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The importance of covariance modelling has long been recognised in the field of portfolio man-
agement and large dimensional multivariate problems are increasingly becoming the focus of
research. This paper provides a straightforward and commonsense approach toward investigat-
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lems. We find simpler forecasting techniques do provide equal (and often superior) predictive
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1 Introduction

The significance of volatility modelling in a portfolio allocation sense has long been recognised.
However, less is understood about the most appropriate method of handling large portfolios
(that is, hundreds or thousands of assets) in this context. These large portfolios are increas-
ingly becoming the focus of researchers and many methods have been proposed to aid in dealing
with the issue of dimensionality including various estimation techniques such as composite like-
lihood methods proposed by Engle, Shephard, and Sheppard (2008). Extensions of Dynamic
Conditional Correlation (DCC)-type models, for example equicorrelation of Engle and Kelly
(2009) and blocking of Franses and Hafner (2009) and Billio, Caporin, and Gobbo (2006) also
feature heavily in the literature. Surveys of the multivariate generalised autoregressive condi-
tional heteroskedasticity (GARCH) literature include Bauwens, Laurent, and Rombouts (2006)

and Silvennoinen and Terasvirta (2009).

Recent work along the lines of this paper include Laurent, Rombouts, and Violante (2010) and
Caporin and McAleer (2011). Both papers focus on the evaluation of multivariate GARCH-
type models for large dimensional problems, although the latter does include an exponentially
weighted moving average (EWMA) specification in its comparison of methods. Hansen, Lunde
and Nason’s (2003) Model Confidence Set (MCS) methodology is implemented in both as an
evaluation tool and the out-of-sample periods are divided into subsamples based on the relative
level of volatility. This is also the case in our paper. The benefits of our choice of the MCS
as an evaluation tool are twofold: it does not require a benchmark model to be specified; and
is a statistical test of the equivalence of a given set of forecasting methods with respect to a
particular loss function. In our case, the loss function will be the variance of returns from the
global minimum variance portfolios computed from each of the forecasts. In terms of the out-of-
sample period, investigation of the forecasting performance of models under differing volatility
conditions is becoming more popular in the literature (see Luciani and Veredas (2011) for a

recent example) and is of great interest here given the market turbulence of recent years.

This paper differs from Laurent, Rombouts, and Violante (2010) and Caporin and McAleer
(2011) in two important ways: firstly, the use of daily data as opposed to intraday allows scope
for larger dimensional portfolios (the largest number of assets, N, here is N = 200 compared to
N = 89 in the daily data application in Caporin and McAleer (2011)). Daily data allows us to

circumvent a number of difficulties posed by the use of high frequency data for large dimensional



problems (big N), for example limitations imposed by stock liquidity. Notably, for N > T the
positive definitiveness of the covariance matrix becomes a problem. Secondly, a wider range
of ‘simple’ methods are considered here, shifting the focus to a more practical, less GARCH-
orientated study. This paper investigates and evaluates popular methods for forecasting large
covariance matrices and specifically considers whether equal, or perhaps superior forecasts of the
conditional covariance matrix can be achieved using much simpler means than more complex

and often computationally cumbersome methodologies.

An empirical portfolio allocation exercise is used to compare various covariance forecasting
techniques. Minimum variance portfolios are formed and the out-of-sample performance of
the methods compared, using the MCS of Hansen, Lunde, and Nason (2003). In addition to
the question of minimising the volatility of the portfolio, more practical aspects including the
stability of the resulting portfolio and the central processing unit (CPU) time of the forecasting
methods are considered. The various models are compared across a number of portfolio sizes
and for both a full out-of-sample application as well as periods of relatively high and low levels

of market volatility.

The paper proceeds as follows. Section 2 details the dataset used here. Section 3 outlines the
forecasting methods compared and how they will be implemented. Section 4 considers the tools

used for comparison and reports the results of the empirical application. Section 5 concludes.

2 Data

The portfolios used contain a selection of S&P1500 stocks that continuously traded over the
period 03/01/1994 to 31/12/2009. The full dataset contains 200 stocks (N = 200) and 4029
observations (7" = 4029). All GICS sectors are represented across the dataset and the full list of
stocks including their ticker code, company name and sector is provided in the Appendix. Over
60% of the assets contained in the dataset represent the Information Technology, Industrials,
Financials and Consumer Discretionary sectors. Log returns, 75, are calculated using [r;; =

log p; + — log p; +—1] where p; ; denotes the daily closing price of asset i at time ¢.

The in-sample period is 2000 observations, allowing for 2029 one-step-ahead forecasts. De-
scriptive statistics for the in-sample, out-of-sample and total sample periods are provided in

Table 1 for the stocks with the highest and lowest volatility for the given period as measured



by the unconditional standard deviation. For further comparison, descriptive statistics for the
S&P1500 composite index daily returns are also provided, beginning 02/11/94. The S&P500
index covering the entire sample period yielded very similar statistics and thus not included

here.

Of note are the periods of relative high and low volatility over the sample. The upper panel
of Figure 1 shows the S&P1500 returns series and the lower panel the squared returns series.
The beginning of the sample is characterized by relatively low volatility, followed by a higher
overall level of volatility. This high volatility spans a period from around April 1997 until July
2003. The following 3 or so years are again a time of lower overall market volatility. Finally,
the last portion of the sample (from around March 2007) is one of higher overall volatility.
This period corresponds to the recent global financial crises (GFC). These overall changes are
of interest as we look into any possible effect the overall level of volatility has on the relative
performance of the forecasting methods. It is becoming increasingly common for researchers
to evaluate forecasting methods for sub-periods of differing levels of volatility, see Luciani and

Veredas (2011) for a recent example.

Daily returns

Squared daily returns

1995 1997 1999 2001 2003 2005 2007

Figure 1: Daily returns, r, of the S&P1500 index ( Upper Panel) and squared daily
returns (Lower Panel). Period spanning 03/01/1994 - 31/12/2009.
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3 Generating and evaluating forecasts

A common decomposition of the covariance matrix (see Engle (2002)) is
Hip1 = DR 1Dig (1)

where Hy, ;1 is the covariance matrix at time ¢+ 1, Ry the correlation matrix at time t+4 1 and
D, the diagonal matrix of univariate standard deviations at time t+1. In order to compute the
elements of Dy, 1, the d; ¢11’s, where ¢ denotes the asset, univariate volatility modelling is used.
Consider here the asset return series, r;;, shown in (2): it is the product of the conditional
standard deviation or o;; and the standardised disturbance term ¢;, where ¢;; is normally

distributed with mean 0 and variance 1.
Tit = Oit €it, 1=1,2, ..., n (2)

Engle and Patton (2001) outline a number of stylised facts regarding volatility, the first (and
arguably most important) of these is that volatility exhibits persistence; that is, the clustering
of volatility shocks so that a large move (of either sign) will be followed by another large
move and so forth. It can be shown that Tz?,t = Jzt, where the squared return is considered
an unbiased proxy of the volatility. Although noisy, squared returns are adequate here, given
‘simple’ approaches to covariance modelling are of interest. This concept of volatility persistence
coupled with the specification of r; ; in (2) is the basis of the empirically successful autoregressive
conditional heteroskedasticity (ARCH) family of model, first proposed by Engle (1982). The
ARCH model allows the conditional variance to vary over time dependent on the past squared

forecast errors.

The most commonly applied extension of ARCH is the Generalised ARCH (GARCH) model of
Bollerslev (1986), a successful predictor of conditional variances even in its simplest form. The
GARCH (p, ¢) model (3) is mean reverting and conditionally heteroskedastic with a constant

unconditional variance.
q P
2
hig=0io+ Y ijriej+ Y Bijhir (3)
Jj=1 Jj=1

where h;; is the univariate variance of asset 7 at time ¢ and h;;_; the j-th lag; r?t_ y the squared



return of asset ¢ at time ¢ — j; and o o, o; j and 3; ; parameters constrained to a; 9 > 0, a; ; > 0,

Bi; > 0 and o + 8; < 1 for the i-th asset.

Along with exhibiting persistence, volatility reacts asymmetrically to past forecast errors such
that in a financial sense, negative returns seem to have a larger influence on future volatility
than positive ones. Nelson’s (1991) Exponential GARCH sought to address this characteristic
of volatility by incorporating the sign of a return, rather than its magnitude alone. Similarly,
the model of Glosten, Jagannathan, and Runkle (1993) (GJR-GARCH) addresses asymmetry
in volatility, by including a dummy variable that takes the value 1 should the asset return be
negative. The specification of such a model is provided in (4), where I;;_; is the indicator
variable for asset i at time ¢t — j and d; ; the relevant parameter. The constraints of the previous

model now become a; 9 > 0, a5 + (6;/2) >0, i ; > 0 and «a; ; + (6;;/2) + fij < 1.
q q p
hi,t =0+ Z O‘i,jri%tfj + Z 5i7jrz'2,tfjli7t*j + Z Bi,jhi,tﬂ' (4)
j=1 j=1 j=1

Consistent with the multivariate GARCH literature, the models are estimated using a two-stage
procedure whereby each series of returns, r;;, is standardised using a univariate GARCH-type
model. As is usually the case, the volatility-standardised returns will be denoted as €;; =
rit/ \/m The underlying volatility process here is the GJR-GARCH(1, ¢, 1) of Glosten,
Jagannathan, and Runkle (1993) and the original GARCH(1, 1) of Bollerslev (1986). To avoid
any potential cost associated with estimating the asymmetry parameter § unnecessarily (Thorp
and Milunovich (2007)), the significance of this parameter was tested. Thirteen stocks were
found to have insignificant (at the 5% level) ¢’s and thus their volatility processes are estimated
using GARCH(1, 1). The remaining 187 stocks’ univariate volatility processes are estimated
using GJR-GARCH(1, 4, 1). The volatility-standardised returns are used to generate one-
step-ahead correlation matrices, R;y1, for each of the competing models are scaled by the
univariate standard deviations, D41, to equal the conditional covariance matrix, Hy41, in (1).
The forecasts of the conditional covariance matrix are used to determine the optimal portfolio

weights for each forecasting method.

Increasingly over recent years, researchers have been interested in portfolio allocation appli-
cations of volatility timing that are not limited in terms of the number of assets modelled.
Previously, work was limited in scope: primarily due to the problems associated with the esti-

mation of multivariate GARCH (M-GARCH) models with time-varying correlations. The two



well publicized complications in developing a conditional covariances forecasting tool are (a) the
statistical requirement that the covariance matrix be positive definite; and (b) that the model
be effectively parsimonious to avoid parameter proliferation when modelling the conditional
covariance of multiple time series. As in the univariate literature, the multivariate work is wide
ranging. Surveys of the M-GARCH literature include Bauwens, Laurent, and Rombouts (2006)

and the more recent work of Silvennoinen and Terdsvirta (2009).

The Dynamic Conditional Correlation (DCC) model of Engle and Sheppard (2001), formally
introduced by Engle (2002), is considered to be a parsimonious approach addressing both issues.
A generalisation of Bollerslev’s (1990) Constant Conditional Correlation (CCC) model, the DCC
framework firstly estimates univariate GARCH models for each series. Utilising the standard
residuals obtained in the first instance, a so-called ‘pseudo’ time varying correlation matrix is

then estimated using the Q1 specification? in (5).

Hi\1 = DyiRiyiDyp
Riy1 = diag(Qui1) V2Quidiag(Quyr) /2 (5)
Qi1 = Q(l —a—-fB)+ta diag(Qt)l/Qetflegq diag(Qt)l/Q + 8 Qt—1

where Dy 1 is a diagonal matrix of conditional standard deviations, computed from the univari-
ate volatility models underlying the DCC; « and [ are parameters subject to the constraints
a>0,8>0and a+f < 1;and €;; = 7;¢/ \/m the volatility-standardised returns. Persistence
in returns is demonstrated should the sum of the two parameters be close to unity, implying
that the closer the sum is to one the more persistent the correlations. As the parameters here

are scalar values, the correlation dynamics are equal for all assets.

In terms of estimation, the DCC is often estimated using a two-stage quasi-maximum likelihood
procedure. The second stage of the log-likelihood is given in (6) and is included here to allude
to a potential issue for this type of estimator in the large dimensional scenario. In particular,
the requirement of inverting the correlation matrix R;. For standard maximum likelihood
optimisation routines, this term will be computed for each ¢ a number of times. For large

N, inversion of this matrix becomes numerically intensive. This point is both important and

2This is the specification offered by Aielli (2009). The literature points to the use of this model in place of
the original.



relevant to the practical implementation of any empirical application of this model.

T
log L = —% Zl (nlog(2m) + 2log(|Dy|) + log(|R:|) + €,R; et) (6)

—
To address the problem of bias afflicting the two-step quasi-likelihood estimators, Engle, Shep-
hard, and Sheppard (2008) introduced a composite likelihood approach to covariance modelling
and thus rendered these methods plausible for large-scale applications. The composite like-
lihood is constructed and subsequently maximised to provide the estimate of the covariance
matrix. This approach has been used successfully in the mathematics literature for some time
(see Lindsay (1988) and more recently, Varin and Vidoni (2005)) for applications where standard

likelihood methods are infeasible.

The composite likelihood is the sum of quasi-likelihoods, obtained by breaking the portfolio of
assets into subsets. Each subset will yield a quasi-likelihood estimator, which can then be added
to the others to produce the composite likelihood. The process avoids having to invert large
covariance matrices, preventing burdensome computational issues and also the bias introduced
by an unknown incidental parameter. The estimator can be O(1) if necessary and will remain
unbiased even if the number of assets exceeds that of the observations (or rather, the number

of time steps).

Formally, consider the K-dimensional vector of log-returns, ry, where t = 1,2, ..., T. The covari-
ance matrix H; is modelled using past data by estimating a number of parameters. As alluded
to above, the portfolio is split into subsets: effectively transforming a vast dimensional system
into a number of small ones. To do so, r; is transferred into the data array Y; = {Y14,...,Yn¢}
where Y ; is a vector of small subsets of the data. This can be shown as Y;; = S; r;, where
S; is a non-stochastic selection matrix. In their paper, Engle, Shephard, and Sheppard (2008)
consider all unique pairs of data where N = K (K — 1)/2 and this is the approach used here.
A valid quasi-likelihood for the j-th subset is constructed to estimate the parameters. By aver-
aging over a number of submodels and summing over the series a sample composite likelihood
(CL hereafter in accordance with the literature) function is produced. Evaluation of the CL

costs O(K?) calculations, gaining an advantage over standard quasi-likelihood methods.

In addition to using the CL approach to estimating and subsequently generating covariance

forecasts using the DCC model, this paper is interested in the application of much simpler



methods to forecast covariances for multivariate systems. The concept of univariate volatility
persistence also implies tomorrow’s covariance is dependent on that seen historically, and so the

simplest forecasting tool is a simple moving average as in (7).

s _ 1y /
P =2 ey (7)
j=1

where K is the moving average period (referred to as the ‘rolling window’), et_jeéfj the jth
lag of the cross product of the volatility standardised returns’ series, and QtSM A the forecasted
pseudo-correlation matrix. Note here that the cross product of the standardised returns series,
€,_;€;j, is used as a predictor of the correlation matrix, denoted by Q7MA. This matrix is not
quite in the form of a correlation matrix (hence the term ‘pseudo-correlation’), so is rescaled
using the same method as a DCC-type model (the general case is shown in (8)). Further, as
long as N < K the symmetric covariance matrix that results should be positive definite (Chiriac
and Voev (2011)). To ensure this is the case, a 252-day rolling window is used (this corresponds
to a trading year). The use of a full trading year is also consistent with Value at Risk (VaR)

applications, in accordance with the Basel Committee on Banking Supervision (1996).

R, = diag(Q,)~/?Q,diag(Q,)~"/? (8)

Of course, the forecasted covariance matrix Hy,; is of primary interest here and is found using
the equation shown in (1). The simple moving average is a popular tool of technical traders and
investors in both a univariate and multivariate setting due to its practical and computationally

quick (relative to the other models discussed) application.

The natural extension of this basic model is the exponentially-weighted moving average which
places a higher emphasis on more recent observations. J.P. Morgan and Reuters’s (1996) Risk-
Metrics examine the exponential filter in detail and Fleming, Kirby, and Ostdiek (2001) extend

their specification to that in (9).

fWMA = exp(—a) F_V{/MA + aexp(—a)e, 1€, 9)

The rate of decay, exp(—a) can be computed using standard optimisation routines. Rather than
estimating it here, a 252-day window is used and the decay rate « is set using o = 2/(K + 1)

(Morgan and Reuters (1996)). Again, the forecasted pseudo-correlation matrix is denoted as

10



QFWMA and thus must be rescaled using (8).

Fleming, Kirby, and Ostdiek’s 2001 and 2003 papers examine the potential gain of volatility
timing using the exponential weighting scheme in (9). The reasoning behind this is straightfor-
ward, that is if QWM 4'is indeed time varying, the covariance dynamics will be reflected in the
path of the returns. Thus, employing a method that requires the squares and cross-products
of the lagged returns is ideal. Their choice of an exponential estimator is also well founded, as
Foster and Nelson (1996) show the scheme will in general provide the smallest mean squared
error (MSE). In addition, positive definiteness of the resulting conditional covariance matrix is

assured.

Both moving average techniques outlined here are simplistic in nature and are commonly thought
of as a ‘simple’ class of covariance forecasting tools. They require little if any optimisation at
all and can be thought of as non-parametric (in the case of (9), this requires the parameter «
to be fixed as is the case here). The third method used is the MIxed DAta Sampling (MIDAS)
model of of Ghysels, Santa-Clara, and Valkanov (2006). It does not require maximum likelihood
optimisation despite being parametric in nature and is not classed as a GARCH-type model,

thus is considered another ‘simple’ estimator in this paper.

The MIDAS approach is shown in (10).

km(lil:
MIDAS _ &
QP =Q+0 ) ke peiy (10)
k=0
where QMIP A5 is the forecasted pseudo-correlation; Q the mean or rather, unconditional sample

correlation; scale parameter ¢; the polynomial lag parameters, or weights, 0j; the maximum lag

length £™?"; and the forecasting variable €, €} _, as used above.

In keeping with Ghysels, Santa-Clara, and Valkanov (2006), the weighting scheme here will be
based on the Beta function, so that § = [0,65]. For the purposes of volatility forecasting 6;
can be restricted to equal 1 and 6 < 1 implying a slow decay typical of such models (and
ensuring only one parameter need be estimated). The resulting weights are normalised to sum
to one, allowing estimation of the scale parameter ¢g. As in the case of the EWMA model, no
estimation is undertaken. Rather, the parameter 65 is set to be 0.98 implying slow decay and
k™ to be 252 days (consistent with the previous moving averages). The MIDAS framework

is becoming increasingly popular for a range of applications, however most focus on univariate

11



implementation of the model. To the best of my knowledge, the use of the MIDAS specification
to estimate and forecast the conditional covariances of a portfolio of assets (of size greater than

2) remains a largely open area in the literature.

The final forecasting approach used here is Dynamic Equicorrelation (DECO) (Engle and Kelly
(2009)), the correlation matrix Ry1; provided in (11) is the point of difference between this
model and the DCC method described above.

Riti =1 = pip1)IN + pisal (11)

where p;y1 is the equicorrelation at time ¢ + 1; Iy the N-dimensional identity matrix; and 1 a
N x N matrix of ones. All pairs of returns are restricted to have equal correlation on a given

day.

Engle and Kelly (2009) assert that by specifying a conditional volatility model and a correlation
process, the DECO framework can be applied to individual problems with success. The example
provided involves use of a DCC-type approach to specify the correlations then averages the
pairwise correlations to determine the parameters. Thus the Q41 matrix of standardised returns

in this case is:

Q=Ql—-a—-0)+a« diagQi/Qeteé diaLgQ;/2 + 5 Qq (12)

DECO averages the pairwise DCC correlations to obtain p;y1. Thus,

1 2 qi,jt+1
- - 1/RD001 —n) = 05 ].3
Pi+1 n(n — 1) ( t+1 ) n(n—1) ; Vi, t41G5,5,t+1 1)

where ¢; j ;11 is the 7, j th element of Q1. To estimate the model, univariate GARCH models
are computed in the first stage as per the DCC quasi-maximum likelihood approach and the
correlation matrix Ry41 in (11) is used. The difference between the equicorrelation method and
standard DCC is best shown be comparing the second step of the DECO likelihood to that of

the DCC (6).

2
L= —% > flog ([1=p" 1+ (n = )pi)) + 1 _1 zi:(ezz,t) - # <Z Ei,t)

i Pt i

where €; are the returns standardised for the first-stage volatility estimates, €; = Dt(ﬁ)_lrt and

pt given by (13). This approach avoids the inversion of the R; matrix and so is less burdensome

12



and computationally quicker to estimate than the DCC framework.

Global minimum variance portfolio weights, variances and the Model Confidence Set (MCS) of
Hansen, Lunde, and Nason (2003) are compared in order to evaluate forecasting performance
of the competing models. Evaluation of the forecasts centers on generation of global minimum

variance portfolios, with weights w; as shown in (15).

wTHw! = min w/Hw (14)
wie RN
H'1

w; (15)

T 1TH-11

The benefits of utilising the global minimum variance portfolio as the loss function for this
problem center on not needing to specify or make assumptions regarding the expected return
of the portfolio. Both Caporin and McAleer (2011) and Clements, Doolan, Hurn, and Becker
(2011) employ the global minimum variance portfolio as a useful comparison criteria of various
covariance forecasts. An equally-weighted portfolio is also generated as a useful benchmark to

which all models can be compared.

The Model Confidence Set (MCS) proposed by Hansen, Lunde, and Nason (2003), is used to
evaluate the significance of any differences in performance between models. Papers using the
MCS in similar multivariate settings include Clements, Doolan, Hurn, and Becker (2009) and
Laurent, Rombouts, and Violante (2010), among others. The premise of the MCS procedure
is to avoid specifying a benchmark model, rather it begins with a full set of candidate models
My = 1,...,mgp and sequentially discards elements of M to achieve a smaller set of models.

This model confidence set will contain the best model with a given level of confidence (1 — «).

To find the MCS, we will follow Clements, Doolan, Hurn, and Becker (2009). The loss function
is defined as

L(Hy) = w/rerfw, (16)

and specifying the loss deferential between models 7 and j at time ¢ as

diju = L(H}) — L(H]), ij=1,..,mp . (17)

13



The procedure involves testing the following
Hy E(dij,t) =0, Vi>jeM (18)

for a set of models M C M. The initial step sets M = M. The model with the worst
performance is removed from the set if the null is rejected at significance level a and the test
performed again. The process continues until failure to reject the null and the resulting set of
models is the MCS, denoted M\*a. The t-statistic, t;; in (19), scales the average loss differential
of models i and j by var(d;;). The estimate of the variance of average loss differential can be

obtained using the bootstrap procedure in Hansen, Lunde, and Nason (2003).

d; I
tj = ———, dij = 7 ) dijie (19)
Val"(dij) t=1

These (m — 1)m/2 t-statistics are converted into one test statistic using (20), referred to as the
range statistic, with rejection of the null hypothesis occurring for large values of the statistic.
The worst performing model, determined by (21), is removed from M and the entire procedure
repeated on the new, smaller set of models. Iterations continue until the null hypothesis is not

rejected, the resulting set of models is the MCS.

||
Tr = max |t;;| = max (20)
i,jEM i,jEM @(dw)
dij - 1 -

1 = arg max

T o d
ieM /@'(Jz]) m—1 fem
4 Empirical Results

An initial in-sample period of 2000 observations is used, giving an out-of-sample period of
Ty = 2029. Recursive estimation is employed where appropriate, and the forecasting horizon
will be one day. To further assess any differences in practical application of a number of the
methods, forecast-only versions of both DCC-CL and DECO are computed (denoted DCC-
EX and DECO-EX). That is, the respective correlation parameters are computed once for the
in-sample period (2000 observations) and the resulting parameter estimates used to forecast

the one-step-ahead covariance matrix for the entire out-of-sample period, that is no recursive

14



estimation. Portfolios used here contain N = [5,10, 50,100, 200] assets, randomly chosen from

the list of 200 stocks of the S&P1500 as described in Section 2 (list available in the Appendix).

Results presented in Table 2 are the out-of-sample standard deviations (s) of each of these port-
folios, across the various portfolio sizes and models. The equally-weighted portfolio is beaten by
all models in all cases, as is expected. So do ‘simple’ forecasting methods result in forecasts of
equal predictive accuracy compared to more complex specifications (such as the M-GARCH fam-
ily)? Overall a number of the simple approaches lead to similar outcomes for the global minimum
variance portfolio (GMVP). For the various portfolio sizes, the MIDAS, Fleming-Kirby-Ostdiek
252-day version of the EWMA (EWMA (FKO)) and 252-day simple moving average (SMA)
perform well relative to the M-GARCH models. For the smaller value of N = 5 there is little
difference between models, with the exception of the equally-weighted portfolio. The DCC-CL
method is outperformed by DECO for moderate and large values of IV, that is 10 to 200 assets,
and both are outperformed by the ‘simple’ models. The magnitude of this out-performance
seems to increase as IN does. It is thought that DECO has less estimation error relative to the
DCC-CL model as N increases. In terms of the DCC-CL method, as portfolio size increases,
the estimation error dominates due to the necessary estimation of the unconditional correlation
matrix (see Ledoit and Wolf (2004) for discussion of estimation error and the sample covariance
matrix). Equicorrelation has previously been found to be useful as a shrinkage target by Ledoit
and Wolf (2004) and the usefulness of the assumption of equicorrelation is also apparent here
in the portfolio allocation context. In the cases where N = 100 and N = 200 (that is, N is
large), there appears to be no significant difference between the simpler methods themselves,
suggesting persistence in correlations (although important to allocation) may be incorporated
into the covariance forecast by using a simple moving average. As an aside, there appears to
be no advantage to daily re-estimation of the DCC-CL and DECO correlation parameters, as
there is very little (if any) difference between the out-of-sample standard deviations of these
methods with their respective forecast-only version (denoted DCC-EX and DECO-EX). For
the forecast-only versions, the correlation parameters were estimated once using the in-sample

period and forecasts generated with no subsequent estimation of parameters?.

SDECO can be used to obtain better estimates of the DCC correlation parameters (see Engle and Kelly
(2009)), however the results obtained here show that once-off estimation of these parameters is adequate.
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Table 3 contains the MCS p-values for the out-of-sample global minimum-variance portfolios
for each forecasting approach. Unsurprisingly, the equally-weighted portfolio is removed from
the MCS for all values of N. DECO is also omitted from the MCS for the small N = 5 and
moderate (N = 10 and N = 50) portfolio sizes. All other methods are included in the MCS for
N = 5. For moderate portfolio sizes of 10 and 50 stocks, the only covariance forecasting model
in the MCS is the Fleming-Kiby-Ostdiek 252-day version of the EWMA (EWMA (FKO)). This
suggests that for moderate values of N, a simple method is the most appropriate over the given
sample period. The performance of the EWMA (FKO) model across the moderate portfolio
sizes are consistent with those found in Clements, Doolan, Hurn, and Becker (2011). For larger
values of N (100 and 200 assets), the MCS contains a wider range of models, with the unequal
weighting scheme of the MIDAS and EWMA (FKO) models considered the superior choices
across the various models included in the MCS. Both M-GARCH models are included for the
largest portfolio of 200 assets. In keeping with the analysis of Table 2, these results suggest
that simpler methods are indeed appropriate for modelling the covariance of larger portfolios.
Also in line with the results of Table 2 is the performance of the forecast-only versions of the
M-GARCH models (DCC-EX and DECO-EX) being very similar to the daily re-estimation
version, with the exception of the 100 stock portfolio where DCC-EX is included in the MCS
and its daily estimation counterpart is not. This suggests that from a practical point of view
re-estimation of parameters is unnecessary, a useful saving of computation time. This point is

elaborated on in terms of CPU time later in this section.

To further analyze these findings, the out-of-sample period has been split into periods of rel-
atively ‘high’ and ‘low’ volatility. In this dataset, the periods of higher volatility correspond
to the market turbulence of 2001-2002 and the recent global financial crisis (GFC), beginning
toward the end of 2008 through to the end of the dataset. The annualised percentage volatilities
of global minimum variance portfolio returns, s, in Table 4 show similar patterns to Table 2.
The equally-weighted portfolio is beaten in all cases. Overall, simple methods appear to result
in smaller portfolio variances relative to the M-GARCH methods when the out-of-sample period
is split into subsamples of high and low volatility periods. In addition, some differences are seen
between the two high volatility periods in terms of the model that generates the portfolio with
the smallest variance. This is perhaps due to the overall higher levels of volatility seen during
the global financial crisis in comparison to the 2001-2002 turbulence. For the first high volatil-
ity period the 252-day simple moving average (SMA) and EWMA (FKO) methods dominate,
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particularly for larger values of N. Conversely, during the global financial crisis the MIDAS
forecasts are those resulting in the smaller portfolio variance, especially when N is large. For
small N during both high volatility periods, the DCC-CL method outperforms DECO however
this is reversed as IV increases. The dominance of equicorrelation in terms of the M-GARCH
specifications is a trend seen previously for the entire out-of-sample period. It appears that
in times of relative market stability as seen in the low volatility period, the simple methods
result in superior forecasts in terms of smaller portfolio variances however these gains are of a
smaller magnitude during this period than those seen during the higher volatility periods. As
mentioned previously for the full out-of-sample, the assumption of equicorrelation appears to

be useful in this context of portfolio allocation.

Table 5 also produces similar results to its full-sample counterpart, although the EWMA (FKO)
method appears to perform better in the context of relatively low volatility than the other
models. This suggests a regime switching type methodology may be worthwhile when targeting
the variance of a portfolio when NV is large, given the complex models are contained in the MCS
for the periods of higher overall volatility. There is a difference between the two high volatility
periods, with the GFC period resulting in much higher levels of volatility than those previously
seen. For moderate N, the simple methods are superior to the M-GARCH models with the
latter left out of the MCS. Differences between the simple methods themselves are difficult
to establish during the GFC high-volatility period with MIDAS, SMA and EWMA (FKO)
all included. This was not the case for the previous high-volatility period (corresponding to
the 2001-2002 turbulence), where MIDAS and EWMA (FKO) form the MCS for the 10 asset
portfolio and EWMA (FKO) the only model included in the MCS for the 50 asset portfolio.
For large N, the MIDAS model is seen to be the superior model during the GFC, with all other
models also included with the exception of DECO and the equally-weighted portfolio. This is in
contrast to the previous high volatility period, which has a smaller MCS for large N and EWMA
(FKO) is the model which dominates. Interestingly, the DECO model is included during this
period for the 200 asset portfolio and DCC-CL removed. This suggests the usefulness of the
assumption of equicorrelation may be limited in times of very high overall market volatility,

however obtaining good forecasts using any method during these periods is difficult at best.

The focus now turns to more practical considerations of forecasting and portfolio allocation.

Two issues are considered: firstly, the stability of the portfolios across time for each forecasting
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method, measured by the absolute weight changes for each portfolio; secondly, computation time
is considered. The stability of the portfolios is considered to be a useful proxy for any economic
value differences between the competing methods, without the need to make any assumptions
regarding transaction costs. Obviously the equally-weighted portfolio is not included in this
analysis. The absolute percentage weight change at time ¢ for a given asset ¢, is calculated
as we;y = |[(w;r — wi—1)/w;—1]. Stability is measured by calculating the median absolute
weight change for each asset in a portfolio, ¢, and taking the mean across the N assets: uypp =
(XN | (median(we; ) /N.

Results for the entire out-of-sample period are contained in Table 6. The M-GARCH methods,
especially DCC-CL and its estimation-free equivalent DCC-EX, are the most stable for all NV
with pyrpp values ranging from 0.0521 to 0.0714 for both across the various portfolio sizes. The
simple methods are comparatively much more volatile in terms of change in weights over the
forecast period, for example the SMA values range from 0.0607 to 0.3235 across various portfolio
sizes. Of the simple methods, the SMA provides more stable portfolio weights for the out-of-
sample period. Similar results are obtained when taking into account periods of relatively high
and low overall volatility (Table 7). From the economic point of view, the relative instability of

the simple models may inhibit the gains seen in the context of portfolio volatility.

The computational burden of the more complex M-GARCH models compared to the simple
models is shown in terms of CPU time taken to compute all 2029 correlation forecasts for the
entire out-of-sample period. Individual times for each one-step-ahead forecast are not provided
as they are too small to be of any use for the simple approaches and small portfolio sizes.
CPU times are only provided for the estimation-free versions DCC and DECO, that is DCC-EX
and DECO-EX to enable fair comparison with the simple approaches, none of which require
any estimation of parameters. The similar performance of the daily estimation versions of
the M-GARCH methods with their estimation-free counterparts in the volatility context pro-
vides further motivation for this. The underlying univariate GARCH estimation used to obtain
the volatility-standardised returns series’ is not included in this comparison. These times are
included in Table 8. Table 9 provides only the time taken to estimate and re-estimate the
parameters for DCC-CL and DECO on a daily basis. As an expanding window approach was
used, the sample used to estimate the parameters for ¢ 4+ 1 extends by one observation each

re-estimation and so the length of time taken for the entire out-of-sample period (ultimately
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resulting in 2029 forecasts) is provided. Overall, the M-GARCH methods take much longer
to run, even without taking into account the daily re-estimation of the correlation parame-
ters. This is especially true of the large N case. Practically speaking, in the context of large
portfolios the aforementioned stability gains of implementing complex methodologies must be
considered carefully given simpler methodologies provide forecasts of comparable (and often

superior) quality for less computation time.

20



'60/21/1€ - ¥6/10/€0 Sutuueds potrad airpues ‘()(g Jo portad sjdures-uy
‘swmjal orjojrrod jo Ajyiyeioa ofejuestod pasienuue oYY S s AIPR[OA MO, pur SIY, ojul J[ds ‘AFo1RI)s
sutr) AY[1)R[0A [DRS I0] STLINISI OT[0J110d 9D URLIRA-WINIIIUIN JO SO1)sT)R)S Arewruns sjdures-jo-jn() :j s[qry,

8€8T'6 G626 T09S'6  ST6T6 Qi) GTST6 WIL'6 0929°0T 003
09€7°'8 €eee’6 L9GT'S  €€EC6 ¥911°9 1€28°9 99969 6260°TT 00T
1€59°6 VST 0T 9€TL'6  ¥TST 0T LLIS L VeSS £6G6°L gI6T'ZT  0S
0786°C1 Z8I0'ET  ¥S66'CT  OSTO'ET GOTH'CT cF9.°z1 609621 SPISHT 01
2060 LT 9FZ0 LT  900T'LT  ¥¥#20'LT T3S0 LT 2880 LT 08T LT PRGO'8T G TISE'8LFT
morg
CVE6'CC  LS€9ET  6166'CC  LSEY'ET GLST'TC 99L1°0% 1060°0Z Gr00°L 003
LTE0'ET CILY'€T 9616708  SILVET 8€L9'ST 8GTT 6T T8TE'ST 96€6'9% 00T
L9LT°0% QT68°€C  9€63°0C  ST6SET z109'91 89GF 9T IS AN 0TLE'8C  0G
GTIC'1C  L8L6'IC  €86%'1C  TI8L6'1C QTZS 61 LE0G°0T 92G6°61 ore6'sc 01
0GE87C 8L9LFT  GOFSTE  TLILTT T2SG T CEVLTT €TV GTT6'GC G 6TOVETES
618701 IPLLTT  920S°0T  TPLLTCT TGGL'6 78896 GIZ9'11 GG6L° LT 003
ereoTT R0TZ'ET  OVTOTT  SOTTET 12976 €6LY'6 GT6L°6 G6VE6T 00T
ogee el Q0LL'CT  €EOV'ET  90LLGT 26566 zL06°0T G0TE 0T A (S F A
LIP0'ST 6708 LT  00ZT'ST  STOS'LT SARAL)! 86€9°LT LLEC9T 6720'8T 01
VTII8°0% GG6L° 0T  GETS0Z  6S6L°0T 8675°0T 0809°0% €295°0% greeee G LLFTTO0T
ybry
s s s s s s s s N poriog
XA-00dA XADDA O0DAA  TOD0A (OMA) VINMA  VINS  (86°0) SVAIN  M-OH

21



"9OUOPYUO0D 0GH YIM SN 93 Ul POPNOUL ST [OPOUI dY) SOIRIIPUL , {pPasT
are senyea-d gOHIN o8uey -orjojyrod eourLIRA-TUNWIUTT [eqo[8 o[dures-jo-jno jo GOHIN [edtrdwy :¢ o[qer,

000070 00000 00000 000070 «0000'T 00000 0000°0 00000 002
000070 00000 00000 000070 +0000'T 0700°0 0700°0 00000 00T
000070 00000 00000 000070 «0000'T 000070 0L10°0 0000°0 0g
0L00°0 0L000  0L000  0L00°0 +0000'T 0L00°0 0L00°0 000070 01
061070 «0000T  06T00  %0.8T°0 061070 «0L82°0 061070 0900°0 G CIEC8LIT
morg
0170°0 «001€°0  OTFO'0  400TE0 +0028°0 +0676°0 +0000'T 0T70°0 002
0T00°0 «0922°0 01000 09220 «0L7G0 <0ETT0 «0000'T 0T00°0 00T
060070 09000  0S00°0  0S00°0 «08T2°0 +0000'T L0TET0 05000 0S
0Z70°0 0Zv0'0  0ZF0°0  0TF0°0 £0000'T £0920°0 «0TLT°0 02700 01
+0280°0 «0997°0  40280°0  %099%°0 £0000'T +099%°0 +0997°0 02800 G 6T0TETEE
+0860°0 00000 x0860°0 000070 +006L°0 £0000'T 000070 00000 002
0T00°0 07000  0T00°0  0T00°0 «0T66°0 «0000'T 0T00°0 0T00°0 00T
020070 02000 02000 0%00°0 +0000'T 020070 071070 000070 0S
000070 00000 00000 000070 +0000'T 01000 +0822°0 000070 01
+0€60°0 L0GFT0 408600  40SPT0 £0000'T +0868°0 +0868°0 0720°0 ¢ LLVZT00T
ybry
N poL g
XA-00AA XADO0A O0DdAd  TO00A (OMA) VINWMA VNS (86°0) SVAIN  M-OH

22



'60/51/1¢€ - ¥6/10/€0 Suruueds

pourad aunus ‘000z Jo porred o[duwres-uy -poted sidures-Jo-1no 9y} I0J [9POW [oRS SSOIIR
syy8rem orjojprod ut s8ueyd onjosqr 9y Jo ((HIN) URIPSIN oY) Jo ‘AN ‘uesiy :9 o[qe],

9€02°0 YIL00 #9020  FIL0°0 7ee 0 ceTe 0 089€°0 002
86ST°0 10900  609T°0  T1090°0 V610 €6LT°0 Zr0z 0 00T
86TT°0 12500 01210 18S0°0 8GCT0 VLET0 L6ST 0 0S
1€80°0 2ESO'0 €060°0  T1£S0°0 £960°0 122070 9%60°0 01
€290°0 08600 €900  T8S0°0 L0L0°0 L090°0 1690°0 G
ad N ad N ad N adny ad N adny adny N

XA-00dd XA-00A O00dd TONDNA (OMA) VINWMA VNS (86°0) SYAIIN

23



"60/21/1€ -

76/10/¢€0 Sutuueds poried a1jus ‘()00g Jo potted ajdures-uy “Ajripe[oa mof, pue ysiy, jo spotrad ojut yyds
‘[Ppou yora sso1oe spysem oroj1rod ur o3uryD 9jn[osqe o) Jo ((HIN) URIPIIA oY) Jo ‘TA N1 ‘wes]y :), o[qR],

£60C°0 9900  T80Z0  9190°0 664€°0 2ovE 0 29Tv 0 002

€621°0  €6V00  00€T°0  €670°0 L09T°0 GeaT 0 90L1°0 00T

ZoT0  0£P00  0S0T'0 0700 902T°0 L62T°0 0ZET°0 0¢

9600 GO0 VISO0  TL00 1980°0 €€L0°0 9€80°0 01

18600 9£50°0  08S00  9£S0°0 9890°0 9¢50°0 8790°0 G CIEEBLIT
mor

06610 1200 69610  16L0°0 61820 64650 £GTE0 002

10ST'0 €900  STST0  €£490°0 68020 6661°0 £9T2°0 00T

GELT'0 89900  TSLT'0  8990°0 6200 0921°0 2800 0¢

L6600 LPSO0  SE0T0  LPGOO 690T°0 9£20°0 290T°0 01

29900 62900 0L900  6290°0 £220°0 L690°0 £0L0°0 G 6TOVETEE

8¢re0  6V600  9EFT0 6600 G69€°0 19€°0 996€°0 002

L9VC0  8T600  9GFT0 82600 79820 L9ET 0 z162°0 00T

€2ET0  F2900  9IET0 G900 88LT°0 IPET0 LVLT0 0¢

€6600 9200  OWOT'0 SO0 €110 £680°0 98110 0

68900 09900 68900  TG90°0 £680°0 0890°0 0760°0 G LLVET00T
b

asgnr asgny asgnyd asgnyd asgnyd adnnyd adnnyd N porsdg

Xd-00dd  Xd-DOA 00dd TO-0Dd  (OMd) VINMA VIS (86'0) SVAIN

24



MIDAS (0.98) SMA  EWMA (FKO) DCC-EX DECO-EX

N

5 00:00:04 00:00:02 00:00:43 00:03:09 00:13:29
10 00:00:08 00:00:04 00:00:46 00:04:16 00:14:08
50 00:16:26 00:01:08 00:07:39 00:35:52 00:44:40
100 00:23:33 00:22:13 00:33:33 02:20:41 01:41:23
200 01:11:35 00:19:57 01:16:49 13:18:17 08:32:36

Table 8: CPU time of models (Hours : Minutes : Seconds), forecasting only. Entire period
spanning 03/01/94 - 31/12/09 (2029 forecasts). Computer specifications: 12 core X5650
2.66GHz 64bit Intel Xeon processor.

DCC-CL  DECO

N

5 01:54:56  08:05:02
10 02:30:03  07:09:55
50 30:25:57  21:16:40
100 70:53:06  67:31:50
200 287:01:55 167:00:32

Table 9: CPU time of DCC-CL and DECO (Hours : Minutes : Seconds), estimation
only. In-sample period of 2000 observations, entire period spanning 03/01/94 - 31/12/009.
Computer specifications: 12 core X5650 2.66GHz 64bit Intel Xeon processor.

5 Conclusion

This paper provides a straightforward and commonsense approach toward investigating whether
simpler moving average based correlation forecasting methods have equal predictive accuracy
relative to their more complex multivariate GARCH counterparts for large dimensional prob-
lems. In an empirical setting, the advantages and disadvantages of popular ‘simple’ multi-
variate correlation forecasting methods (focusing on various moving average-type schemes) in
comparison to more complex multivariate GARCH models, namely composite likelihood DCC
(DCC-CL) and DECO are discussed. We find simple methods do achieve equal (and indeed
superior) correlation forecasts in the context of minimising portfolio variance. The volatility
of global minimum variance portfolios are used to compare methods from a volatility point of
view, whilst portfolio weight stability and computation time are also considered. Comparisons
of forecasting techniques are provided for the full out-of-sample period along with periods of

higher and lower relative volatility, including the recent global financial crisis.
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Overall, the EWMA (FKO) model performed best in terms of minimising the volatility of the
forecasted portfolio. This superior performance was present for both high and low volatility
periods, although the gains of using such a model were more significant for the low volatility
period. The size of the Model Confidence Set increases as dimensionality does, however the
‘simple’ methods are consistently included in the set, for the full-sample, and high and low
periods. This poses an interesting question of the suitability of a dynamic forecast combination
of models. The exception to this was the MIDAS model, which is only included for higher values
of N for the GFC crisis period. The relative instability of such methods however in terms of
portfolio rebalancing may inhibit this superior predictive ability. These results provide insight
for practitioners that so-called ‘simple’ methodologies are not inferior to more complex models

in terms of covariance forecasting in larger dimensional problems.

In terms of the multivariate GARCH models used in this study, namely DCC-CL and DECO,
the equicorrelation model outperforms the DCC-CL for moderate to large portfolios. This
is thought to be due to the estimation error included in the necessary estimation of the un-
conditional correlation matrix for the DCC-CL and provides validity for the assumption of
equicorrelation. Practically, the DCC-CL method achieved a more stable portfolio than the
other methods (followed by DECO) and implementation of such a model may result in lower
transaction costs. Of course, implementation of the M-GARCH forecasts does come at a cost
in terms of computation time and this is found to be substantial as portfolio size increases. For
practitioners there is an economic trade-off between the stability of the DCC-type model and

the computational burden of using such methods.
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