries, cb2it.24 Let cbit = (cb1it, cb2it)′

denote a 2× 1 vector capturing backward citations. Moreover, let Qij denote the 4N × j data matrix

23 Blazsek and Escribano (2010) show that the latent variables included in the Poisson model help to solve the potential
endogeneity problem of R&D expenses reported by previous authors. Furthermore, they also show that the conditional
mean function of patent counts is correctly specified in their model with respect to different specification tests.

24 See Fung (2005) about different knowledge pools of firms.
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of exogenous variables:

Qij =




ri0 ri1 · · · rij

zi0 zi1 · · · zij

cbi0 cbi1 · · · cbij




(5)

with 0 ≤ j ≤ T . Finally, introduce a latent variable denoted by l∗it, which represents the unobservable

determinants of patent applications activity. Denote the set of latent variables by L∗ij = {l∗it : t =

0, . . . , j} with 0 ≤ j ≤ T .

Similarly to Hausman et al (1984), the conditional distribution of patent application counts is

modeled by specifying the conditional hazard function of the point process formed by the patent arrival

times. Define the conditional hazard function at instant τ ≥ 0 (in continuous time) corresponding to

firm i in period t as follows (see Cox and Isham, 1980):

λit(τ) = lim
δ0→0

Pr{nit(τ + δ0)− nit(τ) > 0|Nit−1, L
∗
it, Qit}

δ0
, (6)

where δ0 > 0 and nit(τ) is the number of patents of the firm i until instant τ in the period t. The

λit(τ) can be interpreted as the instantaneous probability that firm i has a new patent at the point of

time τ in period t given all information available in the beginning of period t. Thus, the conditional

hazard represents the patent application intensity of firm i in period t.25

In this paper, the conditional hazard is assumed to be constant within each period, therefore,

it can be indexed by t as follows: λit = λit(τ). Due to this assumption, the conditional distribu-

tion of patent counts is Poisson distribution with intensity λit. We denote the conditional density of

nit|(Nit−1, L
∗
it−1, Qit) as follows:

ft(nit|Nit−1, L
∗
it−1, Qit) =

exp(−λit)λnit
it

nit!
. (7)

Furthermore, we specify the log intensity of nit as follows:

lnλit = lnλo
it + ln λ∗it, (8)

25 Notice that the conditioning set in Equation (6) includes rit, zit, cbit and l∗it for period t. Thus, R&D expenses,
patent citations and firm size are exogenous variables in the patent count data model.
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where lnλo
it represents the observable component of patent intensity and lnλ∗it denotes the secret

component of patent intensity. These two components of patent application intensity are formulated

as follows. First, the firm-level patent fundamentals observed for the econometrician are given by

lnλo
it = κ0ini1 + κ1i lnλo

it−1 + κ2irit + κ3ir
2
it + κ4icb1itrit + κ5icb2itrit + κ6izit, (9)

where κ0i controls for initial conditions of firm i and |κ1i| < 1 measures the AR(1) impact of the

observable component of firm i.26 The κ2i and κ3i parameters capture the linear and quadratic impacts

of R&D expenses, respectively. κ4i and κ5i control for the interaction of R&D expenses with intra-

industry and inter-industry backward citations, respectively. Finally, κ6i measures the impact of firm

size. Second, the patent intensity related to information that is only available for the firm but not

observed for the econometrician (secret) is specified as follows:

lnλ∗it = µ0i + σil
∗
it, (10)

where µ0i is a parameter capturing the unobserved firm specific fixed effects like managerial ability, etc.,

σi is a real parameter that measures part of the firm’s unobserved absorptive capacity by capturing

the impact of l∗it on patent intensity, i.e. firm level component of innovation productivity,

l∗it = µ∗i l
∗
it−1 + uit (11)

with uit ∼ N(0, 1) i.i.d., where |µ∗i | < 1 captures the dynamics of unobserved firm level innovation

productivity which follows an AR(1) process with positive coefficient indicating the usual persistent

behavior of productivity shocks.27

In this paper, a univariate count data model is estimated for each firm separately. The statistical

inference of the Poisson model is presented in Appendix 2. After the estimation of the count data

model’s parameters, the filtered estimates of λ∗it are computed in order to be included in the PVAR

models; see Appendix 3.
26 This specification is different from Wooldridge (2005), where the nit−1 dynamic term is considered in ln λit. In the

present work, nit includes both the observable and latent patent intensity. Therefore, ln λo
it−1 is included in ln λo

it, instead
of nit−1, to separate the observable and latent components of patent intensity.

27 Notice that in the AR(1) specification of Equation (11), the constant is restricted to zero value due to parameter
identification reasons.
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Empirical results for the patent count data model. The number of parameters estimated in the

univariate dynamic Poisson models is high, therefore, they are not fully reported in this paper.

In order to give a general overview of the patent intensity model estimation results, the mean

patent innovations intensity estimates and patent counts, over the period 1979 to 2000, are presented

in Figure 1. Our patent intensity model is able to track very well the positive trend as well as the

behavior through the business cycle, of the number of patent applications per year. Moreover, the

evolution of the mean observable and the mean latent patent intensity components, over the same

period, is presented on Figure 3. This figure shows that the level of observable and secret patent

innovations activity has been similar and approximately constant from 1979 until 1987. However, the

observable component of patent intensity increased after 1987. Until 1992, the latent patent innovations

intensity component stayed constant but afterwards it also increased. As the overall increase in the

level of the observable component was more significant than that of the secret component, the level

of the observable component was more than twice as high as that of the latent component in the

mid-90’s. Nevertheless, in the last years of our sample, a decreasing tendency of both components of

patent application intensity can be observed. The observable component decreased after 1997, while the

secret component fall after 1996. As a consequence, the level of observable patent innovation intensity

is about three times higher than the level of secret patent innovation intensity in 2000.

[APPROXIMATE LOCATION OF FIGURE 3]

The main advantage of the patent count data model of this paper is that it includes a set of

latent variables, l∗it. In the remaining part of this subsection, the estimation results of the µ∗i and σi

parameters are summarized.

The firm-specific impact of l∗it is measured by the σi parameter, interpreted as the unpredicted

absorptive capacity of the firm due to secret innovations, see Escribano et al (2009) for an alternative

approach. Furthermore, the long-run impact of a unit shock in uit on σil
∗
it can be expressed as follows.

First, consider the infinite moving average representation of l∗it:

l∗it =
(

1
1− µ∗i L

)
uit =

[
1 + µ∗i L + (µ∗i )

2L2 + . . .
]
uit = µ∗i (L)uit. (12)
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Substituting this representation of l∗it into Equation (10) we obtain

lnλ∗it = µ0i + σiµ
∗
i (L)uit. (13)

In the long run (L = 1), this equation becomes

lnλ∗it = µ0i + σiµ
∗
i (1)uit. (14)

Therefore, the long run impact of secret innovations (uit) on unobserved patent intensity is given by

∂ ln λ∗it
∂uit

∣∣∣∣
L=1

= σiµ
∗
i (1) =

σi

1− µ∗i
, (15)

which depends on two factors: the unpredicted absorptive capacity due to unobserved innovation factors

(σi) and the unobserved degree of persistence of the secret innovation process (µ∗i ). The interpretation

of 1/σi is derived as follows. First, rewrite Equation (10) as:

l∗it =
1
σi

(lnλ∗it − µi). (16)

Then, we can express 1/σi by taking the following derivative of l∗it:

∂l∗it
∂(lnλ∗it − µi)

=
1
σi

(17)

and it measures the marginal effects of secret patent intensity (lnλ∗it) on unobserved innovation produc-

tivity (l∗it). Table 6 shows 30 firms from the technological cluster, ranked according to two indicators:

(1) their predictive absorptive capacity generated from the innovations kept secret by the i-th firm, 1/σi

and (2) their mean log market value, (1/T )
∑T

t=1 mit. One important conclusion comes out of Table

6; Merck is not only the IL firm but it is also the firm with the highest predictive absorptive capacity

and with the highest transform rate of secret patent intensity into unobserved innovation productivity,

see Equation (18).

[APPROXIMATE LOCATION OF TABLE 6]

Figure 4 presents the estimates of 1/σi for the 60 firms, as a function of the means of the variables
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(V1)-(V7) and mean annual stock return, computed over the period 1979 to 2000. The figure exhibits

the estimates of the linear regression line fitted to 1/σi and the corresponding R-squared values to

inform about the explanatory power of each variable. The first four panels in Figure 4 show that

firms with high patent applications count (V1), high patent citations received count (V2, V3) and high

patent citations weighted patent applications count (V4) tend to have higher 1/σi. Panel five presents

that firms with high R&D expenses (V5) have high predictive absorptive capacity. Panel six exhibits

that large firms (high book value, V6) have higher predictive absorptive capacity. Finally, the last two

panels evidence that firms with high log market value (V7) and high annual stock return also tend to

have higher predictive absorptive capacity. In summary, Figure 4 shows that those firms with a high

predictive unobserved absorptive capacity, are those that invest more in R&D, receive more forward

citations, apply for more patents and have higher stock returns and stock market values. Between 30%

to 51% of the variability (R-squared) of the predictive absorptive capacity due to secret innovation is

explained by individual firm level performance measures.

[APPROXIMATE LOCATION OF FIGURE 4]

Empirical results for Model 1. Table 7 presents the parameter estimates of Model 1. First, in

the system of equations (1), significant positive trends are estimated for stock return (δ̂y = 0.02),

observable patent intensity (δ̂o = 0.46) and secret patent intensity (δ̂∗ = 0.18). Significant and positive

β coefficients are measured for the impact of the S&P500 stock index return. The highest β̂y = 0.72

coefficient is observed for the stock return and positive β̂o = 0.09 and β̂∗ = 0.05 and significant

parameters are found for the impact of the S&P500 return on observable patent innovations and secret

patent innovations, respectively. The influence of firm size is different for each endogenous variable:

(1) smaller companies tend to have higher stock returns than large ones, i.e. ψ̂y = −0.15; (2) large

firms have a positive impact on observable patent intensity, i.e. ψ̂o = 0.02; and (3) smaller firms

produce more secret innovations than large companies, i.e. ψ̂∗ = −0.06. Finally, lagged R&D intensity

measured by R&D to market value has a significant positive effect on firms’ stock market valuation

(φ̂y = 3.15) and on observable patent activity (φ̂o = 0.05), while it has a significant negative effect on

latent patent innovation intensity (φ̂∗ = −0.15), which is consistent with the negative cross-correlations

between (V9) and the stock of knowledge shown in Table 5.

Second, in the system of market adjusted equations (2), the ζ matrix shows significant and positive
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PVAR(1) dynamics of both observable and secret patent intensity components with higher persistence

in the latent component. There is a significant positive dynamic impact of observable patent intensity

(ζ̂12 = 0.19) and a significant positive dynamic impact of secret patent activity (ζ̂13 = 0.70) on stock

return. Therefore, the results suggest that the dynamic impact of the latent patent intensity component

on stock return is much higher than that of the observable component. Furthermore, a positive dynamic

interaction is found between the observable and latent intensity components: ζ̂23 = 0.70 and ζ̂32 = 0.21.

The estimates show that the impact of the secret component on the observable component is higher than

the opposite effect: (ζ̂23 = 0.70) > (ζ̂32 = 0.21). We find that the PVAR process is covariance stationary

(see the maximum modulus of the eigenvalues of ζ̂ in Table 7). Finally, the estimates presented in

the Ωe matrix measure the contemporaneous interaction among the three endogenous variables. The

parameter values show a significant positive contemporaneous interaction between shocks in the stock

return and shocks in the secret patent intensity (Ω̂e13 = 0.36), and between shocks in observable and

latent patent innovations activity (Ω̂e23 = 0.37). However, a negative contemporaneous covariance is

found between shocks in the stock return and observable patent activity (Ω̂e12 = −0.20).

[APPROXIMATE LOCATION OF TABLE 7]

IRF of Model 1. In order to interpret the dynamic effects of the parameter estimates of the PVAR

model over several lags, the IRFs are also estimated. These represent the impact of a current unit

shock in the orthogonal (structural) error terms, εit = (εyit, εoit, ε∗it)′ = (
√

Ωe)−1eit, on future values

of Ỹit. We use the methodology of Cao and Sun (2011), who establish the asymptotic distributions

of the IRFs in short PVARs. They derive the estimate of the IRF and show how the corresponding

confidence bands can be estimated. Cao and Sun (2011) prove the asymptotic validity of a bootstrap

approximation of confidence bands.

The orthogonalized IRF of Model 1 is derived in Appendix 4, where we obtain that

Ỹit =
∞∑

j=0

ζjai +
∞∑

j=0

ζj
√

Ωeεit−j . (18)

Therefore, the IRF is given by the following infinite sequence of the matrices of standardized dynamic
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multipliers, Θj :

Θj = (ζ)j
√

Ωe for j = 0, 1, 2, . . . ,∞, (19)

where
√

Ωe, the lower triangular Cholesky matrix of Ωe, is used to orthogonalize the IRF. The 95%

confidence bands around the estimate of Θj are obtained by the simulation based method suggested

by Cao and Sun (2011). The 97.5% and 2.5% quantiles of Θj are estimated by 10,000 Monte Carlo

replications of Θj .

In the VAR literature, there are different choices for the matrix used to orthogonalize the IRF.

The different matrices are determined by the different orders of equations in the system. We have

three endogenous variables in the PVAR model, i.e. there are six possible orders of the equations.

The Cholesky matrix,
√

Ωe and the standardized dynamic multiplier, Θj is different for each order.

Nevertheless, the estimation procedure of Model 1, presented in Appendix 1, assumes that the diagonal

of
√

Ωe is normalized to ones for parameter identification reasons. This assumption implies a certain

order for the equations as only for the order (yit, ln λo
it, ln λ∗it) it is obtained that the diagonal of

√
Ωe

contains ones. For different orders of equations, the diagonal of the Cholesky matrix does not equal

to ones, therefore, it is not compatible with the normalization assumption of Appendix 1. As a

consequence, we apply the order (yit, ln λo
it, lnλ∗it) to orthogonalize the IRF. The economic intuition

behind these a priori identification restrictions is given below, after Equation (20).

The following restrictions are imposed on the contemporaneous relations (see Appendix 1):

Θ0εit = (ζ)0
√

Ωeεit =




1 0 0

Ωe21 1 0

Ωe31 Ωe32 1







εyit

εoit

ε∗it




=




εyit

Ωe21εyit + εoit

Ωe31εyit + Ωe32εoit + ε∗it




. (20)

The intuitive justification of these restrictions is the following: It is clear that the firm’s innovation

decisions are affected by more than one type of shock. Therefore, for identification reasons, we need

to impose certain a priori restrictions. The restrictions we are imposing are based on the presumption

“innovations and patent intensity news affect stock returns with a lag, while any variation in stock

returns is rapidly affecting innovation decisions”. News on observable patent intensity, affect contem-

poraneously patent intensity decisions based on secret innovations, but not the other way around.
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That is, all the contemporaneous relations among the three variables, are associated either to financial

information (stock returns) or to observable patent intensity decisions. Secret innovations require more

time to be spread within the firm given to warranty the information is confidential. However, when

these secret innovations are transmitted internally or spillover other firms, they are expected to have

higher and more persistent impacts than observable innovations.

The contemporaneous relationships among the endogenous variables, Ỹit are calculated as follows.

We orthogonalize Equation (4) multiplying each term by (
√

Ωe)−1:

(
√

Ωe)−1Ỹit = (
√

Ωe)−1ai + (
√

Ωe)−1ζỸit−1 + εit. (21)

According to the estimates of (
√

Ωe)−1, reported in Table 7, the left hand side of Equation (21) is




1.00 0.00 0.00

0.20 1.00 0.00

−0.45 −0.44 1.00







ỹit

ln λ̃o
it

ln λ̃∗it




=




ỹit

0.20ỹit + ln λ̃o
it

−0.45ỹit − 0.44 ln λ̃o
it + ln λ̃∗it




(22)

Combining Equations (21) and (22), we obtain that the contemporaneous relationships are indicated

by the first term of the right hand side of the following equation:




ỹit

ln λ̃o
it

ln λ̃∗it




=




0.00

−0.20ỹit

0.45ỹit + 0.44 ln λ̃o
it




+




ayi

0.20ayi + aoi

−0.45ayi − 0.44aoi + a∗i




+

+




0.04ỹit−1 + 0.19 ln λ̃o
it−1 + 0.7 ln λ̃∗it−1

0.02ỹit−1 + 0.26 ln λ̃o
it−1 + 0.84 ln λ̃∗it−1

0.01ỹit−1 + 0.03 ln λ̃o
it−1 + 0.08 ln λ̃∗it−1




+




εyit

εoit

ε∗it




. (23)

The infinite Vector Moving Average (VMA) representation of Ỹit helps to interpret the matrix of

standardized dynamic multipliers, Θj presented on Figure 5:

Ỹit = (I3 − ζL)−1ai +
∞∑

j=0

Θjεit−j . (24)
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In the previous formula, Θj = ∂Ỹit/∂εit−j measures how unit impulses of standardized shocks at time

t− j impact Ỹit. More precisely, each element of Θj can be expressed as follows:

Θj =




Θj11 Θj12 Θj13

Θj21 Θj22 Θj23

Θj31 Θj32 Θj33




=




∂ỹit+j

∂εyit

∂ỹit+j

∂εoit

∂ỹit+j

∂ε∗it

∂ ln λ̃o
it+j

∂εyit

∂ ln λ̃o
it+j

∂εoit

∂ ln λ̃o
it+j

∂ε∗it

∂ ln λ̃∗it+j

∂εyit

∂ ln λ̃∗it+j

∂εoit

∂ ln λ̃∗it+j

∂ε∗it




. (25)

A general element, Θjkl is interpreted as the impact of one unit standardized shock, εlit on the variable

Ykit+j .

Figure 5 exhibits for Model 1 the evolution of six components of Θj and the corresponding confidence

bands for j = 1, . . . , 15 future periods to report decreasing dynamic effects of the orthogonalized error

terms on future stock returns, observable patent intensities and secret patent intensities. Figure 5

shows: a) The impacts of secret innovation shocks are the largest. The dynamic effects on stock

returns, on observable and on secret patent intensities are of similar positive magnitude with a similar

slow path of decline, reaching zero only after 12 years. b) Observable innovation shocks have impacts

of lower positive magnitude on stock returns, observable and secret sources of patent intensity and

share common high speed of decline, reaching zero only after two or three years.

[APPROXIMATE LOCATION OF FIGURE 5]

Our PVAR models are covariance stationary, therefore, limj→∞Θjkl = 0 for k, l = 1, 2, 3 and no

standard shock, εit−j has long-run impact on Ỹit. However, it is interesting to evaluate the long-run

cumulative impact of standardized shocks by considering the following long-run impact matrix:

Θj(1) =




Θ11(1) Θ12(1) Θ13(1)

Θ21(1) Θ22(1) Θ23(1)

Θ31(1) Θ32(1) Θ33(1)




=




∑∞
j=0 Θj11

∑∞
j=0 Θj12

∑∞
j=0 Θj13

∑∞
j=0 Θj21

∑∞
j=0 Θj22

∑∞
j=0 Θj23

∑∞
j=0 Θj31

∑∞
j=0 Θj32

∑∞
j=0 Θj33




. (26)

In this paper, Θj = (ζ)j
√

Ωe, therefore, the long-run impact matrix of Model 1 can be computed as

follows:

Θj(1) =
∞∑

j=0

Θj =
∞∑

j=0

(ζ)j
√

Ωe = (I3 − ζ)−1
√

Ωe. (27)
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The long-run impact matrix, Θj(1), estimated for Model 1 is presented in Table 7. The results show

that the structural latent innovation shocks has the highest long-term impact on all variables, followed

by, the long-term impact of the structural observable innovation shocks and stock return error terms.

In summary, among the innovation factors affecting the firms, the secret innovation kept by the firms

is the one affecting more, and positively, the returns of the firms. This important empirical finding

is consistent with the results obtained by Pakes (1985), in a different context, where unpredictable

increases in patents increases the market value of firms.

4.2. Extended innovation and market value models

In this section, two extensions of the benchmark PVAR model are proposed (Models 2 and 3) and the

corresponding estimation results are summarized. Model 2 measures different effects for the IL and for

IFs. Nevertheless, it does not measure directly the inter-firm interaction effects of innovative activity

between the IL and IFs. Model 3 parameterizes the impact of the IL on IFs and the effect of IFs on

the IL.

Model 2. Differential effects of the single IL in innovation. Model 2 considers IL and IF

companies of the technological cluster. The model is specified as follows:

Yit = γXit + γILXitD(i = IL) + Ỹit, (28)

=
(

ω + δt + βyt + ψzit + φ
rit−1

mit−1

)
+

+
(

ωIL + δILt + βILyt + ψILzit + φIL
rit−1

mit−1

)
D(i = IL) + Ỹit

Ỹit = ai + ζỸit−1 + ζILỸit−1D(i = IL) + eit (29)

with eit ∼ N(0, Ωe), Ỹi0 ∼ N(0, Ω0), ai ∼ N(0,Ωa) and cov(Yi0, ai) = Ω0a. The dummy variable

D(i = IL) = 1 if i = IL and zero otherwise. In systems of equations (28) and (29), the γIL and

ζIL matrices measure the additional impacts of the IL firm not captured by the γ and ζ parameter

matrices, respectively. Thus, the IF effects are captured by the estimates of γ and ζ, while the IL

effects are measured by the (γ + γIL) and (ζ + ζIL) matrices. The interpretation of the components of

the (γ +γIL) and (ζ + ζIL) matrices coincide with those of the γ and ζ matrices, respectively, for Model
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1. Model 2 is covariance stationary when all eigenvalues of both ζ and (ζ + ζIL) are inside the unit

circle. Interpretation of the parameters also included in Model 1 is the same as before. The estimation

of Model 2 is summarized in Appendix 1.

Empirical results for Model 2. The parameter estimates of Model 2 are presented in Table 8.

First, in the system of equations (28), the γ parameter matrix indicates the parameters of the firms

that are IFs and similar estimation results are obtained as in Model 1. Therefore, the results reported

for Model 1 for the γ parameter are valid for the IFs in Model 2. For the IL firm, the estimates of

(γ + γIL) for Model 2 indicates the behavior of the leader. Most parameters of the (γ̂ + γ̂IL) matrix

are similar to γ̂. Nevertheless, the impact of firm size on stock returns of the IL is not significant

(ψ̂y + ψ̂ILy = −0.12 + 0.12 = 0.00), and firm size has a positive effect on the secret patent innovations

intensity of the IL (ψ̂∗ + ψ̂IL∗ = −0.02 + 0.05 = 0.03).

Second, in the system of equations (29), similar estimation results are also obtained for the ζ and

Ωe parameter matrices as in Model 1. Therefore, the results for the ζ parameters reported for Model 1

are valid for IF companies in Model 2, and the results reported for Model 1 for the Ωe parameters are

valid for all companies in the sample. The estimates of (ζ + ζIL) can be interpreted for the IL firm in

Model 2. Most but some key parameters of the (ζ̂ + ζ̂IL) matrix are similar to ζ̂. In particular, lagged

stock return has a positive effect on current secret patent innovations intensity (ζ̂31 + ζ̂31IL = 0.10) and

on current returns (ζ̂11 + ζ̂11IL = 0.23) for the IL. Finally, the AR process is found to be stationary for

Model 2 since all eigenvalues of ζ̂ and (ζ̂ + ζ̂IL) are inside the unit circle (see Table 8). However, the

persistence on the stock returns of the IL is much higher (ζ̂11 + ζ̂11IL = 0.23, AR(1) coefficient) than

that of the IFs (ζ̂11 = 0.04). The opposite result is obtained for the two (observed and unobserved)

patent intensity components. Therefore, the marked adjusted patent intensities of the innovation leader

is less predictable than the followers.

[APPROXIMATE LOCATION OF TABLE 8]

IRF of Model 2. We apply the methodology of Cao and Sun (2011) to derive the estimates of the

orthogonalized IRFs and the corresponding 95% confidence bands of Model 2. The IRFs are derived
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in Appendix 4, where we obtain that

Ỹit =
∞∑

j=0

[ζ + ζILD(i = IL)]jai +
∞∑

j=0

[ζ + ζILD(i = IL)]j(
√

Ωe)εit−j . (30)

Therefore, the IRFs are given by

Θij(IL) = (ζ + ζIL)j
√

Ωe for i = IL and j = 0, 1, 2, . . . ,∞, (31)

Θij(IF) = ζj
√

Ωe for i ∈ IF and j = 0, 1, 2, . . . ,∞. (32)

Figure 5 exhibits for Model 2 the evolution of six components of Θij for i = IL, denoted by Θij(IL) for

j = 1, . . . , 15 future periods, to exhibit decreasing dynamic effects of the orthogonalized error terms on

future stock returns, observable patent intensities and secret patent intensities. The IRFs corresponding

to the IF company are not reported since they are similar to the IRF presented for Model 1 of Figure

5. The IRF of the IL are only similar to the IRF of the IFs for the shocks an returns. The positive

reactions to shocks on innovation intensity components are of much lower magnitude than those of IFs

and their speed of decline is much faster for the IL than for the rest.

The long-run impact matrix of Model 2 for IL and IF firms can be computed as follows:

Θij(1) = (I3 − ζ − ζIL)−1
√

Ωe for i = IL and j = 0, 1, 2, . . . ,∞ (33)

and

Θij(1) = (I3 − ζ)−1
√

Ωe for i ∈ IF and j = 0, 1, 2, . . . ,∞. (34)

The estimates of the long-run impact matrices are presented in Table 8. For the IF firms, the results

show that the structural impulse of the latent innovation error term is the largest in terms of the

quantitative impact but is the most persistent shock, followed by, the observable patent intensity and

stock return shocks for all variables. For the IL company, all long run impacts are also positive but

of a much lower magnitude than for the rest of the firms (IFs). The long-run impact of stock return

impulses is the highest for ỹit, the impact of observable innovation impulses is the highest for ln λ̃o
it

and the impact of secret innovation impulses is the highest for ln λ̃∗it. The main conclusion we extract
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from this analysis is that the long run impacts of any of shocks are much larger for innovation follower

firms than for the leader.

Model 3. Interactions between the patent innovations of IL and IFs. This specification

measures the impact of the IL company on IFs and IFs on the IL firm. The model is formulated as

follows:

Yit = γXit + Ỹit = ω + δt + βyit + ψzit + φ
rit−1

mit−1
+ Ỹit, (35)

Ỹit = ai + ζỸit−1 + D(i ∈ IF)ζILỸILt−1 + D(i = IL)

(∑

k∈IF

ζIFỸkt−1

)
+ eit (36)

with eit ∼ N(0, Ωe), Ỹi0 ∼ N(0, Ω0), ai ∼ N(0, Ωa) and cov(Yi0, ai) = Ω0a. The parameters with

subindex IL measure the impact of the IL firm on IF companies, while the parameters with subindex

IF capture the effects of IF firms on the IL. The interpretation of the parameters also included in Model

1 is the same as before. Model 3 is covariance stationary when all eigenvalues of ζ are inside the unit

circle.

Empirical results for Model 3. The parameter estimates of Model 3 are presented in Table 9. First,

in the system of equations (35), for the γ parameters similar values are estimated as in the previous

PVAR models. Second, in the systems of equations (36), for the ζ and Ωe parameter matrices similar

results are obtained as in Models 1 and 2. The AR process is covariance stationary for Model 3 (see

Table 9). Finally, several parameters of the ζIL, ζIF matrices, which account for the interaction effects

of the IL and IFs, are found to be significantly different from zero. More details about the multiperiod

dynamic results of inter-firm interaction are provided in the following subsection.

[APPROXIMATE LOCATION OF TABLE 9]

IRF and dynamic multipliers of Model 3. We employ the methodology of Cao and Sun (2011)

to compute the orthogonalized IRFs and their 95% confidence bands of Model 3. In addition, the

so-called dynamic multipliers are also computed for Model 3, which account for the dynamic inter-firm

effects between the patent IL and IFs. The IRFs and the dynamic multipliers are derived in Appendix
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4, where we obtain that

Ỹit =
∞∑

j=0

ζjai +
∞∑

j=0

ζjζILỸILt−1−jD(i ∈ IF)+ (37)

+
∞∑

j=0

∑

k∈IF

ζjζIFỸkt−1−jD(i = IL) +
∞∑

j=0

ζj(
√

Ωe)εit−j .

Therefore, the IRFs of Model 3 are given by:

Θj = (ζ)j
√

Ωe for j = 0, 1, 2, . . . ,∞. (38)

Moreover, the dynamic multipliers or interaction effects between leaders and followers are given by:

Γj(IL → IF) = (Effects of ỸILt−j on Ỹit for i ∈ IF) = ζjζIL for j = 1, 2, . . . ,∞, (39)

Γj(IF → IL) = (Effects of Ỹkt−j for k ∈ IF on ỸILt) = ζjζIF for j = 1, 2, . . . ,∞. (40)

Figure 6 exhibits the evolution of twelve components of Γj(IL → IF) and Γj(IF → IL) for j = 1, . . . , 15

future periods to report decreasing dynamic effects of other companies on the firm’s future stock returns,

observable patent intensities and secret patent intensities. Figure 6 shows the next results for different

components of Γ.

The interactions from the IL to the IFs are the following: a) Shocks on observable patent intensities

of the IL have low positive impacts on stock returns and patent intensities of IFs that vanish after two

years. The effects on secret patent intensities of the IFs are negative but also last only two years. b)

Shocks on secret patent intensities of the IL have much larger effects on the IFs and the spillovers last

more than 10 years before disappearing. Those innovations that spillover from IL to IFs are positive

for stock returns and observables patent intensities (complements) and are negative for secret patent

intensities (substitutes). Interactions from the IFs to the IL are of much lower magnitude: a) The

impact of observable patent intensities of the IFs on the IL are small and last only one year. Those

spillover effects are negative for stock returns and secret patent intensities and positive for observable

patent intensity (complements). b) The spillovers from secret patent intensities of the IFs on the IL

are more important and last longer (10 years). The signs are the same as the spillovers from IFs to IL
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on observable patent intensities. Therefore, the dominant spillovers goes from the IL to the IFs and

are specially important if they are based on secret patent information decisions of the firm.

The long-run impact matrix of Model 3 can be computed by Θj(1) = (I3− ζ)−1
√

Ωe. The estimate

of this matrix is presented in Table 9. The results show that the structural latent error term has the

highest long-term impact on all variables, followed by the structural observable and stock return error

terms.

[APPROXIMATE LOCATION OF FIGURE 6]

5. Summary and conclusions

In this paper, we use dynamic panel data models to identify the interaction among stock return,

observable and secret patent application activity for a cluster of technologically related US firms for

the 22-year time period of 1979 to 2000. We create the technological cluster by Ward’s (1963) method

by using firm-level data on patent counts over the technological category space. The technological

cluster analyzed includes 111 firms. Most of these firms are from the pharmaceutical product-market

sector (SIC283). However, some firms of the cluster operate in different product-market industries, like

computers, chemicals or food sectors.

We classify the firms of the technological cluster according to their patent stock of knowledge into

patent innovation leader and followers groups. In particular, we identify a single Innovation Leader

(IL) firm over the period 1979 to 2000: Merck & Co. As this company preserves its leadership during

the whole period, we say that Merck is the permanent IL of the technological cluster. We assign other

technologically related firms to the Innovation Follower (IF) cluster.

We estimate several dynamic PVAR market value models by the Quasi Maximum Likelihood (QML)

method of Binder et al (2005). In these models, a secret patent application intensity component is

included. We model this latent patent intensity component according to the Poisson-type count data

framework of Blazsek and Escribano (2010). This patent count data model is estimated by the MSL

method, applying the Efficient Importance Sampling (EIS) variance reduction technique of Richard

and Zhang (2007).

The parameter estimates, the IRFs and the dynamic multipliers of the PVAR market value models

have suggested significant contemporaneous and dynamic intra-firm and inter-firm (spillover) effects
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among stock returns, observable patent intensity and secret patent intensity in the technological cluster

analyzed. The main conclusions are the following:

a) Empirical results considering all firms (Model 1): Innovation shocks based on observables have a

small and short (only two years) positive impact on stock returns and on observable and unobservable

patent intensities. However, innovations shocks based on secret information have large and long (more

than 10 years) positive effects on stock returns and on observable and unobservable patent intensities.

b) Results considering separately IL and IFs (Model 2): The results for IFs are similar to those

mentioned before for all firms. However, the behavior of the IL is different. The innovation shocks

based on observables are also short (2 years) but smaller than the rest of the firms. This is also valid

for the innovation shocks based on secret patent intensities of the IL but it is not true for the stock

returns of the IL; the reaction of the stock returns of the IL is similar to the rest of the firms (IFs). In

summary, the stock returns reaction of the IL is similar to the IFs but the innovations reactions of the

IL are smaller and have shorter memory.

c) Innovation spillovers among innovation leaders and followers (Model 3): The flow of innovation

spillovers is larger from the IL to the IFs, than the other way around. The interaction effects of inno-

vation shocks are large if they flow from IL to IFs, specially if the source of innovation is secret. These

spillovers are positive between observable patent intensities (innovation complements) and negative

between secret patent intensities (innovation substitutes). In both cases, the spillovers last more than

10 years from IL to IFs and around 5 years if the flow goes from IFs to IL. The reaction on stock

returns of the IL and the IFs differ in magnitude and sign; the main spillovers again come from the

secret innovation component (last 10 years) and are positive going from IL to IFs and are negative,

but of similar magnitude, going form IFs to the IL. In summary, the innovation spillovers benefit more

IFs than the IL.
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Appendix 1: Estimation of PVAR models by QML

This appendix presents the statistical inference applied for the PVAR Models 1, 2 and 3. These models

are estimated by the QML method proposed by Binder et al (2005).28 Definitions of parameters in

these equations are presented in Section 4. In order to simplify the notation, let N refer to the sample

size of all models in this appendix.

The covariance matrices Ωe, Ω0 and Ωa are parameterized as follows. In order to identify the

parameters in these matrices, the diagonals of the
√

Ωe,
√

Ω0 and
√

Ωa matrices are restricted to ones:

√
Ωe =




1 0 0

Ωe21 1 0

Ωe31 Ωe32 1




,
√

Ω0 =




1 0 0

Ω021 1 0

Ω031 Ω032 1




,
√

Ωa =




1 0 0

Ωa21 1 0

Ωa31 Ωa32 1




. (A1.1)

These Cholesky matrices imply the following parameterization of Ωe, Ω0 and Ωa:

Ωe =




1 Ωe21 Ωe31

Ωe21 Ω2
e21

+ 1 Ωe21Ωe31 + Ωe32

Ωe31 Ωe21Ωe31 + Ωe32 Ω2
e31

+ Ω2
e32

+ 1




, (A1.2)

Ω0 =




1 Ω021 Ω031

Ω021 Ω2
021

+ 1 Ω021Ω031 + Ω032

Ω031 Ω021Ω031 + Ω032 Ω2
031

+ Ω2
032

+ 1




,

Ωa =




1 Ωa21 Ωa31

Ωa21 Ω2
a21

+ 1 Ωa21Ωa31 + Ωa32

Ωa31 Ωa21Ωa31 + Ωa32 Ω2
a31

+ Ω2
a32

+ 1




.

This specification yields symmetric and positive semidefinite covariance matrices.29 Furthermore, the

elements of the Ω0a 3 × 3 matrix capturing the covariance between ai and Yi0, are restricted to zeros

due to parameter identification reasons.
28 In the literature, several papers have analyzed likelihood based estimation of dynamic panel data models. See

Balestra and Nerlove (1966), Nerlove (1971), Bhargava and Sargan (1983), and Nerlove and Balestra (1996) for dynamic
panel data models with random effects. See Lancaster (2002), Hsiao et al (2002), Groen and Kleibergen (2003), Bun and
Carree (2005), Kruiniger (2008), and Dhaene and Jochmans (2010) for dynamic panel data models with fixed effects.

29 Blanchard and Quah (1989) and Gil-Alana and Moreno (2009) impose similar restrictions.
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Let θ denote the vector of the model’s parameters. Let Ỹ = (Ỹ1, . . . , ỸN |Xi0, . . . , XiT ) and let

Ỹi = (Ỹi0, . . . , ỸiT ). The random effects QML estimator of the vector of parameters θ is obtained by

maximizing the following log-likelihood function:

lnL(Ỹ; θ) =
N∑

i=1

ln f(Ỹi|Xi0, . . . , XiT ) =
N∑

i=1

−3(T + 1)
2

ln(2π)− 1
2

ln |Ση| − 1
2
ω′iΣ

−1
η ωi, (A1.3)

where Ση is a 3(T + 1)× 3(T + 1) matrix defined as:

Ση =




Ω0 ι′T ⊗ Ω′0a

ιT ⊗ Ω0a IT ⊗ Ωe + ιT ι′T ⊗ Ωa


 (A1.4)

with ιT being a T × 1 vector of ones, IT being a T × T identity matrix. Furthermore, each element of

ωi = (ωi0, . . . , ωiT ) = [(ai + ei0), . . . , (ai + eiT )] is computed as follows:

Model 1 : ωit = Ỹit − ζỸit−1

Model 2 : ωit = Ỹit − ζỸit−1 − ζILỸit−1D(i = IL)

Model 3 : ωit = Ỹit − ζỸit−1 −D(i ∈ IF)ζILỸILt−1 −D(i = IL)
(∑

k∈IF ζIFỸkt−1

)
.

(A1.5)

Appendix 2: Estimation of the patent count data model by EIS

The inference procedure of Blazsek and Escribano (2010) is applied for the Poisson model with latent

variables. The model is estimated by the MSL method (Gouriéroux and Monfort, 1991), using the EIS

technique of Richard and Zhang (2007). The EIS method has been applied for the precise evaluation

of likelihood functions involving high-dimensional integrals for example in stochastic volatility models

(Liesenfeld and Richard, 2003) and stochastic conditional intensity models (Bauwens and Hautsch,

2006). Recall from Equation (7) that the conditional density of nit|(Nit−1, L
∗
it−1, Qit) is given by:

ft(nit|Nit−1, L
∗
it−1, Qit) =

exp(−λit)λnit
it

nit!
. (A2.1)

Furthermore, the density of the dynamic latent variable l∗it conditional on l∗it−1 is given by:

f∗t (l∗it|l∗it−1) =
1√
2π

exp
[
−(l∗it − µ∗i l

∗
it−1)

2

2

]
. (A2.2)
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If all latent variables (l∗it : t = 0, . . . , T ) were observable then the joint likelihood of a realization

(nit, l
∗
it : t = 0, . . . , T ) could be written as follows:

T∏

t=0

ft(nit|Nit−1, L
∗
it−1, Qit)f∗t (l∗it|l∗it−1) =

T∏

t=0

exp(−λit)λnit
it

nit!
1√
2π

exp
[
−(l∗it − µ∗i l

∗
it−1)

2

2

]
. (A2.3)

However, the L∗iT are not observed. Therefore, we integrate out all latent variables from the likelihood

function, with respect to the assumed normal distribution, to get the marginal density of patent counts.

Since the number of {l∗it : t = 0, . . . , T} is equal to the number of periods observed, the integrated

likelihood function is the following (T + 1)-dimensional integral:

L =
∫

RT+1

T∏

t=0

exp(−λit)λnit
it

nit!
1√
2π

exp
[
−(l∗it − µ∗i l

∗
it−1)

2

2

]
dL∗iT . (A2.4)

Rewrite the likelihood of patent counts as follows:

L(NiT , θ) =
∫

RT+1

g(NiT , L∗iT |QiT , θ)dL∗iT =
∫

RT+1

T∏

t=0

gt(nit, l
∗
it|Nit−1, L

∗
it−1, Qit, θt)dL∗iT , (A2.5)

where g is the joint density of (NiT , L∗iT ) and θ denotes the vector of parameters of the model.

The major difficulty related to the statistical inference of the model is the precise evaluation of

the (T + 1)-dimensional integral in L for given parameter values. This is performed numerically by

Monte Carlo (MC) simulation method using the EIS technique (Richard and Zhang, 2007). The EIS

procedure is nested into a typical likelihood function maximization procedure. In order to maintain

the stability of that procedure, the same set of i.i.d. N(0, 1) random numbers (i.e., common random

numbers) is used for every set of parameters to estimate the value of the integrated likelihood function

(see Richard and Zhang, 2007).

The EIS methodology consists of the following elements. First, an auxiliary sampler, m is intro-

duced, which is included in the likelihood function. Then, it is factorized into the product of (T + 1)

sequential auxiliary densities, {mt : t = 0, . . . , T} as follows:

L(NiT , θ) =
∫

RT+1

T∏

t=0

gt(nit, l
∗
it|Nit−1, L

∗
it−1, Qit, θt)

mt(l∗it|L∗it−1, θ
∗
t )

×mt(l∗it|L∗it−1, θ
∗
t )dL∗iT , (A2.6)

where θ∗t denotes the parameters of the i-th auxiliary sampler. Then, the importance MC estimate of
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L(NiT , θ) for given θ∗ is:

L̂R(NiT , θ, θ∗) =
1
R

R∑

r=1

T∏

t=0

gt(nit, l
∗
itr|Nit−1, L

∗
it−1r, Qit, θt)

mt(l∗itr|L∗it−1r, θ
∗
t )

, (A2.7)

where θ∗ is the vector of parameters of the auxiliary sampler defined as the union of all θ∗t s and

{l∗itr : t = 0, . . . , T} denotes the r-th trajectory of i.i.d. draws from {mt : t = 0, . . . , T} and r = 1, . . . , R.

In the application of the EIS method, we use the answers of Richard and Zhang (2007) for the next

two questions related to the sequential auxiliary densities: (a) How to choose the distribution for mt

in order to simulate l∗itr? and (b) How to choose the θ∗t parameters of mt?

(a) How to choose the distribution for mt in order to simulate l∗itr? Richard and Zhang (2007)

suggest defining the auxiliary sampler, mt with its associated density kernel, kt:

kt(L∗it, θ
∗
t ) = mt(l∗it|L∗it−1, θ

∗
t )χt(L∗it−1, θ

∗
t ), (A2.8)

where

χt(L∗it−1, θ
∗
t ) =

∫

R
kt(L∗it, θ

∗
t )dl∗it (A2.9)

denotes the t-th integrating constant associated to kt. Richard and Zhang (2007) suggest choosing kt

as a kernel of the normal distribution. Moreover, we include f∗t into the auxiliary sampler, mt, see

Bauwens and Hautsch (2006). Therefore, the t-th normal density kernel has the following form:

kt(L∗it, θ
∗
t ) = exp(θ∗1tl

∗
it + θ∗2t(l

∗
it)

2)× exp
[
−(l∗it − µ∗i l

∗
it−1)

2

2

]
, (A2.10)

where θ∗t = (θ∗1t, θ
∗
2t) determines the conditional mean and variance of the t-th auxiliary sampler, mt.

Bauwens and Hautsch (2006) show that the conditional mean, µt and conditional variance, π2
t of the

normal auxiliary sampler, mt are given by:

µt = π2
t (θ

∗
1t + µ∗i l

∗
it−1), (A2.11)

π2
t =

1
1− 2θ∗2t

. (A2.12)
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Therefore, for given parameters of the auxiliary sampler a trajectory of {l∗it : t = 0, . . . , T} can be

generated from the following AR(1) process:

l∗it = π2
t θ
∗
1t + π2

t µ
∗
i l
∗
it−1 + πtηit, (A2.13)

where ηit ∼ N(0, 1) are i.i.d. common random numbers.

(b) How to choose the θ∗t parameters of mt? The EIS methodology relies on the optimal choice

of parameters of the auxiliary samplers in the sense that for given m, the variance of L̂R(NiT , θ, θ∗) is

minimized, i.e.:

θ∗(NiT , θ) = arg min
θ∗

V ar[L̂R(NiT , θ, θ∗)]. (A2.14)

From Equation (A2.7), one can see that this variance is ‘small’ if the auxiliary sampler, mit provides

a ‘good fit’ to the gt function. Expressing the auxiliary sampler by its associated density kernel and

integrating constant from (A2.8), mt may provide a ‘good fit’ to gt if

ln gt(nit, l
∗
it|Nit−1, L

∗
it−1, Qit, θt) + lnχt(L∗it−1, θ

∗
it) ' ln kt(L∗it, θ

∗
t ). (A2.15)

Richard and Zhang (2007) show that if the auxiliary samplers are normal distributions then the MC

variance minimization problem stated in Equation (A2.14) can be reduced to a recursive sequence of

(T + 1) Ordinary Least Squares (OLS) problems, each of the following form (see also Bauwens and

Hautsch, 2006):

ln gt(nit, l
∗
itr|Nit−1, L

∗
it−1r, Qt, θ) + lnχt+1(L∗itr, θ̂

∗
t+1) = θ∗t0 + θ∗t1l

∗
itr + θ∗t2(l

∗
itr)

2 + utr (A2.16)

for t = T, . . . , 0, r = 1, . . . , R, χT+1(L∗iiT , θ̂∗T+1) = 1 and θ̂∗t+1 is the OLS estimate of θ∗t+1. Thus, for

each observation t, one has to compute the OLS estimate of the parameters of the auxiliary sampler,

mt. The regressions have a recursive structure as the θ̂∗t+1 estimates are used to compute the integrating

constant for the next, t-th OLS regression.30 Thus, the regressions are run backwards, i.e. from T

30 This is based on the permutation of the integrating constants in Equation (A2.7), see Richard and Zhang (2007) for
more details.
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to 0. The sample size of each regression is equal to the number of trajectories drawn, R. One of the

advantages of the EIS algorithm is that these auxiliary regressions are typically run with relatively low

sample sizes. In this paper, the number of trajectories of the latent variables is R = 50.

In summary, the EIS technique consists of the following steps:

Step 1: Draw R trajectories {l∗itr}T
t=0 from the natural sampler, N(µl∗it−1r, 1).

Step 2: For each t (from T to 0), estimate the regression in (A2.16).

Step 3: Given the OLS estimates of θ∗ obtained in Step 2, draw R trajectories {l∗itr}T
t=0 from the

auxiliary samplers, {mt}T
t=0. Iterate Steps 2 and 3 five times (Richard and Zhang, 2007).

Step 4: The estimate of the likelihood function, L̂R can be computed as follows. From (A2.8), express

m as:

mt(l∗it|L∗it−1, θ
∗
t ) =

kt(L∗it, θ
∗
t )

χt(L∗it−1, θ
∗
t )

, (A2.17)

From (A2.10), one may deduce that the t-th integrating constant is given by:

χt(L∗it−1, θ
∗
t ) =

√
2ππ2

t × exp
[
−(µ∗i )

2(l∗it−1)
2

2
+

µ2
t

2π2
t

]
. (A2.18)

Compute the estimation of the likelihood function of formula (A2.7) using formulas (A2.10),

(A2.17) and (A2.18).

Appendix 3: Estimation of the secret patent intensity component

One of the variables of each PVAR market value model is the log latent component of patent innovation

intensity, lnλ∗it. The value of λ∗it is estimated by computing the expectation of the latent patent

innovations component conditional on the observable information set, i.e. E[λ∗it|Nit−1, Qt]. In order

to obtain this estimate, all latent variables (l∗t ) are integrated out from the expectation and it can be

computed similarly to Bauwens and Hautsch (2006, pp. 460) as follows:

E[λ∗it|Nit−1, Qt] =

∫
Rt λ∗itf

∗
t (l∗t |Nit−1, L

∗
t−1, Qt)g(Nit−1, L

∗
t−1|Qt−1, θt)dL∗t∫

Rt−1 g(Nit−1, L∗t−1|Qt−1, θt)dL∗t−1

, (A3.1)
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where g is the density function of (Nit−1, L
∗
t−1|Qt−1, θt). Notice that f∗t (l∗t |Nit−1, L

∗
t−1, Qt) = f∗t (l∗t |l∗t−1).

The high-dimensional integrals in this ratio are approximated numerically by the EIS technique pre-

sented in Appendix 2. Finally, the estimates of E[λ∗it|Nit−1, Qt] are included in the PVAR models as

secret patent innovations variables.

Appendix 4: IRFs and dynamic multipliers of the PVAR models

In this appendix, orthogonalized IRFs and dynamic multipliers of Models 1, 2 and 3 are derived. For all

PVAR models, the IRFs are orthogonalized by applying the (
√

Ωε)−1 matrix, which gives information

on the contemporaneous relationships among the variables corresponding to the non-orthogonalized

IRFs. Using the parameters of the PVAR specification of this paper, (
√

Ωε)−1 is given by

(
√

Ωε)−1 =




1 0 0

−Ωe21 1 0

Ωe21Ωe32 − Ωe31 −Ωe32 1




. (A4.1)

Model 1 : Multiply Equation (4) by (
√

Ωe)−1 and express Ỹit as follows:

(
√

Ωe)−1Ỹit = (
√

Ωe)−1ai + (
√

Ωe)−1ζỸit−1 + εit, (A4.2)

Ỹit = (I3 − ζL)−1
√

Ωe(
√

Ωe)−1ai + (I3 − ζL)−1
√

Ωeεit, (A4.3)

where εit = (
√

Ωe)−1eit are orthogonal (structural) error terms. Since (I3 − ζL)−1 =
∑∞

j=0 ζjLj , then

Ỹit =
∞∑

j=0

ζjai +
∞∑

j=0

ζj
√

Ωeεit−j , (A4.4)

and the IRFs are given by:

Θj = ζj
√

Ωe for j = 0, 1, 2, . . . ,∞. (A4.5)

Model 2 : Multiply Equation (29) by (
√

Ωe)−1 and express Ỹit as follows:

(
√

Ωe)−1Ỹit = (
√

Ωe)−1ai + (
√

Ωe)−1ζỸit−1 + (
√

Ωe)−1ζILỸit−1D(i = IL) + εit, (A4.6)
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Ỹit = {I3 − [ζ + ζILD(i = IL)]L}−1ai + {I3 − [ζ + ζILD(i = IL)]L}−1(
√

Ωe)εit, (A4.7)

where εit = (
√

Ωe)−1eit are orthogonal error terms.

Since {I3 − [ζ + ζILD(i = IL)]L}−1 =
∑∞

j=0[ζ + ζILD(i = IL)]jLj , then

Ỹit =
∞∑

j=0

[ζ + ζILD(i = IL)]jai +
∞∑

j=0

[ζ + ζILD(i = IL)]j(
√

Ωe)εit−j , (A4.8)

and the IRFs are given by:

Θij(IL) = (ζ + ζIL)j
√

Ωe for i = IL and j = 0, 1, 2, . . . ,∞, (A4.9)

Θij(IF) = ζj
√

Ωe for i ∈ IF and j = 0, 1, 2, . . . ,∞. (A4.10)

Model 3 : Multiply Equation (36) by (
√

Ωe)−1 and express Ỹit as follows:

(
√

Ωe)−1Ỹit = (
√

Ωe)−1ai + (
√

Ωe)−1ζỸit−1 + (
√

Ωe)−1ζILỸILt−1D(i ∈ IF)+ (A4.11)

+(
√

Ωe)−1

(∑

k∈IF

ζIFỸkt−1

)
D(i = IL) + εit,

Ỹit = (I3 − ζL)−1ai + (I3 − ζL)−1ζILỸILt−1D(i ∈ IF)+ (A4.12)

+(I3 − ζL)−1

(∑

k∈IF

ζIFỸkt−1

)
D(i = IL) + (I3 − ζL)−1(

√
Ωe)εit,

where εit = (
√

Ωe)−1eit are orthogonal (structural) error terms. Since (I3 − ζL)−1 =
∑∞

j=0 ζjLj , then

Ỹit =
∞∑

j=0

ζjai +
∞∑

j=0

ζjζILỸILt−1−jD(i ∈ IF)+ (A4.13)

+
∞∑

j=0

∑

k∈IF

ζjζIFỸkt−1−jD(i = IL) +
∞∑

j=0

ζj(
√

Ωe)εit−j ,

and the IRFs are given by:

Θj = ζj
√

Ωe for j = 0, 1, 2, . . . ,∞. (A4.14)
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Moreover, the dynamic interaction multipliers are given by:

Γj(IL → IF) = (Effects of ỸILt−j on Ỹit for i ∈ IF) = ζjζIL for j = 1, 2, . . . ,∞, (A4.15)

Γj(IF → IL) = (Effects of Ỹkt−j for k ∈ IF on ỸILt) = ζjζIF for j = 1, 2, . . . ,∞. (A4.16)

Data sources

Center for Research on Stock Prices (CRSP) accessed from the Wharton Research Data Service (WRDS).

Compustat (North America) Database. Standard & Poor’s, 2005.

Consumer price index for all urban consumers. U.S. Department of Labor: Bureau of Labor Statistics, data downloaded
from the Federal Reserve Bank of St. Louis website (available at: http://research.stlouisfed.org).

MicroPatents Co., US Utility Patent Database covering the period 1979 to 2004 and US patent citations for years 2003
and 2004.

National Bureau of Economic Research Patent Citations Data-File. CD-ROM included in: Jaffe, A. B., M. Trajtenberg
(Eds.), Patents, Citations, and Innovations: A Window on the Knowledge Economy, MIT Press, 2002.
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Escribano A., A. Fosfuri, J. A. Tribó, 2009, Managing external knowledge flows: the moderating role of absorptive
capacity. Research Policy, 38, 96-105.

Fagerberg, J., B. Verspagen, C. Marjolein, 1996, Technology, growth and unemployment across European regions.
Regional Studies, 31, 5, 457-466.

Fischer, M. M., T. Scherngell, E. Jansenberger, 2009, Geographic localisation of knowledge spillovers: evidence from
high-tech patent citations in Europe. The Annals of Regional Science, 43, 839-858.

Frantzen, D., 2004, Technological diffusion and productivity convergence: a study for manufacturing in the OECD.
Southern Economic Journal, 71, 2, 352-376.

Fung, M. K., 2003, Technological proximity and co-movements of stock returns. Economics Letters, 79, 131-136.

Fung, M. K., 2005, Are knowledge spillovers driving the convergence of productivity among firms? Economica, 72,
287-305.

Gil-Alana, L. A., A. Moreno, 2009, Technology shocks and hours worked: a fractional integration perspective. Macroe-
conomic Dynamics, 13, 5, 580-604.

Gilbert, R. J., D. M. G. Newbery, 1982, Preemptive patenting and the persistence of monopoly. The American Economic
Review, 72, 514-526.

Gouriéroux, C., A. Monfort, 1991, Simulation based inference in models with heterogeneity. Annales d’Économie et de
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Table 1. SIC based industry diversification in the technological cluster

SIC industry name SIC No. firms

Pharmaceutical preparations 2834 47
Biological products (no diagnostic substances) 2836 31
In vitro & in vivo diagnostic substances 2835 7
Perfumes, cosmetics & other toilet preparations 2844 3
Surgical & medical instruments & apparatus 3841 3
Medicinal chemicals & botanical products 2833 2
Wholesale-drugs, proprietaries & druggists’ sundries 5122 2
Services-medical laboratories 8071 2
Grain mill products 2040 1
Beverages 2080 1
Chemicals & allied products 2800 1
Soap, detergents, cleaning preparations, perfumes, cosmetics 2840 1
Paints, varnishes, lacquers, enamels & allied prods 2851 1
Agricultural chemicals 2870 1
Plastics products, NEC 3089 1
Electromedical & electrotherapeutic apparatus 3845 1
Wholesale-medical, dental & hospital equipment & supplies 5047 1
Fire, marine & casualty insurance 6331 1
Services-hospitals 8060 1
Services-engineering, accounting, research, management 8700 1
Services-commercial physical & biological research 8731 1
Non-operating establishments 9995 1

Total number of firms 111

Notes: Standard Industry Classification (SIC).

Table 2. Hall and Mairesse (HM, 1996) based industry diversification in the technological cluster

HM industry name No. firms

Pharmaceuticals 92
Non-manufacturing 10
Computers and inst. 4
Chemicals 2
Food 2
Rubber and plastics 1

Total number of firms 111
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Table 3. Patent innovations leadership classification of firms based on mean values from 1979 to 2000

Firm name (SIC) Cluster (V1) (V2) (V3) (V4) (V5) (V6) (V7) (V8) (V9)

1. Merck & Co. (2834) IL 217.6 1367.5 136.7 147232.4 12.39 8.47 13.20 0.82 1.16

2. Eli Lilly and Co. (2834) IF 116.0 613.6 58.6 43645.5 12.21 8.15 12.69 0.83 1.17
3. Abbott Laboratories (2834) IF 97.5 720.8 73.9 40954.3 11.89 7.91 12.67 0.80 1.13
4. Warner-Lambert (2834) IF 81.7 656.2 61.3 31542.0 10.64 7.23 10.55 0.75 1.29
5. Pfizer, Inc. (2834) IF 103.0 553.2 49.1 23373.0 12.21 8.32 12.79 0.81 1.16
6. Bristol-Myers Sq. (2834) IF 69.7 307.4 34.2 11509.1 12.11 8.27 12.95 0.80 1.14
7. American Home (2834) IF 52.8 330.7 30.7 8396.9 10.82 8.05 11.38 0.72 1.25
8. Alza Co. (2834) IF 35.5 547.6 40.9 7683.0 8.24 5.28 9.92 0.78 1.01
9. Mallinckrodt, Inc. (2835) IF 23.5 181.9 16.9 2007.8 9.25 6.92 9.82 0.68 1.11
10. Pharmacia & Upj. (2834) IF 21.4 45.9 8.5 1922.6 10.96 7.45 10.34 0.79 1.34
11. Church & Dwight (2840) IF 12.3 83.4 9.9 1537.8 7.96 5.10 9.74 0.66 0.89
12. NeoRx Co. (2835) IF 6.5 68.4 7.8 500.5 7.25 4.12 7.92 1.07 0.96
13. Alliance Pharma. (2834) IF 4.2 69.9 6.9 369.8 7.42 4.33 8.83 1.06 0.87
14. Xoma Co. (2836) IF 6.9 48.7 5.0 329.6 8.11 4.21 8.84 1.15 0.96
15. Enzon, Inc. (2836) IF 4.2 47.1 6.0 235.9 6.95 4.13 8.79 1.08 0.83
16. Guilford Pharma. (2834) IF 3.5 23.0 4.9 216.5 6.75 4.20 6.98 0.98 1.01
17. Sugen, Inc. (2836) IF 4.4 23.8 4.0 216.2 6.50 4.02 6.42 0.95 1.05
18. Inhale Therapeutic (2834) IF 2.5 31.3 7.0 169.3 6.33 4.17 7.15 0.92 0.97
19. Corvas, Inc. (2836) IF 3.5 16.3 2.1 122.5 6.58 4.07 7.00 1.00 1.00
20. Molecular Biosyst. (2835) IF 2.0 57.5 4.8 90.5 6.97 4.23 7.97 1.02 0.93

Notes: Standard Industry Classification (SIC). Innovation Leader (IL). Innovation Follower (IF). The table presents nine
variables for 20 out of the 111 firms of the technological cluster analyzed for the period 1979 to 2000. The mean, over the
period 1979 to 2000, of the following variables is presented:
(V1) patent applications count: nit

(V2) forward citations received count: cfit

(V3) forward citations received count corrected for sample truncation bias (see Hall et al, 2001): c̃fit

(V4) knowledge stock:
Pt

s=0 c̃fisnis(1− δ)t−s

(v5) log R&D expenses: rit

(V6) log book value: zit

(V7) log stock market value: mit

(V8) log R&D expenses to log sales: rit/sit

(V9) log R&D expenses to log stock market value: rit/mit

Firms are ranked according to the mean of (V4). The companies not presented in the table from the technological cluster
are assigned to the IF cluster. For seven out of the nine variables considered, Merck is the leader. Table 4 and Figure 2
show that this leadership is preserved for the whole period. We, therefore, call Merck the permanent IL. The rest of the
firms from the technological cluster are the permanent IFs.
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Table 4. Evolution of the knowledge stock for some firms of the technological cluster

Merck & Eli Lilly Abbott Warner- Pfizer, Bristol- American Alza Mallinckrodt
Co., Inc. and Co. Laborat. Lambert Inc. Myers Home Co. Spec. Chem.

Year Co. Squibb Products Co., Inc.

1979 31,215 4,269 4,467 571 4,804 778 1,087 1,049 233
1980 51,807 13,245 6,246 1,411 6,131 1,237 2,269 2,805 331
1981 65,132 21,253 6,629 3,498 7,800 1,679 3,108 3,014 558
1982 73,959 21,034 7,164 4,159 8,658 1,739 3,135 3,681 621
1983 79,546 22,916 7,026 8,318 9,752 2,061 3,422 3,815 795
1984 83,616 25,138 6,928 16,406 11,298 2,521 3,433 4,806 925
1985 89,006 25,415 6,517 30,040 16,978 3,292 3,961 5,523 1,197
1986 97,238 23,248 7,754 43,104 18,579 3,694 5,771 6,628 1,358
1987 110,944 20,924 9,491 46,594 20,046 4,022 7,457 7,599 1,627
1988 108,461 19,228 12,499 50,251 24,377 4,988 7,516 9,036 1,789
1989 115,519 18,659 22,947 51,266 24,662 5,125 8,781 8,867 1,888
1990 136,414 18,617 28,476 52,747 29,798 6,483 8,892 9,472 2,513
1991 168,611 18,200 41,039 48,972 29,716 6,086 12,374 10,247 2,492
1992 204,970 20,146 50,468 44,339 31,188 8,039 13,667 11,131 3,480
1993 201,721 33,182 59,326 43,195 29,225 13,129 12,963 10,693 3,525
1994 213,937 46,093 70,367 41,515 31,009 15,414 14,425 10,754 3,321
1995 224,626 125,948 103,236 42,818 31,387 22,760 14,590 11,092 3,312
1996 233,309 112,243 100,738 37,540 29,102 26,825 13,133 9,837 3,078
1997 246,212 108,158 100,803 34,863 31,735 28,880 11,966 10,861 2,689
1998 248,862 98,847 91,705 33,734 30,075 30,646 10,735 10,660 2,298
1999 235,728 86,997 83,547 31,169 42,459 32,501 10,286 9,403 2,475
2000 218,279 76,439 73,621 27,414 45,426 31,301 11,762 8,054 3,667

Notes: The table presents the knowledge stock for nine firms presented in Table 3. These firms have the highest ranking
in the technological cluster according to the mean knowledge stock. The table shows that the knowledge stock of Merck,
indicated by bold numbers, was permanently higher than that of other firms in the technological cluster in every year.
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Table 5. Cross-correlation matrices among innovation variables, firm size and market value

V 1t V 2t V 3t V 4t V 5t V 6t V 7t V 8t V 9t

V 1t−1 0.89 0.72 0.81 0.86 0.60 0.70 0.48 -0.09 0.03
V 2t−1 0.81 0.90 0.88 0.71 0.58 0.64 0.40 -0.08 0.11
V 3t−1 0.88 0.84 0.89 0.82 0.60 0.68 0.46 -0.09 0.06
V 4t−1 0.79 0.55 0.69 0.95 0.43 0.51 0.38 -0.06 -0.04
V 5t−1 0.62 0.55 0.60 0.46 0.90 0.77 0.67 0.03 0.06
V 6t−1 0.72 0.59 0.66 0.54 0.73 0.91 0.62 -0.19 0.02
V 7t−1 0.48 0.33 0.42 0.39 0.60 0.61 0.85 -0.08 -0.47
V 8t−1 -0.09 -0.08 -0.08 -0.06 0.08 -0.18 -0.01 0.54 0.03
V 9t−1 0.05 0.18 0.11 -0.01 0.15 0.06 -0.41 0.08 0.73

V 1t V 2t V 3t V 4t V 5t V 6t V 7t V 8t V 9t

V 1t 1.00
V 2t 0.82 1.00
V 3t 0.93 0.95 1.00
V 4t 0.88 0.64 0.78 1.00
V 5t 0.64 0.57 0.62 0.47 1.00
V 6t 0.74 0.62 0.68 0.55 0.79 1.00
V 7t 0.50 0.36 0.45 0.41 0.68 0.67 1.00
V 8t -0.09 -0.08 -0.09 -0.06 0.11 -0.20 -0.04 1.00
V 9t 0.04 0.15 0.09 -0.03 0.15 0.01 -0.59 0.09 1.00

V 1t V 2t V 3t V 4t V 5t V 6t V 7t V 8t V 9t

V 1t+1 0.89 0.81 0.88 0.79 0.62 0.72 0.48 -0.09 0.05
V 2t+1 0.71 0.90 0.84 0.55 0.55 0.59 0.33 -0.08 0.18
V 3t+1 0.81 0.88 0.89 0.69 0.60 0.66 0.42 -0.08 0.10
V 4t+1 0.86 0.71 0.82 0.95 0.46 0.54 0.39 -0.06 -0.01
V 5t+1 0.60 0.58 0.60 0.43 0.90 0.73 0.60 0.08 0.15
V 6t+1 0.70 0.64 0.68 0.52 0.77 0.91 0.61 -0.18 0.06
V 7t+1 0.48 0.40 0.46 0.38 0.68 0.62 0.85 -0.01 -0.41
V 8t+1 -0.09 -0.08 -0.09 -0.06 0.04 -0.19 -0.08 0.54 0.09
V 9t+1 0.02 0.11 0.06 -0.04 0.05 0.02 -0.47 0.03 0.73

Notes: The cross-correlation coefficients are computed for the 111 firms of the technological cluster, for the period 1979

to 2000, among the variables (V1)-(V9) presented in Table 3. The bold numbers correspond to the (V4) knowledge stock

variable.
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Table 6. Ranking of firms with respect to the predictive absorptive capacity and mean log market value

Ranking Firm name 1/σ̂i Ranking Firm name (1/T )
PT

t=1 mit

1 Merck & Co., Inc. 8.80 1 Merck & Co., Inc. 7.90

2 Cypress Bioscience, Inc. 8.42 2 Bristol-Myers Squibb Co. 7.65
3 Bristol-Myers Squibb Co. 6.26 3 Pfizer, Inc. 7.49
4 Pfizer, Inc. 5.91 4 Eli Lilly and Co. 7.39
5 Alza Co. 5.83 5 Abbott Laboratories 7.37
6 Block Drug Co., Inc. 5.80 6 Warner-Lambert Co. 5.25
7 Interferon Sciences, Inc. 4.49 7 Pharmacia & Upjohn AB 5.04
8 Warner-Lambert Co. 4.12 8 Alza Co. 4.62
9 Mallinckrodt Co., Inc. 4.07 9 Mallinckrodt Co., Inc. 4.52
10 Abbott Laboratories 3.69 10 Church & Dwight Co., Inc. 4.45
11 Vical, Inc. 3.30 11 Block Drug Co., Inc. 3.64
12 Cytogen Co. 3.07 12 Xoma Co. 3.54
13 Xoma Co. 2.92 13 Alliance Pharma. Co. 3.53
14 NeoRx Co. 2.78 14 Enzon, Inc. 3.50
15 Eli Lilly and Co. 2.77 15 Cytogen Co. 3.32
16 Pharmacia & Upjohn AB 2.67 16 MedImmune, Inc. 3.01
17 Vion Pharma., Inc. 2.65 17 Chattem, Inc. 2.98
18 Enzon, Inc. 2.01 18 Scios, Inc. 2.96
19 Biomatrix, Inc. 2.00 19 Cypress Bioscience, Inc. 2.70
20 NPS Pharma., Inc. 1.86 20 IDEC Pharma. Co. 2.69
21 Shaman Pharma., Inc. 1.81 21 NeoRx Co. 2.62
22 Valentis, Inc. 1.74 22 The Immune Response Co. 2.51
23 Alliance Pharma. Co. 1.72 23 Agouron Pharma., Inc. 2.41
24 Quigley Company, Inc. 1.68 24 Interferon Sciences, Inc. 2.37
25 Scios, Inc. 1.66 25 Biomatrix, Inc. 2.10
26 Zonagen, Inc. 1.65 26 Vical, Inc. 1.97
27 Celtrix Pharma., Inc. 1.63 27 Biospherics, Inc. 1.86
28 MedImmune, Inc. 1.56 28 Immulogic Pharma. Co. 1.84
29 Magainin Pharma., Inc. 1.51 29 Cytel, Inc. 1.82
30 The Immune Response Co. 1.50 30 Magainin Pharma., Inc. 1.82

Notes: For the firms presented in the table, σi is significant at the 5% level. For the firms excluded from the table, σi is

not significant at the 5% level.
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Table 7. Parameter estimates of Model 1: benchmark model

Mean equation
γ′ yit ln λo

it ln λ∗it
ω′ -0.10 0.47 -0.10
t 0.02 0.46 0.18
yt 0.72 0.09 0.05
zit -0.15 0.02 -0.06
rit−1
mit−1

3.15 0.05 -0.15

PVAR(1) effects (Mζ = 0.93)

ζ′ ỹit ln λ̃o
it ln λ̃∗it

ỹit−1 0.04 0.01 0.03

ln λ̃o
it−1 0.19 0.22 0.21

ln λ̃∗it−1 0.70 0.70 0.70

Covariance effects
Ωe Ωey Ωeo Ωe∗
Ωey 1.00 -0.20 0.36
Ωeo -0.20 1.04 0.37
Ωe∗ 0.36 0.37 1.32

Matrix of orthogonalization
(
√

Ωe)
−1 Ωey Ωeo Ωe∗

Ωey 1.00 0.00 0.00
Ωeo 0.20 1.00 0.00
Ωe∗ -0.45 -0.44 1.00

Long-run impact matrix

Θj(1)′ ỹit ln λ̃o
it ln λ̃∗it

εyit−j 4.76 3.52 4.14
εoit−j 8.25 9.28 8.79
ε∗it−j 11.08 11.08 12.19

Notes: Panel Vector Autoregressive (PVAR). Bold numbers denote parameter significance at the 5 percent level. The Mζ

denotes the maximum modulus of the eigenvalues of ζ.

Model 1. Benchmark market value model:

Yit = γXit + Ỹit = ω + ρt + βyt + ψzit + φ
rit−1

mit−1
+ Ỹit

Ỹit = ai + ζỸit−1 + eit

The estimates of Ω0 and Ωa and are not reported in the table. The second equation is orthogonalized by multiplying each
term by (

√
Ωe)

−1, which gives the next expression:
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where εit = (εyit, εoit, ε∗it)
′ = (
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−1eit are orthogonal (structural) error terms. According to the estimates of (
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the left hand side of the previous equation is
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Therefore, the contemporaneous relationships are indicated by the first term of the right hand side of the following
equation:
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Table 8. Parameter estimates of Model 2: differential effects of the permanent IL

Mean equation (IF effects)
γ′ yit ln λo

it ln λ∗it
ω′ -0.10 0.44 -0.13
t 0.02 0.46 0.18
yt 0.72 0.09 0.05
zit -0.12 0.05 -0.02
rit−1
mit−1

3.19 0.03 -0.14

Mean equation (IL effects)
γ′IL yit ln λo

it ln λ∗it
ω′IL 0.54 3.60 1.65
t -0.01 -0.05 0.05
yt 0.00 0.09 0.10
zit 0.12 0.01 0.05
rit−1
mit−1

-0.59 0.01 -0.01

PVAR(1) effects of IF (Mζ = 0.93)

ζ′ ỹit ln λ̃o
it ln λ̃∗it

ỹit−1 0.04 0.01 0.02

ln λ̃o
it−1 0.20 0.22 0.21

ln λ̃∗it−1 0.70 0.70 0.70

PVAR(1) effects of IL (MIL = 0.62)

(ζ′ + ζ′IL) ỹit ln λ̃o
it ln λ̃∗it

ỹit−1 0.23 0.06 0.10

ln λ̃o
it−1 0.21 0.07 0.11

ln λ̃∗it−1 0.67 0.23 0.34

Covariance effects
Ωe Ωey Ωeo Ωe∗
Ωey 1.00 -0.36 0.35
Ωeo -0.36 1.13 0.31
Ωe∗ 0.35 0.31 1.31

Matrix of orthogonalization
(
√

Ωe)
−1 Ωey Ωeo Ωe∗

Ωey 1.00 0.00 0.00
Ωeo 0.36 1.00 0.00
Ωe∗ -0.51 -0.44 1.00

Long-run impact matrix (IF)

Θij(1)′ ỹit ln λ̃o
it ln λ̃∗it

εyit−j 3.73 2.30 3.03
εoit−j 7.47 8.42 7.84
ε∗it−j 10.12 10.01 11.01

Long-run impact matrix (IL)

Θij(1)′ ỹit ln λ̃o
it ln λ̃∗it

εyit−j 2.00 -0.05 0.82
εoit−j 1.35 1.44 1.10
ε∗it−j 1.80 0.58 1.88

Notes: Panel Vector Autoregressive (PVAR). Innovation Leader (IL). Innovation Follower (IF). Bold numbers denote
parameter significance at the 5 percent level. The Mζ and MIL denote the maximum modulus of the eigenvalues of ζ and
(ζ + ζIL), respectively.

Model 2. Differential effects of the permanent IL:

Yit = γXit +γILXitD(i = IL)+ Ỹit = ω + δt+βyt +ψzit +φ
rit−1

mit−1
+(ωIL + δILt+βILyt +ψILzit +φIL

rit−1

mit−1
)Di + Ỹit

Ỹit = ai + ζỸit−1 + ζILỸit−1Di + eit

where Di = 1 if i = IL and zero otherwise. The estimates of Ω0 and Ωa and are not reported in the table. The
contemporaneous relationships are indicated by the first term of the right hand side of the following equation:
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0.51ỹit + 0.44 ln λ̃o
it

1
A+

0
@

ayi

0.36ayi + aoi

−0.51ayi − 0.44aoi + a∗i

1
A+

+

0
@
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Table 9. Parameter estimates of Model 3: dynamic interaction between IL and IF

Mean equation
γ′ yit ln λo

it ln λ∗it
ω′ -0.12 0.36 0.13
t 0.03 0.46 0.19
yt 0.71 0.10 0.05
zit -0.14 0.06 -0.04
rit−1
mit−1

3.20 0.03 -0.13

PVAR(1) effects (Mζ = 0.93)

ζ′ ỹit ln λ̃o
it ln λ̃∗it

ỹit−1 0.04 0.01 0.03

ln λ̃o
it−1 0.19 0.22 0.21

ln λ̃∗it−1 0.70 0.70 0.70

Dynamic effects of IL on IFs

ζ′IL ỹIFt ln λ̃o
IFt ln λ̃∗IFt

ỹILt−1 -0.07 -0.10 0.04

ln λ̃o
ILt−1 -0.02 -0.03 0.02

ln λ̃∗ILt−1 0.12 0.19 -0.10

Dynamic effects of IFs on IL

ζ′IF ỹILt ln λ̃o
ILt ln λ̃∗ILt

ỹIFt−1 -0.14 0.05 -0.02

ln λ̃o
IFt−1 0.06 -0.01 0.01

ln λ̃∗IFt−1 0.06 -0.02 0.00

Covariance effects
Ωe Ωey Ωeo Ωe∗
Ωey 1.00 -0.39 0.36
Ωeo -0.39 1.15 0.30
Ωe∗ 0.36 0.30 1.33

Matrix of orthogonalization
(
√

Ωe)
−1 Ωey Ωeo Ωe∗

Ωey 1.00 0.00 0.00
Ωeo 0.39 1.00 0.00
Ωe∗ -0.53 -0.44 1.00

Long-run impact matrix

Θj(1)′ ỹit ln λ̃o
it ln λ̃∗it

εyit−j 4.12 2.69 3.49
εoit−j 8.23 9.26 8.78
ε∗it−j 11.14 11.14 12.26

Notes: Panel Vector Autoregressive (PVAR). Innovation Leader (IL). Innovation Follower (IF). Bold numbers denote
parameter significance at the 5 percent level. The Mζ denotes the maximum modulus of the eigenvalues of ζ.

Model 3. Interactions between the innovation permanent IL and the IFs:

Yit = γXit + Ỹit = ω + δt + βyit + ψzit + φ
rit−1

mit−1
+ Ỹit

Ỹit = ai + ζỸit−1 + D(i ∈ IF)ζILỸILt−1 + D(i = IL)
X

k∈IF

ζIFỸkt−1 + eit

The estimates of Ω0 and Ωa and are not reported in the table. The contemporaneous relationships are indicated by the
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Figure 1. Evolution of total patent application counts and total patent application intensity estimates of firms in the

technological cluster over the period 1979 to 2000.

Notes: The figure shows the evolution of
PN

i=1 nit and
PN

i=1 λ̂it.

Figure 2. Evolution of the patent application counts and knowledge stock per firm for permanent IL (Merck) and

permanent IFs over the period 1979 to 2000.
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Figure 3. Evolution of mean observable and mean latent components of patent intensity of firms in the technological

cluster over the period 1979 to 2000.

Notes: The figure shows the evolution of (1/N)
PN

i=1 λ̂o
it and (1/N)

PN
i=1 λ̂∗it.
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Figure 4. Estimates of predictive absorptive capacity, 1/σi as a function of different variables.

Notes: The figure shows the predictive absorptive capacity, 1/σi for 60 of the 111 firms in the technological cluster for the

cases, where the σi parameter is significant at the 5% level. See the list of these firms in Table 5. The 1/σi is presented

as a function of the variables (V1)-(V7) and the mean annual stock return. See the definitions of the variables (V1)-(V7)

in the notes of Table 3.
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Model 1: IRF of all firms Model 2: IRF of the IL

Figure 5. IRF of all firms and IRF of the IL firm in Models 1 and 2, respectively, for j = 1, . . . , 15 leads.

Notes: Impulse Response Function (IRF). Innovation Leader (IL). Θ represents the IRF in Model 1. Θ(IL) represents

the IRF of the IL firm in Model 2. The 95% confidence bands are also presented in the figure. εit = (εyit, εoit, ε∗it)
′ =

(
√

Ωe)
−1eit are orthogonal (structural) error terms.
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Model 3: Impact of the IL on IFs Model 3: Impact of IFs on the IL

Figure 6. Dynamic multipliers of Model 3 for j = 1, . . . , 15 leads.
Notes: Innovation Leader (IL). Innovation Follower (IF). Γ(IL → IF) represents the dynamic interaction of the IL on IF
firms. Γ(IF → IL) represents the dynamic interactions of IF firms on the IL. The 95% confidence bands are also presented
in the figure.
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