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Abstract

This paper presents a simple forecasting technique for variance covariance matrices. It relies
signi�cantly on the contribution of Chiriac and Voev (2010) who propose to forecast elements of
the Cholesky decomposition which recombine to form a positive de�nite forecast for the variance
covariance matrix. The method proposed here combines this methodology with advances made
in the MIDAS literature to produce a forecasting methodology that is �exible, scales easily
with the size of the portfolio and produces superior forecasts in simulation experiments and an
empirical application.

Corresponding author
Ralf Becker
Economics, School of Social Sciences
University of Manchester

email ralf.becker@manchester.ac.uk
Ph +44 (0)161 275 4807.

1 Introduction

In recent decades modelling and forecasting the volatility of �nancial assets has been a fertile ground

for research. For a long period this research focused on modelling and estimating volatility in a

univariate context (see Poon and Granger, 2003). More recently, an increasing amount of research

has been concerned with modelling entire variance-covariance matrices, an issue of importance in

�nance (see Andersen, Bollerslev, Christo¤ersen and Diebold, 2006) when considering portfolios of

�nancial assets. It is this literature this paper seeks to contribute to.

The volatility forecasting literature has seen exciting developments based on the availability

of intraday data and more precise volatility measurements. Two research strands, in the context

of univariate volatility forecasting, have emerged. One based on traditional univariate time-series
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Lancaster University and The University of Manchester. The responsibility for errors or omissions lies entirely with
the authors.



models, using measurements of realized volatilities (Andersen et al., 2006), the second making direct

use of high-frequency data (Ghysels, Santa-Clara and Valkanov 2004, 2006) labeled the Mixed Data

Sampling (MIDAS) approach.

The literature on multivariate variance-covariance matrix (VCM) modelling and forecasting has

been somewhat slower in utilising intraday data as two additional issues arise in this context. While

the dynamic conditional correlation (DCC) model of Engle and Sheppard (2001) has been used ex-

tensively for low-dimensional portfolios, it has proven di¢ cult to estimate highly parameterised

models for high-dimensional systems. Optimal parameter estimates are di¢ cult to �nd without

reducing the parameter space which leads to constraints on the correlation dynamics. Engle (2008)

and Engle, Shephard and Sheppard (2008) demonstrate how such systems can be estimated e¢ -

ciently, ensuring positive de�niteness of VCMs, although these models do not make use of intraday

data.

While using intraday data allows econometricians to model variances and covariances as ob-

served variables, the issue of positive de�nitness and ensuring a reasonably sized parameter space

remain very much relevant. A promising approach to address the former issue is proposed by

Chiriac and Voev (2010) who model the elements of the Cholesky decomposition of realized VCMs,

calculated on the basis of intraday data. Modelling the behaviour of the elements of the decom-

position requires no restrictions while ensuring positive de�niteness of the corresponding VCMs.

However, the dynamics of the elements of the Cholesky decomposition remain restricted to ensure

a reasonable parameter space.

In this paper we combine this latter framework with the MIDAS type approach for utilising

data observed at di¤erent frequencies. The resulting model o¤ers a number of advantages. First, as

in Chiriac and Voev (2010), it uses high frequency data to obtain relatively precise measurements of

the latent variance-covariance matrices, an approach which has delivered signi�cant improvements

in forecast performance in the univariate context (see Anderson, Bollerslev, Diebold and Labys 2003

and Koopman, Jungbacker and Hol 2005). Second, despite allowing for complicated lag structures,

the resulting nonlinear optimisation problem is low dimensional and therefore feasible even for

large portfolios. Third, the modelling framework can, in a straightforward manner, be extended to

include any weakly exogenous variables.

Simulation evidence illustrates that the proposed estimation methodology can deliver signif-

icantly improved multi-step ahead VCM forecasts when compared to the most popular method

based solely on daily returns, the dynamic conditional correlation (DCC) approach of Engle and

Sheppard (2001). This superiority is evident even when the data follows a DCC process.
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The remainder of this paper is structured as follows, The next section reviews the literature

in several areas which are important in developing our model, while Section 3 introduces our

approach to modelling and forecasting variance covariance matrices. Section 4 describes how we

compare competing forecasts. This is followed in Section 5 by a simulation study, which compares

the forecasting performance of various methods for small portfolios. Empirical evidence for the

method�s performance in the context of a large scale portfolio is presented in Section 6. This

section includes simulation and empirical evidence. The �nal section concludes and notes future

areas of interest.

2 Literature Review

This paper draws closely on the contributions made in a number of di¤erent areas of the vast

volatility and correlation modelling literature. In particular it relies on research that outlines how

to use high-frequency data to obtain proxies for latent variance-covariance matrices, the mixed data

sampling (MIDAS) literature, that has demonstrated how to e¢ ciently use information observed at

varying sampling frequencies and lastly the literature that illuminates how to ensure that forecasts

of variance-covariance matrices are positive de�nite.

Developments in trading technology have allowed the recording of incredibly detailed �nancial

market data. However, only fairly recently, has it been demonstrated how to harness this data

e¤ectively in order to facilitate the measurement, modelling and forecasting of volatility. The con-

tributions in this area are too numerous to be reviewed here in any great detail (see Andersen et

al. 2006, for an overview). It should, however, be mentioned that despite the conceptual beauty

of realized volatilities and covariances, there are numerous practical issues such as missing obser-

vations (Hansen and Lunde, 2005), microstructure noise (Zhang, Mykland and Aït-Sahalia 2005),

measurement error (Hansen and Lunde, 2006) and the presence of discontinuous jump processes

(Barndor¤-Nielsen and Sheppard, 2006) to be potentially dealt with. Each of these issues compli-

cates the computation of realized volatilities although, in principle, technologies have been devel-

oped to deal with them. This does not, however, apply to the computation of realized covariances,

for which the above issues remain largely unexplored. In addition, when computing realized covari-

ances, and subsequently realized correlations, new issues arise such as non-synchronicity in trading

and the Epps e¤ect. Hayashi and Yoshida (2005) suggest a solution to deal with non-synchronous

trading, though this issue is not a focus of the present study. The Epps e¤ect, as discussed in Epps

(1979), re�ects the fact that correlations (and covariances) between �nancial assets decrease as we

use an increasingly �ne sampling interval to compute realized covariances. This paper relies on

3



these contributions as it introduces a forecasting model which relies on realized variance-covariance

matrices constructed from high-frequency return data. When the forecasting method presented

here is applied in practice, all the above issues will have to be dealt with prior to the application

of the model presented here.

The second area of recent developments this paper is indebted to is the MIDAS literature,

that began with Ghysels, Santa-Clara and Valkanov (2004, 2006). This literature has revived old

techniques of lag parameterizations that allow for a �exible, yet parsimonious, utilization of many

lags of lagged explanatory variables. MIDAS has been employed to investigate several economic

relationships1. In the context of univariate volatility modelling the approach has proven to be useful

when applied to multi-step ahead volatility forecasting (see Ghysels, Santa-Clara and Valkanov,

2004). Ghysels and Sinko (2006) and Ghysels, Sinko and Valkanov (2008) further investigate the

use of daily realized data, corrected for microstructure noise, as regressors in volatility forecasting

models and �nd that unadjusted measures of realized volatility provide superior forecasts than

their noise adjusted counterparts. Lastly, Ghysels et al. (2008) also discuss the extension of the

MIDAS approach to a multivariate setting and emphasize the �exibility of the method, which makes

it attractive when forecasting the variance-covariance matrices of stock portfolios over a trading

month.

The MIDAS technology has also been utilised in combination with more established approaches

to multivariate volatility modelling. Colacito, Engle and Ghysels (2007) introduce the DCC-MIDAS

model in which the correlation matrix of stocks is allowed to have a long-run time-varying com-

ponent, modelled using MIDAS technology. Although the same paper discusses the conditions

required for ensuring that the resulting correlation matrices are positive semi-de�nite, these restric-

tions become complex even for a relatively small number of assets, limiting the practical appeal

of the model for high dimensions. This helps to highlight the challenge of ensuring the positive

semi-de�niteness of variance-covariance matrices that has been tackled in a number of di¤erent

ways, most prominently in the �nance literature by conditional correlation models, led by the

DCC model of Engle and Sheppard (2001)2. This typically employs daily return observations and

uses restricted parameter values in order to ensure that forecast correlation matrices are positive

de�nite.
1For example Ghysels, Santa-Clara and Valkanov (2005) use MIDAS to provide evidence of the existence of a

risk-return tradeo¤, Clements & Galvão (2008) use it to improve forecasts of US quarterly output growth and it has
been used in the forecasting of aggregate output and employment by Armesto, Hernández-Murillo, Owyang & Piger
(2007).

2Other variants of the conditional correlation approach include the CCC model of Bollerslev (1990), the RSDC
model of Pelletier (2006), the block-DCC of Billio, Caporin and Gobbo (2003) and the asymmetric-DCC of Cappiello,
Engle and Sheppard (2006).
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In contrast Chiriac and Voev (2010) propose to tackle the issue of positive semi-de�niteness

using measurements of variance covariance matrices derived from high-frequency data. Their key

contribution is the use of Cholesky decompositions to ensure that forecasts of the VCMs are pos-

itive semi-de�nite. This is achieved by modelling and forecasting the elements of the Cholesky

decomposition, which are not subject to any restrictions. When transforming such forecasts back

into variance-covariance matrices, positive semi-de�niteness is guaranteed via the properties of the

decomposition.

This paper draws on a number of the contributions described above to devise a modelling

and forecasting strategy for multi-step ahead variance-covariance matrices based on high-frequency

data. As in Chiriac and Voev (2010) we focus on the elements of the Cholesky decomposition, but

in contrast to that paper utilise a generalized MIDAS approach in modelling their behaviour.

3 Cholesky-MIDAS Methodology

3.1 Assumptions & Background

The model we present is used to forecast the VCM of stock returns in an n stock portfolio. For any

given day, t; the n� 1 vector of returns is denoted by rt = (r1t; :::; rnt)0; where rit is the return on

stock i on day t; and we assume that given all information available at time t� 1, Ft�1; the mean

is unforecastable, i.e. E (rtjFt�1) = 0. The object of interest is the n � n conditional variance-

covariance matrix of returns, V ar (rtjFt�1) = �t; which we assume to be time-varying, predictable,

and although unobserved, can be consistently estimated by a realized variance-covariance matrix

Vt.3

3.2 Realized Variance-Covariance Matrix Calculation

The model presented below relies on the calculation of realized variance covariance matrices over

both single and multi day frequencies, and this section provides a brief introduction to how these

realizations are obtained. The approach is covered in more depth in appendix A and a more detailed

introduction to the subject can be found in Andersen et al (2006).

Within trading day t we obtain an n � 1 vector of stock returns over each x minute trading

period, rq;t, where q = 1; ::; Q in a day containing Q trading periods. The realized covariance

matrix relating to the trading portion on day t is the sum of the products of these vectors, i.e.

VTR;t=
PQ
q=1 rq;tr

0
q;t, where VTR;t is the realized variance covariance matrix of the trading period

3Generally in this paper � represents the actual VCM (unobserved except in simulations), V is an observed
realized value of the VCM, calculated from intraday data and H is used to denote a forecast of the matrix.
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of day t.

As we forecast the VCM over a period in excess of a single trading day, we are also interested

in the additional volatility attributable to the time over which stocks are not traded, thus we

follow one of the methods proposed in Hansen and Lunde (2005) for consistent estimation of the

24-hour realized volatility matrix. Speci�cally the close to open period is treated as a separate

return period so that the total 24-hour realized covariance matrix for day t, Vt; is computed as

Vt= rco;tr
0
co;t +

PQ
q=1 rq;tr

0
q;t where rco;t is the vector of close to open returns on day t:

Once we have obtained the daily values of the realized variance-covariance matrix we can �nd

the matrix for an m day long period by summing the m daily realized matrices. In this paper

we denote this matrix by V(m)
t ; which is the matrix covering the period t � m + 1 to t hence

V
(m)
t =

Pt
i=t�m+1Vi:

3.3 General CD-MIDAS Procedure

This section introduces the Cholesky�decomposition MIDAS methodology (CD-MIDAS), which we

use to model and forecast variance-covariance matrices. For an (n� n) dimensional VCM this

involves the following steps:

1. Use high frequency return data to calculate daily realized VCMs, Vt, and realized VCMs over

periods corresponding to the forecasting horizon of m days, V(m)
t . The notation V(m)

t refers

to a time period that is m days long ending at time t, hence V(m)
t is the realized VCM for

the time period t�m+ 1 to t.

2. Compute the Cholesky decomposition of realized VCMs at horizons of both 1 and m days,

such that

Vt = CtC
0
t (1)

V
(m)
t = C

(m)
t C

(m)0
t (2)

and the related (en� 1), en = n (n+ 1) =2, vectors of unique lower diagonal elements are

Pt = vech (Ct) (3)

P
(m)
t = vech

�
C
(m)
t

�
. (4)

3. Construct MIDAS models in which each of the en elements of P(m)t+m is modelled as a function

of lags of (potentially) all elements in Pt; :::;Pt�K+1, where K is the maximum number of

daily lags in the MIDAS speci�cation (A more detailed discussion of the methodology in this

step is provided in Section 3.4.).
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4. Use the MIDAS models estimated in step 3 to forecast m periods ahead, bP(m)T+m; using the

observed realizations of PT ; ::::;PT�K+1.

5. Populate bC(m)T+m with the appropriate elements from bP (m)T+m and produce a VCM forecast

H
(m)
T+m according to

H
(m)
T+m =

bC(m)T+m
bC(m)0T+m. (5)

The output, H(m)
T+m; is a forecast of the VCM over the period from t+ 1 to t+m.

Steps 1, 2 and 4 rely on calculations of realized variance-covariance matrices and transforma-

tions of the Cholesky decomposition. As noted in Chiriac and Voev (2010) the decomposition is

particularly useful in this context as any operation of the type shown in equations (1) and (5)

yields a positive de�nite variance covariance matrix as long as C is a lower diagonal matrix of real

numbers, no other restrictions are required, making it possible to model each unique element in C

individually.

3.4 MIDAS Speci�cation

This section provides more detail on the forecasting model used in step 3. The CD-MIDAS speci�-

cation allows us to model each of the en unique elements of the Cholesky decomposition via a single
equation. As discussed above, the only constraint that is to be imposed on the elements in bP (m)T+m is

that they ought to be real. As this is su¢ cient to achieve positive de�nitness in the VCM forecats,

it allows the econometricion to contemplate a wide range of models for the individual elements of

the Cholesky decomposition. One example is the CD-VARFIMA model proposed in Chiriac and

Voev (2010). In the form in which the authors propose to apply it to large dimensional systems

that model turns into en ARFIMA models with a common fractional integration parameter.
Here we propose a model that is somewhat simpler to estimate as it will capture strong persis-

tance by a potentially long lag structure rather than a fractionally integrated process. In particular

we propose to emply the MIDAS methodology of Ghysels et al. (2004, 2006) in using daily realized

observations of the VCM to forecast the same matrix at a lower frequency. The use of tightly

parameterised lag functions allows us to be conservative in the number of parameters used while

allowing for �exible lag distributions.

In our notation below we denote an individual element of the decomposition as Pit in the daily

case and P (m)it in the m-period case where i = 1; :::::; en. We propose to use a weighted average of
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past values of Pit in a forecasting model for P
(m)
it

P
(m)
i;t+m = �i0 + �i1

KX
k=1

B (k; 1; �i)Pi;t�k+1 + vt. (6)

where we use a beta lag structure to determine the weights, such that,

Beta Lag - B(k; 1; �i) =
f( kK ; 1; �i)
KX
k=1

f( kK ; 1; �i)

(7)

f(z; a; b) =
za�1(1� z)b�1�(a+ b)

�(a)�(b)
. (8)

Although two parameters determine the beta function the �rst of these is set to unity, such

that weights applied to lags are decreasing in k4. The maximum lag considered is K. When

considering this forecasting model it is important to keep in mind that the elements of Pit are

nonlinear combinations of elements in the VCM V
(m)
t . This implies that the history of Pit will also

contain the history of all the elements of the VCM that are relevant for the calculation of Pit.

It is important to understand that, as in Ghysels et al. (2006), the speci�cation in (6) is not

a model representing the dynamic process of the elements in P (m)t but merely a potentially useful

forecasting device. In order to use (6) for forcasting three parameters, �i0, �i1 and �i, require

estimation. These parameters are estimated equationwise for all en elements of P (m)t , allowing for

varying degrees of dependence. Each such estimation is a straightforward nonlinear least squares

(NLS) estimation. For ease of notation we collect all 3en parameters in the (3en � 1) parameter
vector �.

After estimation of the CD-MIDAS parameters, we can obtain forecasts for each element of the

Cholesky decomposition. We use the K lags of daily data prior to the start of the forecast period to

do so. For example if we wish to forecast the VCM over t+1 to t+m we do so using the realizations

Pt; Pt�1; ::::; Pt�K+1 and the set of estimated parameters, b�. Thus P̂ (m)t+m = f(Pt; ::::; Pt�K+1; b�).
The forecast VCM, H(m)

t+m; is then obtained using the relationship in (5). Note that we do not need

to iterate a forecasting procedure in order to obtain a monthly forecast, as is customary for the

DCC and proposed in the CD-VARFIMA model of Chiriac and Voev (2010). This, however, comes

at the price of having to re-estimate the parameters for di¤erent forecast horizons.

It is a nice feature of modelling elements of the Cholesky-Decomposition that any variable Xt

deemed important in forecasting the elements in P (m)t+m can easily be incorporated into the MIDAS

4This restriction can easily be relaxed.
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model in (6):

P
(m)
i;t+m = �i0 + �i1B (k; 1; �i)Pi;t�k+1 + �ixB (k; 1; �ix)Xt�k+1 + vt. (9)

As the only requirement for any bP (m)i;t+m from such a model is that it ought to be real, no restrictions

on any of the parameters in (6) are required. Indeed one may consider the inclusion of Pj;t, where

j 6= i, into the forecasting model. This would turn the forecasting strategy into a CD-MIDAS-VAR

model, which would seem a natuaral extension from the CD-VARFIMA of Chiriac and Voev (2010)

or the discussion in Andersen et al. (2006).

In the end whether these terms, or any other explanatory variable, will signi�cantly contribute

to the forecast performance of the model is an empirical issue. But beyond this there is a potential

econometric issue. NLS estimation of the parameters in (9) will be compromised if �ix = 0 as, in

this case, �ix will be unidenti�ed. This will be particularly problematic if one was to consider a

large number of Pj;t as additional explanatory variables in which case it is increasingly likely that

one would have to deal with this problem. In this case one would have to eliminate insigni�cant

explanatory variables in a step prior to the NLS estimation5.

We experimented with such a procedure, potentially allowing for several Pj;t, j 6= i, to be

included into the MIDAS forecast model. However, no improvements of the forecasts performance

were achieved by allowing extra Pj;ts. For this reason this approach will not be pursued further.

3.5 Multiple Stock Orderings

If we have n stocks then there are n! possible permutations of these. Due to the nature of the

calculation of Cholesky decompositions, each ordering of stocks, and its associated VCM, will

result in a di¤erent Cholesky decomposition with no linear relationship to that obtained from an

alternate ordering. As a result the procedure above yields di¤erent forecasts of the covariance

matrix for each ordering.

In the light of the previous research on combining forecasts, we propose to use the available

forecasts to e¤ectively generate one superior VCM forecast by averaging across forecasts obtained

from di¤erent orderings6. Beginning with Bates and Granger (1969), who show that combining two

forecasts may outperform either of the constituent predictions, there is an established literature on

the bene�ts of combining forecasts. The intuitive rationale for such gains in performance, proposed

by Newbold and Harvey (2004), is that by averaging the forecaster is reducing the risk of relying on

5One procedure achieving this would be to �x all beta weight parameters �ix at a reasonable value and then
eliminating terms according to some "pseudo-signi�cance" criterion for the �ix.

6As each individual forecast is positive semi-de�nite, the average will be as well.
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one model, in an analogous way to an investor decreasing their risk by diversifying their portfolio.

For reviews of the literature around the subject we refer the reader to Clemen (1989) and Newbold

and Harvey (2004), both of whom note that forecast accuracy can often be improved by simple

averaging of multiple individual forecasts. Newbold and Harvey (2004) also note that the literature

shows several examples in which gains are made even when the individual forecasts come from a

similar source, which seems applicable to the CD-MIDAS model with di¤erent stock orderings.

We therefore use model averaging to evaluate the impact of changing the orderings of stocks

in the CD-MIDAS model. We will examine whether forecast accuracy changes when averaging

forecasts obtained under di¤erent orderings and evaluate whether these predictions are more or

less accurate than the values obtained when using a single ordering of the stocks. The fact that our

model proposes di¤erent, yet equally valid, forecasts also illustrates that this model should merely

be understood as a forecast tool and not as an estimated representation of an underlying structural

relationship.

4 Forecast Evaluation

Below we compare several sets of 22-day VCM forecasts from di¤erent models: DCC, CD-MIDAS,

CD-VARFIMA (allowing for models with multiple orderings for both CD models), Riskmetrics7

and a rolling average of the realized variance-covariance matrices. The method used to determine

which provides the most accurate predictions of portfolio volatility is the model con�dence set

(MCS) approach of Hansen, Lunde and Nason (2004).

The MCS takes a set of models and obtains a reduced group that contains the most accurate

forecasts, with a given con�dence level. The statistical process by which MCS results are obtained

relies on evaluating the forecasting performance of each model relative to ex-post observations of

the variable of interest via a loss function. The models that remain in the MCS at the end of the

process are judged to have equal predictive power.

We begin the process of forming the MCS with a set of forecasting models �0. The �rst stage

of the process tests the null hypothesis that all of the these models have equal predictive accuracy

(EPA) when their performance is measured against a set of ex-post observations. If h(m)kt is the

kth forecast of the (scalar) variance over time t�m+ 1 to t and �(m)t is the observed value of the

variance (or a consistent estimate) for the same period then the value of a loss function based on

comparison of these is denoted L(h(m)kt ; �
(m)
t ): The evaluation of the EPA hypothesis is based on

7An exponentially weighted moving average approach introduced in J.P. Morgan (1996).
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loss di¤erentials between forecasting models k and j at time t, dkj;t,

dkj;t = L(h
(m)
kt ; �

(m)
t )� L(h(m)jt ; �

(m)
t ). (10)

If all of the forecasts are equally accurate then the loss di¤erentials between all pairs of forecasts

should not be signi�cantly di¤erent from zero. The null hypothesis of EPA is then

H0 : E (dkj;t) = 0 8k > j 2 � (11)

We test (11) using the semi-quadratic test statistic described in Hansen and Lunde (2007). If the

null hypothesis is rejected at an �% con�dence level, we remove the worst performing model, in

terms of the loss functions and begin the process again with the reduced set of forecasts �1: This

process is iterated until the test of equal predictive accuracy cannot be rejected, or a single model

remains. The model(s) which survive form the �% con�dence MCS.

The literature on MCS typically assumes scalar forecasts and hence scalar loss functions are

straightforward. As the forecasts considered here are for VCMs, we need to transform them to scalar

loss functions. Two general approaches are considered here. First we form an equally weighted

portfolio of all stocks considered. Two loss functions commonly employed in MCS evaluations,

the mean squared error (MSE) and mean absolute deviation (MAD) can then be employed to the

scalar portfolio variance. Let h(m)kt be the variance forecast of the equally weighted portfolio, which

is a function of the elements in the VCM forecast from model k, H(m)
kt . This will be compared

to the realised portfolio variance, �(m)t , being a linear combination of the elements of the actual

VCM �
(m)
t

8. The loss functions are then applied to evaluate the accuracy of the portfolio variance

forecasts:

Mean Squared Error L(h(m)kt ; �
(m)
t ) = (h

(m)
kt � �(m)t )2 (12)

Mean Absolute Deviation L(h(m)kt ; �
(m)
t ) = jh(m)kt � �(m)t j (13)

The second approach to constructing a loss function from a VCM forecast, H(m)
kt , and the actual

VCM, �(m)t , is to apply the multivariate QLIKE loss function

MV QLIKE L(H
(m)
kt ;�

(m)
t ) = tr(H

(m)�1
kt �

(m)
t )� log

���H(m)�1
kt �

(m)
t

���� n (14)

8 In the simulation experiments reported below we have access to the true VCMs and so can use �(m)t , where
we discuss real stocks this is a latent matrix and we replace it with the realized VCM, V(m)

t ; which is a consistent
estimator of �(m)t :
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which Patton and Sheppard (2009) and Laurent, Rombouts and Violante (2009) show to be a robust

loss function for evaluating covariance matrices9. Becker, Clements, Hurn and Doolan (2009) �nd

in simulations that QLIKE is most likely to select the forecast model which shares the speci�cation

of the data generating process with fewer remaining forecasting models in the MCS. Hence it is

a more discerning loss function, and we therefore employ it in our simulations (see also Laurent,

Rombouts and Violante, 2010).

By using the results from these three loss functions we aim to form a more robust picture of

the performance of the CD-MIDAS compared to other forecasting methods10.

5 Simulation Evidence

In this section we investigate the forecasting power of the CD-MIDAS through Monte Carlo simu-

lations for dimensions of 3 and 20 stocks. The CD-MIDAS forecasts will be compared to forecasts

from the DCC, CD-VARFIMA, Riskmetrics and the simple, but popular, rolling average. The

results show that the CD-MIDAS model holds signi�cant promise.

5.1 Data Generating Process

We �rst provide a brief overview of the method used to generate data for the simulation study; a

more detailed description, including parameter values, can be found in Appendix B. The simulation

assumes that the variance of returns for each of the n stocks follows a GARCH(1,1). The conditional

correlation matrix, governing the strength of the relationships between the stock returns, is assumed

to be generated from a scalar DCC(1,1) model as speci�ed in Engle and Sheppard (2001). Given

starting values we use the DCC and GARCH equations to determine the path of the variances

and the correlation matrix at a daily level. The GARCH/DCC approach thus provides us with a

variance-covariance matrix for each day.

In order to generate intraday data we use the daily variance-covariance matrix generated by

the DCC. Using this, �t; and denoting the number of required intraday periods by Q, we obtain

intraday returns for day t by taking Q draws from a N(0n; In)11 distribution and premultiplying

the resulting vectors by the lower diagonal Cholesky decomposition of 1Q�t: The result is Q vectors

of simulated returns, rqt where

9Consistent, here, refers to a loss function that identi�es the best forecast model even if the latent �(m)t is replace
with the realized VCM, V(m)

t .
10 It can be shown by simulations that for a given dimension of VCM the MVQLIKE puts relatively more emphasis

on the �t of the variances. As the dimension of the VCM increases the covariances become more important, but
that increase in importance is somewhat slower for the MVQLIKE than it is for the MSE (evaluated on an equally
weighted portfolio). These results are available on request.
110n represents an n� 1 vector of zeros and In is an n� n identity matrix.
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rqt = chol

�
1

Q
�t

�
eqt

eqt � N(0n; In)

and, as the vectors are independent within the day, the sum of the intraday return vectors, rt =PQ
q=1 rqt; has a realized VCM equal to Ht. Hence we have a set of intraday returns with a DCC

correlation structure at the daily level, whose component volatilities conform to a GARCH process.

This process is conducted for t = 1; :::; T so that we obtain the following:

1. Actual VCMs, �t t = 1; :::; T , for use in forecast evaluation and calculation of a rolling average

forecast.

2. Intraday returns data with 25 return periods per trading day, rqt q = 1; :::; 25 and t = 1; :::; T .

This is used in the calculation of realized covariance matrices which are inputs in the CD-

MIDAS model as explained above.

3. Daily returns data, rt t = 1; ::::; T , for use in estimation and forecasting in the DCC model.

Data generation requires the values of the GARCH and DCC parameters, in order to ensure

these are realistic we calibrate the values by estimating a DCC model for daily observations of the

highly liquid Coca-Cola, American Express and Disney stocks, over the period 3/4/97-31/08/06.

In the �rst of our simulations we use these estimates and allow the DCC model of the DGP to

remain unchanged throughout. In the second simulation we consider an environment in which the

DGP parameters change over time. We allow all of the GARCH and DCC parameters to change

every 1,000th trading day in order to introduce a structural break in the data12. At these breaks

we vary the GARCH and DCC parameters by small amounts to re�ect typical values for these

models, with larger changes made in long term correlations between the stocks. This is consistent

with the nature of realized correlations over twenty-two day periods between the three stocks used

for calibration, as these range between -0.11 and 0.91 and all of the correlations we use are in this

range, the actual values used can be found in Table 6 in Appendix B. In this context the constant

parameter DCC forecasts come from a misspeci�ed model.

12Given that the estimation period was set to 1,000 observations, this break placement implies a varying placement
of the break period in the estimation period. Further, on a small number of occasions the break is placed in the
forecasting period.
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5.2 Forecasting Models

In order to gauge the value of averaging forecasts across di¤erent permutations of stocks we include

versions of the CD-MIDAS model based on one, two or three di¤erent orderings of the three stocks13.

These three models are represented by CDM1, CDM2 and CDM3 respectively in the tables below.

In addition to the DCC and CD-MIDAS model we include a simple rolling average forecast (RA)

to ensure that the two model approaches are able to signi�cantly improve on a simple non-modelled

approach. Rolling averages are computed from the actual VCMs for the last twenty non-overlapping

22 day periods prior to the start of the forecast period, hence in total the average is taken over 440

trading days. We also include the Riskmetrics model (RISKM ) introduced in J.P. Morgan (1996),

this is an exponentially weighted moving average of the cross products of monthly return vectors

and is included here due to its popularity in the risk management industry.

The CD-VARFIMA model introduced in Chiriac and Voev (2010)14 which uses a fractionally

integrated VAR model to forecast the elements of the Cholesky decomposition is also included in

our study. We follow the recomendations of Chiriac and Voev (2010) in including a single MA

and AR term in the modelling of the behaviour of the decomposition and we restrict the fractional

integration, MA and AR paramaters to be the same for all elements in the decomposition. In order

to allow a fair comparison with our model we also obtain forecasts from this model for up to three

orderings of the elements of the original VCMs and average the resulting forecasts. The results are

labelled CDV1, CDV2 and CDV3 in the results presented below.

We simulate daily data series of length 3,200. The �rst 1,000 observations form the �rst estima-

tion sample (for CDM and CDV models) used to forecast the VCM for days 1,001 to 1,022. The

estimation sample is then moved forward 22 days to forecast the VCM over days 1,023 to 1,044

and so forth producing 100 non-overlapping forecasts. We then perform an MCS analysis on the

set of 100 forecasts. For each DGP we obtain 1,000 such replications of the data, resulting in 1,000

model con�dence sets. The results will report characteristics of these 1,000 model con�dence sets

we obtain for each DGP.

5.3 Results

We focus the analysis of our results on the number of times that a forecasting method is included in

the 1,000 di¤erent MCS we obtain for each DGP. The tables below report the percentage of model

13The �rst ordering of the stocks is (1,2,3) in which stock 1�s variance is the �rst diagonal element in the covariance
matrix, stock 2�s variance is the second diagonal element and stock 3 in the third diagonal position. The other
orderings are (3,2,1) and (2,3,1).
14For our VARFIMA estimations we used code gratefully provided by Roxanna Chiriac, translated into OX.
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con�dence sets that contain a given model, and how often a speci�c model is the only remaining

member of the set. Hence if we report that the CDM1 model is included 88.4% of the time it

means it was included in the model con�dence set in 884 of the 1,000 replications.

We �rst consider the case where the data generating process is the constant coe¢ cient scalar

DCC of Engle and Sheppard (2001). The top panel of Table 1 reports the proportion of times that

each of the considered models was included in the MCS for this DGP. The results are reported

for two loss functions based on the total portfolio variance of an equally weighted portfolio (MSE,

MAD) and one based on an elementwise analysis of the variance covariance matrix (MVQLIKE).

Under all three loss functions the CDM2 and CDM3 versions of the CD-MIDAS model outperfrom

the correctly speci�ed DCC model, however under both MAD and MSE the di¤erence in the

inclusion rates is small and the DCC is included in over 90% of the model con�dence sets. Under

the MVQLIKE loss function the di¤erence between the performance of the CD-MIDAS models and

the DCC is much bigger. The di¤erence in inclusion rates between CDM2 and DCC in is 25.8% in

this case, implying that under this robust loss function even when the DCC is correctly speci�ed

it is outperformed by the CD-MIDAS model.

It is also apparent that increasing the orderings of stocks in the CD-MIDAS models impacts

positively on forecast accuracy. Under all three loss functions the performance of CDM3 and CDM2

are broadly similar, however, under all loss functions both perform signi�cantly better than the

single ordering CDM1 version. This implies that although increasing the number of orderings does

generally improve forecast performance, the vast majority of improvements may be achieved with

relatively few orderings (here 2 orderings appear to su¢ ce to achieve the majority of the gain).

Generally the performance of the CD-VARFIMA models is not encouraging. Although they

outperform the rolling average and Riskmetrics forecasts, overall their forecasting performance is

inferior to the CD-MIDAS and the DCC models in the context of a DCC GDP15.

The bottom section of Table 1 reports the percentage of occasions on which one of the models

was the only element remaining in the model con�dence set. No model appears to dominate all

others more than 2.6% of the time, in accordance with the results in the upper section of Table

1 in which CDM2 and CDM3 are included together in the vast majority of the cases. Under the

MVQLIKE loss function 19.5% of the con�dence sets are made up of only the CDM2 and CDM3

models which reinforces that these were the two best performing forecastors.

15 It should be noted here that Chiriac and Voev (2010) �nd the CV-VARFIMA to outperform the DCC in the
context of a 6 stock portfolio using real data. In that situation it is unlikly that the DCC is a good representation
of the unobserved DGP and hence the results presented here are complementary to those presented in Chiriac and
Voev. They do not present any simulation results.

15



In
cl
us
io
n
In
M
C
S

C
D
M
1

C
D
M
2

C
D
M
3

D
C
C

R
A

C
D
V
1

C
D
V
2

C
D
V
3

R
IS
K
M

M
A
D

77
.4
%

98
.7
%

97
.7
%

92
.2
%

8.
4%

3.
1%

4.
6%

11
%

5.
8%

M
SE

87
.3
%

97
.7
%

97
.7
%

93
.7
%

7%
8.
8%

7.
9%

17
.9
%

13
.3
%

M
V
Q
L
IK
E

54
%

98
.4
%

96
.1
%

72
.6
%

0.
3%

2%
0.
1%

0.
3%

0.
3%

M
C
S
co
ns
is
ti
ng
of
on
ly
on
e
m
od
el

C
D
M
1

C
D
M
2

C
D
M
3

D
C
C

R
A

C
D
V
1

C
D
V
2

C
D
V
3

R
IS
K
M

M
A
D

0.
2%

0.
9%

0.
2%

0.
6%

0%
0%

0%
0%

0%
M
SE

0.
2%

0.
4%

0.
1%

1%
0%

0%
0%

0%
0%

M
V
Q
L
IK
E

0.
2%

2.
6%

0.
6%

0.
5%

0%
0%

0%
0%

0%

T
ab
le
1:
Fo
re
ca
st
ev
al
ua
ti
on
fo
r
D
C
C
D
G
P
.
T
he
to
p
pa
ne
l
of
th
is
ta
bl
e
re
p
or
ts
th
e
p
er
ce
nt
ag
e
of
ti
m
es
th
at
m
od
el
s
ar
e
in
cl
ud
ed
in
th
e

M
C
S,
th
e
b
ot
to
m
pa
ne
l
re
p
or
ts
th
e
p
er
ce
nt
ag
e
of
ti
m
es
th
at
a
gi
ve
n
m
od
el
is
in
cl
ud
ed
in
th
e
M
C
S
on
it
s
ow
n.
T
he
re
su
lt
s
ar
e
ba
se
d
on
da
ta

pr
oc
ur
ed
fr
om

a
D
C
C
D
G
P
pr
oc
es
s

16



Given that the DCC model is speci�ed to match the DGP the fact that our CD-MIDAS model

outperforms the DCC model seems counterintuative. We believe that the problem with the DCC

forecasts is caused by estimation error. In order to provide more evidence for this conjecture we

report results in which we replace the DCC model with DCCact, a model in which we use the

true paramater values to forecast the VCM based on returns data obtained from our simulation

process. The CDV and CDM models still require parameter estimation as above. The results are

reported in Table 2. The results show that, when the true paramaters are employed, the DCC

is the best performing model, this is demonstrated most emphatically under the MVQLIKE loss

function, when in 96% of cases the MCS consists of only the DCC model. These results support

our hypothesis that the signi�cant deterioration in performance of the estimated DCC is due to

estimation uncertainty.

We now consider results from the case in which the DCC does not share the speci�cation of the

DGP, a situation believed to be more in keeping with a real world environment. Table 3 reports

the proportion of occasions on which models were included in the MCS when the data generating

process was a DCC process with structural breaks every 1,000th trading day. This allows us to

compare the performance of the models when none of the estimated models accurately identi�es the

DGP of stock returns, a sure certainty in practice. Under all loss functions the two best performing

models are the CDM2 and CDM3 models, with only a marginal di¤erence in their performance.

Under all loss functions the CDM1 model is the third best performing model. As in the no breaks

case the rolling average, CD-VARFIMA and Riskmetrics models are inferior to the DCC and CD-

MIDAS models. As the DGP is still based on a DCC process (albeit with changing parameters)

it is not surprising that the DCC remains superior to some other forecasting models that do not

make use of any information on the structure of the DGP. We see that under all loss functions the

CD-MIDAS model improves its performance when averaged across more than one ordering of the

stocks, also consistent with Table 1 we see that in this case the biggest increase in performance is

associated with the addition of the �rst alternative ordering of the stocks.

The bottom section of Table 3 reports the percentage of times that a particular model considered

is the only remaining model. The results reveal that no single model makes up the MCS on its own

more than 2.6% of the time. These results seem insigni�cant and are concurrent with the result

that more than one CD-MIDAS model is commonly included in the MCS. An additional column,

headed CDMIDAS is included in the bottom section of Table 3 reporting the proportion of times

the MCS was made up only of a combination of CD-MIDAS models16. We see that under all three

16 In these cases the MCS can be made up of one, two or three of the CD-MIDAS models included in the investigation.
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loss functions a substantial amount of model con�dence sets are made up only from the CD-MIDAS

models, especially in the MVQLIKE case where 77.9% of the sets are composed exclusively of this

type of model, this further underlines the usefulness of the forecasts from this approach.

Overall the CD-MIDAS outperforms all other models considered regardless of the data gener-

ating process, a positive re�ection on the value of the proposed forecasting tool. We have also seen

evidence that the practice of averaging over several VCM orderings in the CD-MIDAS model can

signi�cantly improve forecasts, albeit with diminishing returns to the number of orderings used.

6 Large Scale Portfolios

In multivariate modelling of covariance matrices there are two problems that require attention.

The �rst is the problem of ensuring positive de�nite VCM forecasts, solved here by the use of

the Cholesky decomposition as proposed by Chiriac and Voev (2010), and secondly there is the

problem of parameter estimation for portfolios of large dimensions. The analysis above considered

the case where n, the dimension of the VCM, was equal to three. However, traditionally it has been

thought that around 20 stocks are necessary for the full e¤ects of diversi�cation to be obtained (see

Bloom�eld, Leftwich and Long, 1977). The purpose of this section is to show that the CD-MIDAS

model can be adapted in a straightforward manner for use in forecasting the VCM in settings with

higher dimensions; here we set n = 20 as a basis for examining large scale matrices:

With 20 assets we have ~n = 210 and we estimate the general CD-MIDAS speci�cation using

the own lag speci�cation of (6). It is worth noting that although we have increased the number of

stocks we are not required to alter our estimation procedure, other than increasing the number of

univariate MIDAS relationships estimated.

In order to establish a benchmark we initially present a Monte Carlo simulation for n = 20.

The data generating process is the DCC with no structural breaks and we use the same method to

obtain the data as described previously (see Appendix B for details and Table 7 for parameters).

We perform 100 replications, for each of these we obtain 100 forecasts of non-overlapping 22 day

periods and, as before, use the MCS to compare the results from several models: DCC, CD-MIDAS

and CD-VARFIMA with 1,2 & 3 orderings, Riskmetrics and a rolling average of actual 20 � 20

variance-covariance matrices. Estimating a DCC for 20 stocks is realistically only feasible using

the composite likelihood approach of Engle et al (2008). The MCS results for this analysis using

MSE and MAD loss functions for an equally weighted portfolio, and the MVQLIKE loss functions

are reported in Table 4.

The results reveal that our CD-MIDAS model performs worse than than the DCC model when
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the two are compared on the basis of total portfolio volatility, which is a weighted average of the

210 unique VCM elements. Only on a few occasions does the MCS consists of a single forecast only,

in the vast majority of cases it would contain the DCC and a CD-MIDAS forecast. The nature

of the result changes when we employ the MVQLIKE loss function. In this case the CD-MIDAS

model with three orderings is performing much better than the DCC model with a di¤erence in

inclusion rates of 71%. Consequently the CDM3 forms a single forecast MCS in 61% of cases. It is

notable that as in the small stock case the CD-VARFIMA, rolling average and Riskmetrics models

perform much worse than the DCC and CD-MIDAS models.

Interestingly, adding a third ordering now has a clear, positive impact when evaluating the

CD-MIDAS forecasts with the MVQLIKE. In the n = 3 case the addition of a third ordering only

o¤ered negligable improvements. This allows the conjecture that the marginal bene�t of additional

orderings is increasing in n17.

It is interesting to see the substantially di¤erent implications for the di¤erent type of loss

functions. As mentioned earlier, the contribution of the variance elements to the overall measure

is relatively larger in the MVQLIKE measure than in the MAD or MSE applied to an equally

weighted portfolio. It is therefore plausible to obtain di¤erent results.

6.1 Applied Forecasting Experiment

In this section we apply the CD-MIDAS model to twenty real stocks and compare its performance

to CD-VARFIMA, DCC, Riskmetrics and rolling forecast approaches using an MCS evaluation.

The data used in the estimation and forecasting covers the dates 1/12/1997-31/8/2006, the full list

of stocks included in the experiment can be found in Table 8 in Appendix C.

As in the Monte Carlo simulations above the estimation period for the CD-MIDAS and DCC

models is 1,000 observations long while the rolling average forecast is taken over the last twenty

non-overlapping 22 day periods. We again employ a CD-MIDAS model which uses only own lags as

explanatory variables for individual elements of the decomposition. As previously we restrict the

results to up to three orderings. We investigated up to �ve orderings but beyond three orderings

no forecast improvements were available. This supports our earlier conjecture that the bulk of

improvements is to be had from averaging over a very small number of orderings.

In this experiment we obtain forecasts for 49 non-overlapping 22 day periods, hence the forecasts

cover a period of approximately four years in length. The MCS results using MVQLIKE, MSE and

MAD, where the latter two are calculated for equally weighted portfolios, are presented in Table 5,

17The issue of the optimal number of orderings is worthy of additional investigation but goes beyond the scope of
this paper. In the empirical application we o¤er some additional information on this issue.
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MSE MAD MVQLIKE
Loss pMCS Loss pMCS Loss pMCS

CDM3 2.88 1.00 CDM2 0.88 1.00 CDM3 3.67 1.00
CDM2 2.90 0.47 CDM3 0.89 0.50 CDM2 3.69 0.21
CDM1 2.97 0.16 CDM1 0.90 0.28 CDM1 3.77 0.06
DCC 3.50 0.16 CDV2 1.00 0.28 CDV2 4.82 0.06
CDV2 4.54 0.16 CDV1 1.01 0.28 CDV3 4.86 0.06
CDV1 4.56 0.16 CDV3 1.01 0.28 CDV1 5.57 0.06
CDV3 4.56 0.16 DCC 1.02 0.28 RA 5.77 0.04
RA 6.02 0.15 RA 1.56 0.24 DCC 6.25 0.02

RISKM 9.67 0.10 RISKM 2.79 0.16 RISKM 18.34 0.02

Table 5: MCS for real data. MCS results for forecasts of the variance-covariance matrix of 20
stocks. For each loss function the entries are ordered with the best forecast model listed �rst. Loss
is the average loss. p �MCS is the MCS p-value. CDMi (CDVi) represents the forecasts from
the CD-MIDAS (CV-VARFIMA) model with i orderings. DCC represents the forecasts from the
DCC model estimated with the component likelihood method. RA is the rolling average forecast
and RISKM the Riskmetrics forecast.

these include both the mean values of the loss functions, Loss, and the MCS p-values, pMCS . The

p-values indicate the con�dence level at which a model would be removed from the MCS, hence at

a 10% con�dence level all models with a p-value in excess of 0.1 would be included in the MCS.

We �nd that in the cases of all three loss functions the CD-MIDAS model has the lowest loss

function values and the highest associated p-values. Under the MAD and MSE loss function only

the Riskmetrics model is excluded from the MCS at standard con�dence levels, however as discussed

in Becker et. al (2009) and Laurent et. al (2010) these loss functions exhibit less power relative

to the MVQLIKE. Under the MVQLIKE the only models included in the MCS are models based

on the CD-MIDAS approach, notably the version of the model based on a single ordering of stocks

is removed from the MCS at a 10% signi�cance level, the same level at which the forecasts based

on the CD-VARFIMA model are rejected from the MCS. This is further evidence that the use of

additional orderings can be used to obtain superior forecasts in the model.

In general this applied experiment further shows the ability of the CD-MIDAS to outperform

the forecasts of the DCC and CD-VARFIMA models and that within the model increasing the

number of permutations over which we average forecasts can increase the accuracy of forecasts of

the VCM.

7 Conclusions

This paper presents a new model for forecasting the variance covariance matrix (VCM) of a stock

portfolio. The model, referred to as Cholesky Decomposition-MIDAS (CD-MIDAS) is estimated
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using the properties of the Cholesky decomposition to ensure positive de�niteness of forecasts. It

also employs the MIDAS framework to provide a speci�cation which allows realizations of daily

covariance matrices to be used in forecasting monthly covariance matrices, in contrast to many

existing multivariate models which ignore such information.

A Monte Carlo investigation shows that the model presented here is able to signi�cantly improve

on forecasts of return volatility, for an equally weighted portfolio, compared to the DCC, CD-

VARFIMA and other more simple forecasting techniques. This is evidence that the Cholesky-

MIDAS model is a potentially useful technique whenever forecasts of variance covariance matrices

are used in a decision making process. This result is maintained even when the DCC�s form is

correctly speci�ed but parameter estimation is required. It is important to understand that the

CD-MIDAS forecasting tool (as well as the CD-VARFIMA model) cannot lay claim to represent any

structural model of return (co)variances. It is merely a parsimoniously parameterised forecasting

tool potentially able to capture important stylised facts in the the dynamics of variances and

covariances. As such its usefulness can only be judged in a forecasting context. It is therefore

encouraging that it proves to produce superior forecasts compared to a well understood forecasting

model (the DCC), even when the latter is the correct representation of the DGP.

As di¤erent orderings of stocks will produce di¤erent Cholesky decompositions, the forecasts

from the CD-MIDAS model are conditional on the particular ordering chosen. This opens the

opportunity to produce multiple, equally valid forecasts for the same VCM. It is demonstrated here

that the resulting possibility of producing forecast averages can signi�cantly add to the quality of

forecasts. It appears as if a small number of alternative orderings su¢ ce to achieve the majority of

available improvements. A deeper investigation into this issue and in particular in whether optimal

ordeings can be identi�ed ex-ante is left for future research.

Another area for further investigation is the possible augmentation of the MIDAS speci�cation

with additional weakly exogenous information, a property shared with the model of Chiriac and

Voev (2010) who were the �rst to devise models for the elements of the Cholesky decomposition.

Hence one could use information such as realized volatilities, information on news releases, macro-

economic variables, implied volatility data from VIX and anything else that might be believed to

in�uence the VCM. This is not commonly the case in other multivariate models and we note that

the capacity of this model to incorporate additional variables could be a signi�cant bene�t.
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A Realised Covariance Matrix Calculation

In the paper realized variance-covariance matrices are central to the implementation of the Cholesky-

MIDAS model. As mentioned in the text there are several ways in which the matrix may be

calculated, however this appendix focuses on describing only the method utilised in this paper.

We utilise one of the methods proposed in Hansen and Lunde (2005), designed to capture

the volatility across an entire 24-hour period rather than just during the trading segment of the

day. It is chosen in part because it makes the simulation of returns across a 24-hour period more

straightforward in the Monte Carlo simulation. This makes the calculation of monthly covariance

matrices easier as they will simply be the sum of 22 single daily covariance matrices.

For a given set of stocks open and closing prices are recorded as well as prices at x minute

intervals within the trading day. The vector of returns over the period when the market is closed is

denoted as rco while the intraday returns over x minute periods are denoted rq;t where q = 1; :::::Q

and Q is the number of x minute periods in the trading day. The realized variance-covariance

matrix for the day, Vt, is calculated as

Vt= rco;tr
0
co;t +

QX
q=1

rq;tr
0
q;t (A.1)

When V(m)
t , a variance-covariance matrix for an m day period ending at time t, is required we

simply sum each of the constituent matrices as in (A.2) below:

V
(m)
t =

tX
i=t�m+1

Vi (A.2)

where Vi is the realized covariance matrix for the ith 24 hour period.

In the simulation experiment in Section 5 we allow each of the 24 hour periods to contain

25 intraday trading periods. If we attempt to interpret this in terms of a real world trading

environment this is equivalent to having one period representing over-night returns and 24 returns

observed within the trading day.

The simulation experiment allows us to side-step several issues in the calculation of realized

covariance matrices, we need not worry about jumps in the data and non-synchronous trading

creating bias in our measure of the covariance matrix as they are not a feature of our data. Although

we accept that this will a¤ect real, data within our simulation we assume that we have been able

to solve these problems and that the method borrowed from Hansen & Lunde (2005) allows us to

consistently estimate the actual variance-covariance matrix for a given 24 hour period.
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B Data Simulation

This appendix describes how the data used in the simulation experiment is generated. The key

outputs of the process are; a) observed variance covariance matrices, b) simulated daily returns

data and c) simulated intraday data which can be used to generate simulated realized variance

covariance matrices.

We make several simplifying assumptions. Firstly we assume that trading occurs over a whole

day so that a day can be split into Q periods of equal length. We also assume by construction that

there are no jumps and further that trading activity occurs throughout the day.

The �rst step is to de�ne the full set of equations which govern the dynamic behaviour of the

variance covariance matrix (VCM). We use a GARCH (1,1) process to determine the volatility

of each of the n stocks, as in (B.1)-(B.3). Hence each stock has 3 parameters which govern the

development of its volatility process.

rit = �it �it � N(0; �2it) (B.1)

�2it = �i0 + ai1�
2
it�1 + �i�

2
it�1 (B.2)

�it =
q
�2it"it "it � IID(0; 1) (B.3)

We allow the movement of the variance-covariance matrix to be governed by a simple DCC

process, as presented in (B.4)-(B.7).

�t = Dt�tDt (B.4)

�t = Q
�
tQtQ

�
t (B.5)

Qt = (1�  � ')�Q+ ("t"0t) + 'Qt�1 (B.6)

Q�t = I3 �Q1=2t (B.7)

In e¤ect this models the correlation matrix for the stocks which we then combine with the variances

generated by our n GARCH models to yield the VCM. In (B.4) Dt is a diagonal matrix with the

diagonal elements equal to the square root of the variances, �2it, generated by the GARCH equation
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(B.2), �t is the correlation matrix of the stocks and it is this that is modelled by the DCC model. In

(B.6) "t represents a n� 1 vector of standardized residuals from the n univariate GARCH models.

In order for the model to be complete in our simulation we need to specify the values of the DCC

parameters  and ' as well as the unique elements of the long run correlation matrix �Q. The n� 1

vector of stock returns is distributed as rt � N(0n�1;�t) where the dynamics of �t is described

by (B.1)-(B.7).

We now describe how to initialize and iterate the data in order to obtain the required simulation

data. For time t = 0 we set �2i0 =
�i0

1�ai1��i
for each of the n stocks, that is we set the initial variance

of each stock equal to its long run value, similarly we set Q0 = �Q and from (B.5) we can see that

this translates to setting the initial correlation matrix equal to its long run value. From this we

obtain �0 from (B.4). Hence for the initial day of the simulation we obtain a n�1 vector of returns

such that r0 � (0;�0). In order to obtain realized VCM we need Q intraday observations of this

data. We obtain these using the following steps.

1. Multiply �0 by 1
Q ; which gives the matrix

~�0 =
1
Q�0 which is the variance-covariance matrix

for each of the intraday periods.

2. Obtain Q random vectors drawn from a normal distribution, each random vector, �q;0 (q =

1; ::::; Q) is such that �q;0 � N(0n�1; In):

3. Pre-multiply each �q;0 by the Cholesky decomposition of ~�0, C0, to obtain the qth vector of

intraday returns. Each of the intraday return vectors rq;0 = C0�q;0 and so rq;0 � N(0n�1; ~�0):

4. The daily return is then equal to the sum of the intraday periods, that is r0 =
PQ
q=1 rq;0, and

from the rules of linear combinations of independent vectors r0 � N(0;�0)

We can now generate �2i1 for each stock using the daily returns ri0 where ti0 is the ith element

of r0. In combination with the recursion in equation (B.6) and the relations in (B.7), (B.5) and

(B.4) this delivers �1 which is then used to generate intraday returns for t = 1 as described in

steps 1 to 4 above.

Data are simulated for n = 3 (Section 5.1) and for n = 20 (Section 6). The parameter values

used in the case of the simulations for n = 3 are shown in Table 6. The parameter values used in

the n = 20 case are provided in Table 7 below.
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DCC without break, n=3
DCC with breaks (Regime 1), n=3
GARCH �0 � 104 �1 �
stock1 0.017635 0.07228 0.9177 �Q 1.000
stock2 0.005927 0.045517 0.943804 0.365 1.000
stock3 0.05444 0.09182 0.905986 0.434 0.295 1.000

 = 0:01 ' = 0:98

DCC with breaks (Regime 2), n=3
GARCH �0 � 104 �1 �
stock1 0.002 0.05228 0.9377 �Q 1.000
stock2 0.01927 0.075517 0.903804 0.050 1.000
stock3 0.03444 0.03182 0.945986 0.650 0.400 1.000

 = 0:05 ' = 0:94

DCC with breaks (Regime 3), n=3
GARCH �0 � 104 �1 �
stock1 0.0015 0.03228 0.9577 �Q 1.000
stock2 0.01127 0.045517 0.933804 0.150 1.000
stock3 0.0444 0.0218 0.925986 0.650 0.250 1.000

 = 0:03 ' = 0:93

DCC with breaks (Regime 4), n=3
GARCH �0 � 104 �1 �
stock1 0.004 0.06228 0.9277 �Q 1.000
stock2 0.023927 0.035517 0.963804 0.250 1.000
stock3 0.047 0.01182 0.975986 0.500 0.460 1.000

 = 0:02 ' = 0:97

Table 6: DCC parameter values (n=3). Paramaters used for the simulation of GARCH and DCC
data in the simulation described in appendix B

DCC without break, n=20
Correlation Dynamics   

0.01 0.98

Unconditional Correlations Min Max Avg
0.03 0.58 0.31

Univariate GARCH Parameters Min Max Avg
� 0.0005 0.0948 0.0459
� 0.8176 0.9930 0.9054

�+ � 0.9013 0.9999 0.9513

Table 7: DCC parameter values (n=20). Paramaters used for the simulation of GARCH and DCC
data in the simulation described in appendix B
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Ticker symbol Company Name
1 AA Alcoa Inc
2 AXP American Express Inc
3 BA Boeing Co.
4 BAC Bank of America Corp.
5 BMY Bristol Myers Squibb Co.
6 CL Colgate Palmolive
7 DD El DuPont de Nemours co.
8 DIS Walt Disney Corp.
9 GD General Dynamics Corp
10 GE General Electric Co.
11 IBM IBM
12 JNJ Johnson & Johnson
13 JPM JP Morgan Chase Co.
14 KO Coca Cola Corp.
15 MCD Mcdonald�s Corp
16 MER Merril Lynch Co. Inc
17 MMM 3M co.
18 PEP Pepsico Inc.
19 PFE P�zer Inc
20 TYC Tyco International ltd.

Table 8: List of Stocks. Stocks included in the forecasting experiment in section 6.1.

C Stocks Used In Forecasting Experiment

Table 8 provides a full list of the stocks used in the analysis in section 6.1.
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